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The classification based on Electroencephalogram (EEG) is a challenging task

in the brain-computer interface (BCI) field due to data with a low signal-

to-noise ratio. Most current deep learning based studies in this challenge

focus on designing a desired convolutional neural network (CNN) to learn and

classify the raw EEG signals. However, only CNN itself may not capture the

highly discriminative patterns of EEG due to a lack of exploration of attentive

spatial and temporal dynamics. To improve information utilization, this study

proposes a Dual Attentive Fusion Model (DAFM) for the EEG-based BCI. DAFM

is employed to capture the spatial and temporal information by modeling the

interdependencies between the features from the EEG signals. To our best

knowledge, our method is the first to fuse spatial and temporal dimensions in

an interactive attention module. This module improves the expression ability

of the extracted features. Extensive experiments implemented on four publicly

available datasets demonstrate that our method outperforms state-of-the-

art methods. Meanwhile, this work also indicates the e�ectiveness of Dual

Attentive Fusion Module.

KEYWORDS

brain-computer interface, electroencephalography, P300, motor imagery, dual
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1. Introduction

Brain-computer interface (BCI) is a system that aims to establish a non-muscular

communication pathway between humans and external devices via brain signals

(Wolpaw et al., 2002). With the advances in information and computer science,

various BCI paradigms have been developed and employed in many applications

(Leeb et al., 2007; Dal Seno et al., 2010). The motor imagery (MI) paradigm attracts

significant interest from researchers. It is the process of imagining movement in a

certain body part rather than actually moving it. This technology can help patients

with movement disorders manipulate external equipment such as artificial arms or

wheelchairs (Leeb et al., 2007). The P300 event-related potential (ERP) is also another

important paradigm in BCI. It is an evoked positive peak at around 300 ms after

the occurrence of a low-probability stimulus. This type of BCI has been utilized
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to assist individuals with severe neuromuscular diseases to

spell characters by using brain waves (Dal Seno et al., 2010).

Currently, electroencephalography (EEG) is one of the most

widely used techniques for brain signal acquisition in BCIs due

to its low cost, safety, and easy operation. The core of EEG-based

BCI is to analyze EEG signals for the purpose of understanding

human intentions. Therefore, improving the performance of

EEG-based BCIs is very important for the future development

of BCIs.

Generally, the classification based EEG first extracts

discriminative features from EEG signals and adopts classifiers

to classify the extracted features. However, it is not easy to

deploy these processes due to the low signal-to-noise ratio

(SNR) of EEG signals. Many previous methods rely on feature

engineering and traditional machine learning approaches. For

example, Rakotomamonjy and Guigue (2008) used a P300

detection model based on 896 hand-crafted features and an

ensemble of SVMs classifiers. Fazli et al. (2009) proposed to

combine feature extraction from the common spatial pattern

(CSP) of the EEG signals and linear discriminant analysis (LDA)

to classify the extracted features. The method developed by Li

et al. (2006) alternatively used independent component analysis

(ICA) to remove eye artifacts and selected a subset of electrodes

prior to the classification made by support vector machine

(SVM). Duan et al. (2013) first combined an SVM and K-nearest

neighbor (KNN) to extract and classify features from multi-

channel EEG data for emotion recognition. In Liu et al. (2005),

principal component analysis (PCA) and T-weight value sums

were applied for P300 classification. Although these attempts

have achieved partial improvements in performance, all these

methods only learn the features that the researchers focus on

while ignoring other important features due to the limited

abilities of hand-crafted features.

In addition, considerable effort has also been devoted to

developing deep learning (DL) based methods for EEG signal

classification (Zhang Y. et al., 2020; Huang et al., 2021), and they

have demonstrated superior performance over conventional

machine learning methods. Especially due to the temporal

dynamics of EEG signals, recurrent neural network (RNN) based

methods have been extensively applied to filter and classify EEG

signals (Alhagry et al., 2017; Ma et al., 2018; Michielli et al.,

2019). Alhagry et al. (2017) used an LSTM-RNN to learn and

classify EEG signals for emotion recognition. Ma et al. (2018)

proposed a pure RNNs-based parallel method to encode spatial

and temporal information of raw EEG signals for motor imagery

classification. Michielli et al. (2019) introduced a novel cascaded

RNN architecture based on long short-term memory (LSTM)

blocks for automated sleep stage classification.

