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Abstract 

A theoretical analysis was carried out on the circulation-
controlled firewhirls, considering multiple physical effects, 
including the previously investigated variable physical 
properties and strong vortex, and with emphasis on the effect of 
non-unity Lewis number. By means of perturbation method, an 
analytical expression of the flame height, with all effects 
presented in explicit forms, was derived in the situation of both 
fuel and of oxidizer Lewis numbers being near unity. In leading 
order approximation, the non-unity Lewis number effect tends to 
change the flame height by a factor of 𝐿𝑒! 𝐿𝑒"⁄ . 

1  Introduction 

Firewhirls, as a natural phenomenon widely occurring in 
wild and urban fire and holding potential to cause severe 
damages to lives and properties, have attracted numerous 
investigations involving both experimental and theoretical 
approaches in the past a few decades[1-19]. As the flame height 
of firewhirls increasing, the radiative heat transfer tends to 
facilitate the ignition remotely therefore expediting the spread of 
the fires. Hence, there is always a particular interest in the flame 
height of firewhirl [3-8, 15, 19].  

In Chuah et al.’s experimental study[5], the vortical flow 
was set up inclined, resulting in a correspondingly inclined 
firewhirl. This experiment testifies that the flame height of 
firewhirl was determined by circulation, instead of the 
previously recognized buoyance [6, 11, 20], provided that the 
circulation is sufficiently strong. By assuming constant density 
and mass diffusivity, Burgers vortex, and unity Lewis numbers, 
Chuah et al. proposed an theoretical prediction for the flame 
height[5] 
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where the flame height is linearly proportional to the diameter of 
the fuel pool, 𝑑$ , to the Peclet umber, 𝑃𝑒 , and inversely 
proportional to the stoichiometric mixture fraction, 𝑍%& . 
Compared with their own experimental results, (1) always gives 
an underestimation on the flame height. 

Klimenko and Williams[7] argued that the Burgers vortex 
was not strong enough to describe the actual circulation-
controlled firewhirls[21]. By replacing the Burgers vortex by a 
strong vortex[21], Klimenko and Williams derived a revised 
flame height expression  
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where 𝛼'  characterizes the strong vortex, and assumes value 
less than 2. The equation (2) agrees well with the experimental 
results of Chuah et al.[5]. 

In the theories of both Chuah et al.[5] and Klimenko and 
Williams[7], density and mass diffusivity were assumed as 
constants. Such an assumption is rather questionable in firewhirl, 
where the temperature is significantly higher than that of the 
ambience. As a result, as temperature increases, the density 
decreases and so does the flow inertia, and therefore the fuel can 
be transported into higher altitude, rendering a larger flame 
height[22]. Retaining the unity-Lewis-number assumption and 
regarding the vortical flow as Burgers vortex, the authors carried 
out a theoretical analysis for the variable physical properties 
effect on the flame height[15]. Introducing a Howarth-
Dorodnitsyn[23] like coordinate transformation, the governing 
equations can be converted into a simplified density- and mass 
diffusivity-free form. An analytically explicit flame height 
expression can also be obtained[15]  
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where 𝑇( represents the specially defined “mean temperature”, 
assuming value higher than the fuel pool temperature 𝑇$, and 
𝛼,  characterizes the temperature dependence of mass 
diffusivity[24] and it is always less than 2. The flame heights 
predicted by equation (3) also agree well with the experimental 
results of Chuah et al.[5]. 

Both variable physical properties and strong vortex tend to 
lengthen the flame height as indicated in (2) and (3). Because 
both effects are independent in physics, a simple combination of 
them in a theory must overshot the predictions on the flame 
height. Consequently, there must exist a mechanism that reduces 
the flame height. Inspired by the theoretical research on droplet 
combustion[22, 25], the authors[19] found that the discrepancy 
between the fuel and oxidizer mass diffusivities can be an 
effective loss-mechanism to the flame height, thereby a more 
general flame height expression was derived  
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where 𝛼- = 𝐷" 𝐷!⁄  is the ratio of fuel mass diffusivity to that 
of oxidizer. In Chuah et al.’ experiments, the fuels adopted were 
methanol, ethanol, and 2-propanol, whose molecular weights are 
larger than that of air, therefore the fuel mass diffusivities are 
smaller than that of oxidizer[24], thus the values of 𝛼- are less 
than unity, resulting in shorter flame height. 

