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1. Introduction

Compared with lithium-ion batteries, lithium sulfur batteries possess a much lower
cost and much higher theoretical energy density, and they are, therefore, becoming a
research hotspot [1–5]. However, their inherent problems, including poor rate performance
due to low electric conductivity and fast capacity fading from polysulfide dissolution and
the shuttle effect, greatly impede their commercialization. Great exploration has been
performed to solve the above problems. To date, porous carbon materials have been
intensively investigated due to their effective physical confinement to restrain polysulfide
dissolution [6–10]. Compared with the nonpolar interaction of the carbon host, the polar
substrate provides stronger chemical adsorption to anchor polysulfide, including metal
organic frameworks, transition metals and their compounds [11–15]. Recently, the concept
of electrocatalysis has been introduced into lithium sulfur batteries, aiming at reducing the
detention time of polysulfide by accelerating the electrochemical redox kinetics.

In this context, more and more attention has been paid to cathode structure design
and separator modification during the past few years. Therefore, this mini review aims to
introduce recent progress focusing on cathode materials, separator modification and other
components published in Batteries. Topics of interest for publication include, but are not
limited to:

• Novel cathode materials;
• Proxy sulfur cathodes;
• Carbon host;
• Separator modification;
• Metal organic frameworks;
• Electrocatalytic conversion;
• Proton exchange membranes;
• Polysulfide shuttle effect.

2. Recent Progress

The capacity fading and low utilization of an active material, caused by polysulfide
dissolution, seriously hinders its practical application. To solve this problem, lots of work
has been done. As summarized by M. Suzanowicz et al., it is imperative to develop a highly
conductive carbon host with rich porosity [16]. The first example they discussed is MoS3
without polysulfide dissolution, which is being considered as a potential cathode material
to replace sulfur. To further improve the electrical conductivity, MoS3 was embedded
into porous reduced graphene oxide. As a result, this composite delivered a much higher
capacity. In addition, the authors also introduced their C/MnO2, C/g-C3N4 and C/AlF3
double hollow shells as the sulfur host. Taking C/AlF3 as an example, C/AlF3 infiltrated
with sulfur delivers a capacity of 702 mAh/g even after 500 cycles at 1 C, with a capacity
fading rate of only 0.052% per cycle.
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After realizing the importance of porosity, researchers have become eager to know how
to prepare carbon–sulfur composites of better interface contact, which directly determine
the electrode uniformity and subsequent battery performance. Despite mechanical milling,
gas mixing, and melting–diffusion having been investigated, these methods still fall short
of current energy-density requirements. Therefore, Laverde et al. investigated the effect of
fusion–diffusion time and sulfur content on the electrode structure [17]. They found that a
six-hour melting–diffusion time and 10 wt% sulfur content gives rise to the most uniform
sulfur distribution, which not only adsorbs polysulfide more effectively but also enhances
the overall conductivity of the electrode.

Compared with pure carbon, a carbon–transition metal compound as a cathode host
shows better electrochemical performance due to its strong chemical adsorption and accel-
erated reaction kinetics. Among various materials, a carbon–transition metal compound
derived from metal organic frameworks attracted special attention because abundant chan-
nels and open active sites can be well preserved after pyrolysis. Wang et al. prepared
carbon–cobalt by pyrolyzing ZIF-67 with a uniform and smooth dodecahedral shape as the
template under 700 °C for 3 h [18]. The as-derived three-dimensional spider network not
only increased sulfur accommodation, but also buffered the volume change during cycling.
Meanwhile, nanosized cobalt particles catalyzed the polysulfide conversion with acceler-
ated reaction kinetics. In the electrochemical test, the initial specific discharge capacity was
1425.2 mAh/g at 0.1 C. After 1000 cycles at 1 C, the decay rate is only 0.028%.

Aside from the cathode host design, separator modification has also effectively de-
pressed the polysulfide shuttle. As reported by Liao et al., adjusting the number of separa-
tors greatly inhibits the shuttle during cycling [19]. By increasing the separator number,
cycling performance improves significantly. However, the separator number increase also
hindered lithium-ion diffusion, impairing the rate capability as a side effect. Recently, a
Nafion separator has been studied to replace the traditional polypropylene separator. Com-
paring with the polypropylene separator, Yaroslavtsev et al. found that a Nafion separator
greatly reduced the polysulfide shuttle and improved the battery cycling performance [20].
After ten cycles, capacity decreased by 78% for the cell using the polypropylene separator.
In contrast, the capacity only decreased by 19% for the cell using the Nafion separator.

3. Conclusions

This mini review focuses on original research articles and editorials about Li-S batteries
published in Batteries. The articles reviewed here were committed to the most relevant
topics correlated with lithium-sulfur batteries This mini review will generate academic
resonance and a collision of ideas, helping Batteries to harvest more research results and
promoting Li-S batteries towards a more promising future.
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