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Abstract: More than ten billion tons of construction waste are generated every year in the world.
The large volume of construction waste not only increases costs for contractors, but also poses a
threat to the environment. A significant proportion of construction waste consists of off-cuts of raw
materials. Therefore, to reduce construction waste, this study builds an optimization model to reduce
the volume of off-cuts of raw materials. We then develop two solution methods—a mixed-integer
linear programming method and a column generation method—to solve the proposed optimization
model. We conduct numerical experiments to test the efficiency and applicability of our proposed
model. The mixed-integer linear programming method obtains optimal solutions and is suitable for
solving small-scale instances, whereas the column generation method gives high-quality solutions
within seconds and is suitable for solving large-scale instances. In the large-scale instances, the
column generation method reduces waste by over 10% compared to the use of two straightforward
decisions rules. Our findings will help construction projects decrease material off-cuts, reduce costs,
and achieve sustainable construction.

Keywords: construction waste management; sustainable construction; green construction sites;
integer linear programming
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1. Introduction

The rapid expansion of the construction industry in recent years has created a number
of problems, including increased environmental pollution. Construction, demolition, and
renovation activities are the largest source of solid waste in the world [1–3]. For instance,
the European construction sector produces 820 million tons of construction waste (CW)
each year, which accounts for 46% of the total solid waste generated in Europe [4]. Although
the environmental pollution intensity of CW is low compared to other waste streams, the
total environmental impact of CW is considerable because of its high volume and weight.
Therefore, the management of CW is an important component of environmental protection
programs. For instance, the European Union established a dedicated working group to
make recommendations for CW management [5]. In 2018, the European Commission
introduced a protocol to further promote and elaborate the management of CW [6,7].
The New Zealand Ministry for the Environment [8] plans to progressively increase the
landfill levy of construction waste from the current NZ$10/ton to between NZ$20/ton and
NZ$140/ton. The Hong Kong government and its executive arms have introduced dozens
of CW management policies, including regulations, codes, and initiatives over the past
decades [9].

The above measures are all aimed at reducing construction waste. In terms of sustain-
able development, the 3 Rs of waste management, reducing, reusing, and recycling, are the
basic rules [10]. A key strategy is the implementation of measures to minimize construction
waste at the design stage [11], which would contribute to the ‘reducing’ goal. Hong Kong
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Construction Industry Council [12] has highlighted that “it is essential for construction
industry to consider the strategy for management and reduction of construction waste”. A
significant proportion of construction waste consists of off-cuts of construction materials
(e.g., steel bars or polyvinyl chloride (PVC) pipes); see Figure 1. Construction projects
usually require steel bars or PVC pipes of different lengths. Therefore, they have to cut the
raw materials, which are usually a standard length, into smaller pieces. Poorly thought-out
cutting plans produce many off-cuts. For example, a construction project has raw steel
bars that are 9000 mm long and it needs four steel bars of 2000 mm and two steel bars of
5000 mm. Cutting one raw steel bar into four steel bars of 2000 mm and two raw steel
bars into two steel bars of 5000 mm will use three raw steel bars and produce 9000 mm
off-cuts. Alternatively, cutting each raw steel bar into two steel bars of 2000 mm and one
steel bar of 5000 mm uses only two raw steel bars and produces no off-cuts. Obviously, the
second option is a better choice. Unfortunately, many construction sites do not make a ma-
terial processing plan, resulting in both surplus and waste, which increase environmental
pollution. Therefore, it is meaningful to help construction site managers reduce the total
quantity of off-cuts and achieve sustainable construction.
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Our research has three objectives. First, we build an optimization model to help
construction projects make optimal decisions on minimizing construction waste. Second,
we design two solution methods to solve the proposed mathematical model. One is a mixed-
integer linear programming method that can obtain optimal solutions for the proposed
mathematical model, and the other is a column generation method which can efficiently
obtain approximate optimal solutions when the proposed mathematical model is very
large. Third, we apply the proposed model to real-world cases to test its effectiveness
and efficiency.

1.1. Literature Review

In this section, we first review studies of models and algorithms used in the field of
construction waste management. Then, we review the literature on cutting stock problems.

