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The outbreak of coronavirus disease 2019 (COVID-19) has caused massive

infections and large death tolls worldwide. Despite many studies on the clinical

characteristics and the treatment plans of COVID-19, they rarely conduct in-

depth prognostic research on leveraging consecutive rounds of multimodal

clinical examination and laboratory test data to facilitate clinical decision-

making for the treatment of COVID-19. To address this issue, we propose

a multistage multimodal deep learning (MMDL) model to (1) first assess the

patient’s current condition (i.e., the mild and severe symptoms), then (2) give

early warnings to patients with mild symptoms who are at high risk to develop

severe illness. In MMDL, we build a sequential stage-wise learning architecture

whose design philosophy embodies the model’s predicted outcome and does

not only depend on the current situation but also the history. Concretely,

we meticulously combine the latest round of multimodal clinical data and

the decayed past information to make assessments and predictions. In each

round (stage), we design a two-layer multimodal feature extractor to extract

the latent feature representation across di�erent modalities of clinical data,

including patient demographics, clinical manifestation, and 11 modalities of

laboratory test results. We conduct experiments on a clinical dataset consisting

of 216 COVID-19 patients that have passed the ethical review of the medical

ethics committee. Experimental results validate our assumption that sequential

stage-wise learning outperforms single-stage learning, but history long ago

has little influence on the learning outcome. Also, comparison tests show the

advantage of multimodal learning. MMDL with multimodal inputs can beat any

reduced model with single-modal inputs only. In addition, we have deployed

the prototype of MMDL in a hospital for clinical comparison tests and to assist

doctors in clinical diagnosis.
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1. Introduction

Since December 2019, a novel viral pneumonia caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), also known as coronavirus disease 2019 (COVID-19) (1–3),

first occurred in Wuhan, Hubei Province, China (4), then swept

the globe very quickly. As of Sep 1, 2022, data from the World

Health Organization (WHO) revealed more than 600 million

infections confirmedworldwide with approximately 6.45million

deaths since the outbreak of COVID-19 (5). In view of its strong

infectivity and high mortality, WHO declared the pandemic as a

Public Health Emergency of International Concern (6).

In practice, the clinical manifestations of COVID-19

vary diversely from asymptomatic, mild infection to severe

symptoms (4, 7–9). According to clinical statistics, the majority

of COVID-19 cases are mild, and only approximately 5% of

the total patients (a part of severe cases) require admission to

ICU (10, 11). One of the serious problems we are facing is that

the surge of COVID-19 infections leads to rapid depletion of

the limited medical resources. The fact is that most of the mild

patients can heal without supportive treatment (2, 3), and only

a small proportion of them will progress toward severe illness.

However, patients whose condition subsequently deteriorate are

more prone to be older adults with comorbidities of diabetes,

hypertension, cardiac disease, obesity etc. (9, 12), Once the

illness changes for the worse, the mortality rate increases

significantly, moreover, treating critical patients consumes more

medical resources and takes longer treatment courses.

During COVID-19 treatment, doctors perform clinical

examinations and laboratory tests on patients every few days.

Hence, in every round of the tests, massive multimodal (i.e.,

various types or categories) clinical data are generated, including

the patient demographics, clinical manifestation, laboratory

outcomes, the use of drugs and medication, etc. Naturally, it is

of great importance that we quickly and accurately distinguish

mild and severe patients on admission, then identify those

mild cases who are at high risk of turning for the worse in

the future based on clinical data analysis and modeling. As a

result, early intervention can be taken to prevent mild patients

from deterioration.

In the past decade, AI and big data technologies have

been widely applied in healthcare and medication and made

remarkable achievements (13), which also play an important role

in COVID-19 prevention and containment, including screening,

testing, contact tracing, treatment and vaccination, and drug

development (14–16). So far various forecasting models have

been developed for the diagnosis and prognosis of COVID-

19 (17–19), which leveraged X-ray and CT images (20–22),

clinical characteristics (23, 24), blood test results (25), etc., for

model development.

Most of the existing literature for the diagnosis and

prognosis of COVID-19 simply makes use of one or

two modalities of clinical data, which fails to explore the

complementary information provided by multimodal sources.

Moreover, the prognostic model is purely based on a single

round of lab test results and cannot track the disease progression

since onset. To address the characteristics of the consecutive

rounds of multimodal clinical test data, in this paper, we

propose a multistage multimodal deep learning (MMDL) model

to (1) first assess the disease severity, and (2) identify those who

are at an early stage of illness and are likely to grow worse. In

MMDL, we conceive and implement a sequential stage-wise

learning architecture, which abandons the classic structure of

RNN (26, 27)/LSTM (28). It is because most patients take

no more than five rounds of exams and lab tests before they

recover from COVID-19 and are discharged from the hospital,

so if we insist on using the RNN/LSTM (Recurrent Neural

Network/Long Short-Term Memory) model, the input time

step of RNN/LSTM is too few to forecast the future. The design

philosophy of MMDL is motivated by the sequence-to-sequence

(seq2seq) model (29, 30) in contextual sequence prediction,

which extracts the latent feature of one sequence (encoder) and

turns it to another sequence (decoder), then the decoded word

in a sentence is based on the output from its previous contexts.

