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Abstract
The Best Worst Method (BWM), a reduced version of the AHP, is a recent multi-criteria decision-making tool based on

pairwise comparisons with reference to the best and worst criteria. Consistency Ratio (CR) measurement for the rating

quality and prioritizations is still a controversial topic. Firstly, the computation for the current CR of BWM must rely on a

software optimization solver to find the optimal values, and the solver may not always guarantee the exact optimal

solutions, especially if the computational cost settings are not large enough for higher number of criteria. Secondly, much

effort to evaluate optimization algorithms is needed to find the best solutions with the least computational resources due to

diverse solvers possibly leading to different results with different performances. Thirdly, optimization programming code

is not trivial to be implemented for general BWM users. To address these issues, this paper presents the closed-form

solutions, Max of Edge Error Matrix (MEEM) (Eq. (44) of Theorem 4) and Minmax Edge Error Determinant (MEED)

(Algorithm 1), to replace the BWM optimization models to directly calculate the CR values. Two simulations have been

performed with a basic laptop using a single process. One simulation of twenty thousand random pairs of vectors took

26.34 h to perform to verify that the approximate results are higher than or very close to the exact closed-form values of

both methods when high computational cost is allocated for the solver to increase the precision. Another simulation of one

million random pairs of vectors only took 1.27 h to perform to verify that the MEED and MEEM methods always produce

the same results for the number of criteria up to nine. The computational time for the exact results is dramatically reduced

when the solver is not needed. The advantages of the proposed solutions include the following: the software to solve the

optimization model to obtain CR is unnecessary, and the proposed calculation is extremely efficient to obtain the exact

accuracy. The two-step optimization model can preserve the fixed Minmax Edge Error to find the weights which add up to

one, which is the condition to determine if the model reaches exact optimal solutions. As the CR optimization model

produces multiple versions of weights, which are recommended not to be used, the new method does not need to compute

the unnecessary weight values to get the Minmax Edge Error. With the provision of equations leading to closed forms,

users can understand the properties of CR in much clearer perspectives. Due to the computational efficiency and

explainability, the proposed closed forms can replace the CR optimization model to compute CR efficiently and accurately

for all diverse applications using BWM.

Keywords Optimization � Minmax problem � Best worst method � Pairwise comparisons � Decision sciences

1 Introduction

The first recognizable description of comparative judge-

ments in the literature was credited to Ramon Llull, the

13th-century mystic and philosopher (Faliszewski et al.

2010; Koczkodaj et al. 2016). Thurstone (1927) underlined

significant principles of comparative judgement. Saaty

(1977, 1980, 1990) developed the Analytic Hierarchical

Process (AHP) leading to a considerable impact on the
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pairwise comparison research. Whilst the AHP based on

the paired ratio scale potentially leads to misapplications,

Yuen (2009, 2012, 2014) proposed the Cognitive Network

Process (CNP) based on the paired differential scale for

pairwise comparisons, and some recent applications were

presented in (Guan et al. 2019; Yuen 2022). Rezaei (2015)

introduced a merely reduced form of AHP, Best Worst

Method (BWM), which is gaining growing attention from

researchers. The consistency is considered improved over

the AHP simply because the reduced version requires fewer

inputs from users, reducing the chances of making

mistakes.

Mi et al. (2019) published a survey paper for BWM

based on 124 publications. To list some recent articles

related to BWM after 2019, Hafezalkotob et al. (2020)

integrated interval values, MULTIMOORA, Borda rule

and BWM for hybrid vehicle engine selection. Chen and

Ming (2020) integrated rough–fuzzy approach, BWM and

data envelopment analysis for smart product service mod-

ule selection. Faizi et al. (2021) combined Hamacher

aggregation operations for intuitionistic 2-tuple linguistic

sets to BWM. Ali and Rashid (2021) applied BWM to

robot selection. Oztas and Erdem (2021) applied conjoint

analysis and BWM to framework selection for developing

optimization algorithms. Yucesan and Gul (2021) proposed

neutrosophic BWM for failure prioritization and control.

Dong et al. (2021) integrated the triangular fuzzy numbers

and Wan et al. (2021) integrated interval-valued trape-

zoidal fuzzy numbers to BWM. Jafarzadeh Ghoushchi

et al. (2021) incorporated the BWM into the importance-

necessity concept. Kheybari and Ishizaka (2022) proposed

behavioural BWM. Ma et al. (2023) combined a granular

computing-based method in the BWM framework. Qin

et al. (2023) proposed a consensus model for the group

BWM. Malakoutikhah et al. (2022) combined the fuzzy

BWM and fuzzy cognitive map to model the factors

affecting unsafe behaviours. Wan and Dong (2022), Chen

et al. (2023) and Dong and Wan (2024) integrated intu-

itionistic fuzzy sets into BWM.

Regarding the studies of consistency measurement, the

first BWM study (Rezaei 2015) collected 322 pairs of

vectors for BWM and 322 matrices for AHP from 46 valid

respondents (university students) for selecting the mobile

phone from 4 alternatives based on 6 criteria. However, the

weights produced by Rezaei, (2015) are problematic as

Example 5 of this study shows that the same objective

value (Model (3) or (4)) can lead to multiple versions of

non-reproducible weights, and therefore, the conclusion of

the hypothesis testing was unreliable. Rezaei (2016) pre-

sent the linear model (Model (4) or (5)) that can produce a

unique version of weights for the optimal objective value

with two numerical examples to roughly show the calcu-

lation concepts. Although MS Excel Solver (https://

bestworstmethod.com/software/) refers to Rezaei

(2015, 2016), the software and tools were not mentioned in

Rezaei (2015, 2016), whilst different numerical solvers

with different algorithms of different seeds in different

software packages/applications usually performed differ-

ently, no clear relationship between Model (3) or (4) and

Model (5) or (4) are shown.

Regarding the recent simulation studies, Wu et al. (2022)

randomly generated a total of 80,000 pairs for the criteria size

from 3 to 10. The simulation was implemented in Matlab

including the fmincon function. When the order size

increases, the percentage of consistency ratio more than 0.1

decreases. (Liang et al. 2022) generated 10,000 pairs of

ordinal-inconsistent vectors and 10,000 pairs of ordinal-

consistent vectors (total size is not directly mentioned in the

article). Liang et al., (2020) studied the consistency issues for

the thresholds by generating a set of only 20,000 random

pairs of vectors (ABO and AOW) for each case from three to

nine criteria based on one- to nine-point scales. Mazurek

et al. (2021) conducted a Monte Carlo Simulation of no more

than 6000 instances to compare three prioritization methods,

the Geometric Mean and Eigenvalue Methods implemented

in C# and the BWM implemented in MS Excel Solver. For

the simulations above, the results may not be reliable as the

sample size is very small, which may be limited by the sig-

nificant computational time using the solver. On the other

hand, two proposed closed forms take only 1.27 h to com-

plete one million instance computation with a basic laptop in

a single processing. The detail of the simulation is presented

in Sect. 9.

According to the literature survey to date on Aug 2023

(the release date of this first preprint in http://dx.doi.org/10.

2139/ssrn.4551188), no study has provided closed-form

solutions for the CR of BWM. To address these problems,

the following contributions of this study have been made.

• Section 2 presents a comprehensive review to discuss

the limitations and drawbacks of BWM and the

motivations of this study. To understand the properties

of the optimization models which are not mentioned in

the previous studies, equivalent forms of two types of

Minmax models without absolute functions are pro-

posed in Sect. 3.

• The concepts and principles of individual edge errors

and co-edge errors are presented in Sects. 4 and 5,

respectively.

• For the closed forms of the consistency ratio, the max of

edge error matrix method is presented in Sect. 6, whilst

the Minmax edge error determinant method is presented

in Sect. 7.

• Several two-step optimization models with several

forms are presented in Sect. 8. The models provide

more alternative forms for the different solvers of
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different algorithms to implement to guarantee the

precision that the largest Minmax edge error is mini-

mized by observing the expected unique optimal

objective value.

• In Sect 9, six numerical examples are demonstrated for

the usability of the proposed solutions. Two stochastic

simulations are conducted to verify the reliability of the

proposed solutions. Three supplementary files for the

examples and simulations are attached and can be

found in Yuen (2023).

• Section 10 discusses the results, concludes remarks and

provides future research recommendations. The sum-

mary of notations is presented in Appendix section.

2 Review and motivations

2.1 Backgrounds of BWM

The BWM was proposed in Rezaei (2015, 2016) and the

calculation steps are illustrated as follows:

1. Define a set of decision criteria.

2. Define the best and the worst criteria. If the best or the

worst criterion is more than one, any one among them can

arbitrarily be chosen.

3. Evaluate a Best-to-Others vector with numbers

between 1 and 9. Reciprocals are not used.