There are three main streams of research in the field of construction waste management.
The first focuses on the effects of economic incentives or equivalent punishments on
CW disposal (CWD) behavior. Such schemes have been implemented in many areas
around the world [14–16]. A representative scheme is the construction waste disposal
charging (CWDC) scheme in Hong Kong, which commenced in December 2005 [17]. Studies
have confirmed that CWDC is one of the most successful management approaches to
suppressing the negative impacts of CW [9,17]. The second stream of research examines
the impact of CW and CW transportation. The impacts of CW occur not only at the
disposal stage but also during transportation which aroused little attention [2,4]. CW needs
to be transported by heavy diesel oil powered trucks, which are a major contributor to
greenhouse gas (GHG) emissions. Maués et al. [2] assess the GHG emission of the CW
transportation process in the eastern Amazon. They collect data from large CW generators
and CW transportation companies and quantify the carbon dioxide (CO2) equivalent
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(CO2eq) emitted in November 2019. They find that about 0.9 million kg CO2 was released
into the atmosphere by motor vehicles powered by fossil fuels, which is a considerable
contribution to global warming. Besides, heavily loaded trucks create safety issues for
drivers and other road users and shorten the use life of road pavement. In addition, the
transportation cost is a significant component of the overall CWD cost [1]. The third
stream of research uses big data and machine learning methods to develop insights into
construction waste management. Hu et al. [18] use a support vector machine (SVM)-based
model to predict the amount of construction waste generated. Lu et al. [19] adopt four
machine learning methods—multiple linear regression, decision tree, gray models, and
artificial neural network—to forecast construction waste generation in the Greater Bay
Area, China. Lu et al. [20] use a big dataset of construction waste in Hong Kong to obtain
heuristic rules for the bulk densities of construction waste. Yang et al. [21] study how to use
machine learning methods to deal with missing data in construction waste management.
Yuan et al. [16] develop a big data probability model to estimate waste composition.

We can have two insights from the above studies. First, construction waste man-
agement is an important issue that draws the attention of scholars. Second, models and
algorithms can have many applications in this topic. Therefore, we next summarize the
methods used in cutting stock problem which is highly relevant to our research problem.

The cutting stock problem is a classical topic in operations research [22]. This type of
problem usually aims to minimize cost by searching for optimal solutions [23]. Moreover,
as this problem can help save materials, it is also useful in realizing sustainable and green
development [24,25]. Cutting stock problem is very flexible due to practical situations.
Cherri et al. [23] summarize the existing studies that solve the cutting stock problem, and
they divide related studies into three categories: heuristics method, item allocation-oriented
models, and cutting pattern-oriented models. In our study, we adopt heuristics method and
cutting pattern-oriented models. Therefore, we review these two types of classical studies
in Table 1. We can find that most of the studies will finally adopt heuristic methods to solve
the problem though they initially develop a mathematical model. First fit decreasing (FFD)
heuristic is an alternative for solving cutting stock problems [26]. FFD heuristic will start
cutting from the longest item, and then the second longest item is considered and so on,
which provides an efficient heuristic way for solving the cutting stock problem. In our study,
we also list FFD heuristic as a benchmark method in Section 4 and we compare FFD with
column generation to give insights. We further review the methods used to generate cutting
patterns in the existing literature because cutting patterns are the basis for constructing a
mixed-integer linear model to solve cutting stock problems. Ogunranti and Oluleye [27]
use an integer model to minimize the off-cuts based on generated cutting patterns. They
propose a pattern generation algorithm which traverses from the longest cutting length until
the stock cannot be further cut to the minimum required length. Morillo-Torres et al. [28]
also develop a pattern generation algorithm. They assume that there will be a maximum
of two types of small items in a cutting pattern. Lomate et al. [29] illustrate that the
number of cutting patterns could be in the millions and they develop a greedy algorithm
to generate cutting patterns. Eshghi and Javanshir [30] also adopt greedy algorithms to
generate cutting patterns. Additionally, there are also some studies that do not use cutting
patterns to transform the problem into a linear problem [31] or assume that cutting patterns
are known parameters [32]. For more details of cutting stock problems, please refer to
Cherri et al. [23] and Delorme et al. [33], who give an exhaustive survey of methods in
terms of one-dimensional cutting stock problem. In this study, we define parameters to
determine the upper and lower bounds of the number of cutting patterns and introduce a
binary expression which is equivalent to the number of each cutting pattern that needs to
be used under each diameter. This approach helps represent all cutting patterns efficiently
and provides the basis for converting the cutting stock problem to a mixed-integer linear
programming formulation.
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Table 1. Summary of cutting stock studies.

Study Application Method(s)

Gradisar et al. [34] Clothing Industry Bi-objective model solved by heuristics
Gradisar and Trkman [35] General one-dimensional cutting stock problem Heuristic procedure and branch-and-bound

Dimitriadis and Kehris [36] Manufacturing industry Heuristics
Cui and Yang [37] Stock bars Linear programming and heuristics
Gracia et al. [38] Construction industry Heuristics based on Genetic algorithms

As this literature review shows, optimization models can make a difference in waste
management. However, there is little research in this area of construction waste manage-
ment. Unlike residential or commercial waste, careful planning can reduce construction
waste at the source. Therefore, we develop an optimization model for reducing the off-cuts
at construction sites. Although there are many sophisticated algorithms to solve the cutting
stock problem, the applications in construction management are limited. We develop
models and algorithms to optimize the cutting of construction materials to reduce waste.

1.2. Objectives and Contributions

The main aim of this study is to develop models and design algorithms that optimize
the cutting of construction materials and thus reduce waste. We use mathematical methods
to transform our proposed model into a mixed-integer linear programming model, which
can give an optimal solution, and into a column generation model, which is efficient. We
summarize the theoretical and practical contributions of our study below.