Concretely, the embodiment of sequential stage-wise learning

incorporates the input of the latest round of multimodal

clinical data and the past information, and higher weights

are given to recent inputs because it has direct influences on

the final assessment and prediction results. In each round, to

extract the feature of the multimodal clinical data, we design a

two-layer multimodal feature extractor: in the 1st-hierarchy, we

build multiple separate fully-connected multi-layer perceptron

(MLP) neural networks sharing the same network architecture,

and each MLP extracts the intra-modal latent feature of an

independent modality of clinical data; in the 2nd-hierarchy, the

extracted latent features of all modalities are concatenated, then

input to another similar MLP for cross-modal feature fusion.

Extensive experiments are conducted on a dataset consisting

of 216 patients diagnosed with COVID-19, which has passed

the review of the medical ethics committee and can be used

for research purposes only. These patients were admitted to

the Public Health Medical Center in Chongqing, China, and

received intensive medical care. The experimental results of the

prognostic study show the advantage of sequential stage-wise

learning of MMDL over conventional single-stage learning. In

addition, the results also prove that MMDL with multimodal

inputs can surpass the reduced model with any single-modal

clinical data input by a large margin, particularly for the severe

group in disease severity assessment and the mild-to-severe

incidence group in the disease progression prediction.

2. Dataset description

2.1. Patient demographics

We retrospectively review the medical records of 216

patients with COVID-19 who were admitted to the Public

Health Center in Chongqing, China from January 24, 2020,
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to February 16, 2020. These patients were admitted fulfilling

the following criteria: (1) tested positive with two consecutive

nucleic acid tests; (2) showed distinct characteristics of

pneumonia in CT images.

Figure 1 shows the demographics of these admitted patients

that 103 cases (47.69%) out of the total number were male

patients while female patients occupied 52.31% (113 cases).

Depending upon the patient’s severity of symptoms, 186 cases

(86.11%) and 30 cases (13.89%) are diagnosed with mild and

severe symptoms, respectively. By age, patients aged between

41 and 50 are the largest group with 50 cases (23.15%), which

is followed by the group 31–40 and the group 60+ accounting

for 20.83% (45 cases) each. Patients under the age of 18 and

aged 19–30 only make up 5.09% (9 cases) and 11.57% (25

cases), respectively. Moreover, Figure 1d shows the average

duration of onset of symptoms to hospital admission. A total

of 76 and 20% of the patients were admitted in the first and

the second week, respectively, since the onset of the disease.

The remaining 4% of the patients developed symptoms after

2 weeks.

Figure 2 reveals the top 10 clinical manifestations of the 216

patients with COVID-19 infections. As it shows, cough [135

cases (62.50%)], fever [108 cases (50.00%)], and expectoration

[68 cases (31.48%)] are reported as the most typical symptoms.

It records 53 cases (24.54%) of fatigue and 38 cases (17.59%)

of shortness of breath, which are another two common

clinical manifestations. In addition, about 35 patients show no

symptoms on admission.

2.2. Multimodal clinical data

During the COVID-19 treatment, numerous patients’

clinical data are produced including patients’ vital signs,

laboratory test results, CT image findings, medical experts’

diagnoses, and corresponding treatment plans. Among these

clinical data, laboratory test results comprise 11 different

categories, which is termed “multimodal” in the context of

big data and machine learning. Specifically, the 11 modalities

are named blood test, flow cytometry, inflammation, liver

function, renal function, blood lipids, glucose, electrolyte,

myocardial zymogram and heart failure indicator, coagulation,

and arterial blood gas. Each modality contains many laboratory

test items. For example, the blood test modality consists of

white blood cell count (WBC), red blood cell count (RBC),

neutrocyte count (NEUT#), monocytes count (MONO#),

lymphocyte count (LYMPH#), etc., and the inflammation

modality contains erythrocyte sedimentation rate (ESR), C-

reactive protein (CRP) and hypersensitive C-reactive protein

(hs-CRP), and procalcitonin (PCT).