AB ¼ aB1; . . .; aBj; . . .; aBn
� �

: ð1Þ

4. Evaluate an others-to-worst vector with numbers

between 1 and 9.

AW ¼ a1W ; . . .; ajW ; . . .; anW
� �T

: ð2Þ

5: Solve the optimization model below to obtain the

weights w ¼ wj

� �
.

min max
j

wB

wj
� aBj

����

����;
wj

wW
� ajW

����

����

� �

S.T.
X

j

wj ¼ 1;

wj � 0; 8j:

ð3Þ

The solution of the model above is transferred to the

form below.

min n

S: T:
wB

wj
� aBj

����

����� n; 8j

wj

wW
� ajW

����

����� n; 8j
X

j

wj ¼ 1;wj � 0; 8j:

ð4Þ

Solving Problem (4) to obtain n�. Alternatively,

min max
j

wB � aBjwj

�� ��; wj � ajWwW

�� ��� �

S: T:
X

j

wj ¼ 1;wj � 0; 8j: ð5Þ

The model above is transferred to the form below.

min n

S: T: wB � aBjwj

�� ��� n; 8j
wj � ajWwW

�� ��� n;8j
X

j

wj ¼ 1;wj � 0; 8j:

ð6Þ

The consistency ratio (CR) is the ratio of n� to the

consistent index (CI).

CR ¼ n�

CI
: ð7Þ

Rezaei (2015, 2016) did not discuss the threshold values

for consistency of the paired vectors until his team (Liang

et al. 2020) recently discussed this topic. The discussion of

thresholds for CR is beyond the scope of this research,

although there are a lot of problems, which will discuss in

the future study.

2.2 Problems and motivations

Several problems are identified as follows: Firstly, Models

(3)–(6) have ill definitions for wj � 0. Considering wB

wj
, wj

cannot be 0, i.e. wj 6¼ 0, due to the divided-by-zero error.

Since
P

jwj ¼ 1 and wj 6¼ 0, the improper constraint wj � 0

should be changed to the constraint as below.

0\wj\1; 8j; i:e:wj 2 0; 1ð Þ; 8j: ð8Þ

0; 1ð Þ means from 0 to 1 exclusive. Equation (8) can avoid

divided-by-zero error for the optimizer based on numerical

solution.

Secondly, n should be bounded, i.e. CI� n� 0 for Model

(4) and n� 0 for Model (5). Whilst the upper bound of Model

(6) is beyond discussion in this study, the upper bound of

Model (4) can refer to the simple algebraic form in Eq. (42)

to guide the solver not to try the negative values for n, but the

values between the lower bound of zero and the upper bound

less than or equal to the Consistency Index value with

respect to the best-over-worst score aBW , which is the worst

case for n� when aBW is used for aBj and ajW .

Thirdly, the absolute function cannot be used for some

optimization algorithms. To remove the absolute function,

Model (4) is equivalent to Model (17) shown in Sect. 3. In

addition, unlike the AHP’s reciprocal matrix, none of the

matrix operations are used in BWM; transposition in

Eq. (2) is completely useless or confused for Models (3) to
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(7), especially when the models are implemented into

programming codes, and therefore, AW is defined without

transposition in this study. Regarding the use of subscripts,

the notations i,j,k and others are chosen in order.

Fourthly, whilst Model (3) is not equivalent to Model (5),

Model (4) is not equivalent to Model (6), as they produce

different objective values for the same notationn. Only the n
produced by solving Model (4) isn�. In this paper, Model (3)

or (4) is called CR optimization model. The simulation

results in this study show that Models (3) and (4) produce

different versions of weights for the same objective value n�,
whilst Models (5) and (6) should produce unique results.

Two model categories are completely not equivalent. As the

examples are shown in Sect. 9, it is recommended that the

weights are produced by Model (5) or (6), whilst Model (3) or

(4) produces n� for consistency only, although Models (5)

and (6) are very different from Models (3) and (4) in nature,

especially for their weights and objective values produced,

although even the recent paper (Liang et al. 2020) with the

original BWM author did not point out this.

In this study, the closed-form solutions for CR shown in

Eq. (7) are developed, and thus, the optimization solver

software applications to solve Model (3) or (4) are not nec-

essary, as exact precision of n� can be obtained by much

simpler proposed closed forms. The measurement of prior-

itization weights is beyond the scope of this study. Normally,

most BWM prioritization methods are the reduced forms of

the AHP’s prioritization methods, where the comparisons of

AHP prioritizations can be found in Yuen (2009, 2010).

3 Equivalent forms without absolute
functions

To understand more properties of n�, absolute functions for

Models (4) and (6) are firstly removed, and the following

proposition holds.

Proposition 1 (Equivalent Forms of Absolute Function) Let

x be any real number. If xj j � n and n� 0, the following

two inequalities hold.

x� n; ð9Þ
�x� n: ð10Þ

As the absolute value of any real number is positive,

n� 0. With respect to xj j � n, if either x� 0 or x� 0,

Eqs. (9) and (10) hold. For example, let x ¼ 4; n ¼ 5.

According to Eqs. (9) and (10), either 4� 5 or �4� 5 is

true. Similarly, if x ¼ �4, either �4� 5 or � �4ð Þ� 5 is

true. In short, If �4j j � 5, then �4� 5.

Analogue to the example above, let x ¼ wB

wi
� aBi. The

inequality with the absolute function

wB

wi
� aBi

����

����� n ð11Þ

is equivalent to two forms without the absolute function

below:

wB

wi
� aBi � n; ð12Þ

�wB

wi
þ aBi � n: ð13Þ

Similarly, the inequality with the absolute function

wi

wW
� aiW

����

����� n ð14Þ

is equivalent to two forms without the absolute function

below:

wi

wW
� aiW � n; ð15Þ

� wi

wW
þ aiW � n: ð16Þ

Finally, Model (4) is equivalent to

min n

S.T.
wB

wi
� aBi � n; 8i

� wB

wi
þ aBi � n; 8i

wi

wW
� aiW � n; 8i

� wi

wW
þ aiW � n; 8i

X

i

wi ¼ 1; 0� n�CI; 0\wi\1; 8i:

ð17Þ

Similarly, Model (6) is equivalent to

min n

S: T:wB � wiaBi � n; 8i
� wB þ wiaBi � n; 8i
wi � wWaiW � n; 8i
� wi þ wWaiW � n; 8i
X

i

wi ¼ 1; n� 0; 0\wi\1; 8i:

ð18Þ

For the advantage, Model (17) is easier to be imple-

mented with most software packages than Model (4) as

treating absolute function is not needed anymore for some

optimization algorithms. Rezaei (2015, 2016) did not

define a meaningful name for the notation n or n� in Model

(4). On the basis of the mathematical formation in the

Model (4), n� is called the Minmax Edge Error (MEE) in

this paper, which is the minimum of maximum absolute

distance between wB

wj
and aBj, as well as

wj

wW
and ajW , for all
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j. More properties are explored for the edge errors in the

following sections.

4 Individual edge errors

If a pair of best and worst vectors, AB and AW , are perfectly

consistent, the following equality holds, and vice versa.

aBiaiW ¼ aBW ; 8i 2 1; . . .; nf g: ð19Þ

The inconsistency is induced if one of two conditions

below is satisfied.

aBiaiW [ aBW ; 9i; ð20Þ
aBiaiW\aBW ; 9i: ð21Þ

Let an Individual Edge Error (IEE) for ci in comparison

with cB and cW be ni. If aBiaiW [ aBW , aBi and aiW are

decreased by ni; respectively, and aBW is increased by ni, to

achieve an equality as below:

aBi � nið Þ aiW � nið Þ ¼ aBW þ nið Þ: ð22Þ

Expand the form above to have a quadratic equation

below:

n2
i � 1 þ aBi þ aiWð Þni þ aBiaiW � aBWð Þ ¼ 0: ð23Þ

On the other hand, if aBiaiW\aBW , aBi and aiW are

decreased by ni; respectively, and aBW is increased byni, to

achieve an equality as below:

aBi þ nið Þ aiW þ nið Þ ¼ aBW � nið Þ: ð24Þ

Expand the form above to have a quadratic equation as

below:

n2
i þ 1 þ aBi þ aiWð Þni þ aBiaiW � aBWð Þ ¼ 0: ð25Þ

To find the ni for the two equality relationships above,

Theorem 1 holds.

Theorem 1 (Individual Edge Error). The Individual Edge

Error (IEE) for cj in comparisons with cB and cW is

obtained as below:

ni ¼
1

2
1 þ aBi þ aiWð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aBi þ aiWð Þ2 � 4 aBiaiW � aBWð Þ

q����

����; 8i:

ð26Þ

Precisely, the absolute form above is equivalent to the

piecewise equation below with specifying conditions:

Proof.

