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Abstract. High myopia (HM) is a leading cause of irreversible vision
loss due to its association with various ocular complications including
myopic maculopathy (MM). Visual field (VF) sensitivity systematically
quantifies visual function, thereby revealing vision loss, and is integral
to the evaluation of HM-related complications. However, measuring VF
is subjective and time-consuming as it highly relies on patient compli-
ance. Conversely, fundus photographs provide an objective measurement
of retinal morphology, which reflects visual function. Therefore, utiliz-
ing machine learning models to estimate VF from fundus photographs
becomes a feasible alternative. Yet, estimating VF with regression mod-
els using fundus photographs fails to predict local vision loss, producing
stationary nonsense predictions. To tackle this challenge, we propose a
novel method for VF estimation that incorporates VF properties and is
additionally regularized by an auxiliary task. Specifically, we first formu-
late VF estimation as an ordinal classification problem, where each VF
point is interpreted as an ordinal variable rather than a continuous one,
given that any VF point is a discrete integer with a relative ordering.
Besides, we introduce an auxiliary task for MM severity classification to
assist the generalization of VF estimation, as MM is strongly associated
with vision loss in HM. Our method outperforms conventional regres-
sion by 16.61% in MAE metric on a real-world dataset. Moreover, our
method is the first work for VF estimation using fundus photographs in
HM, allowing for more convenient and accurate detection of vision loss
in HM, which could be useful for not only clinics but also large-scale
vision screenings.

Keywords: Vision loss estimation · Visual field · Fundus photograph ·
Ordinal classification · Auxiliary learning.
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Fig. 1: Estimated VF from different methods using fundus. GT denotes the
ground truth, Reg denotes the regression baseline, and Ours denotes our method.

1 Introduction

High myopia (HM) has become a global concern for public health, with its
markedly growing prevalence [10] and its increased risk of irreversible vision loss
and even blindness [25,16,14,27]. In brief, excessive axial elongation in HM eyes
will produce mechanical stretching on the posterior segment of eyeballs, lead-
ing to various structural changes and HM-related complications, e.g., myopic
maculopathy (MM), and consequently, functional changes, resulting in vision
loss.

Accurate quantification of vision loss is integral to the early detection and
timely treatment for MM and other HM-related complications [16]. Currently,
the diagnosis of vision loss is made on the basis of visual field (VF) sensitivity
by standard automated perimetry, which is a systematic metric and gold stan-
dard to quantify visual function [19]. However, measuring VF is prohibitively
time-consuming and subjective as it highly requires patients’ concentration and
compliance during the test [12].

Conversely, imaging techniques, such as fundus photography (a.k.a., fundus),
provide a relatively objective and robust measurement of the retinal morphology,
which likely corresponds to the VF with an underlying “structure-function rela-
tionship” [32,27]. Actually, fundus is most commonly used for the diagnosis and
evaluation of HM and its complications, in particular in rural and developing
regions, with its lower cost and convenience of acquisition [17].

Therefore, utilizing machine learning models to estimate VF from fundus
becomes a promising and feasible alternative for HM subjects in clinical practice.
To the best of our knowledge, there is no existing approach to estimate VF
from fundus. Some studies have been proposed to estimate the global indices
(e.g., mean deviation) of VF from fundus [3,11], and others estimate VF using
retinal thickness [18,4,28,30]. It is worth mentioning that, all these studies were
conducted for the glaucoma population [3,11,18,4,28,30], in which most cases of
visual abnormality or defect were likely glaucomatous. However, MM and other
HM-related complications may lead to non-glaucomatous vision loss.

Actually, estimating VF with conventional regression [18] using fundus fails
to predict local vision loss in our HM population, producing stationary non-
sense predictions. As shown in Fig. 1, these predictions from regression exhibit
a relatively similar and consistent pattern in most HM subjects, failing to cap-
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Fig. 2: (a) The entropy of feature space on training data during training progress
from conventional regression (denoted by Reg) and our VF-HM. (b) An overview
of our proposed method: VF-HM.

ture/learn the inter-subject variability and local defects of VF. And these pre-
dictions are very close to the mean value of VF in training data (see the sup-
plementary material). The reason for such failure lies in regression’s inability
to learn high-entropy feature representations [31], which is further confirmed by
measuring the entropy of feature representations, as marked in blue in Fig. 2a.