(1) Theoretical contribution. The literature usually adopts heuristic algorithms to solve
the cutting stock problem. In this study, we first develop a general model to minimize
the off-cuts in construction sites. Additionally, we then develop two solution methods.
The first is a mixed-integer linear programming model to obtain exact optimal solu-
tions by considering all possible patterns and the proposed cutting pattern generation
method is innovative. The second method is based on column generation, which
deals with large scale problems. We compare the effectiveness of column generation
method with two heuristics, which could provide insights of these three approaches.
Using real-word cases, we demonstrate that our methods are effective and efficient.

(2) Practical contribution. The proposed optimization model and the two solution meth-
ods can be used to reduce the waste produced by cutting construction materials, e.g.,
steel bars and PVC pipes. Our study will help construction contractors reduce waste,
save costs, and achieve sustainable and green construction targets.

The remainder of this paper is organized as follows. Section 2 presents a mathematical
model for minimizing construction waste. Section 3 proposes two solution methods to
solve our proposed model. Section 4 conducts numerical experiments in real-world cases
that show the effectiveness and applicability of the proposed methods. Conclusions are
presented in Section 5. Main symbols used in the paper are listed in Table 2.

Table 2. Symbols.

Sets

I Set of categories of steel bars, I = {1, . . . , |I|}
Ji Set of types of steel bars of diameter di , i ∈ I, Ji = {1, . . . , |Ji |}
Ki Set of cutting patterns for raw steel bars of diameter di , i ∈ I, Ki = {1, . . . , |Ki |}
Indices

i ∈ I A category of steel bars
j ∈ Ji A type for category i
k ∈ Ki A cutting pattern for category i
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Table 2. Cont.

Parameters

di The diameter of steel bars of category i
lij The length of steel bars of diameter di and type j that the site requires
nij Total number of steel bars of the length lij of diameter di and type j that the site requires
Li The length of raw steel bars of diameter di that the plant sells

Decision Variables

vi Number of raw steel bars of diameter di to purchase from the plant
xijk Number of steel bars of length lij that a raw steel bar of of diameter di and cutting pattern k will be cut into
yik Number of raw steel bars of diameter di that will be cut according to pattern k

2. Model

We use steel bars as an example when building our optimization model. As steel bars
have good performance in resisting tensile forces, they are widely used in the construction
of reinforced concrete structures [39]. A large number of steel bars are produced every year
to meet the needs of the construction industry. For example, according to the National
Bureau of Statistics of China [40], China produced more than 267 million tons of steel
bars in 2020. However, due to the irregular operation of workers on construction sites,
wastage of steel bars is common. Therefore, we use steel bars as an example in our study of
construction waste.

We consider a construction site that requires a set of different categories of steel bars.
Each category is defined by a diameter. We use the set I = {1, . . . , |I|} to denote the
categories. The diameter of the steel bars in category i ∈ I is denoted by di (mm). For
example, in a study of construction costs, Lee and Ahn [41] use 22 mm-diameter steel
bars for reinforced concrete beams and 25 mm-diameter steel bars for reinforced concrete
columns. In that case, I = {1, 2}, d1 = 22, and d2 = 25. Another example is an actual
case of building a residential building in Chengdu, China. Steel bars with diameters of
12 mm, 14 mm, 16 mm, 18 mm, 20 mm, and 22 mm are used in the construction. Therefore,
I = {1, 2, 3, 4, 5, 6}, d1 = 12, d2 = 14, d3 = 16, d4 = 18, d5 = 20, and d6 = 22.

The construction site in our example requires different lengths of steel bars for each
diameter di. We use set Ji = {1, . . . , |Ji|} to denote the types for category i. The length of
steel bars of type j ∈ Ji of category i ∈ I is denoted by lij (mm). In the residential building
example, the construction site requires 18 mm-diameter steel bars with lengths of 950 mm,
1220 mm, 1510 mm, 2050 mm, 2090 mm, 2220 mm, 2430 mm, 2450 mm, 2580 mm, 2690 mm,
2730 mm, 2740 mm, 3520 mm, 4070 mm, 4480 mm, and 7240 mm. Then, J4 = {1, . . . , 16},
l4,1 = 950, l4,2 = 1220, l4,3 = 1510, l4,4 = 2050, l4,5 = 2090, l4,6 = 2220, l4,7 = 2430,
l4,8 = 2450, l4,9 = 2580, l4,10 = 2690, l4,11 = 2730, l4,12 = 2740, l4,13 = 3520, l4,14 = 4070,
l4,15 = 4480, and l4,16 = 7240. For each j ∈ Ji and each i ∈ I, a total of nij steel bars of the
length lij are required. Construction sites usually buy steel bars of different diameters from
steel plants based on their specific needs. For each diameter di of steel bars, the plant sells
raw steel bars with the length Li (mm) at certain price; Li ≥ max

{
lij, j ∈ Ji

}
, i ∈ I. The

government usually regulates the length of raw steel bars and issues product standard
documents. For example, China stipulates that the length of raw steel bars should be 9 m
or 12 m [42], as these standardized lengths are convenient for truck transportation. When
deciding how many raw steel bars of each diameter to buy from the plant, the construction
project seeks to minimize the total cost while fulfilling the needs of the site. As off-cuts will
be scrapped, identifying the smallest possible number of raw steel bars will also minimize
the amount of construction waste.