Table 1 describes the statistical results of the 11 modalities of

laboratory tests of the mild group, the severe group, and the total

population below:

3. Summary of notations

All the notations used in this paper are summarized below:

F2 MMDL model for disease severity assessment

with network parameters 2;

F8 MMDL model for disease progression prediction

with network parameters 8;

X(n) Amatrix. X(n)=
[

X
(n)
1 , ...,X

(n)
k

, ...,X
(n)
K

]

is the

input multimodal clinical data of the n-th stage;

X
(n)
k

A vector. The k-th modality clinical input data

of the n-th stage;

X
′ (n)
k

A vector. The extracted latent feature of k-th

modality of the n-th stage;

X
(n)
CAT Amatrix. X

(n)
CAT =

[

X
′ (n)
1 , ...,X

′ (n)
k

, ...,X
′ (n)
K

]

is the

concatenation of the extracted intra-modal latent

features of all different modalities of the n-th stage;

N A scalar. The total rounds (stages) of the performed

clinical examination and lab tests;

K A scalar. The total number of input modalities,

K=13, including the patient demographics, clinical

manifestation and laboratory test results (e.g., blood

test, inflammation, liver function, renal function, blood

lipids, etc.);

D A vector. The extracted latent feature of patient

demographics modality;

Z(n) A vector. The extracted cross-modal feature

representation of the n-th round clinical manifestation

modality and other 11 laboratory test modalities;

S(n) A vector. The intermediate learning outcome of the

n-th stage;

WD Amatrix. The weighting matrix multiplying

withD;

W
(n)
Z Amatrix. The weighting matrix multiplying

with Z(n);

W
(n)
S Amatrix. The weighting matrix multiplying

with S(n);

b
(n)
S A vector. The bias vector added to the computed

results at stage n;

α A scalar. α ∈ [0, 1] is a decay factor, by multiplying

with which the learning outcome of the previous stage

S(n) is attenuated every round;

Y A vector. The output vector for computing y;

y A scalar. The obtained result of either disease severity

assessment (y ∈ {mild, severe}) or disease progression

prediction (y ∈ {not−develop−severe,

develop−severe});

y A scalar. The corresponding ground truth label;

MLP The fully connected multilayer perceptron neural

network;

ReLU The rectified linear unit activation function;
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FIGURE 1

Demographics of the COVID-19 patients contained in the dataset. (a) Severity of disease. (b) Gender ratio. (c) Age group. (d) From onset to

admission.

FIGURE 2

Clinical manifestation of the COVID-19 patients contained in the dataset.

Softmax The softmax multi-class classifier;

Lcross-entropy The cross-entropy loss function.

4. Problem formulation

Given patients infected by COVID-19 take N rounds of

clinical examination and laboratory tests in total during the

treatment. In each round, K different modalities of clinical

data (e.g., clinical manifestation, blood test, inflammation,

liver function, etc.) are collected for disease assessment and

prediction. Take the n-th round as an example, the notationX(n)

is used to denote the stage-wise multimodal input:

X(n) =
[

X
(n)
1 ,X

(n)
2 , . . . ,X

(n)
k

, . . . ,X
(n)
K

]

, (1)

where 1≤n≤N and 1≤k≤K.
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By leveraging the stage-wise multimodal clinical data,

X(1),X(2), . . . ,X(n), . . . ,X(N), our goal is to develop a model

F to: (1) assess the disease severity of patients diagnosed

with COVID-19, and (2) forecast mild cases who have a high

risk of progressing to critical illness. The two tasks share the

same network architecture but are trained separately with two

different sets of network parameters.

Mathematically, in the disease severity assessment task, it

can be expressed as:

yy∈{mild, severe} = F2

(

X(1),X(2), . . . ,X(n), . . . ,X(N)
∣

∣ 2
)

, (2)

where y ∈ {mild, severe} is used to denote the obtained

result of assessment, F2 represents the MMDL model with the

parameter 2 that maps the multistage input to the output y.

Similarly, in the disease progression prediction task, it can

be written as:

yy∈{not−develop−severe, develop−severe} =

F8

(

X(1),X(2), . . . ,X(n), . . . ,X(N)
∣

∣ 8
)

, (3)

Likewise, yy∈{not−develop−severe, develop−severe} is the predicted

results and F8 is the corresponding prediction model with

network parameters 8.

5. Multistage multimodal deep
learning model

In this section, we introduce the multistage, multimodal

deep learning (MMDL) model in detail. We first illustrate

the sequential stage-wise learning framework, then present the

feature extraction of the multimodal clinical data at each stage,

and finally come to the end-to-end training of MMDL.

5.1. Sequential stage-wise learning

Sequential stage-wise learning and sequence prediction

share some common ground, although they are different in

some respects. The sequence-to-sequence (seq2seq) model (29,

30) is one of the classical benchmarks in contextual sequence

prediction. It transforms one sequence into another sequence,

and the context of the decoded sentence is based on the output

from its previous contexts.

Motivated by this, we propose the sequential stage-wise

learning architecture of MMDL, which is illustrated in Figure 3.

As we can see, it meticulously joins the extracted cross-modal

latent feature of the previous stage and the current stage, then

concatenates the result with the extracted multimodal feature of

the next stage sequentially for further processing.

In the first stage, the model takes the patient demographics

D and the initial examination and laboratory test results Z(1)

when admitted to the hospital as the model input. It should

be noted that D is the extracted latent feature of the patient

demographics modality only, and Z is the merged multimodal

feature representation across all different modalities of lab test

results. How Z is extracted and merged will be justified in the

next subsection in detail.