Let ci1 ¼ 1; ð28Þ

c0i2 ¼ ci2
�ci2

�
¼ 1 þ aBi þ aiWð Þ; ci3 � 0

� 1 þ aBi þ aiWð Þ; ci3 � 0
;

�
ð29Þ

ci3 ¼ aBiaiW � aBW ; 8i 2 1; . . .; n½ �: ð30Þ

To substitute the above equations to Eqs. (23) and (25),

ci1n
2
i þ c0i2ni þ ci3 ¼ 0: ð31Þ

To solve the above quadratic equation to have two roots,

n0i ¼
�c0i2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02i2 � 4ci1ci3

p

2ci1

¼ 1

2
�c0i2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02i2 � 4ci1ci3

q
 �
: ð32Þ

As the edge error is positive and minimized,

ni ¼ minð n0ij jÞ: ð33Þ

Precisely, without absolute function, as

1

2
�ci2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
i2 � 4ci1ci3

q
 �
� 1

2
�ci2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
i2 � 4ci1ci3

q
 �
; ci3 � 0;

ð34Þ
1

2
ci2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
i2 � 4ci1ci3

q
 �
� 1

2
ci2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
i2 � 4ci1ci3

q
 �
; ci3 � 0;

ð35Þ

the minð n0
i

���
���Þ is

ni ¼
1

2
�ci2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci22 � 4ci1ci3

p� 

; ci3 � 0

1

2
ci2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci22 � 4ci1ci3

p� 

; ci3 � 0

8
><

>:
: ð36Þ

ni ¼

� 1 þ aBi þ aiWð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aBi þ aiWð Þ2 � 4 aBiaiW � aBWð Þ

q

2
; aBiaiW � aBW\0

1 þ aBi þ aiWð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aBi þ aiWð Þ2 � 4 aBiaiW � aBWð Þ

q

2
; aBiaiW � aBW [ 0

0; aBiaiW ¼ aBW

; 8i:

8
>>>>><

>>>>>:

ð27Þ
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Therefore, Eqs. (26) and (27) hold. h

The piecewise form of three cases of Eq. (27) can be

reduced to two cases by removing the third case with

adding equality to the conditions, e.g. in Eq. (36). The

advantage of the piecewise form of three cases of Eq. (27)

is that the Case 3 can be determined immediately.

Individual Edge Error (IEE) for cj compared with cB and

cW is independent of the rating scores with respect to the

other criteria compared. However, if another criterion is

involved, an impact to the MEE may be induced, and

therefore, the concept of co-edge errors is established in the

next section.

5 Co-edge errors

If the rating scores are perfectly consistent, the following

equality holds.

aBiaiW ¼ aBjajW ¼ aBW : ð37Þ

If there is inconsistency, the equality above does not

hold. In addition to the IEE introduced in the previous

section, the concept of co-edge error nij is introduced. Co-

edge error nij is the multiplication discrepancy between

aBiaiW and aBjajW satisfying the following two conditions.

If aBiaiW � aBjajW , both aBi and aiW are increased by nij,
and both aBj and ajW are decreased by nij, to achieve an

equality as below:

aBi þ nij
� �

aiW þ nij
� �

¼ aBj � nij
� �

ajW � nij
� �

: ð38Þ

If aBiaiW � aBjajW , both aBi and aiW are decreased by nij,
and both aBj and ajW are decreased by nij, to achieve an

equality as below:

aBi � nij
� �

aiW � nij
� �

¼ aBj þ nij
� �

ajW þ nij
� �

: ð39Þ

To find the nij for the equality relationships above,

Theorem 2 holds.

Theorem 2 (Co-Edge Error) A Co-Edge Error (CEE) with

respect to ci and cj is computed by the form below:

nij ¼

aBiaiW � aBjajW
aBi þ aiW þ aBj þ ajW

; aBiaiW � aBjajW

aBjajW � aBiaiW
aBi þ aiW þ aBj þ ajW

; aBiaiW � aBjajW

8
><

>:
: ð40Þ

Or the piecewise equation above is equivalent to the

below form without specifying conditions:

nij ¼
aBiaiW � aBjajW
�� ��

aBi þ aiW þ aBj þ ajW
: ð41Þ

Proof. If aBiaiW � aBjajW , rearrange Eq. (38) as below:

n2
ij þ aBi þ aiWð Þnij þ aBiaiW ¼ n2

ij � aBj þ ajW
� �

nij
þ aBjajW

aBi þ aiW þ aBj þ ajW
� �

nij ¼ aBjajW � aBiaiW

nij ¼
aBjajW � aBiaiW

aBi þ aiW þ aBj þ ajW
� � :

If aBiaiW � aBjajW , rearrange Eq. (39) as below:

n2
ij � aBi þ aiWð Þnij þ aBiaiW ¼ n2

ij þ aBj þ ajW
� �

nij
þ aBjajW

aBiaiW � aBjajW ¼ aBi þ aiW þ aBj þ ajW
� �

nij

nij ¼
aBiaiW � aBjajW

aBi þ aiW þ aBj þ ajW
:

Therefore, Form (40) holds. As nij � 0, Eq. (41) also

holds. h

6 Max of edge error matrix method

The consistency ratio (CR) is the ratio of Minimax Edge

Error (MEE or n�) to the consistent index (CI), i.e.

CR ¼ n�

CI. The closed-form solution of CI is derived by

Eq. (42) of Theorem 3, whilst the closed-form solution of

Minmax Edge Error n� is derived by Eq. (44) of Theo-

rem 4. The details are presented as below.

6.1 Closed-form solution of consistency index

The BWM applications only refer to a CI table stated in

(Rezaei 2015, 2016) for the CI with respect to aBW . In fact,

the CI can be derived from the simple form in Eq. (42) of

Theorem 3 stated as below.

Theorem 3 (Consistency Index of BWM) The Consistency

Index of aBW is computed by the form below:

CIaBW ¼ CI aBWð Þ ¼ 1

2
1 þ 2aBW �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aBW þ 1

p� 

: ð42Þ

Proof. From Eq. (27), if aBiaiW � aBW [ 0, then.

ni ¼
1 þ aBi þ aiWð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aBi þ aiWð Þ2 � 4 aBiaiW � aBWð Þ

q

2
:

Substitute aBi ¼ aiW ¼ aBW , the worst case, to the form

above to obtain CI aBWð Þ below:
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CI aBWð Þ ¼
1 þ aBW þ aBWð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aBW þ aBWð Þ2 � 4 aBWaBW � aBWð Þ

q

2

CI aBWð Þ ¼
1 þ 2aBWð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2aBWð Þ2 � 4a2

BW þ 4aBW

q

2

CI aBWð Þ ¼ 1 þ 2aBWð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2

BW þ 4aBW þ 1 � 4a2
BW þ 4aBW

p

2

CI aBWð Þ ¼ 1

2
1 þ 2aBWð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aBW þ 1

p� 

:

Thus, Eq. (42) holds. h

To have the CR, CI is obtained as above, and the for-

mulation and calculation of n� are discussed in the fol-

lowing section.

6.2 Closed-form solution of minmax edge error

n� can be obtained by finding the largest value of the ele-

ments in the Edge Error Matrix (EEM) denoted by €n of the

form below:

€n ¼ €nij : €nij ¼
ni; i ¼ j
nij; i 6¼ j

�
; 8i; j 2 1; . . .; n½ �

� �
: ð43Þ

The size of largest values is at least one. €n is the n	 n

symmetric matrix. The diagonal elements where i ¼ j are

filled byni,8i, which are obtained by Eq. (26) or (27). The

non-diagonal elements are filled by nij, i 6¼ j,8i; 8j, which

are obtained by Eq. (40) or (41). Elements in the upper

triangular matrix of €n, denoted by€n
þ

, are the same as their

corresponding positions in lower triangular matrix of€n,

denoted by €n
�

. Thus, €n is a symmetric matrix,

i.e.nij ¼ nji; 8i; j. Theorem 4 is established on top of The-

orems 1 and 2 to compute the EEM.

Theorem 4 (Max of Edge Error Matrix Method:

n* =max(€n
+


) The Minmax edge error is the largest

value of the set of all individual edge errors and all co-

edge errors, which can be formed by the upper triangular

edge error matrix.

n� ¼ max €n
þ� 


¼ max nif g; nij
� �� �

¼ max €n
þ
ij :

€n
þ
ij ¼

ni; i ¼ j

nij; i 6¼ j

�
; 8j 2 i; . . .; n½ �; 8i 2 1; . . .; n½ �

� �

ni ¼
1

2
1 þ aBi þ aiWð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aBi þ aiWð Þ2 � 4 aBiaiW � aBWð Þ

q����

����; 8i

ð44Þ

nij ¼
aBiaiW � aBjajW
�� ��

aBi þ aiW þ aBj þ ajW
; 8j 2 iþ 1; . . .; n½ �; 8i

2 1; . . .; n½ �:

Proof. ni and nij have been proved in Theorems 1 and 2,

respectively, with alternative forms without absolute

function. In order to have Theorem 4, it is essential to show

how Theorems 1 and 2 are related to Model (4). Let

i�; j�ð Þ ¼ argmax €n
þ� 


, which occurs either only at i*,

where i* = j*, or between i* and j*, where i* = j*. If n�

occurs at i*, there are two scenarios shown in Cases 1 and

2. If n� occurs at between i* and j*, there are two scenarios

shown in Cases 3 and 4.