We define the decision variable vi as the number of raw steel bars of category i ∈ I
(each has a length Li) that will be bought from the steel plant, and the function
Fi

(
vi, ni1, . . . , ni|Ji |

)
as 1 if there is a way of cutting vi raw steel bars of length Li into

ni1 steel bars of length li1, . . . , ni|Ji | steel bars of length li|Ji | altogether, and 0 otherwise.
Z+ represents the set of nonnegative integers. We aim to minimize the total cost, which is
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equivalent to minimizing the total number of raw steel bars because the price is fixed. A
mathematical programming model for the problem is

[M1]
min ∑

i∈I
vi (1)

subject to
Fi

(
vi, ni1, . . . , ni|Ji |

)
= 1, i ∈ I (2)

vi ∈ Z+, i ∈ I (3)

It is evident that the decision variables vi for raw steel bars of different diameters can be
optimized independently. In other words, we need to solve |I| independent mathematical
programming models:

[M2-i]
minvi (4)

subject to
Fi

(
vi, ni1, . . . , ni|Ji |

)
= 1 (5)

vi ∈ Z+ (6)

To solve [M2-i], we first derive a naïve upper bound on the optimal value of vi by
requiring that each raw steel bar is cut into steel bars of only one length. For each j ∈ Ji, a
raw steel bar of length Li can be cut into

⌊
Li/lij

⌋
steel bars of length lij, where bxc is the

largest integer not greater than x. Therefore, to get nij steel bars of length lij, we will need⌈
nij/

⌊
Li/lij

⌋⌉
raw steel bars, where dxe is the smallest integer greater than or equal to x.

We again take the construction of the residential building as an example. The construction
project needs 40 steel bars with a diameter of 18 mm and a length of 4070 mm, and the
length of the raw steel bars with a diameter of 18 mm is 9000 mm. Therefore, L4 = 9000 mm,
l4,14 = 4070 mm, and n4,14 = 40. We can calculate bL4/l4,14c = 2, i.e., a raw steel bar of
9000 mm can be cut into at most two steel bars of 4070 mm, and dn4,14/bL4/l4,14ce = 20;
thus, we need at least 20 raw steel bars of 9000 mm to produce 40 steel bars of 4070 mm.
Hence, the construction site needs a maximum of Vmax

i raw steel bars of diameter di:

Vmax
i = ∑

j∈J
dnij/bLi/lijce (7)

because the site can use
⌈
nij/

⌊
Li/lij

⌋⌉
raw steel bars to cut into nij steel bars of length lij,

j ∈ Ji.
It is clear that using the cutting method discussed above (i.e., each raw steel bar is

cut into steel bars of only one length) will produce a great deal of extra material, which in
practice will be scrapped. An ideal plan for cutting the raw steel bars that produces the
least amount of off-cuts is assuming that all the vi raw steel bars are connected as a long
raw steel bar of length viLi. Based on this ideal way, we can derive a lower bound on the
optimal value of vi, denoted by Vmin

i :

Vmin
i =

⌈(
∑
j∈J

nijlij

)
/Li

⌉
(8)

In the above example, with L4 = 9000 mm, l4,14 = 4070 mm, and n4,14 = 40, the lower
bound is equal to 19. In sum, the optimal solution of vi satisfies

Vmin
i ≤ vi ≤ Vmax

i . (9)

Model [M2-i] remains unsolvable, as the form of Constraint (5) is unknown. To express
Constraint (5) mathematically, we first illustrate the meaning of “cutting pattern” using the
example shown in Table 2. Suppose Li = 9000 mm. Ji has four lengths: 7000 mm, 5000 mm,
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4000 mm, and 2000 mm. Then, the following are a few possible cutting patterns: (i) cut a
raw steel bar into one steel bar of 7000 mm and one of 2000 mm, (ii) cut a raw steel bar into
one steel bar of 5000 mm and one of 4000 mm, (iii) cut a raw steel bar into one steel bar
of 5000 mm and two of 2000 mm, (iv) cut a raw steel bar into two steel bars of 4000 mm,
(v) cut a raw steel bar into one of steel bar of 4000 mm and two of 2000 mm, or (vi) cut a
raw steel bar into four steel bars of 2000 mm.