D and Z first multiply with WD and W
(1)
Z respectively, and

add together, then pass through the ReLU activation function.

S(1) = ReLU
(

WDD+W
(1)
Z Z(1) + b

(1)
S

)

, (4)

where S(1) is the output of the first stage. WD and W
(1)
Z are the

weight matrices, and b
(1)
S is the bias term. ReLU is short for

rectified linear units (31), which can be expressed as ReLU(x) =

max(0, x) and is a non-linear activation function.

Then b
(1)
S multiplies with the weight W(1)

s accordingly and

adds to the result of the multiplication of Z(2) and W
(2)
Z .

Similarly, we can derive the expression of the learning process

of the second stage:

S(2) = ReLU
(

W
(2)
Z Z(2) + αW

(1)
S S(1) + b

(2)
S

)

, (5)

in which Z(2) is the extracted cross-modal latent feature of the

second stage and W
(2)
Z is the corresponding weight. It should

be mentioned that W
(1)
S S(1) is attenuated by multiplying with a

decay factor α ∈ [0, 1] because the new round of test results has

a direct impact on the predicted results while the influence of the

test result obtained long ago weakens as time passes.

Note that the modality of patient demographics is

incorporated into the model in the initial stage only since

the patient demographics modality contains patients’ basic

information, like gender and age, that does not change in every

round of test.

For the n-th stage (2 ≤ n ≤ N), a more general form can be

written as:

S(n) = ReLU
(

W
(n)
Z Z(n) + αW

(n−1)
S S(n−1) + b

(n)
S

)

, (6)

Finally, the learned representation of the last stage W
(N)
S is

further fused to get the output vector Y :

Y = W
(N)
S S(N) + b′S, (7)

and pass it through a multi-class Softmax classifier to get the

predicted outcome y.

y = Softmax
(

Y
)

, (8)

y is the output scalar, which is either mild or severe in the first

task and not−develop−severe or develop−severe in the second.
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TABLE 1 Characteristics of multimodal lab test results of the COVID-19 patients contained in the dataset.

Characteristics
All patients Mild patients Severe patients

N = 216 N = 186 (86.11%) N = 30 (13.89%)

Blood test

White blood cell (WBC),×109/L 6.03 5.32 6.47

Neutrophils (NEUT),×109/L 4.05 3.32 4.98

Lymphocyte (LYMPH),×109/L 1.34 1.43 0.86

Monocytes (MONO),×109/L 0.40 0.42 0.36

Eosinophils (EO),×109/L 0.06 0.06 0.06

Basophils (BASO),×109/L 0.02 0.02 0.02

Red blood cell (RBC),×1012/L 4.20 4.25 4.00

Hemoglobin (HGB), g/L 128 130 124.3

Hematocrit (HCT), L/L 38.80 39.10 37.57

Mean corpuscular hemoglobin concentration

(MCHC), g/L

331.6 332 331.2

Platelet (PLT),×109/L 229 216 244.8

Mean platelet volume (MPV), fL 9.40 9.30 9.62

Platelet hematocrit (PCT), (%) 0.21 0.20 0.23

Flow cytometry

Absolute CD3+ T lymphocyte, cells/µL 729 829 461

Absolute CD4+ T lymphocyte, cells/µL 420 451 259

Absolute CD8+ T lymphocyte, cells/µL 281 316 145

CD4+ /CD8+ ratio 1.43 1.38 1.47

Inflammation

Erythrocyte sedimentation rate (ESR),mm/h 46.6 38.2 71.3

C-reactive protein (CRP),mg/L 26.2 17.3 65

Hypersensitive C-reactive protein (hsCRP),

mg/L

32.5 21.9 71.1

Procalcitonin (PCT), ng/L 0.096 0.040 0.331

Liver function

Prealbumin (PA), µg/dL 221 227 200

α-L-Fucosidase (AFU), U/L 27.8 27.4 29.7

Alanine aminotransferase (ALT), U/L 34 28.1 59.3

Aspartate aminotransferase (AST), U/L 27.8 24.6 41.5

Alkaline phosphatase (ALP), IU/L 58.9 57.2 66.1

Gamma-glutamyltransferase (GGT), IU/L 43.3 32.2 90.7

Lactate dehydrogenase (LDH), IU/L 235 209 343

Total protein (TP), g/L 66.7 67.3 64.5

Albumin (ALB), g/L 40.2 41.2 35.5

Globulin (GLB), g/L 27.3 26.8 29.5

A/G Ratio 1.40 1.50 1.24

Total bilirubin (TBIL), µmol/L 15.6 15.8 15.1

Total bile acid (TBA), µmol/L 3.00 3.10 2.34

Renal function

UREA,mmol/L 3.83 3.71 4.10

Creatinine (CREA), µmol/L 66.9 67.2 65.9

Uric acid (UA), µmol/L 303 320 231

Beta 2-microglobulin (β2−M),mg/L 2.19 2.16 2.38

Cystatin C (CysC),mg/L 0.99 0.96 1.16

(Continued)
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TABLE 1 (Continued)