Apart from RNN, convolutional neural network (CNN)

has been popularly used for analyzing EEG signals and has

gained much attention in recent years (Lawhern et al., 2018;

Sakhavi et al., 2018; Shan et al., 2018; Yang et al., 2018a;

Wu et al., 2019; Ding et al., 2021). Lawhern et al. (2018)

presented a compact neural network named EEGNet, which

can extract spatial and temporal features simultaneously. Wu

et al. (2019) proposed a parallel multi-scale filter bank CNN

architecture, generating temporal, and spatial features for

MI classification. Ding et al. (2021) proposed TSception, a

multi-scale CNN that learns discriminative in the time and

channel dimensions to recognize the BCI’s user emotion.

Convolutional recurrent neural network (C-RNN) (Yang et al.,

2018b; Zhang et al., 2018) was applied in EEG-based BCI and

attained satisfactory performance. For example, Zhang et al.

(2018) introduced cascade and parallel C-RNN models for

human intention recognition and effectively learned the spatial-

temporal representations of raw EEG signals. All these studies

show the information in spatial and temporal dimensions

carrying important information for BCI classification tasks.

However, previous architectures handle the information of the

EEG signal in temporal and spatial dimensions in either separate

or subsequent manner without interaction.

Corresponding to this gap, we propose a simple but effective

Dual Attentive Fusion Model (DAFM) for the EEG signal

classification tasks. It leverages an interactingmechanism, which

fuses spatial and temporal attention with a simple operation

to generate the spatial-temporal pattern of the EEG signals.

The main contributions of this paper can be summarized as

follows.

1. The proposed model uses an interactive attention module,

which can take both the spatial and temporal dimensions

into consideration, and it successfully derives distinguishable

features from EEG signals.

2. The proposed method is extensively evaluated on four widely

used BCI datasets regarding both motor imagery (MI) and

P300 tasks. Results exhibit that our approach has superior

performance to state-of-the-art and baseline methods.

The remaining of this paper is organized as follows. Related

works are described in Section 2. Section 3 presents the proposed

method. Section 4 provides the datasets used in this paper,

implementation details of our experiments and experimental

results. Finally, Section 5 concludes this study.

2. Related work

2.1. Convolutional neural network

In recent years, deep learning, especially Convolutional

Neural Networks (CNNs), has gained substantial interest in

the computer vision field (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2014; He et al., 2016). In 2012, Krizhevsky

et al. (2012) proposed the AlexNet, which used a large,

deep convolutional neural network to classify images in the

ImageNet dataset and achieved considerably better results

than the previous state-of-the-art methods. Convolutional
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frameworks have become an essential medium in vision-related

fields. VGGNet proposed by Simonyan and Zisserman (2014)

has good transfer learning ability. Since then, the 3 × 3

convolution has become the standard configuration of the

subsequent convolutional neural network structures. In 2015,

He et al. (2016) noticed the gradient vanishing problem

caused by the deepening of the network, and proposed the

ResNet, which got rid of the troubles of the deep network

and made the network depth reach astonishing 152 layers.

Recently various CNN-based models are increasingly being used

for EEG-based BCI and gain excellent performance. Sakhavi

et al. (2018) introduced a new temporal representation of

the data and used a CNN architecture for MI classification.

Shan et al. (2018) proposed a novel and simple CNN, which

only used a convolutional layer, to effectively learn feature

representations from both temporal and spatial information

for accurate P300 detection. Yang et al. (2018a) proposed to

combine features of signals from different frequency bands

and used a continuous convolutional neural network to

make predictions.

2.2. Attention mechanism

It could be said that the attention mechanism has become

one of the hottest topics in the deep learning field. The attention

mechanism, which can selectively amplify valuable features

and suppress useless features based on global information, has

been employed in diverse domains. Fu et al. (2019) proposed

a novel Dual Attention Network (DANet) to capture feature

dependencies in the spatial and channel dimensions for scene

segmentation. Huang et al. (2019) proposed a novel Criss-Cross

Network (CCNet) to capture full-image contextual information

adaptively in a more efficient way for semantic segmentation.