We use set Ki to denote the cutting patterns for the raw steel bars of diameter di;
k = 1, . . . , |Ki| denotes the cutting pattern. As we will use at most Vmax

i raw steel bars
of diameter di, the raw steel bars of diameter di will have at most Vmax

i cutting patterns
in the optimal solution. Therefore, we define

∣∣Ki
∣∣= Vmax

i . Taking the example given in
Table 3, suppose we need 30 steel bars of 7000 mm, 50 of 5000 mm, 60 of 4000 mm, and 20
of 2000 mm; then, Vmax

i equals 115 according to Equation (7). Hence, Ki = {1, . . . , 115}.
We can reformulate [M2-i] by defining the decision variable xijk as the number of steel bars
of length lij that a raw steel bar of diameter di and of cutting pattern k will be cut into,
and decision variable yik as the number of raw steel bars of diameter di that will be cut
according to pattern k. The mathematical programming model for the problem is:

[M3-i]
min ∑k∈Ki

yik (10)

subject to
∑j∈Ji

lijxijk ≤ Li, k ∈ Ki (11)

∑k∈Ki
yikxijk ≥ nij, j ∈ Ji (12)

xijk ≤ Myik, j ∈ Ji, k ∈ Ki (13)

xijk ∈ Z+, j ∈ Ji, k ∈ Ki (14)

yik ∈ Z+, k ∈ Ki. (15)

Table 3. Cutting patterns.

Pattern No. Length of Steel Bars the Site Requires
(lij)

Cutting Pattern

1 7000, 5000, 4000, 2000 7000× 1, 2000× 1
2 7000, 5000, 4000, 2000 5000× 1, 4000× 1
3 7000, 5000, 4000, 2000 5000× 1, 2000× 2
4 7000, 5000, 4000, 2000 4000× 2
5 7000, 5000, 4000, 2000 4000× 1, 2000× 2
6 7000, 5000, 4000, 2000 2000× 4

Objective Function (10) represents the total number of raw steel bars that will be cut.
Therefore, we can minimize the total construction waste by minimizing Function (10).
Constraints (11) ensure that the total cut length is not greater than the length of the raw
steel bar, and Constraints (12) guarantee that the total number of steel bars can fulfill the
requirements of the construction site. In Constraints (13), M is a large positive number
that can ensure that xijk > 0 only when yik > 0. We can set M to be min

{
nij,
⌊

Li/lij
⌋}

.
Constraints (14) and (15) restrict the values of the decision variables xijk and yik to be
nonnegative integers.

3. Solution Method

Model [M3-i] is still difficult to solve because it has a large number of integer decision
variables and Constraints (12) have the nonlinear term yikxijk. We develop two solution
methods: a mixed-integer linear programming method that can obtain optimal solutions for
small-scale instances, and a column generation-based heuristic that can obtain high-quality
solutions for large-scale instances.
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3.1. Mixed-Integer Linear Programming Method

In our first method, we reformulate model [M3-i] into an integer linear optimization

model. Note that an upper bound for yik, k ∈ Ki, is min
{
|Ki|, max

j∈Ji
nij

}
. The upper bound

|Ki| is valid because vi ≤ Vmax
i and ∑k∈Ki

yik = vi. Additionally, the upper bound max
j∈Ji

nij

is valid because if yik > max
j∈Ji

nij, we can reset yik ← max
j∈Ji

nij and the resulting solution is

still feasible. Therefore, we define a parameter:

Qi =

⌊
log2 min

{
|Ki|, max

j∈Ji
nij}

⌋
(16)

and define intermediate binary decision variables zikq, q = 0, 1, . . . , Qi. Then, instead of
using general integer decision variable yik to represent the number of raw steel bars of
diameter di that will be cut according to pattern k, we can use binary decision variables zikq:

yik = 20zik0 + 21zik1 + . . . + 2Qi zikQi
=

Qi

∑
q=0

2qzikq, k ∈ Ki. (17)

Equation (17) can be viewed as a binary representation of a number. For example,

if min
{
|Ki|, max

j∈Ji
nij

}
equals 5, then Qi equals 2. Therefore, zik0 = 1, zik1 = 0, zik2 = 1, and

yik = 20 × 1 + 21 × 0 + 22 × 1 = 5. Then, Constraints (12) can be rewritten as

∑
k∈Ki

Qi

∑
q=0

2qzikqxijk ≥ nij, j ∈ Ji. (18)

Constraints (18) are still nonlinear. We can define intermediate decision variables uijkq
and Constraints (18) are equivalent to

∑k∈Ki

Qi

∑
q=0

2quijkq ≥ nij, j ∈ Ji (19)

uijkq ≤ zikqxijk, j ∈ Ji, k ∈ Ki, q = 0, . . . , Qi (20)

Note that an upper bound on xijk is Xmax
ij = min

{⌊
Li/lij

⌋
, nij
}

. Thus, Constraints (20)
are equivalent to

uijkq ≤ min
{

xijk, Xmax
ij zikq

}
, j ∈ Ji, k ∈ Ki, q = 0, . . . , Qi. (21)

It is evident that Constraints (21) can be written as the following linear constraints

uijkq ≤ xijk, j ∈ Ji, k ∈ Ki, q = 0, . . . , Qi (22)

uijkq ≤ Xmax
ij zikq, j ∈ Ji, k ∈ Ki, q = 0, . . . , Qi. (23)

Now, we have a mixed-integer linear programming model [M4-i]:

min ∑k∈Ki
yik (24)

subject to Constraints (11), (13)–(15), (17), (19), (22)–(23).
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3.2. Column Generation Method

To solve large-scale instances, we apply a column generation method. As we define∣∣Ki
∣∣= Vmax

i , the scale of the integer decision variables will be very large when the construc-
tion site requires many steel bars of different types (i.e., |Ji| and nij are big numbers); this
makes the MILP model in Section 3.1 hard to solve. Therefore, we reformulate Model [M3-i]
into a column generation model that can solve large-scale instances in our second method.