Case 1 (aBi�ai�W\aBW ):

If n� occurs at i� such that aBi�ai�W\aB i 6¼i�ð Þa i 6¼i�ð ÞW ; 8i,
substitute n� ¼ ni� ¼ ni to Eq. (24) to have

aBi� þ n�ð Þ ai�W þ n�ð Þ ¼ aBW � n�ð Þ; ð45Þ

substituted by

wB

wi�
¼ aBi� þ n� and

wi�

wW
¼ ai�W þ n� ð46Þ

to have

wB

wi�


 �
wi�

wW


 �
¼ wB

wW
¼ aBW � n�ð Þ: ð47Þ

Therefore, if n� ¼ ni� � ni,i 6¼ i�; 8i, then Eq. (47)

equals Eq. (45). We can see the relationship among

wi� ,wB, wW and aBi� ,ai�W , ai�W and n�.
Case 2 (aBi�ai�W [ aBW ):
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n� occurs at i� such that aBi�ai�W [ aB i 6¼i�ð Þa i 6¼i�ð ÞW ; 8i.
From Eq. (22),

aBi� � n�ð Þ ai�W � n�ð Þ ¼ aBW þ n�ð Þ; ð48Þ

substituted by

wB

wi�
¼ aBi� � n� and

wi�

wW
¼ ai�W � n� ð49Þ

to have

wB

wi�


 �
wi�

wW


 �
¼ wB

wW
¼ aBW þ n�ð Þ: ð50Þ

Therefore, the relationship between Eqs. (48) and 50) is

shown.

Case 3 (aBi�ai�W\aBW\aBj�aj�W ):

n� occurs at i* and j� such that aBi�ai�W\aBj�aj�W . From

Eq. (38),

aBi� þ n�ð Þ ai�W þ n�ð Þ ¼ aBj� � n�
� �

aj�W � n�
� �

; ð51Þ

substituted by

wB

wi�
¼ aBi� þ n�;

wi�
wW

¼ ai�W þ n�; wB

wj�
¼ aBj� � n� and

wj�
wW

¼ aj�W � n�

ð52Þ

to have

wB

wi�


 �
wi�

wW


 �
¼ wB

wj�


 �
wj�

wW


 �
¼ wB

wW

¼ aBj� � n�
� �

aj�W � n�
� �

¼ aBi� þ n�ð Þ ai�W þ n�ð Þ: ð53Þ

This means that the above equality holds only if i ¼ i�

and j ¼ j�.
Case 4 (aBi�ai�W [ aBW [ aBj�aj�W ):

n� occurs at j* and i* such that aBi�ai�W [ aBj�aj�W .

From Eq. (39),

aBi� � n�ð Þ ai�W � n�ð Þ ¼ aBj� þ n�
� �

aj�W þ n�
� �

; ð54Þ

substituted by

wB

wi�
¼ aBi� � n�;

wi�
wW

¼ ai�W � n�;
wB

wj�
¼ aBj� þ n� and

wj�
wW

¼ aj�W þ n�

ð55Þ

to have

wB

wi�


 �
wi�

wW


 �
¼ wB

wj�


 �
wj�

wW


 �
¼ wB

wW

¼ aBi� � n�ð Þ ai�W � n�ð Þ
¼ aBj� þ n�
� �

aj�W þ n�
� �

: ð56Þ

The above equality holds if i ¼ i� and j ¼ j�.

In short, Minmax Edge Error occurs if one of the above

four conditions holds such that n� ¼ max nif g; nij
� �� �

: h

Theorem 4 shows the exhaustive approach to find the

Minmax Edge Error, i.e. IEE ¼ max EEMð Þ. Firstly, Indi-

vidual Edge Errors for all criteria are calculated. Secondly,

co-edge errors for all pairs among the criteria are calcu-

lated. Finally, MEE is the maximal value of the individual

edge errors and co-edge errors. The computation size of

Individual Edge Errors is n, whilst the computation size of

co-edge errors is 1
2
n� 1ð Þ n� 2ð Þ, and nij ¼ nji; 8i; j. The

advantage of the exhaustive method is that the Edge Error

Matrix can provide an overview of the edge errors. If only

Minmax Edge Error is introduced, a smarter method may

be needed to avoid unnecessary computation, and the

determinant method for MEE is introduced in the next

section by investigating more properties of Theorem 4.

7 Minmax edge error determinant method

Theorem 4 is the exhaustive search for the upper triangle

EEM that requires 1
2
n n� 1ð Þ calculations. The MEE

determinant method is proposed to find the n� by initially

determining locations inducing n�. Algorithm 1 is pre-

sented to show the determinant method to find MEE.

Algorithm 1 only concerns the MEE without providing the

information for the other edge errors shown in the edge

error matrix. For the definitions in this paper, the best

criterion is located at B, the worst criterion is located at W,

and the rest should be called ‘‘others’’ if the rest size is

plural, or ‘‘another’’ if the size is singular.

For the comparison located at best criterion, i.e. i ¼ B,

aBBaBW � aBW ¼ 0: ð57Þ

For the comparison located at best criterion, i.e. i ¼ W ,

aBWaWW � aBW ¼ 0: ð58Þ

By Theorem 1, both IEE results in 0, i.e. nB ¼ nW ¼ 0.

By Theorem 2, both CEE results in 0, i.e. nBW ¼ nWB ¼ 0.

In addition, ni � niWj j or ni � nBij j. Thus, when finding the

locations of criteria for n�, rating scores at B in AB and W in

AW can be removed. In other words, only the others in AB

and AW are considered. If n ¼ 3, the size of the others is 1,
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and thus, MEE is the IEE based on paired comparisons

related to the other criterion. When n[ 3, both IEE and

CEE are considered.

According to Eq. (27) of Theorem 1, five properties of

IEE concerning inequality and equality are further inducted

as below. To better understand the properties, examples of

pair scores for their relationships are demonstrated in

Fig. 1, which is further studied in Example 6 of Sect. 9.

1. If aBiaiW = aBjajW and aBi þ aiW [ aBj þ ajW , then

ni\nj.
2. If aBiaiW�aBW\0, aBiaiW \ aBjajW and aBi þ aiW =

aBj þ ajW , then ni [ nj.
3. If aBiaiW�aBW [ 0, aBiaiW \ aBjajW and aBi þ aiW =

aBj þ ajW , then ni\nj.

4. If aBiaiW�aBWj j\ aBjajW � aBW
�� �� and aBi þ aiW =

aBj þ ajW , then ni\nj.
5. Swapping a pair of scores at i, i.e. aBi; aiWð Þ=

aiW ; aBið Þ, has no impact to ni.

From the properties above, aBkakW and aBk þ akW are the

core parts for the determination. These properties are

essentially used to determine the location of MEE. The

highest IEE is more likely to be MEE as the highest CEE is

also required to check. In addition, considering Eqs. (40)

and (41) from Theorem 2 and the simulation results per-

formed in Sect. 9, the determinant values of others are

defined below:

Dk ¼
aBkakW � aBW
aBk þ akW � 1

; 8k 2 1; . . .; p½ �; aBW � 9: ð59Þ

The value p is the size of the other criteria excluding the

best and worst criteria. In short, when the numerator,

aBk þ akW , is higher and the pure value of denominator,

aBkakW � aBWj j, is lower, chance of nk to be n� is higher.

The �1 is selected based on the simulation results of one

million random samples in Sect. 9. þ1 or 0 does not pro-

duce accurate MEE results. Without absolute value, the

determinant value has direction, and so the minimum

function is used to address Property 2 when Dk is negative

and maximum function is used to address Property 3 when

Dk is positive. According to the simulation, the highest

CEE is located between a pair with the least negative Di

and the highest positive Dj, when aBW � 9. When aBW [ 9,

Eq. (59) may not be valid. Finally, Algorithm 1 is formed

to determine n� with the least computation.

For Algorithm 1, when n[ 3, the extra little computa-

tion is to find the D to avoid computing all CEEs and IEEs.