Characteristics
All patients Mild patients Severe patients

N = 216 N = 186 (86.11%) N = 30 (13.89%)

Glucose modality

Glucose (hexokinase (HK) method),mmol/L 6.41 6.11 7.73

Blood lipids

Triglyceride (TG),mmol/L 2.23 2.11 2.69

Total cholesterol (CHOL),mmol/L 4.39 4.28 4.26

High-density lipoprotein (HDL),mmol/L 1.02 1.03 0.97

Low-density lipoprotein (LDL),mmol/L 2.47 2.42 2.38

Electrolyte

Potassium (K),mmol/L 4.21 4.24 4.00

Sodium (NA),mmol/L 138.2 138.4 137.8

Chlorine (CL),mmol/L 102.7 103.0 101.5

Calcium (CA),mmol/L 2.24 2.26 2.13

Phosphorus (P),mmol/L 1.08 1.11 0.98

Magnesium (MG),mmol/L 0.89 0.88 0.93

Coagulation function

Prothrombin time (PT), seconds 11.77 11.76 11.81

International normalized ratio (INR) 1.00 1.01 0.96

Activated partial thromboplastin time

(APTT), seconds

38.50 38.40 39.25

Thrombin time (TT), seconds 14.90 14.70 15.15

Fibrinogen (FIB), g/L 4.25 4.20 4.62

D-dimer,mg/L 0.68 0.44 1.64

Myocardial zymogram &Heart failure

Adenosine deaminase (ADA), U/L 14.10 13.85 14.36

Creatine kinase (CK), U/L 100 88 151

α-Hydroxybutyrate dehydrogenase

(α-HBDH), IU/L

179 160 262

5’-Nucleotidase (5’-NT), U/L 4.38 3.94 6.25

Cholinesterase (CHE), U/L 7960 8409 6699

Arterial blood gas

Arterial blood pH 7.42 7.41 7.45

Partial pressure of oxygen (PaO2),mmHg 85 85 86

Partial pressure of carbon dioxide (PaCO2),

mmHg

41 41 40

Bicarbonate (HCO3-),mEq/L 26.10 26.00 26.95

Oxygen saturation (SaO2), (%) 96.90% 97.30% 96.15%

5.2. Multimodal feature extraction

As mentioned above, the input to each stage is multimodal

lab test results. To address the characteristics of the multimodal

input data, we would like to introduce a two-layer multimodal

feature extractor conceived by us and the architecture of

which is shown in Figure 4. As we can see, the 1st-hierarchy

aims to perform intra-modal feature learning and extraction,

while the 2nd-hierarchy attempts to perform cross-modal

feature fusion.

Concretely, in the 1st hierarchy, we build up K (K =

13) independent multilayer perceptron (MLP) neural networks.

Each MLP is responsible for extracting the latent feature of a

separate input modality, including the patient demographics,

clinical manifestation, and 11 other modalities of laboratory

test data.

For example, the extracted feature of the k-th modality of the

n-th round test can be expressed as:

X
′ (n)
k

= MLP
(

X
(n)
k

)

, (9)
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FIGURE 3

An illustration of the architecture of the sequential stage-wise learning of the MMDL model.

FIGURE 4

An illustration of the architecture of multimodal feature extractor of the MMDL model.

where X
′ (n)
k

denotes the extracted latent feature vector of the k-

th modality (1 ≤ k ≤ K), and MLP represents the multi-layer

fully-connected neural network.

Afterwards, the extracted intra-modal feature vectors of all

modalities X
′ (n)
1 ,X

′ (n)
2 , . . . ,X

′ (n)
k

, . . . ,X
′ (n)
K are concatenated:

X
(n)
CAT =

[

X
′ (n)
1 ,X

′ (n)
2 , . . . ,X

′ (n)
k

, . . . ,X
′ (n)
K

]

. (10)

Finally, the concatenated feature vectors X
(n)
CAT are further

processed by another MLP to obtain the fused cross-modal

feature representation Z(n), which is then taken as the input of

the n-th stage of MMDL:

Z(n) = MLP
(

X
(n)
CAT

)

, (11)

5.3. Model training

Before training the model, we have to define the loss

function in the first place, which gives the learning objective
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during the training process. The loss function compares the

difference between the predicted results y and the ground truth

labels y given by medical experts, and a smaller value of L

means the model’s performance is better. Either the patient

disease assessment or the disease progression prediction can be

regarded as a classification problem, hence we choose cross-

entropy as the loss function, which is widely used in multi-class

classification problems:

L cross-entropy = −
∑

j
yj · log

(

p(y= j)
)

, (12)

where j represents the predicted class, and j = {mild, severe}

for the disease severity assessment and j = {not− develop−

severe, develop−severe} for disease progression prediction. p(ŷ=

j) is the predicted probability of the class j using Softmax, i.e.,

p(y = j) = Softmax
(

Yj
)

=
eYj

∑#class
i=1 eYi

. (13)

The notation #class represents the number of classes, and

#class = 2 in our settings because there are two results for both

the assessment and the prediction tasks.