Chen et al. (2019) proposed an Attentive but Diverse Network

(ABD-Net) to integrate attention mechanism into ABD-Net,

containing Channel Attention Module, and Position Attention

Module for person re-identification. The attention mechanism

is also used to transform the input into a more discriminative

representation in the brain-computer interface field. Kim and

Choi (2020) combined an attention mechanism and a long

short-term memory network to assign weights to different

emotional states based on importance and improved emotion

recognition accuracy. Tao et al. (2020) proposed an attention-

based convolutional recurrent neural network (ACRNN), which

integrated the channel-wise attention into CNN to extract

spatial information and extended self-attention into RNN to

extract temporal information. Zhang D. et al. (2020) proposed

a Graph-based Convolutional Recurrent Attention Model (G-

CRAM) to explore EEG features across different subjects for

motor imagery classification. Graph structure was employed

to enhance the discriminative ability of EEG channels in

this model.

3. Methods

In this section, we first present an overall framework of our

network, which contains two modules. Then, we describe the

details of Dual Attentive Fusion Module. Finally, we introduce

the Feature Classification Module. The overall architecture of

our model is shown in Figure 1.

3.1. Overview

Raw EEG signals contain spatial relationship among

different channels and temporal dependency among

different time points, which play an important role in

feature classification. However, many studies (Kim and Choi,

2020; Tao et al., 2020; Zhang D. et al., 2020) suggest that features

generated by traditional machine learning methods could

not extract this information well. In 2017, the Transformer

proposed by Vaswani et al. (2017) raised much attention in

the natural language processing field. A transformer model is

based on the self-attention module, which effectively focuses

on the distinct features by assigning attention score to each

feature and aggregating these scores. More and more work has

introduced attention mechanism into the computer science

field and achieved comparable performance. Recent work has

focused on designing proper attention modules to adaptively

explore attentive dynamics of EEG signals and focus on the

most valuable information in brain-computer interface fields.

Inspired by it, we propose a Dual Attentive Fusion Module

which can take spatial and temporal attention into consideration

in an interactive module. Our method can turn raw EEG signals

into more discriminative features. More importantly, our

method improves the accuracy of EEG signal classification.

First, a filtering process is conducted on all EEG signals by

implementing bandpass filter. Then, the proposed attention

module is used to recode the EEG signals considering the spatial

and temporal dimensions together. Finally, the features are

fed into a convolutional neural network to make classification,

and classification accuracy is considered as the final evaluation

metric. The Dual Attentive Fusion Module is illustrated in

Figure 2.

3.2. Dual attentive fusion module

As illustrated in Figure 1, an EEG signal A, is denoted as

A ∈RH×W , where H is the number of electrodes and W is the

number of time points. We first feed the data into a convolution

layer to generate a new feature map B, where B belongs to

R
H×W×C and C = 1 denotes the number of feature map.

Then, to learn the spatial features of multi-channel EEG

and explore the temporal features of different time points, we

employ a self-attention mechanism in the EEG signals. In the
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FIGURE 1

An overview of the Dual Attentive Fusion Model.

spatial dimension, a self-attention operation turns channels into

a probability distribution as weights and recodes the EEG signals

based on the weights. In this way, an important feature would

gain a higher weight than less important features. Therefore, we

compress B to feature map C by a convolution layer, where C

belong to R
H×1×C . A softmax activation function is applied to

C to obtain the attention map of the spatial dimension:

a1 =
exp(CTi vi)∑
exp(CTi vi)

, (1)

The attention vector vi∈R
H is randomly initialized and

tuned by the above function during the training procedure. The

softmax function makes sure the sum of weights is 1. The more

similar feature representation of the two channels devotes to a

more significant correlation between them.

Next, in the temporal dimension, to extract more

discriminative temporal information, we also employ a

self-attention operation to obtain a feature representation by

perceiving global temporal features and assigning the weights

according to the similarity of time points. Thus, a convolution

layer is applied to compress B as D, which belongs to R1×W×C .