To tackle this challenge, we propose a novel method for estimating VF for HM
using fundus, namely VF-HM. In general, VF-HM incorporates VF properties
and is additionally regularized by an auxiliary task, thereby learning relatively
high-entropy feature representations (see the orange line in Fig. 2a). In detail,
we formulate VF estimation as an ordinal classification problem, where each VF
point is interpreted as an ordinal variable rather than a continuous one, given
that any VF point is a discrete integer with a relative ordering. Besides, we
introduce an auxiliary task for MM severity classification to assist the general-
ization of VF estimation, because MM is strongly associated with vision loss in
HM [21,16,7,32] and its symptom can be observed from the fundus directly. As a
result, VF-HM significantly outperforms conventional regression and accurately
predicts vision loss (see Fig. 1)

Our contributions are summarized as follows:

– We propose a novel method, VF-HM, for estimating VF from fundus for
HM. VF-HM more accurately detects the local vision loss and significantly
outperforms conventional regression by 16.61% in the MAE metric on a real
dataset.

– VF-HM is the first work for VF estimation using fundus for HM, allowing
for more convenient and cost-efficient detection of vision loss in HM, which
could be useful for not only clinics but also large-scale vision screenings.

2 Problem Formulation

Let D = {(xi,mi)} denote the training set, where xi ∈ X denotes the fundus,
mi ∈ M denotes its corresponded VF. And A = {(xi, yi)} denotes the auxiliary
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set, where yi ∈ Y denotes the MM severity category of a given xi. The objective
is to learn a model f : X −→ M by utilizing both D and A. The novelty of
this formulation is additionally utilizing the auxiliary set to improve the model’s
generalization. And challenges mainly come from the following two aspects. First,
how to design the model f , as mentioned earlier, conventional regression fails
to predict local vision loss. Second, how to properly utilize the auxiliary set to
assist the generalization of f , as the auxiliary information is not always helpful
during the learning progress, i.e., sometimes may interfere [6,5,22].

3 Proposed Method: VF-HM

In this section, we first present an overview of the proposed method. Then, we
introduce the details of different components.

3.1 Overview

We present an overview of the proposed method in Fig. 2b. Specifically, the
primary task (denoted by Tpri) is the VF estimation and the auxiliary task is
MM classification (denoted by Taux). Then, our method aims to solve Tpri with
the assistance of Taux. We propose to parameterize the solution for Tpri and
Taux by two neural networks: f(·; θ, ϕ) and g(·; θ, ψ), where they share the same
backbone θ and have their own task-specific parameters ϕ and ψ. Thereafter,
the overall objective function is formulated as follows:

L = Lpri(θ, ϕ) + λLaux(θ, ψ) (1)

where Lpri and Laux denote the loss function for Tpri and Taux, respectively.
λ ∈ (0, 1] is a hyper-parameter to control the importance of Laux.

3.2 Primary Task: VF Estimation

The overall interest is only the primary task Tpri, which is parameterized by
f(·; θ, ϕ) : X −→ M. Specifically, we formulate Tpri as an ordinal classification
(aka, rank learning) problem, where each VF point mj

i represents an ordinal
variable/rank rather than a continuous one. Such a formulation incorporates the
distinct properties of VF, which include: 1) Discretization: ∀mj

i ∈ [0, 40]∩Z, that
is, any VF value is a positive discrete integer. 2) Ordinalization: m0

i ≺ m1
i ≺ ... ≺

mj
i , there is a relative order among VF values. To achieve this goal, we extend

the ordinal variable/rank into binary labels [13,2], i.e., mj
i = [rj,1i , ..., rj,K−1

i ]T

where rj,ki ∈ {0, 1} indicates whether mj
i exceeds k-th rank or not. To ensure

rank-monotonic and guarantee prediction consistency, we utilize the ordinal bias
[2]. In detail, the task-specific parameter ϕ contains independent bias for each
ordinal variable. Thereafter, Tpri can be solved by the binary cross-entropy loss,
which is defined as follows:

Lpri(θ, ϕ) = E(xi,mi)∈X×M[LBCE(f(xi; θ, ϕ),mi)] (2)
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where LBCE(·) denotes the binary cross-entropy loss
In addition, we propose to reuse the features from different blocks, as they

contain distinct spatial information. Specifically, we propose Multi-scale Feature
Fusion (MFF) for aggregating features from different blocks. As highlighted in
orange in Fig. 2b, MFF aggregates features from all blocks at the last in an
addition operation. The detailed implementation is reported in Sec. 4.2.