If aBjajW\aBiaiW and aBiaiW � aBW\0, then nj [ ni, and

Eq. (60) is used. If aBjajW [ aBiaiW and aBiaiW � aBW [ 0,

then nj [ ni, and Eq. (61) is used. If aBiaiW � aBW\0 and

aBjajW � aBW [ 0, then n� is determined by Eq. (62). Case

3 includes Cases 1 and 2 including Case 0. Basically, Case

3 can be used for general purpose, but not the fastest one to

determine n� when the cases fit for Cases 0 to 2. The

demonstrations are shown in Sect. 9.

Fig. 1 Examples of the relationships of five properties of IEE
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8 Two-step optimization models

As the closed-form solution of Minmax Edge Error can be

obtained by Theorem 4 or Algorithm 1, the Minmax Model

(3) and its equivalent Model (4) can be improved and

converted to two-step optimization models to find the

weights with the exact optimal objective value of Model

(3) or (4). The goal of two-step optimization is to find the

Minmax Edge Error in the first step and find the weights in

the second step. The details of two-step optimization model

are shown in Algorithm 2.

Algorithm 2 (Two-step optimization model with known n� for
weights).

Input: AB and AW

Step 1: get n� by Eq. (44) of Theorem 4, or Algorithm 1

Step 2: compute the parameters by

min 1 �
P

iwi

�� ��

S.T. wB

wi
� aBi

���
���� n�;8i

wi

wW
� aiW

���
���� n�;8i

0\wi\1;8i (63)

Return: w

For Algorithm 2, as n� is known after step 1, the con-

straint
P

iwi ¼ 1 is changed to the objective function

min 1 �
P

iwi

�� ��, in which the expected objective value (or

difference) must reach to zero. There are several alternative

forms for Model (63) in step 2. Alternatively, the absolute

error can be changed to the squared error form below:

min 1 �
X

j
wi

� 
2

: ð64Þ

Both absolute and squared forms can produce the

weights leading to the same n�, the objective value of

Model (63) or (64) is expected to be minimized to zero (or

very close to zero due to rounded or truncated errors from

floating-point computation). Analogue to Model (17)

without absolute function, the Model (63) can be changed

to the equivalent model below:

minðor maxÞ
X

j

wi

S:T :wB=wi � aBi� n�; 8i

� wB

wi
þ aBi � n�; 8i

wi

wW
� aiW � n�; 8i

� wi

wW
þ aiW � n�; 8i

X

i

wi ¼ 1; 0\wi\1; 8i:

ð65Þ

Using either min or max function, the expected objective

value must ideally be one or very close to one due to little

precision errors from floating-point operations, as the

constraint
P

iwi ¼ 1 is set. Alternatively, Model (63) is

changed to the quadratic form below:

min 1 �
X

j

wi

 !2

S:T : wB=wi � aBi� n�; 8i

� wB

wi
þ aBi � n�; 8i

wi

wW
� aiW � n�; 8i

� wi

wW
þ aiW � n�; 8i

0\wi\1; 8i:

ð66Þ

Similarly, Model (63) can be changed to the form

below:

Algorithm 1 ( detMEE AB;AWð Þ: Determinant Method for n�).

Input: paired vectors: AB and AW such that aBW � 9

Step 1: exclude B and W in in AB and AW to form A0B and A0W ,

where the new size of each vector isp ¼ n� 2. The criteria

indices of A0B and A0W are updated

Step 2: if p ¼ 1, i.e., n ¼ 3, compute n� ¼ n1, and go to return n�.

Otherwise, go to the next step

Step 3: compute D ¼ aBkakW�aBW
aBkþakW�1

: 8k 2 1; . . .; p½ �
n o

Step 4: compute n� with respect to different cases

Case 0: if all elements in D are zero, i.e. minðDÞ ¼ minðDÞ ¼ 0,

then n� ¼ 0

Case 1: if all elements in D are positive, i.e. minðDÞ� 0, find the

index set of highest values in D to calculate the MEE

n� ¼ max
i2Sþ

ðniÞ; Sþ ¼ argmaxðDÞ (60)

Case 2: if all elements in D are negative, i.e. maxðDÞ� 0, find the

index set of lowest values in D to calculate the MEE

n� ¼ max
i2S�

ðniÞ; S� ¼ argminðDÞ (61)

Case 3: if elements in D contain both positive and negative

numbers, i.e. minðDÞ\0 and maxðDÞ[ 0, calculate the MEE

n� ¼ max ni : i 2 Sþ [ S�f gf g; nij : i 2 Sþ; j 2 S�
� �� �

;

Sþ ¼ argmaxðDÞ; S� ¼ argminðDÞ (62)

Return n�
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min 1 �
X

j

wi

�����

�����

S:T :jwB � aBiwij � n�wi; 8i
wi � aiWwWj j � n�wi; 8i

0\wj\1; 8j:

ð67Þ

The above model is equivalent to a quadratic program-

ming form below:

min 1 �
X

j

wi

 !2

S:T :wB � aBiwi � n�wi; 8i
� wB þ aBiwi � n�wi; 8i
wi � aiWwW � n�wW ; 8i
� wi þ aiWwW � n�wW ; 8i
0\wi\1; 8i:

ð68Þ

Models (67) and (68) can preserve the same n� from

Model (3), which is also verified by the simulation results

in Sect. 9. In principle, since the objective value of Model

(3) or (4) can be obtained by Theorem 4 or Algorithm 1, by

observing the expected result of objective values, Models

(61)–(68) could more precisely generate the weights lead-

ing to the exact n� than Model (3) or (4). Models (63)–(68)

can preserve the exact n� if expected objective value of 0

for Model (63)–(64) and (66)–(68) is reached, and the

objective value of 1 for Model (65) is reached. The choice

of models may depend on the optimization algorithms.

According to the simulation presented in Sect. 9, the

Minmax of Model (3) and its equivalent Model (4) do not

produce the unique version of weight vector with the same

n� if n[ 3. Similarly, the optimization Models (63)–(68)

can also produce multiple versions of weights as they are

merely inherited from Models (3) and (4) with the given n�.
With the use of optimization Models (3)–(4) and (61)–(68),

we can understand more about the properties for n� and wi,

although the weights produced by them are unreliable to be

used.

To measure the prioritization performance, Eqs. (69)–

(71) are proposed as below. The difference between the

weight ratio scores and corresponding rating scores for AB

and AW can be shown as below:

bn ¼ nB
nW

� �
¼

wB

wi
� aBi

� �

wi

wW
� aiW

� �

2

664

3

775: ð69Þ

bn is the Weight-Ratio-To-Edge-Error Matrix (WRTEEM)

of size 2 	 n. The first row is a vector of the best-over-all

edge errors denoted by nB and the second row is a vector of

the all-over-worst edge errors denoted by nW .

n ¼ max bn
���
���

� 

¼ max

nB
nW

����

����

� �
¼ max

wB

wi
� aBi

����

����
wi

wW
� aiW

����

����

2

664

3

775:

ð70Þ

To verify weights produced by the optimization model,

the following equality is used to measure whether the

weights lead to n�.

n� ¼ n ¼ max
i

wB

wi
� aBj

����

����
wi

wW
� ajW

����

����

� �
: ð71Þ

9 Simulations and discussions

To facilitate the demonstration, analysis and discussion, the

following examples are set by arranging or defining B ¼ 1

for the best criterion, W ¼ 2 for the worst criterion, the

indices of other criteria are 3; . . .; n. As mentioned earlier,

AW in Eq. (2) is revised and defined without transposition,

i.e. T, in this paper, due to redundancy or confusion for

calculation. The R programming language is used for the

implementation in this study. The NLOPT_GN_ISRES

algorithm of the nloptr package (Johnson 2023) is used as

the optimization solver after testing a broad range of

optimization algorithms behind, but beyond discussion in

this paper. The hardware used is the basic model, OMEN

by Laptop 15 with Intel i7-7700HQ CPU and 16 GB RAM,

and hence, the simulations of this paper are reproducible

without high-end hardware requirement. The simulation

dataset based on R and a program of MS Excel version for

six numerical examples during the current study are

available in the supplementary files and more files may be

further included and updated in Yuen (2023).

9.1 Numerical examples

Six examples are used to demonstrate the usability of

Algorithms 1 and 2 and Theorems 1–4. For the imple-

mentation using an optimization solver, Model (3), instead

of Model (4), is used due to simplicity and fewer con-

straints to be implemented. To increase the precision for

Model (3), the maximum number of function evaluations is

set to 150,000. If the maximum number is not large

enough, e.g. just a few thousands, the objective values may

not research to the exact or ideal optimal solution. For

Examples 2–4 and 6, the numerical approximate solution of

Model (3) is almost the same as the closed-form solution of

Theorem 4 or Algorithm 1 with the precision of at least 8

decimal places. The Excel file for the calculation of the

following examples is available in Supplementary 1.
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Example 1. To compute the Consistency Index of aBW ¼
8, substitute aBW ¼ 8 to Eq. (42) of Theorem 3 to get the

CI value below.