A softmax activation function is also applied to D to obtain the

attention map of the temporal dimension:

a2 =
exp(DT

i wi)
∑

exp(DT
i wi)

, (2)

The attention vector wi∈R
W is randomly initialized and

tuned by the above function during the training procedure. This

attention map will focus on specific time points that are distinct

from others. To enable matrix multiplication between a1 and a2,

we reshape a1 and a2 as to R
H×C and R

C×W , respectively.

Finally, a matrix multiplication is employed to obtain the

spatial-temporal attention map a∈RH×W as:

a = aT1 · a2, (3)

where a1 and a2 are spatial and temporal attention map

of EEG signals, respectively. A dual attentive fusion feature

representation is further generated by considering the spatial-

temporal attention map as weights to recode EEG signals. Thus,

a is reshaped to R
H×W×C , and we perform an element-wise

matrix operation between a and B. The dual attentive fusion
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FIGURE 2

The detail of Dual Attentive Fusion Module.

feature extracted by the Dual Attentive Fusion Module can be

expressed as follows:

E =

∑
(ai · Bi), (4)

where E∈RH×W×C , ai denotes the spatial-temporal attention

map, and B represents the preprocessed EEG signals. In

addition, a residual block (He et al., 2016) is applied between E

and B to obtain the final dual attentive fusion feature as follows:

Z = W · E+ B, (5)

where W belongs to a learnable parameter, which is randomly

initialized and is gradually updated during the training

procedure. Equation (5) shows that the final feature of EEG

signals is a weighted sum of the spatial-temporal features and

original features.

3.3. Feature classification module

In this module, we employ a CNN, which is inherited

the architecture of the EEGNet (Lawhern et al., 2018), to

classify the features extracted from the previous module. A

2D convolution layer with a kernel size of (1, K1) is first

applied to Z to capture temporal information in each electrode.

Then, a depthwise convolution layer with a kernel size of (H,

1) is used for spatial feature extraction. An average pooling

operation is followed to generate a coarser feature. Next, the

separableConv2D with a kernel size of (1, K2) is used to

obtain deeper temporal patterns across all electrodes. An average

pooling operation is also followed to reduce dimension. It is

worth noting that batch normalization (Ioffe and Szegedy, 2015)

and exponential linear unit (Clevert et al., 2015) are followed

by some convolution operations for feature standardization and

nonlinear transformation. Finally, the deep feature extracted

by CNN is flattened as a vector by a flatten layer. For binary

classification, the output of dense layer is forwarded into

a sigmoid function. For multi-class classification, the output

of dense layer is forwarded into a softmax function. The

final prediction is based on conditional probability, which is

calculated by the loss function. The loss value guides the

gradient descent and the backpropagation for the whole neural

network. The structure of Feature Classification Module and its

parameters are shown in Tables 1, 2.

4. Experiments and results

In this section, we first describe the benchmark datasets used

in this paper. Then, we demonstrate the model implementation

details. Finally, we present the experimental results obtained by

our method and other comparable approaches.

4.1. Dataset description

In our experiment, we use four public BCI competition

datasets to evaluate the effectiveness of the proposed method.

Among them, BCI Competition IV-2a (Tangermann et al.,

2012) and BCI Competition IV-2b (Tangermann et al., 2012)

are used for motor imagery classification. BCI Competition II

Dataset IIb (Blankertz, 2010) and BCI Competition III Dataset II

(Blankertz et al., 2008) are used for P300 detection. The detailed

information of the four datasets is shown as follows.

4.1.1. The BCI competition IV-2a dataset

The BCI competition IV-2a dataset, provided by

Graz University, contains EEG signals from nine healthy

subjects(A01-A09) and two sessions on different days for each

subject. Each session consists of 288 trials of four different MI

classes: imagining the movement of the left hand, the right

hand, the feet, and the tongue. The signals are recorded by
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TABLE 1 Architecture of feature classification module.