In all the above theoretical studies, the fuel and oxidizer 
Lewis numbers are assumed to be unity. However, in many 
combustion problems, such an assumption can seldom be exactly 
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satisfied[22, 25]. In this paper, utilizing the perturbation method 
and regarding the deviation of Lewis number from unity as small 
parameters[26], we proposed a theoretical analysis, attempting 
to reveal the non-unity Lewis number effect on the flame height 
of circulation-controlled firewhirls. 

2  Mathematical Formulation 

2.1  Governing Equations 

Complete specification of the circulation-controlled 
firewhirl system requires three transport equations governing the 
fuel mass fraction, oxidizer mass fraction, and energy, all of 
which are inhomogeneous due to the presence of chemical 
reaction term. Considering the stoichiometry of the chemical 
reaction, the governing equations can be reduced to two 
equations, in which the reaction terms are formally removed[25, 
26]. The specific mathematical forms are given as follows:  
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in which the nondimensional quantities are defined as 𝜌2 = 𝜌 𝜌$⁄ , 
(�̃�, 𝑥2) = (𝑟, 𝑥) 𝑟$⁄ , (𝑢2, 𝑣2) = (𝑢, 𝑣) 𝑢$⁄ , 𝐷?" = 𝐷" 𝐷"$⁄ , 𝑌;" =
𝑌", 𝑌;! = 𝑌;! 𝜎"!⁄ , and 𝑇; = 𝑐.𝑇 𝑞/⁄ , with the quantities having 
index 0 referring to their values at the ground 𝑥 = 0 , 𝜎"! 
specifying the stoichiometry of the reaction, and 𝑞/ 
representing the combustion heat release by consuming unit 
mass of fuel. The nondimensional numbers are defined as 
𝐿𝑒" = 𝜆 𝜌𝑐.𝐷"⁄ , 𝐿𝑒! = 𝜆 𝜌𝑐.𝐷!⁄ , and 𝑃𝑒 = 𝑢$𝑑$ 𝐷"$⁄ .  

Equations (5) and (6) satisfy the most general situation in 
combustion, including non-unity Lewis numbers, i.e., 𝐿𝑒" ≠ 1 
and 𝐿𝑒! ≠ 1, and they reduce to the conservation equations for 
the conventional species-species and species-enthalpy coupling 
function, 𝛽0 = 𝑌;" − 𝑌;!  and 𝛽, = 𝑌;" + 𝑇; , respectively as 
Lewis numbers being unity. The boundary conditions for (5) and 
(6) are specified as: BC(1) at �̃� = 0 , 𝜕𝑌;" 𝜕�̃�⁄ = 𝜕𝑌;! 𝜕�̃�⁄ =
𝜕𝑇; 𝜕�̃�⁄ = 0; BC(2) at �̃� = ∞, 𝜕𝑌;" 𝜕�̃�⁄ = 𝜕𝑌;! 𝜕�̃�⁄ = 𝜕𝑇; 𝜕�̃�⁄ =
0; BC(3a) at 𝑥2 = 0 and �̃� ≤ 1, 
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BC(3b) at 𝑥2 = 0 and �̃� > 1, 𝜕𝑌;" 𝜕𝑥2⁄ = 𝜕𝑌;! 𝜕𝑥2⁄ = 𝜕𝑇; 𝜕𝑥2⁄ =
0; BC(4) at 𝑥2 = ∞, 𝑌;" = 0, 𝑌;! = 𝑌;!,2, 𝑇; = 𝑇;2 . BC(1) and 
BC(2) are the axisymmetric and radially far field conditions, 
respectively. BC(3) describes the Stefan flow of fuel evaporation 
induced by the heat transfer from the flame. BC(4) is the axially 
far field condition. 

Introducing a Howarth-Dorodnitsyn like density-mass-
diffusivity-weighted coordinate defined by[15, 19]  
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equations (5) and (6) are simplified by assuming large Peclet 
number, i.e., 𝑃𝑒 ≫ 1.  
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The corresponding boundary conditions are simplified to BC(I) 
at 𝜂 = 0, 𝜕𝑌;" 𝜕𝜂⁄ = 𝜕𝑌;! 𝜕𝜂⁄ = 𝜕𝑇; 𝜕𝜂⁄ = 0; BC(II) at 𝜂 → ∞, 
𝜕𝑌;" 𝜕𝜂⁄ = 𝜕𝑌;! 𝜕𝜂⁄ = 𝜕𝑇; 𝜕𝜂⁄ = 0 ; BC(III-a) at 𝜉 = 0  and 
𝜂 ≤ 1, 𝑌;" = 𝑌;"$, 𝑇; = 𝑇;$ − 𝑞' 𝑞/⁄ , 𝑌;! = 0; BC(III-b) at 𝜉 =
0  and 𝜂 > 1 , 𝑌;" = 0, 𝑇; = 𝑇;2, 𝑌;! = 𝑌;!,2 . The detailed 
derivation has been presented in[19].  