Column generation is formulated through a linear programming (LP) relaxation of
the restricted master problem (RMP) and a subproblem. The LP relaxation of the RMP is
solved by Simplex and the subproblem is used to determine whether the unconsidered
variables can improve the LP relaxation of the RMP. The unconsidered variables that can
make the reduced cost of the LP relaxation of the RMP less than 0 are added to the LP
relaxation of the RMP. In large-scale instances, most columns never enter the basic matrix
(e.g., most patterns in Ki are never used in our study), and we can therefore reduce the
scale by not generating any or by generating only a small number of these unused columns.
In other words, finding an initial set of feasible basic patterns is easy in our problem (e.g.,
we can let each pattern consist of only one length). Therefore, starting from an easily
identified initial solution, the key task is to find other cutting patterns that can improve our
objective function.

We use the set K̂i to denote columns that are already generated, and each column
represents a cutting pattern. For each pattern k ∈ K̂i, a raw steel bar can be cut into x̂ijk
steel bars of length lij. Note that the values of x̂ijk are known. We reformulate [M3-i] into an
RMP and a subproblem in the column generation model. The LP relaxation of the RMP is

[M5-LP-RMP-i]
min ∑k∈K̂i

yik (25)

subject to
∑k∈K̂i

x̂ijkyik ≥ nij, j ∈ Ji (26)

yik ≥ 0, k ∈ K̂i. (27)

We relax the integer constraints of yik in [M5- LP-RMP-i]. Since the value of x̂ijk are
known, [M5-LP-RMP-i] is a linear programming problem and can be solved efficiently. We
denote by λj the values of the dual variables of Constraints (26). The subproblem is built to
check if there exist other optimal patterns to [M5-LP-RMP-i]:

[M5-Subproblem-i]
min1−∑j∈Ji

λjxij,|K̂i |+1 (28)

subject to
∑j∈Ji

lijxij,|K̂i |+1 ≤ Li (29)

xij,|K̂i |+1 ∈ Z+, j ∈ Ji. (30)

Equation (28) is the reduced cost of [M5-LP-RMP-i]. If the optimal value of Equation
(28) is less than 0, we find a better pattern,

∣∣K̂i
∣∣+ 1, and a raw steel bar can be cut into

x̂ij,|K̂i |+1 steel bars of length lij. Then, the pattern
∣∣K̂i
∣∣+ 1 is added to K̂i. [M5-Subproblem-i]

is an integer programming problem with |Ji| decision variables. We repeat to solve [M5-
RMP-i] and [M5-Subproblem-i] until the optimal value of [M5-Subproblem-i] is greater
than 0. Finally, we have the set K̂i that includes all of the cutting patterns in the optimal
solution to [M5-LP-RMP-i].

As we relax the integer constraints of yik in [M5-LP-RMP-i], we solve the following
integer programming problem to obtain the final value of yik:

[M6-i]
min ∑k∈K̂i

yik (31)

subject to
∑k∈K̂i

x̂ijkyik ≥ nij, j ∈ Ji (32)
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yik ∈ Z+, k ∈ K̂i. (33)

In the above model, the values of x̂ijk are known. Therefore, [M6-i] has high computing
efficiency. The whole column generation method is illustrated in Figure 2.
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4. Numerical Experiments

In this section, we report the results of numerical experiments that test the effectiveness
and efficiency of the proposed mixed-integer linear programming and column generation
methods. The experiments are run on a laptop computer equipped with 2.60 GHz of Intel
Core i7 CPU and 16 GB of RAM, and models are solved using CPLEX Python API 20.1.0.

4.1. Data

The data for our experiment are drawn from a real-world case: a residential building in
Chengdu, China. As shown in Table 4, we collect data on the number of 12 mm and 18 mm
steel bars required for the construction of Floors 4 to 7. The project requires 24 different
lengths of 12 mm steel bars and 16 different lengths of 18 mm diameter steel bars. The steel
plant sells raw steel bars of different diameters that are all 9000 mm in length.
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Table 4. Data for the required numbers of steel bars of diameter 12 mm and diameter 18 mm.