Layer Input Filter Kernel Output

Conv2D (H, W, 1) F1 (1, K1) (H, W, F1)

BatchNorm (H, W, F1) (H, W, F1)

DepthwiseConv2D (H, W, F1) F1*D (H, 1) (1, W, F1*D)

BatchNorm (1, W, F1*D) (1, W, F1*D)

ELU activation (1, W, F1*D) (1, W, F1*D)

AveragePooling2D (1, W, F1*D) (1, P1) (1, W/P1 , F1*D)

SeparableConv2D (1, W/P1 , F1*D) F2 (1, K2) (1, W/P1 , F2)

BatchNorm (1, W/P1 , F2) (1, W/P1 , F2)

ELU activation (1, W/P1 , F2) (1, W/P1 , F2)

AveragePooling2D (1, W/P1 , F2) (1, P2) (1, W/(P1*P2), F2)

Flatten (1, W/(P1*P2), F2) (W*F2)/(P1*P2)

Dense (W*F2)/(P1*P2) N

TABLE 2 Hyperparameter setting.

Hyperparameter II III IV-2a IV-2b

H 10 10 22 3

W 144 144 1,000 1,000

F1 8 8 8 8

F2 16 16 16 16

K1 72 72 64 64

K2 16 16 16 16

P1 4 4 4 4

P2 8 8 8 8

D 2 2 2 2

N 2 2 4 2

22 electrodes at 250 Hz sampling frequency and bandpass

filtered between 0.5 and 100 Hz. In this paper, as the same

data division in the competition, we use the 288 trials of

the first session as training and the 288 trials of the second

session as testing. In each trial, we only use a 4 s temporal

segment in our model, each sample can be represented

as a 2D-matrix of 22 × 1, 000, in which 22 represents the

number of electrodes and 1,000 represents the number of

sample points.

4.1.2. The BCI competition IV-2b dataset

The BCI competition IV-2b dataset is also collected from

nine healthy people (B01–B09) at a sample rate of 250 Hz but

only recorded from three electrodes placed at positions C3,

Cz, and C4. For each subject, 720 trials from two MI tasks,

including left-hand and right-hand movement imagination, are

performed. There are five sessions for each individual. The

first three sessions are for training, and the remaining two

are for testing as the same data division in the competition.

FIGURE 3

P300 speller paradigm.

In this paper, The 4 s temporal segment of each trial is

used as a sample, which can be represented as a 2D-matrix

of 3× 1, 000.
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4.1.3. BCI competition II—dataset IIb and BCI
competition III—dataset II

Both datasets are offered by Wadsworth Center, New York

State Department of Health. BCI Competition II—Dataset

IIb is composed of a single subject data collected in three

sessions containing 42 training and 31 testing characters. In BCI

Competition III—Dataset II, there are two subjects: Subject A

and Subject B. For each subject, the EEG signals are divided into

a training set (85 characters) and a testing set (100 characters).

In the experiments, the subject was presented with a 6 ×

6 matrix of characters shown in Figure 3. In 1988, Farwell

and Donchin developed this type of P300 speller paradigm

(Farwell and Donchin, 1988). The user was asked to concentrate

on the characters of a given word (one character at one

time). All six rows and six columns randomly and successively

intensified at 5.7 Hz. One row and one column out of these 12

intensive flashings contained the desired character. The sets of

12 intensifications were repeated 15 times for each character.

The EEG data were bandpass filtered between 0.1 and 60 Hz

and digitized at 240 Hz from 64 channels. In this paper, we

choose 10 electrodes, including Fz, Cz, Pz, Oz, C3, C4, P3, P4,

PO7, and PO8, in which the P300 signals are mainly generated.

Due to a positive response around 300 ms after the onset of

the stimulus in P300 ERP, we extract a time window of 600 ms

after intensification onset as the input for each trial. With the

collected frequency of 240Hz, a trial can be denoted as a 10×144

data matrix.

4.2. Implementation details

In the motor imagery classification experiment, the model is

implemented with the Keras framework and trained on Google

online platform (Colab). The Adam optimizer (Kingma and Ba,

2014) with a learning rate of 0.001 is employed to minimize

the cross-entropy loss function. The mini-batch size is set to

TABLE 3 Classification accuracies (%) obtained with the dataset BCI competition IV-2a.