Considering strong vortex effect, the vortical flow are 
characterized by the following stream function[19]  
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in terms of which the velocity components can be determined as  
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where 𝜂/ represents the radius of the vortex core, and 𝛼'3  and 
𝛼' characterize the vortical flow inside and outside the vortex 
core, respectively. 

Defining the stream function coordinate as  

 𝜒 =
𝛼'
2 𝜉, 𝜁 = ^2𝜓 (13) 

equations (8) and (9) are converted into  
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in which the convection and diffusion transports are completely 
separated. Correspondingly, the boundary conditions become: 
BC(i) at 𝜁 = 0 , 𝜕𝑌;" 𝜕𝜁⁄ = 𝜕𝑌;! 𝜕𝜁⁄ = 𝜕𝑇; 𝜕𝜁⁄ = 0 ; BC(ii) at 
𝜁 → ∞, 𝜕𝑌;" 𝜕𝜁⁄ = 𝜕𝑌;! 𝜕𝜁⁄ = 𝜕𝑇; 𝜕𝜁⁄ = 0; BC(iii-a) at 𝜒 = 0 
and 𝜁 ≤ 1 , 𝑌;" = 𝑌;"$ , 𝑇; = 𝑇;$3 , 𝑌;! = 0 ; BC(iii-b) at 𝜒 = 0 
and 𝜁 > 1, 𝑌;" = 0, 𝑇; = 𝑇;2, 𝑌;! = 𝑌;!,2. 

2.2  Perturbation Solution  

In the problems with distinct fuel and oxidizer (non-unity) 
Lewis numbers, an exact solution to the fuel and oxidizer mass 
fractions as well as temperature requires the division of the 
whole domain into two regions, namely, the fuel region and the 
oxidizer region. The governing equations must be solved 
separately to yield general solutions being valid in either region, 
in terms of which the flame location as well as the flame 
temperature can be determined by matching the solutions at the 
flame location [22, 25]. However, the three-dimensionality of 



 

the firewhirl system invalidates the above approach for arbitrary 
non-unity Lewis number. 

If both fuel and oxidizer Lewis numbers are near unity, 
equations (14) and (15) can be approximately solved by means 
of perturbation expansion. Following Chung and Law’s 
approach[26], we define the Lewis number weighted coupling 
function by  
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which become the conventional coupling functions as Lewis 
numbers are unity. In the absence of unity Lewis number, the 
coupling functions defined by (16) have better mathematical 
property than conventional coupling function, since the latter are 
smooth across the flame whereas the former is continuous but 
not smooth[22, 26]. For near-unity Lewis numbers, we can 
introduce two small quantities,  

 -1 −
1
𝐿𝑒9

/ = 𝑙9 , 𝑖 = 𝐹, 𝑂 (17) 

in terms of which the distributions of fuel and oxidizer mass 
fractions and temperature can be expanded as 

 𝑌;" = 𝑌;"$ + 𝑙"𝑌;"8 +⋯ (18) 

 𝑌;! = 𝑌;!$ + 𝑙"𝑌;!8 +⋯ (19) 

 𝑇; = 𝑇;$ + 𝑙"𝑇;8 +⋯ (20) 

Substituting (18)-(20) into (16) gives the expansion of Lewis-
number-weighted coupling functions, and further substitution of 
the latter into (14) and (15), gives the leading order equation, 
describing the conservation of the leading order Lewis-number-
weighted coupling function, being valid in the whole field  
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The boundary conditions are given by: LBC(1) at 𝜁 = 0 , 
𝜕𝛽0$ 𝜕𝜁⁄ = 𝜕𝛽,$ 𝜕𝜁⁄ = 0 ; LBC(2) at 𝜁 → ∞ , 𝜕𝛽0$ 𝜕𝜁⁄ =
𝜕𝛽,$ 𝜕𝜁⁄ = 0; LBC(3a) at 𝜒 = 0 and 𝜁 ≤ 1, 𝛽0$ = 𝑌;"$ 𝐿𝑒"⁄ , 
𝛽,$ = 𝑌;"$ 𝐿𝑒"⁄ + 𝑇;$3 ; LBC(3b) at 𝜒 = 0  and 𝜁 > 1 , 𝛽0$ =
−𝑌;!,2 𝐿𝑒!⁄ , 𝛽,$ = 𝑇;2. 