CI8 ¼ 1

2
1 þ 2 	 8ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 	 8 þ 1

p� �
¼ 4:4689:

Similarly, CI values of four significant decimal digits for

aBW 2 2; . . .; 12½ � are shown in Table 1. The partial results

are the same to the presentations rounded to two significant

decimal digits for aBW 2 2; . . .; 9½ � shown in Rezaei

(2015, 2016).

Example 2. Given AB ¼ 1; 8; 3ð Þ and AW ¼ 8; 1; 2ð Þ. By

Algorithm 1, p ¼ 3 � 2 ¼ 1 and 3 	 2 � 8\0, the MEE

and CR are computed as below:

n� ¼ n1

¼ 1

2
� 1 þ 3 þ 2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3 þ 2ð Þ2 � 4 3 	 2 � 8ð Þ

q
 �

¼ 0:3166;

CR ¼ 0:3166

4:4689
¼ 0:071:

For another pair, given AB ¼ 1; 8; 5ð Þ and

AW ¼ 8; 1; 4ð Þ. As 5 	 4 � 8[ 0,

n� ¼ n1

¼ 1

2
1 þ 5 þ 4ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 5 þ 4ð Þ2 � 4 5 	 4 � 8ð Þ

q
 �

¼ 1:3944;

CR ¼ 1:3944

4:4689
¼ 0:312:

If the rating scores at the same location of the other

criterion of AB and AW are exchanged, i.e. AB ¼ 1; 8; 4ð Þ
and AW ¼ 8; 1; 5ð Þ, MEE is also the same as above, as the

equation explains this scenario.

Example 3. Given AB ¼ 1; 8; 2; 2ð Þ and AW ¼ 8; 1; 2; 3ð Þ.
By Algorithm 1, p ¼ 4 � 2 ¼ 2. By removing elements in

criteria B and W, A0B ¼ 2; 2ð Þ and A0W ¼ 2; 3ð Þ.
D ¼ 2	2�8

2þ2�1
; 2	3�8

2þ3�1

� 

¼ � 4

3
;� 1

2

� �
. Since

minðDÞ�maxðDÞ� 0, Case 2 in Algorithm 1 is applied. As

S� ¼ argminðDÞ ¼ argmin � 4
3
;� 1

2

� �
¼ 1f g

and2 	 2 � 8\0, the MEE is

n� ¼ max
i2 1f g

ðniÞ

¼ max
1

2
� 1 þ 2 þ 2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2 þ 2ð Þ2 � 4 2 	 2 � 8ð Þ

q
 �
 �

¼ 0:7016:

For another pair, given AB ¼ 1; 8; 3; 3; 5ð Þ and

AW ¼ 8; 1; 3; 5; 4ð Þ. As A0
B ¼ 3; 3; 5ð Þ and

A0W ¼ 3; 5; 4ð Þ, D ¼ 0:2; 1; 1:5ð Þ. Since

maxðDÞ�minðDÞ� 0, Case 1 is applied. As Sþ ¼
argmaxðDÞ ¼ 3f g and 5 	 4 � 8[ 0, the MEE is

n� ¼ min
i2 3f g

ðniÞ

¼ max
1

2
1 þ 5 þ 4ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 5 þ 4ð Þ2 � 4 5 	 4 � 8ð Þ

q
 �
 �

¼ 1:3944:

If more other criteria are included and evaluated, e.g.

AB ¼ 1; 8; 3; 3; 2; 3; 5ð Þ and AW ¼ 8; 1; 3; 5; 4; 3; 4ð Þ such

that minðDÞ� 0 and maxðDÞ ¼ 1:5 at 5; 4ð Þ, n� is still

1.3944, without any changes. Similarly, if AB ¼
1; 8; 2; 2; 1; 6ð Þ and AW ¼ 8; 1; 2; 3; 5; 1ð Þ such that

maxðDÞ� 0 and minðDÞ ¼ � 4
3

at 2; 2ð Þ, n� is still 0.7016

and not changed. It is concluded that the number or size of

criteria is not related to MEE for Cases 1 and 2.

Example 4. Given AB ¼ 1; 8; 2; 2ð Þ and AW ¼ 8; 1; 2; 7ð Þ.
By Algorithm 1, as A0

B ¼ 2; 2ð Þ and A0
W ¼ 2; 7ð Þ,

D ¼ �1:33; 0:75ð Þ, minðDÞ ¼ �1:33\0 and

maxðDÞ ¼ 0:75[ 0, Case 3 is met. As Sþ ¼ 2 and S� ¼ 1,

n� ¼ max n1; n2f g; n12f gð Þ
¼ max 0:6411; 0:7516f g; 0:7692f gð Þ ¼ 0:7692:

Now the third elements in AB and AW are changed to 1

and 4, but their multiplication is still 4, i.e. AB ¼ 1; 8; 1; 2ð Þ
and AW ¼ 8; 1; 4; 7ð Þ. However, the new determinant value

at (1,4) is �1. The new MEE is

Table 1 CI values for

aBW 2 1; . . .; 12½ � aBW 2 3 4 5 6 7 8 9 10 11 12

CI 0.4384 1 1.6277 2.2984 3 3.7251 4.4689 5.228 6 6.7830 7.5756

Table 2 The edge error matrix for AB ¼ 1; 8; 2; 2ð Þ and

AW ¼ 8; 1; 2; 7ð Þ

c1 c2 c3 c4

c1 0 0 0.3077 0.3333

c2 0 0 0.3077 0.3333

c3 0.3077 0.3077 0.7016 0.7692

c4 0.3333 0.3333 0.7692 0.6411
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n� ¼ max n1; n2f g; n12f gð Þ
¼ max 0:6411; 0:6056f g; 0:7143f gð Þ ¼ 0:7143:

If the pair is mixed with more numbers, e.g. AB ¼
1; 8; 2; 1; 2; 7ð Þ and AW ¼ 8; 1; 2; 4; 7; 2ð Þ. By Algorithm 1,

as A0
B ¼ 2; 1; 2; 7ð Þ and A0

W ¼ 2; 4; 7; 2ð Þ,
D ¼ �1:33;�1; 0:75; 0:75ð Þ, minðDÞ ¼ �1:33\0 and

maxðDÞ ¼ 0:75[ 0, Case 3 is satisfied. As Sþ ¼ 3; 4f g
and S� ¼ 1f g,

n� ¼ max 0:6411; :6411; 0:7516f g; 0:7692; 0:7692f gð Þ
¼ 0:7692:

The last MEE is also the same as the initial one.

Although multiplications of the third elements of the first

pair and second pair of vectors are the same, i.e.

2 	 2 ¼ 1 	 4 ¼ 4, and the other elements remain the

same, their n� values are different. On the other hand, for

the third pairs, swapping the number between the same

positions of both vectors does not change the error results.

For the details, the Edge Error Matrices for the above three

paired vectors are shown in Tables 2, 3, and 4. The

maximal values of the elements in the matrices are their

corresponding MEE, respectively.

Example 5. Given AB ¼ 1; 8; 2ð Þ and AW ¼ 8; 1; 2ð Þ.
Models (3), (4) and (63)–(68) produce the same result, i.e.

(0.663, 0.091, 0.246). If n ¼ 3, the weights are unique due

to the reason explained by applying Eq. (69) as below:

bn ¼ nB
nW

� �
¼ 0 �0:7016 0:7016

�0:7016 0 0:7016

� �
:

The absolute weight-ratio-to-edge-error for each pair of

different criteria is n�. By solving the equations below, we

can get the unique weights.

wB

w2

� aB2 ¼ w1

wW
� a1W ¼ �0:7016;