Methods Subject Average ± SD

A01 A02 A03 A04 A05 A06 A07 A08 A09

FBCSP 76.00 56.50 81.25 61.00 55.00 45.25 82.75 81.25 70.75 67.75± 13.73

CCSP 84.72 52.78 80.90 59.38 54.51 49.31 88.54 71.88 56.60 66.50± 15.13

BOTDA 80.43 55.83 80.90 57.64 55.39 62.79 70.23 81.92 80.68 69.38± 11.95

EEGNet 85.76 61.46 88.54 67.01 55.90 52.08 89.58 83.33 86.81 74.50± 15.23

ConNet 76.39 55.21 89.24 74.65 56.94 54.17 92.71 77.08 76.39 72.53± 14.24

DEI 81.85 53.71 81.25 66.67 57.97 63.72 84.48 79.70 79.92 72.14± 11.66

DRDA 83.19 55.14 87.43 75.28 62.29 57.15 86.18 83.61 82.00 74.70± 12.96

DAJAN 86.46 68.75 93.06 85.42 72.57 63.54 95.49 85.76 83.68 81.52± 10.94

FTF 83.27 57.24 91.94 66.67 76.45 66.51 86.28 83.39 82.58 77.15± 11.34

DAFM 86.83 72.43 96.70 74.56 81.52 64.65 91.69 85.60 84.84 82.09 ± 10.02

Highest values are highlighted in boldface.

TABLE 4 Classification accuracies (%) obtained with the dataset BCI competition IV-2b.

Methods Subject Average ± SD

B01 B02 B03 B04 B05 B06 B07 B08 B09

FBCSP 70.00 60.36 60.94 97.50 93.12 80.63 78.13 92.50 86.88 80.01± 13.85

CCSP 63.75 56.79 50.00 93.44 65.63 81.25 72.81 87.81 82.81 72.70± 14.72

BOTDA 61.40 55.92 54.78 88.93 92.67 73.71 71.98 86.35 79.18 73.88± 14.18

EEGNet 68.44 57.86 61.25 90.63 80.94 63.13 84.38 93.13 83.13 75.88± 13.33

ConNet 76.56 50.00 51.56 96.88 93.13 85.31 83.75 91.56 85.62 79.37± 17.25

DEI 70.18 62.04 71.74 90.23 86.08 75.70 89.66 87.39 85.71 79.86± 10.17

DRDA 81.37 62.86 63.63 95.94 93.56 88.19 85.00 95.25 90.00 83.98± 12.67

DAJAN 83.44 58.57 59.06 98.13 96.56 84.38 86.25 92.81 87.81 83.00± 14.64

FTF 78.07 68.16 73.04 96.74 95.24 84.86 92.67 92.17 85.71 85.18± 10.17

DAFM 70.18 71.84 89.56 99.02 100.00 73.71 94.40 95.65 88.98 87.04 ± 11.95

Highest values are highlighted in boldface.
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16, dropout regularization is 0.2, and the epoch is 1,000. Batch

normalization is adopted to get better performance.

In the P300 detection experiment, the model is constructed

with the Keras framework on Google online platform (Colab)

and trained from scratch. The training procedure is performed

by minimizing the binary cross-entropy loss function. It is

guided by Stochastic Gradient Descent with Adam optimizer

(Kingma and Ba, 2014). The learning rate is set as 0.001. The

batch size is set to be 150, and the epoch is 300. Dropout

regularization with 0.5 is applied in our model. Batch shuffling

is implemented for better generalization.

4.3. Results on motor imagery datasets

4.3.1. Comparison results

In order to evaluate the effectiveness of our proposed

method, we compare it with other state-of-the-art methods,

including FBCSP (Ang et al., 2012), CCSP (Kang et al., 2009),

BOTDA (Peterson et al., 2021), EEGNet (Lawhern et al., 2018),

ConNet (Zhang Y. et al., 2020), DEI (Zhang C. et al., 2021),

DRDA (Zhao et al., 2020), DAJAN (Hong et al., 2021), and

FTF (Zhang K. et al., 2021). Tables 3, 4 show the classification

accuracies of each subject and the average accuracies of different

methods on BCI IV-2a and IV-2b datasets, respectively.