During the training process, the end-to-end supervised

learning is used to train MMDL. Adam optimizer is adopted to

backpropagate the calculated loss to the input layer of the model,

and all network parameters (weights and biases) are updated

through iterative optimization. MMDL is trained two times

separately to learn two different sets of network parameters, i.e.,

2 and 8, one for the disease severity assessment and the other

for the disease progression prediction.

6. Experiments

In this section, we will present the experimental part

of MMDL in detail. We first introduce how we set up the

experiment, then the evaluation metrics, and finally present the

comparison results for both tasks.

6.1. Experiment setup

In the experiment, we first assess the severity of illness

of patients using different numbers of consecutive stages of

multimodal inputs (#Multistage Input), then forecast whether

patients with mild symptoms will progress to severe illness or

not with different prediction steps (Prediction Step). To start

with, we assess the severity of illness of patients using the initial

exam and lab test data on admission, then identify patients

diagnosed with mild symptoms who are prone to develop

severe symptoms. Subsequently, we extend it to the scenario

of the diesese severity assessment using multistage input, i.e.,

use multiple successive rounds of clinical test data to assess the

disease severity.

In addition, in view of the limited samples contained in the

dataset, 10-fold cross validation is adopted, that is, in each round

of training, 10% of the cases are randomly selected for testing

and the remaining 90% cases are used for training, while in

another round, another 10% cases are selected as the test set.

6.2. Evaluation metric

We use a group of evaluation metrics to evaluate the

classification performance of MMDL, including accuracy, error

rate, precision, recall, and F1 score, which are computed

as follows:































































Accuracy =
TP + TN

TP + TN + FP + FN
,

Error Rate = 1− Accuracy,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
2

1
Precision + 1

Recall

=
2× TP

2× TP + FP + FN
,

(14)

where TP, FP, TN, and FN represent True Positive, False Positive,

True Negative, and False Negative samples, respectively. The

higher the value obtained, the better performance is achieved for

all evaluation metrics but the error rate.

6.3. Results

6.3.1. Disease severity assessment with
di�erent numbers of multistage input

To show the advantage of learning with multistage data,

we compare the performance of MMDL using a single stage’s

inputs (i.e, #Multistage Input = 1) and multiple successive

stages’ inputs (i.e, #Multistage Input > 1) on disease severity

assessment (i.e., Prediction Step = 0).

Table 2 shows the obtained results. Accuracy is the

proportion of the correctly classified samples (i.e., TP + TN) to

the total number of samples, so the mild and the severe groups

have the same accuracy, which increases from 96.26% using

the current stage inputs only to 98.10% using five consecutive

stages’ inputs. Precision is the correct predictions (i.e., TP) out

of all patients predicted to be infected (i.e., TP + FP), which

grows from 97.52% with #Multistage Input = 1 to 98.69% with

#Multistage Input = 5, respectively. Recall, which represents

the percentage of truly predicted infections (i.e., TP) among

all infections (i.e., TP + FN), goes from 98.33 to 99.60%. F1

is the harmonic mean of precision and recall, which is a more

balanced evaluation metric to reflect the overall classification

results.Moreover, we plot the curve depicting the change of F1 as

the increase of the numbers of used multistage input in Figure 5.
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TABLE 2 Performance comparison of MMDL model with di�erent numbers of multistage inputs.

#Multistage Prediction
Accuracy Error Rate Precision Recall F1 Score

Input data Step

Mild
group

1 0 96.26% 3.73% 97.52% 98.33% 0.9792

2 0 96.98% 3.01% 97.74% 98.86% 0.9830

3 0 97.74% 2.25% 98.03% 99.40% 0.9871

4 0 98.09% 1.90% 98.60% 99.50% 0.9887

5 0 98.10% 1.89% 98.69% 99.60% 0.9890

Severe
group

1 0 96.26% 3.73% 84.12% 77.94% 0.8091

2 0 96.98% 3.01% 90.56% 82.75% 0.8648

3 0 97.74% 2.25% 95.52% 86.48% 0.9078

4 0 98.09% 1.90% 95.16% 92.18% 0.9365

5 0 98.10% 1.89% 95.71% 93.05% 0.9436

We can see that in the training phase, the obtained results are

all 100% for both the mild and severe groups, which reveals that

MMDL fits the training set perfectly. In the testing phase, the F1

score of the mild and the severe groups increases from 0.9792

and 0.8091 by simply taking a single stage’s inputs to 0.9890

and 0.9436 by considering all five successive stages’ multimodal

data, respectively.