Diameter
(di)

Types of Steel Bars
(j)

Length of Steel Bars the Site
Requires

(lij)

Total Number of Steel Bars the
Site Requires

(nij)

12 mm

1 7860 2
2 7460 4
3 7220 4
4 7060 4
5 4950 2
6 4920 8
7 4420 8
8 3860 4
9 3560 4

10 3390 4
11 3260 4
12 3160 2
13 3120 4
14 2850 4
15 2810 12
16 2360 10
17 2060 12
18 1960 6
19 1710 2
20 1690 2
21 1520 2
22 1390 2
23 1360 4
24 760 4

18 mm

1 7240 4
2 4480 2
3 4070 4
4 3520 2
5 2740 4
6 2730 2
7 2690 4
8 2580 2
9 2450 4

10 2430 2
11 2220 2
12 2090 4
13 2050 4
14 1510 4
15 1220 2
16 950 2

Therefore, we know that in our experiment, I = {1, 2}, d1 = 12, d2 = 18, L1 = 9000,
L2 = 9000, J1 = {1, . . . , 24}, and J2 = {1, . . . , 16}. The values of lij and nij can be obtained
from Table 4 (e.g., l1,1 = 7860 and n1,17 = 12).

4.2. Computational Analysis

We examine the effectiveness of the proposed mixed-integer linear programming
method using the subsets of J1 and J2. Specifically, for the 12 mm diameter steel bars,
we consider 2, 4, 6, and 8 different lengths required by the construction site, and for the
18 mm diameter steel bars, we consider 3, 5, 7, and 9 different lengths required by the
construction site. We thus have eight instances to solve. The solutions and the CPU times
for each instance are shown in Table 5. The CPU time increases rapidly with the number of
types of steel bars because a larger Ji means more decision variables and constraints in the
model. Therefore, the proposed mixed-integer linear programming method is suitable for
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obtaining optimal solutions for small-scale instances, but it is not a good choice for solving
large-scale problems because of the CPU time requirements. From the results in Table 5, we
can also find that when there are more than six types of steel bars, the CPU time exceeds
600 s, which is not feasible in practical applications. Hence, we suggest that using six types
as the quantitative number for dividing large-scale and small-scale problems. That is, cases
with less or equal to six types of steel bars should be solved by the mixed-integer linear
programming and cases with more than six types of steel bars should be solved by the
column generation method.

Table 5. Data for the required numbers of steel bars of diameter 12 mm and diameter 18 mm.

Diameter Types of Steel Bars
Solutions

(Cutting Pattern × Number of Raw Steel

Bars, i.e., {∑j∈Jlij
^
xijk}×yik)

CPU Time (s)

d1

{1, 2} {7860× 1} × 2,
{7460× 1} × 4 0.05

{1, 2, 3, 4}

{7860× 1} × 2,
{7460× 1} × 4,
{7220× 1} × 4,
{7060× 1} × 4

0.30

{1,2,3,4,5,6}

{7860× 1} × 2,
{7460× 1} × 4,
{7220× 1} × 4,
{7060× 1} × 4, 1.73

{4950× 1} × 2,
{4920× 1} × 8

{1,2,3,4,5,6,7,8} N.A. >600

d2

{1, 2, 3}
{7240× 1} × 4,

{4480× 1, 4070× 1} × 2,
{4070× 2} × 1

0.09

{1, 2, 3, 4, 5}

{7240× 1} × 4,
{4480× 2} × 1,
{4070× 2} × 2,

{3520× 1, 2740× 2} × 2

1.09

{1,2,3,4,5,6,7}

{7240× 1} × 4,
{4480× 2} × 1,
{4070× 2} × 2,

{3520× 1, 2740× 2} × 2,
{2730× 2, 2690× 1} × 1,

{2690× 3} × 1

33.11

{1,2,3,4,5,6,7,8,9} N.A. >600

Next, we assess the computational efficiency of the column generation method. The
example shown in Table 4 can be solved within 1 s, as shown in Table 6. According to the
results, there are 21 and 14 cutting patterns in the optimal solutions for steel bars with
diameters of 12 mm and 18 mm, respectively. Therefore, our results can help guide workers
on construction sites to minimize total cost and reduce waste.

To further test the computational efficiency of the column generation method, we
generate instances with 50, 100, 200, 500, and 1000 different lengths of steel bars (i.e.,
|Ji| ∈ {50, 100, 200, 500, 1000}). For each |Ji|, we randomly generate 10 instances, each of
which involves randomly generated lengths and randomly generated demand for each
length of steel bars. The average CPU times over the ten instances are shown in Table 7.
The largest instances with |Ji| = 1000 can be solved in less than 13 s on average. Therefore,
the column generation method shows excellent performance in computational efficiency
and is efficient enough for practical purposes.
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Table 6. Data for the required numbers of steel bars of diameter 12 mm and diameter 18 mm.