We observe that the proposed method achieves the highest

average classification accuracies of 82.09 and 87.04% on BCI IV-

2a and IV-2b datasets, respectively. Regarding the experimental

results of every subject, our method achieves accuracy above

70% except the A06 subject on both datasets. The best

classification accuracy is obtained at the A03 and B05 subjects

on BCI IV-2a and IV-2b datasets, respectively. Moreover, the

standard deviation (SD) of our method is lower than that of

other approaches on the BCI IV-2a dataset. On the BCI IV-

2b dataset, the SD of our method is lower than that of other

approaches except DEI and FTF. Generally, ourmethod achieves

the best results and has good stability on both MI datasets. The

main reason that our method outperforms traditional methods

is its nonlinear modeling ability which is the advantage of deep

learning methods. Our method also has superior performance

over other deep learning methods due to our proposed DAFM.

Compared with the simple CNN models such as EEGNet

and ConNet without dual attention mechanism, the proposed

module improves the performance of the model by selectively

amplifying valuable features and suppressing useless features

based on the data-driven attentive scores.

To evaluate the capacity of our method, we perform the

classification experiments on BCI IV-2a and IV-2b datasets

under both without DAFM and with DAFM, respectively. The

classification accuracies on both datasets are shown in Figure 4.

On the BCI IV-2a dataset, DAFM has different influence

on the classification accuracy for all subjects. The classification

accuracies of eight subjects improve. Only the performance

FIGURE 4

Classification accuracies across subjects with or without DAFM.

(A) BCI IV-2a. (B) BCI IV-2b.

on subject A09 slightly decreases. As shown in Figure 4B, the

performance of DAFM has a better performance across all

subjects. These encouraging findings show that the DAFM is

beneficial to MI classification and generate more discriminative

feature regardless different individuals.

4.3.2. Result of the confusion matrices

In this part, we use confusionmatrices to show the predictive

outcome of our method in each class. Confusion matrices on

BCI IV-2a and IV-2b datasets are presented in Figures 5, 6,

respectively. The vertical axis represents the true label, and the

horizontal one represents the predicted label. We randomly

select two subjects on the BCI IV-2a dataset (i.e., A03 and A04)

and BCI IV-2b dataset (i.e., B01 and B02).

First, on the BCI IV-2a dataset, for subject A03, we could

observe that the left hand, right hand and foot are easier

to be recognized than the tongue. By comparison between

Figures 5A,B, in which Figure 5A does not use our method, we

discover the classification accuracies of the four categories have

improved significantly, which demonstrates that our proposed

attention module is beneficial to the MI classification. Moreover,

the gap between different classes has narrowed. For subject

A04, it is obvious that the right hand and foot are easier

to be recognized than the left hand and tongue. We could
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FIGURE 5

Confusion matrices of BCI competition IV-2a datasets. (A) A03 without our method. (B) A03 with our method. (C) A04 without our method. (D)

A04 with our method.

FIGURE 6

Confusion matrices of BCI competition IV-2b datasets. (A) B01 without our method. (B) B01 with our method. (C) B02 without our method. (D)

B02 with our method.
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TABLE 5 Classification accuracy (%) on BCI competition II dataset.

Method Accuracy

CNN1 89.70

CNN3 87.54

CNNR 89.52

BN3 88.26

OCLNN 87.37

EEGNet 91.49

DeepConvNet 91.49

ShallowConvNet 88.62

Ours 93.64

Highest values are highlighted in boldface.

TABLE 6 Classification accuracy (%) on BCI competition III dataset.

Method Subject Average accuracy

A B

CNN1 85.25 89.08 87.17

CNN3 83.92 86.92 85.42

CNNR 84.83 89.17 87.00

BN3 84.67 90.33 87.50

OCLNN 85.33 90.58 87.96

EEGNet 86.92 91.75 89.34

DeepConvNet 87.00 90.50 88.75

ShallowConvNet 83.50 86.50 85.00

Ours 87.50 92.50 90.00

Highest values are highlighted in boldface.

discover that the proposed method increases the classification

rate between each class except the foot. However, without

using our method, other categories are easily misclassified as

foot, and by using our method, the misclassification rate has

decreased a lot.