6.3.2. Prediction of disease progression with
di�erent prediction steps

In this subsection, we would like to forecast progression

from mild to severe COVID-19. First, it gives a brief

introduction to the labels of the dataset. Medical experts assess

patients’ status after every round of the exam and lab test,

which is treated as the ground truth labels of the prediction

task of that stage. We set Prediction Step = 1 if we want to

predict the patient’s condition after the next round’s test, and

Prediction Step = 4 if we predict the patient’s situation four

stages ahead.

Table 3 describes the predicted results as the increase of

the PredictionStep. The accuracy, precision, and recall of the

mild group are 96.26, 97.52, and 98.33%, respectively, when

Prediction Step = 0, then gradually decrease to 93.44, 95.74,

and 97.12% when predicting the state of the illness of patients

four stages away from now (Prediction Step = 4). For the

severe group, these figures start from 96.26, 84.12, and 77.94%,

then drop rapidly and finally stop at 93.44, 48, and 36.36%,

respectively. Figure 6, left, right plot the curves of the F1 score of

themild-to-mild andmild-to-severe progressions as the increase

of Prediction Step. In the testing phase, the F1 of the mild-to-

mild incidence decreases from 0.9792 (Prediction Step = 0) to

0.9653 (Prediction Step = 4) gradually. But the situation worsens

when predicting progression from mild to severe COVID-19

that F1 begins at 0.8091 (Prediction Step = 0), then declines

dramatically to 0.5957 (Prediction Step = 1) and 0.5098

(Prediction Step = 2), then continues to decrease and finally

stops at 0.4137 for Prediction Step = 4.

6.3.3. The ROC and AUC of disease severity
assessment and prediction of disease
progression

Figure 7 shows the receiver operating characteristic

(ROC) and the area under the curve (AUC) of disease

severity assessment (left) with #Multistage Input = 1 and

Prediction Step = 0 and prediction of disease progression (right)

with #Multistage Input = 1 and Prediction Step = 4. An ROC

curve is a graph showing the performance of a classification

model at different classification thresholds. The x-axis is FPR

(False Positive Rate) which is calculated as FPR = FP
FP+TN ,

and the y-axis is TRP (True Positive Rate), also known as

recall, which is computed as TRP = TP
TP+FN . Lowering the

classification threshold classifies more items as positive, thus

increasing both False Positives (FP) and True Positives (TP).

As Figure 7 (left) illustrates, the blue and red curves

represent the ROC of the mild group and the severe group,

respectively, and the green curve is the arithmetical average

of them. The blue curve approaches the top-left corner, which

means the MMDL model is a good classifier for distinguishing

mild cases out of all infections. The classification result of severe

cases is worse than that of the mild cases as the red curve is not

as steep as the blue one in the beginning until FPR equals around

0.3, then the red curve approaches the blue one. In the right

subfigure of Figure 7, it shows the ROC and AUC of patients’

progression from mild to severe infection (denoted by the light

blue curve) and of the ones that deteriorate (denoted by the red

curve). As the figure shows, the achieved results of the MMDL

model for predicting disease progression are not as good as

those for assessing the patient’s status. We can observe a distinct

plateau region in Figure 7, right where both the blue and red

curves do not go up. It means the MMDL model has difficulty
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FIGURE 5

The change of the F1 score of MMDL model as the increase in the number of multistage inputs of the mild group (left) and the severe group

(right).

TABLE 3 Performance comparison of MMDL model with di�erent prediction step.

#Multistage Prediction
Accuracy Error Rate Precision Recall F1 Score

Input data Step

Mild
group

1 0 96.26% 3.73% 97.52% 98.33% 0.9792

1 1 95.63% 4.30% 96.86% 98.52% 0.9769

1 2 94.43% 5.50% 96.25% 97.85% 0.9704

1 3 93.61% 6.30% 96.00% 97.22% 0.9661

1 4 93.44% 6.55% 95.74% 97.12% 0.9653

Severe
group

1 0 96.26% 3.73% 84.12% 77.94% 0.8091

1 1 95.63% 4.30% 70.00% 51.85% 0.5957

1 2 94.43% 5.50% 59.09% 44.82% 0.5098

1 3 93.61% 6.30% 50.00% 40.62% 0.4482

1 4 93.44% 6.55% 48.00% 36.36% 0.4137

distinguishing between the one developing and not developing

severe symptoms when 0.2 ≤ FPR ≤ 0.7.

6.3.4. The impact of multimodal deep learning
on the performance of the MMDL model

To show the advantages of multimodal learning for feature

extraction and fusion across different modalities of clinical data,

we compare the performance of the complete MMDL model

with multimodal inputs and the reduced models with separate

single-modal inputs only in the testing phase.

Figure 8 (upper) and (middle) compare MMDL using the

latest round of exam and lab test results as the model input

(Multistage Input = 1 and PredictionStep = 0) and leveraging

the last five consecutive rounds of test data (Multistage Input =

5 and PredictionStep = 0). As we can see, the overall

performance of the MMDL model for assessing the mild group

exceeds that of the severe group by a large margin regardless

of using single-stage or multistage inputs. Noted that the

performance gain is limited for the mild group, particularly for

#Multistage Input = 1, but significant for the severe group,

which grows at least 15% for both #Multistage Input = 1 and

#Multistage Input = 5.