Diameter Types of Steel Bars
Solutions

(Cutting Pattern × Number of Raw

Steel Bars, i.e., {∑j∈Jlij
^
xijk}×yik)

CPU Time (s)

d1 {1, . . . , 24}

{7860× 1} × 2,

0.40

{7460× 1, 1520× 1} × 4,
{7220× 1} × 4,

{7060× 1, 1690× 1} × 4,
{4950× 1, 3860× 1} × 2,

{4920× 1, 2360× 1, 1390× 1} × 2
{4920× 1, 3560× 1} × 4
{4920× 1, 2810× 1} × 2

{4420× 2} × 4
{3860× 2} × 1

{3390× 2, 2060× 1} × 2
{3260× 2, 2360× 1} × 1
{3260× 1, 2850× 2} × 2
{3160× 2, 2360× 1} × 1
{3120× 1, 2810× 2} × 4
{2850× 1, 2810× 2} × 1
{2360× 3, 1710× 1} × 2
{2060× 4, 760× 1} × 2
{2060× 2, 1960× 1} × 1
{1960× 4, 760× 1} × 1
{1360× 6, 760× 1} × 1

d2 {1, . . . , 16}

{7240× 1, 1510× 1} × 4,

0.23

{4480× 2} × 1,
{4070× 2} × 2,

{3520× 2, 950× 2} × 1,
{2740× 3} × 1,

{2740× 1, 2730× 2} × 1,
{2740× 1, 2050× 3} × 1,

{2690× 3} × 1,
{2690× 1, 2580× 2} × 1,

{2450× 3} × 1,
{2450× 1, 2430× 2} × 1,
{2220× 2, 2090× 2} × 1,
{2090× 2, 2050× 2} × 1,
{1510× 1, 1220× 6} × 1

Table 7. Data for the required numbers of steel bars of diameter 12 mm and diameter 18 mm.

Number of Types of Steel Bars Average CPU Time (s)

50 1.75
100 2.34
200 3.41
500 6.93
1000 12.51

We further compare the quality of the solutions obtained using the column generation
method with two heuristics, which can help examine the effectiveness of the column
generation method. One is the one-length-per-raw-bar heuristic: exactly |Ji| patterns are
considered, and each pattern cuts the raw steel bar into steel bars of one length. The other
is a greedy heuristic, which tries to cut a raw steel bar into as many steel bars as possible
while prioritizing longer steel bars. This is elaborated in Algorithm 1 below:
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Algorithm 1: Greedy heuristic

Initialize: Number of steel bars of length lij to cut: θij ← nij
Number of raw steel bars that have been used Γ← 1
Remaining length of the current raw steel bar γ← Li
While true:
While true:
boolCannotCutAnyMore = true

For j = |Ji|, . . . , 1: // we prioritize longer steel bars
If θij ≥ 1 and γ ≥ lij
θij ← θij − 1 , γ← γ− lij // cut a steel bar of type j

boolCannotCutAnyMore = false
Break
If boolCannotCutAnyMore:
If θij = 0 for all j ∈ Ji, return;
Else:

Set Γ← Γ + 1 , γ← Li
Break;

We again generate instances with 50, 100, 200, 500, and 1000 different lengths of steel
bars with random lengths and demand. We perform 10 experiments for each |Ji| and
present the average optimal objective values obtained by these three methods. The results
are shown in Table 8. Compared to the other two methods, we can see that the column
generation method performs better. In particular, the column generation method can reduce
costs and waste by over 10% relative to the solutions produced by the other two methods.

Table 8. Comparison results the three methods.

Number of Types of
Steel Bars

Average Optimal
Objective Value by
Column Generation

Average Optimal
Objective Value by One-

Length-per-Raw-Bar
Heuristic

Average Optimal
Objective Value by
Greedy Heuristic

Percentage of Cost
Reduction by Column
Generation Compared
with One-Length-per-

Raw-Bar
Heuristic

Percentage of Cost
Reduction by Column
Generation Compared
with Greedy Heuristic

50 436.10 517.60 509.80 15.75% 14.46%
100 830.70 976.10 959.20 14.90% 13.40%
200 1837.20 1968.60 1934.10 6.67% 5.01%
500 4707.10 4964.90 4873.70 5.19% 3.42%
1000 9452.00 9886.00 9711.50 4.39% 2.67%

5. Conclusions

This study proposes an optimization model to reduce the quantity of off-cuts produced
by construction projects and develops two methods to solve the proposed model. The
solution methods are proven to be effective and efficient in real-world examples. For small-
scale instances, the mixed-integer linear programming method is a good choice, as it can
give optimal solutions. For large-scale instances, the column generation method is more
suitable, as it can give high-quality solutions within seconds. We also develop two heuristic
based algorithms to compare with column generation method. Numerical experiments
show that the column generation method can reduce waste by over 10% in some cases
compared with the other two heuristic methods. Although our research takes steel bars
as an example, our optimization models can be applied to any one-dimensional building
materials, such as PVC and wood, because these materials need to be cut according to the
construction requirements after they are transported to the construction site. Our findings
provide an option for reducing leftovers and can help construction contractors decrease
material costs and achieve sustainable and green construction.

This study is not without limitations. We only consider reducing the number of
used raw materials by adopting the optimal cutting pattern. We do not consider the
transportation process from factory to construction site, which will influence the availability
of different sizes of raw materials. For example, some trucks cannot deliver steel bars over
a certain length limit or transporting longer steel bars will incur extra cost. Therefore,
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future research can take this problem into account and develop an optimization model
considering the whole system.
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