Table 3 The edge error matrix for AB ¼ 1; 8; 1; 2ð Þ and

AW ¼ 8; 1; 4; 7ð Þ

c1 c2 c3 c4

c1 0 0 0.2857 0.3333

c2 0 0 0.2857 0.3333

c3 0.2857 0.2857 0.6056 0.7143

c4 0.3333 0.3333 0.7143 0.6411

Table 4 The edge error matrix for AB ¼ 1; 8; 2; 1; 2; 7ð Þ and

AW ¼ 8; 1; 2; 4; 7; 2ð Þ

c1 c2 c3 c4 c5 c6

c1 0 0 0.3077 0.2857 0.3333 0.3333

c2 0 0 0.3077 0.2857 0.3333 0.3333

c3 0.3077 0.3077 0.7016 0 0.7692 0.7692

c4 0.2857 0.2857 0 0.6056 0.7143 0.7143

c5 0.3333 0.3333 0.7692 0.7143 0.6411 0

c6 0.3333 0.3333 0.7692 0.7143 0 0.6411

Table 5 Multiple weight solutions with respect to the same n� for

Example 5

Model Test case w1 w2 w3 w4 n�

(3) 1 0.5234 0.0717 0.1937 0.2112 0.7016

(3) 2 0.5154 0.0706 0.1908 0.2231 0.7016

(3) 3 0.5282 0.0724 0.1955 0.2040 0.7016

(63) 1 0.5293 0.0725 0.1959 0.2023 0.7016

(63) 2 0.5061 0.0693 0.1873 0.2373 0.7016

(63) 3 0.5228 0.0716 0.1935 0.2121 0.7016

(67) 1 0.5289 0.0725 0.1958 0.2029 0.7016

(67) 2 0.5321 0.0729 0.1970 0.1980 0.7016

(67) 3 0.5483 0.0751 0.2030 0.1736 0.7016

(6) 1–3 0.4667 0.0667 0.2 0.2667 1

Table 6 Weight-ratio-to-edge-error matrices for the cases in Table 5

for Example 5

Model Test Case bn i = 1 i = 2 i = 3 i = 4

(3) 1 nB 0 -0.7016 0.7016 0.4787

(3) 1 nW -0.7016 0 0.7016 -0.0555

(3) 2 nB 0 -0.7016 0.7016 0.3100

(3) 2 nW -0.7016 0 0.7016 0.1595

(3) 3 nB 0 -0.7016 0.7016 0.5895

(3) 3 nW -0.7016 0 0.7016 -0.1815

(61) 1 nB 0 -0.7016 0.7016 0.6161

(61) 1 nW -0.7016 0 0.7016 -0.2101

(61) 2 nB 0 -0.7016 0.7016 0.1330

(61) 2 nW -0.7016 0 0.7016 0.4216

(61) 3 nB 0 -0.7016 0.7016 0.4648

(61) 3 nW -0.7016 0 0.7016 -0.0390

(65) 1–3 nB 0 -0.7016 0.7016 -0.3935

(65) 1 nW -0.7016 0 0.7016 -0.1999

(65) 2 nB 0 -0.7016 0.7016 -0.3128

(65) 2 nW -0.7016 0 0.7016 -0.2840

(65) 3 nB 0 -0.7016 0.7016 0.1583

(65) 3 nW -0.7016 0 0.7016 -0.6891

(6) 1–3 nB 0 -1 0.3333 -0.25

(6) 1–3 nW -1 0 1 1
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wB

w3

� aB3 ¼ w3

wW
� a3W ¼ 0:7016:

However, if the matrix is inconsistent and n[ 3,

multiple versions of weights with the same n� are

generated. For AB ¼ 1; 8; 2; 2ð Þ and AW ¼ 8; 1; 2; 3ð Þ in

Example 3, the same model produces multiple solutions

with respect to the same n�, in which three different sample

solution sets for each selected model are shown in Table 5.

The reason can be explained by Eq. (69), in which the bn
results are presented in Table 6. According to Example 3

using Algorithm 1, n� is induced by the first other criterion,

that is i = 3 shown in Table 6. However, there is some

flexibility to choose the error for a criterion from the

others, e.g. i = 4 in nB and nW . Another reason to produce

the multiple solutions is the flexibility to change wB and

wW which is shown in Eq. (46), (49), (52) and (55). For

example, by applying Eq. (47) to the Test Case 1 in Models

(3), (61) and (65) shown in Tables 4 and 5 with more

significant digits for actual calculation, the results leading

to the same value of n� are shown as below:

0:5233927

0:07171297
¼ 0:5292615

0:07251709
¼ 0:5288694

0:07246336
¼ 8 � 0:7015621ð Þ ¼ 7:298438:

It is observed that n� and weights produced in Model (3)

or (4) do not have direct relationship to the n� and weights

produced in Model (5) or (6), which have the unique

solution for their own objective value and weights. If n� of

Model (3) solved by a closed form is assigned to Model

(67), which is transformed from Model (6), multiple weight

solutions are also unavoidable.

If Model (6) is used, a unique weight set presented in

Table 5 is produced no matter how many times are

executed. If Eqs. (69) and (70) are applied to the unique

weights, the results are presented in Table 6. The n or n�

derived from Model 6 is not the same as the n� derived

from Model (3). Therefore, objective value and weights

derived from Model (5) or (6) have no direct observed

relationship to Model (3) or (4). The consistency ratio from

Model (3) or (4) is independent of the weights from Model

(5) or (6).

Example 6. Refer to Fig. 1, AB ¼ 1; 8; 1; 2; 6; 2; 2; 3; 2; 4ð Þ
andAW ¼ 8; 1; 4; 2; 1; 3; 6; 4; 8; 4ð Þ. The edge error matrix

is presented in Table 7. By Theorem 4, MEE is

n� ¼ MaxðEEMÞ ¼ 1. By Algorithm 1, A0B ¼
1; 2; 6; 2; 2; 3; 2; 4ð Þ andA0W ¼ 4; 2; 1; 3; 6; 4; 8; 4ð Þ,D ¼
�1;�1:33;�0:33;�0:5; 0:5714; 0:667; 0:8889; 1:1429ð Þ.

Case 3 is satisfied. As Sþ ¼ 8f g andS� ¼ 2f g, which are

located at c4 and c10, n� ¼ max 0:7016; 1f g; 1f gð Þ ¼ 1.

9.2 Simulations and verifications

To further verify the reliability of closed-form solutions

from the Max of Edge Error Matrix method (Theorem 4)

and the Minmax Edge Error Determinant Method (Algo-

rithm 1), especially to investigate if any missing cases are

not uncovered for the algorithm design and implementa-

tion, the pseudo code of a test algorithm is proposed in

Algorithm 3. Let nminMax, nmaxEEM and ndetMEE be the MEE

values obtained by Model (3) or (4), Eq. (43) of Theo-

rem 4, and MEED method of Algorithm 1, respectively. In

principle, the following relationship holds.

error ¼ 0; nminMax ¼ nmaxEEM ¼ ndetMEE

1;Otherwise

�
: ð72Þ

In practice, the relationship above is implemented as

three conditions stated in Step 2c of Algorithm 3. As the

numerical solvers may only achieve a good enough solu-

tion that approximates to the exact solution, approximation

error can be produced. In addition, if nmaxEEM or ndetMEE

value is the unique and exact closed-form solution, the

nminMax value is not possible less than them, i.e.

nminMax � nmaxEEM ¼ ndetMEE. However, as floating-point

Table 7 The Edge Error Matrix for AB ¼ 1; 8; 1; 2; 6; 2; 2; 3; 2; 4ð Þ and AW ¼ 8; 1; 4; 2; 1; 3; 6; 4; 8; 4ð Þ for Example 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1 0 0 0.2857 0.3077 0.1250 0.1429 0.2353 0.2500 0.4211 0.4706

c2 0 0 0.2857 0.3077 0.1250 0.1429 0.2353 0.2500 0.4211 0.4706

c3 0.2857 0.2857 0.6056 0 0.1667 0.2000 0.6154 0.6667 0.8000 0.9231

c4 0.3077 0.3077 0 0.7016 0.1818 0.2222 0.6667 0.7273 0.8571 1

c5 0.1250 0.1250 0.1667 0.1818 0.2426 0 0.4000 0.4286 0.5882 0.6667

c6 0.1429 0.1429 0.2000 0.2222 0 0.3166 0.4615 0.5000 0.6667 0.7692

c7 0.2353 0.2353 0.6154 0.6667 0.4000 0.4615 0.4689 0 0.2222 0.2500

c8 0.2500 0.2500 0.6667 0.7273 0.4286 0.5000 0 0.5359 0.2353 0.2667

c9 0.4211 0.4211 0.8000 0.8571 0.5882 0.6667 0.2222 0.2353 0.7830 0

c10 0.4706 0.4706 0.9231 1 0.6667 0.7692 0.2500 0.2667 0 1
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operations may induce rounded and truncated errors, a very

small negative error for nminMax � nmaxEEM is still possible.

Therefore, the conditions of Eq. (72) are changed and

defined for simulations as below:

�10�6 � nminMax � nmaxEMM
� �

� 10�4 and nmaxEEM

¼ ndetMEE: ð73Þ

If the difference between the numerical solution from

the solver and the closed-form solution is more than 10�4

or less than �10�6, the potential error from Theorem 4 or

Algorithm 1 for nmaxEEM or ndetMEE will be reported by the

algorithm. According to the simulations in this study, the

error flag normally resulted from the optimizers being

unable to find the optimal values. If the optimization re-

runs several times and/or enhance the research cost, the

nmaxEEM finally reaches to the defined range.