Then, we analyze the confusion matrices of the BCI IV-

2b dataset, which has two classes. For subject B01, we can

find that the left hand is much easier to be recognized than

the right hand. Except this, we can see that the classification

effect of the left hand significant improves though the right

hand’s classification rate decreases slightly. The comparison

of Figures 6C,D indicates that our method improves the

classification performance for subject B02 and reduces the

misclassification rate of both classes.

4.4. Results on P300 datasets

4.4.1. Comparison results

We perform a series of experiments on the BCI Competition

II dataset and BCI Competition III dataset to further validate

FIGURE 7

The two classes heatmap result of DAFM on the BCI

Competition II dataset. (A) P300 signal. (B) Non-P300 signal.

the effectiveness of our method. We compare the classification

accuracies for our method with other state-of-the-art methods,

including CNN1 (Cecotti and Graser, 2010), CNN3 (Cecotti

and Graser, 2010), CNNR (Manor and Geva, 2015), BN3 (Liu

et al., 2018), OCLNN (Shan et al., 2018), EEGNet (Lawhern

et al., 2018), DeepConvNet (Zhang Y. et al., 2020), and

ShallowConvNet (Zhang Y. et al., 2020). The experimental

results on both datasets are shown in Tables 5, 6, respectively.

We observe that the proposed method improves clearly

compared to other approaches, with around 2.15% better than

the second-best method on the BCI Competition II dataset.

Table 6 shows that our method outperforms all the comparable

methods, obtaining an average accuracy of 90.00% on the BCI

Competition III dataset. Thus, the proposed method can achieve

the best performance on both datasets. The experimental results

demonstrate that DAFM provides a more accurate classification

outcome for P300 detection task.

To better demonstrate the role of the proposed method,

we also exhibit the weighed features learned by our method.
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FIGURE 8

The training loss and testing accuracy of BCI Competition II dataset and BCI Competition III dataset. (A) BCI Competition II dataset. (B) Subject A

of BCI Competition III dataset. (C) Subject B of BCI Competition III dataset.

Figure 7 shows the two classes heatmap result of DAFM on the

BCI Competition II dataset.

As shown in Figure 7, DAFM focuses on different ranges

of EEG signals for P300 detection. The deeper the color is, the

more attention the model pays to the corresponding part of EEG

signals. When recognizing the P300 signal, the model has a high

degree of attention around 300 ms time points due to a positive

peak appearing after 300 ms of the stimulus in the P300 signal.

In contrast, the feature map of the non-P300 signals has a more

scattered appearance over time. It is illustrated that the proposed

attentionmodule can automatically learn the priority of different

temporal points, which contributes to better performance.

4.4.2. The training loss and testing accuracy of
our method

We analyze the training loss and the testing accuracy of our

method on the BCI Competition II dataset and BCI Competition

III dataset. As is shown in Figure 8, the number of training

epochs is 300. It can be observed that the testing accuracy

increases quickly during the first 50 epochs and the training loss

is generally stable after training about 100 epochs. Therefore,

Our model exhibits a stable performance during the training

procedure, and we observe that it converges quickly.

5. Conclusion

This study proposes a novel DAFM framework to effectively

extract discriminative features from the EEG signals for different

EEG-based classification tasks. It leverages an interactive

attention module to generate the informative spatial-temporal

features. The experimental results, conducted on four widely-

used datasets, demonstrate that our method achieves superior

performance to state-of-the-art and baseline methods. Our

ablation experiments also confirm the effectiveness of our

method. In summary, our method could be regarded as a

potential approach to improve the performance of EEG-based

BCI systems.
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Due to a large amount of noise and artifacts in EEG signals,

the proposed method can alleviate the interference of noise

to a certain extent by focusing on useful information and

ignoring useless information, but it cannot eliminate them. In

the future, we plan to explore the more stable patterns of EEG

signals using attention mechanism. Meanwhile, the proposed

attention module will be extended to other tasks, such as image

classification, semantic segmentation, etc.
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