Figure 8 (lower) depicts the bar chart of the F1 score for

forecasting a patient’s condition four stages away from now

(Prediction Step = 4). From the diagram, we have the

following observations: the achieved F1 score is good for mild-

to-mild but, to some extent, terrible for mild-to-severe incidence

prediction. It reveals the false-negative rate of the mild-to-severe

incidence prediction is high, that is, samples are more prone to

be classified as not developing severe symptoms. Nevertheless,

MMDL predicting withmultimodal inputs outperforms reduced
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FIGURE 6

The change of the F1 score of the MMDL model as the increase of the prediction step of the mild group (left) and the severe group (right).

FIGURE 7

Diagrams of the ROC and AUC of the disease severity assessment (left) and the disease progression prediction (right).

models using any single-modal clinical data, which validates the

superiority of multimodal learning. Furthermore, it is worth

pointing out that among all modalities, inflammation, liver

function, blood lipids, and arterial blood gas reach much higher

F1 than any other modality. Hence, further explorations need

to be conducted to discern the effective biomarkers within these

modalities, which can be treated as signs to discriminate between

mild cases developing and not developing severe symptoms.

7. Discussion

We notice that in the disease severity assessment task,

MMDL’s classification performance in the severe group is not

as good as the mild group irrespective of using single-stage or

multistage inputs. Similar observations are made in the disease

progression prediction task as well that the prediction results

of the mild-to-severe incidence fall far behind the mild-to-mild
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FIGURE 8

Performance comparison between MMDL model with multimodal input and reduced cases with separate single-modal inputs with di�erent

#Multistage Input and Prediction Step.

incidence. From our perspective, the reasons for this are twofold:

(1) The patient samples contained in the dataset are quite

limited for clinical data analysis and model development. We

are only authorized to use these 200+ samples legally that pass

the review of the ethics committees (RECs). However, ethics

and compliance are extremely important in clinical research,

and samples that fail to pass RECs are strictly forbidden to

use; (2) What makes the situation even worse is the imbalanced

distribution of patient samples (only 30 severe cases). As a result,

it is insufficient to learn the characteristics of the patients of the

severe group and the transition from mild to severe symptoms.

Besides the small sample learning, another challenge is that

patient samples contained in the dataset were collected during

the first wave of the pandemic, and the pre-trained model may

no longer take effect as the virus has evolved to the Omicron

variant in 2022. To address the challenge, we have deployed the

prototype of MMDL in Chongqing Public Health Center, China,

to validate the effectiveness of MMDL when facing new variants
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of COVID-19. Alongside model testing, we also collect new

patient samples and attempt to train MMDL using new samples

incrementally. Furthermore, to test the MMDL’s availability in

other chronic diseases, we are extending it to epilepsy prediction

characterized by many follow-ups.

Another observation is that MMDL using multiple

sequential stages’ exam and lab test data outperforms the

current stage’s data in disease severity assessment. In particular,

the latest three rounds’ inputs dominate the assessment

results, and history long ago has little influence on the model’s

output. Moreover, in predicting the disease progression, we

can observe prediction results deteriorate as Prediction Step

increases. It is because, according to our point of view,

biomarkers show no significant abnormality to discriminate

whether patients will turn for the worse in the distant

future.

Also, experimental results validate multimodal feature

extraction and fusion can provide complementary information

to single-modal feature learning. Another interesting finding

reveals that either in assessment or prediction, merely

leveraging the modality of inflammation, liver function,

or blood lipids data, etc., overwhelms any other single-

modal input. It suggests that some test items in the

inflammation modality and the liver function modality,

such as C-reactive protein (CRP), hypersensitive C-reactive

protein (hsCRP), γ -glutamyltransferase (GGT), and Albumin

(ALB), are potential biomarkers in distinguishing COVID-19

infections.

8. Conclusion

In this paper, we have conceived and implemented a

multistage, multimodal deep learning (MMDL) model to assess

the disease severity and forecast the disease progression of

patients with COVID-19. In summary, the novelty of MMDL

embodies sequential stage-wise learning with multimodal

inputs. MMDL shows the advantage of studying whole

courses of the disease compared to single-stage learning. Also,

mining the multimodal clinical data can provide significant

performance gains over using single-modal data only. Some

potential biomarkers have been identified in the control

experiment, such as C-reactive protein (CRP) and hypersensitive

C-reactive protein (hsCRP) of the inflammation modality,

and γ -glutamyltransferase (GGT) and Albumin (ALB) of the

liver function modality. A strong correlation is seen between

these potential biomarkers and the assessment/prediction

results. In addition, we have deployed the prototype of the

MMDL model in Chongqing Public Health Center, China,

to test MMDL’s robustness to the new variants of COVID-

19 and collect more clinical data for further incremental

training.
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