To obtain the better accuracy of the optimization solver,

firstly, the maximum number of function evaluations for

the NLOPT_GN_ISRES solver algorithm of the nloptr

package (Johnson 2023) to implement Algorithm 2 is set to

200,000 with the fractional tolerance of 10�10, and sec-

ondly, the weights obtained by Algorithm 2 are used as the

initial values for Model (3) implemented by the same

optimization algorithm solver of the same settings for the

function evaluations and fractional tolerance. If only Model

(3) is implemented, an error from the solver could be more

than 10�4.

Algorithm 3 (Testing for MEE derived from solver, max(EEM)
and detMEE method)

Input: N: Testing sample size; nmax: maximum number of criteria;

amax: maximum value for aBW ,

Step 1: Initialize the values

times = 1 # case number or counter

error = 0 # error checking

flag = TRUE # flag to continue or exist the while loop

Step 2: Perform comparisons for N samples

While (flag):

Step 2a: Generate AB;AWð Þ
aBW ¼ randomð2; amaxÞ # generate a random integer between 2 and

amax for aBW

n ¼ randomð3; nmaxÞ # generate a random integer between 3 and nmax

for n

AB;AWð Þ ¼ generateBW aBW ; nð Þ # generate a pair of random vectors

with amax and n

Step 2b: Obtain MEE’s with Model (3) with solver, Theorem 4 and

Algorithm 1

nminMax ¼ minMaxOpt AB;AWð Þ # Obtain MEE with solver for Model

(3)

nmaxEEM ¼ maxEEM AB;AWð Þ # Obtain MEE with MEEM of

Theorem 4

thendetMEE ¼ detMEE AB;AWð Þ # Obtain MEE with determinant

method of Algorithm 1

Step 2c: comparing nminMax; nmaxEEM , and ndetMEE

# Condition 1: check if the difference between nminMax and nmaxEMM is

very small

con1 ¼ 1; nminMax � nmaxEEM
� �

� 10�4

0; otherwise

�

# Condition 2: check if nMinmax � nmaxEMM within floating-point error

allowance

con2 ¼ 1; nminMax � nmaxEEM
� �

��10�6

0; otherwise

�

# Condition 3: check if Theorem 4 and Algorithm 1 produce the same

results including floating-point error

con3 ¼ 1; ndetMEE ¼ nmaxEEM

0; otherwise

�

# If all conditions above are met, no error is found

error ¼ 0; con1 	 con2 	 con3 ¼ 1

1; otherwise

�

Step 3c: determine the flag for the while loop

times ? = 1 # increment by 1

# If N instances are performed or an error is found, exit the while

loop. Otherwise, continue

flag ¼ FALSE; error 6¼ 0ortimes[N
TRUE; otherwise

�

End While

# If an error is found, return the last AB;AWð Þ inducing potential error

for further study. Otherwise, no error is found, i.e. error = 0

Return: error, AB;AWð Þ if error 6¼ 0

Algorithm 3 presents the pseudo code for the core pro-

cedure. For implementation, the print functions, for

example, are added in Algorithm 3 where appropriate for

tracking, debugging and analysing. Two simulations have

been performed. Both the maximum number of criteria,

denoted by nmax, and the maximum value for aBW , denoted

by amax, are set to 9. When aBW [ 9; Eq. (59) may not be

suitable, which will be discussed in the future study. As the

rating is on nine-point scale, Eq. (59) can be used.

For the first simulation, 20,000 random instances have

been performed by taking 94,838 s (26.34 h). The file of

the simulation data is available in Supplementary 2 or

Yuen (2023). According to the simulation results, no error

or unexpected case is found from all generated instances. It

can be concluded that Theorem 4 or Algorithm 1 produces

the exact closed-form solution for Model (3) or (4), and the

results can be used to verify the solutions of the opti-

mization solver.

The second simulation is to extensively test the effi-

ciency of the proposed closed-form solutions and verify

that the Theorem 4 and Algorithm 1 always produce the

same MEE. A new algorithm (called Algorithm 4) is
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created by removing calculations of nminMax, Conditions 1

and 2 from Algorithm 3, and with only using Condition 3

to check if any potential error occurs. One million random

instances have been performed by taking only 4600 s

(1.27 h). The file of the simulation data is available in

Supplementary 3 or Yuen (2023). Again, no error is found

from the one million random instances. For very rough

estimation based on two simulations, the computation time

of the proposed closed forms could be ðð94838 �
4600=50Þ50 � ð4600=2ÞÞ=ð4600=2Þ ¼ 2058 times faster

than the Model (3) or (4) subject to implementation con-

figuration for the solver. It can be concluded that it is quite

computationally expensive for the solver to obtain better

precision of MEE. The determination method of Algorithm

1 can be used to quickly determine the MEE with slightly

less computational effort, whilst Theorem 4 can provide the

details of EEM for reference.

10 Discussion and conclusions

The major contribution of this study is the provision of

closed-form solutions for the exact Consistency Ratio in

BWM Minmax Optimization Model, which currently must

use optimization solvers such as Excel Solver in (https://

bestworstmethod.com/software/) or MATLAB (Wu et al.

2022). CR is ratio of MEE (or n�) to the Consistency Index.

Whilst the CI is computed by Eq. (42), the MEE is

obtained by the Max of Edge Error Matrix Method

(Eq. (44) of Theorem 4) and the Minmax Edge Error

Determinant Method (Algorithm 1). In Theorem 4, the

upper triangular part of the edge error matrix is first

computed, and the maximum value of the triangular matrix

is the MEE. As EEM is the symmetric matrix, the max of

either the upper or lower part is MEE. For the MEED of

Algorithm 1, the determinant values are first computed to

determine the location(s) and the case of the MEE, and

then the appropriate function in the case is used to compute

the MEE. If the best-over-worst score is more than nine,

MEEM method should be used, as the constraint condition

in Eq. (59) of MEED is indicated.

Several essential properties of the consistency ratio

toward or extended from the closed-form solutions are

discussed. Firstly, although Rezaei (2015, 2016) claimed

that the comparisons ideally up to 9 criteria, according to

Theorem 4, the inconsistency based on MEE is indepen-

dent of number of criteria as MEE is determined by the

worst case determined by the largest value of IEE (Theo-

rem 1) or CEE (Theorem 2). The aggregate edge errors are

not considered, as the optimal value is independent of the

number of criteria but determined by the most discrepant

scores for some criteria.

With the simple algebraic form of EEM, the individual

values over the threshold defined by the decision maker can

be identified. If the paired vectors are inconsistent, decision

makers can find sufficient high values in EEM to identify

the inconsistency locations and then revise the judgement

ratings. The examples of EEM are shown in Tables 2, 3, 4,

and 7.

As the exact MEE can be obtained by the algebraic

forms, the optimization models can be revised with fewer

variables and constraints, e.g. Algorithm 2 of Model (63)

and its alternative Models (64)–(68). All objective values

of the models must be one, except for Model (65), which is

zero. If these conditions are satisfied, the weights generated

from the models can preserve the MEE calculated by

Eq. (70). However, the same MEE can lead to different

versions of non-reproducible weights due to the reasons

discussed in Sect. 8, and Example 5 also demonstrated

these issues. According to the testing in this study, weights

generated from Models (5) and (6) are more reliable than

Models (3) and (4) since Models (5) and (6) produce the

unique exact solution of weights. However, according to

the closed-form solution formula, the weights generated

from Models (5) and (6) are independent of or have no

obvious relationship to the EEM generated from Models

(3) and (4). Since the CR optimization model must calcu-

late weights to obtain the MEE, the new methods do not

need to compute weights to have the MEE. The signifi-

cance of this paper is that all BWM applications can effi-

ciently use the proposed closed forms for the exact CR

values, instead of using an expensive optimization solver to

find the approximate values with potential error.

Appendix: Summary of notations
and abbreviations

aBi A score of the best criterion over the criterion i

aBW The best-over-worst score

aiW A score of the criterion I over the worst criterion

AB and

AW

A pair of best and worst vectors; paired vectors

€n Edge Error Matrix (EEM)

€n
þ Upper triangular Edge Error Matrix

€n
�

Lower triangular Edge Error Matrix

nij Co-Edge Error (CEE)

ni Individual Edge Error (IEE) for cj in comparisons with cB
and cW

n� Minmax Edge Error (MEE) based on non-approximate

solutions of Models (3) and (4)

bn Weight-Ratio-To-Edge-Error Matrix (WRTEEM)
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nB A vector of the best-over-all edge errors

nW A vector of the all-over-worst edge errors

n n ¼ max bn
���
���

� 


CIaBW Consistency Index of aBW

CR Consistency Ratio

Dk Determinant value for criteria k with respect to the best

and worst criteria

B Index/location of the Best Criterion

W Index/location of the Worst Criterion

wi Weight of criterion i

MEEM Max of Edge Error Matrix method, or MEE = max(EEM)

MEED Minmax Edge Error Determinant method, or detMEE

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s41066-

024-00459-5.
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