2.3  Flame Height 

The flame contour expression can be determined by the equating 
(24) to zero, implying the complete consumption of fuel and 
oxidizer 
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The flame height is the highest point on the flame contour:,  
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where 𝜒#  represents the flame height in stream function 
coordinate. The left-hand side of (26) can be integrated exactly, 
yielding  
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Substitution of (27) into (26) gives  
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Since the firewhirl is circulation-controlled, we can assume large 
flame height, i.e., 4𝐿𝑒"𝜒# ≫ 1, and have 
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Substituting of (29) into (28) and recalling the definition of 
stoichiometric mixture fraction[22],  
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the flame height expression can be derived as  
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where all terms of order 𝑂(𝑙")  and higher are neglected in 
leading order approximation. Inverting the stream function 
coordinates to density-mass-diffusivity-weighted coordinates, 
and then the latter to physical coordinates, the flame height 
expression becomes  
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Equation (32) reveals three mechanisms that can change flame 
height. The strong vortex effect tends to intensify the axial 
stretching effect of the vortical flow, therefore increasing the 
flame height. The variable physical properties effect resolves the 
decreasing of density due to high temperature, resulting in the 
fuel being more readily transported to higher altitude, i.e., 
lengthening the flame height. The non-unity Lewis number 
effect modifies the flame height according to the specific 
combustion system. For those using hydrocarbons with large 
molecular weight, the fuel Lewis number is usually larger than 
that of air, thus the effect of non-unity Lewis number tends to 
decrease the flame height.  

More generally, the flame contours can be plotted by 
numerically soling (25) with respect to various pairs of Lewis 
numbers, as shown in Fig. 1. It is seen that the decreasing of fuel 
Lewis number tends to expand the flame contour, particularly in 
axial direction, while the oxidizer Lewis number exhibits the 
inverse effect on the flame contour. The Lewis numbers can in 
physics be interpreted as the ratio of thermal diffusivity to mass 
diffusivity. The smaller Lewis number of fuel than that of 
oxidizer implies that the fuel has larger mass diffusivity than the 
oxidizer, due to which the fuel has higher capability to be 
transported to larger altitude, i.e., extending the flame contour in 
axial direction. In opposite situation, i.e. Lewis number of 
oxidizer being lower than that of fuel, the larger mass diffusivity 
of oxidizer tends to squeeze flame contour, especially in the axial 
direction because the flame end close to the fuel pool is anchored 
at the rim of fuel pool due to flame sheet approximation.  

In a special situation of equal Lewis numbers, the flame 
contours are presented in Fig 1(right), which are only moderately 
different from each other. It testifies that (32) that the flame 
height tends to rely on the variation of Lewis numbers by their 
ratio, which, according to respective influence of fuel and 



 

oxidizer Lewis numbers on the flame contour, must be 𝐿𝑒! 𝐿𝑒"⁄ . 
In addition, the flame shape with larger Lewis numbers tend to 
be slimmer than that with lower Lewis numbers. The physical 
reason can be interpreted as follows. The larger Lewis numbers 
for both fuel and oxidizer mean lower mass diffusivities so that 
the axial convection tends to be more dominant than diffusion, 
resulting in a more stretched flame shape in the axial direction. 
Similarly, lower Lewis numbers for fuel and oxidizer mean 
enhanced mass diffusion towards all the directions, which tends 
to counteract the axial convection and to make flame shape 
stouter.  

 
Fig 1. Flame contours with various pairs of Lewis numbers.  

3  Conclusions 

This paper presents a theoretical analysis to extend the existing 
theories on the circulation-controlled firewhirls to non-unity 
Lewis number. Utilizing the perturbation method, an analytical 
expression of flame height is derived in the situation of Lewis 
number being near unity. The results show that both strong 
vortex and variable physical properties effects tend to lengthen 
the flame height, but the non-unity Lewis number effect can 
reduce the flame height of firewhirls. 
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