3.3 Auxiliary Task: MM Classification

The auxiliary task Taux is introduced only to assist the generalization of Tpri.
Specifically, Taux is to predict MM severity category yi from fundus xi, which
is parameterized by g(·; θ, ψ) : X −→ Y. MM is highly correlated to vision loss
[21,16,7,32], and its symptom can be observed from the fundus directly. Accord-
ing to its increasing severity, MM can be classified into five categories [26], i.e.,
C0 ≺ C1... ≺ C4. Therefore, we also interpret the MM category as the ordinal
variable/rank. Similar to the label extension in Tpri, we extend the MM catergory
into binary labels yi = [r1, r2, r3, r4]

T . The loss function Laux for solving Taux is
also the binary cross-entropy, which is defined as follows:

Laux(θ, ψ) = E(xi,yi)∈X×Y [LBCE(g(xi; θ, ψ),yi)] (3)

However, the Taux is not always helpful for Tpri because of the negative trans-
fer [6,22,5]. The negative transfer refers to a problem that sometimes Taux be-
comes harmful for Tpri. Specifically, let ∇θL denote the gradient of Eq.(1) in
terms of the shared parameters θ, and it can be decomposed as follows:

∇θL = ∇θLpri + λ∇θLaux (4)

Taux becomes harmful for Tpri, when the cosine similarity between ∇θLpri and
∇θLaux becomes negative [6], i.e., cos(∇θLaux,∇θLpri) < 0. Negative transfer is
observed in our setting when optimizing Eq.(1) directly, as illustrated in Fig. 3a.

Following [6], we mitigate negative transfer by refining ∇θLaux. Specifically,
we adapt the weighted cosine simiarily to refine ∇θLaux, which is defined as
follows:

∇θLaux = max (0, cos(∇θLaux,∇θLpri)) · ∇θLaux (5)

4 Experiments

In this section, we conduct experiments on a clinic-collected real-world dataset
to evaluate the performance of our proposed method4.

4 Our code is available at https://github.com/yanzipei/VF-HM

https://github.com/yanzipei/VF-HM
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Table 1: Main results. ‘K-fold’ denotes performance from K-fold cross-validation
on training data. ‘Test’ denotes performance on test data (pre-trained on training
data). (↓) denotes the lower value indicates better performance. RT-(·) denotes
different retinal thicknesses. And the better results are bold-faced.

Method Modality K-fold(K=5) Test
RMSE (↓) MAE (↓) SMAPE (↓) RMSE (↓) MAE (↓) SMAPE (↓)

Regression RT-(a) 4.94 ± 0.23 3.12 ± 0.05 13.47 ± 0.16 - - -
Regression RT-(b) 4.80 ± 0.17 3.04 ± 0.12 13.21 ± 0.36 - - -
Regression RT-(c) 4.86 ± 0.22 3.13 ± 0.18 13.42 ± 0.57 - - -

Regression Fundus 4.62 ± 0.07 2.95 ± 0.07 12.94 ± 0.32 4.28 ± 0.03 2.89 ± 0.06 12.13 ± 0.30
Ours(λ=0.1) Fundus 4.44 ± 0.274.44 ± 0.27 2.78 ± 0.102.78 ± 0.10 12.50 ± 0.2612.50 ± 0.26 3.69 ± 0.033.69 ± 0.03 2.41 ± 0.042.41 ± 0.04 11.38 ± 0.1411.38 ± 0.14

4.1 The Studied Data

The studied data comes from a HM population, including 75 patients, each with
diagnosis information for both eyes. For each eye, there are one fundus, VF, and
MM severity category. Specifically, the fundus is captured in colorful mode, the
VF is measured in the 24-2 mode with 52 effective points, and MM category is
labeled by registered ophthalmologists. Besides, 34 patients (i.e., 68 eyes) have
SD-OCT scans in the macular region. For these SD-OCT scans, we extract the
retinal thickness with the pre-trained model [20] in order to compare our method
to conventional regression using retinal thickness. According to whether the eye
has SD-OCT scans or not, we divide the whole data into a training set and a test
set. Specifically, the training and test data contain 68 eyes (from 34 patients) and
82 eyes (from 41 patients), respectively. It is worth mentioning that the training
data and test data do not have the same patient. Besides, in the following K-fold
cross-validation experiments, we split the training data based on the patient’s
ID to ensure that there is no information leakage.

4.2 Experimental Setup

Data pre-processing. We choose the left eye pattern as our base. For fundus,
VF and retinal thickness are not in the left eye pattern, we convert them using
the horizontal flip.

Data augmentation. Following [1], we consolidate a set of data augmenta-
tions for both fundus and retinal thickness, respectively. The details are reported
in the supplementary material. Different from applying all [1] augmentations
during training, we utilize the TrivialAugment [15] instead, which randomly se-
lects one from the given data augmentations, generating more diverse augmented
data.

Evaluation methods. For quantitative evaluation, we utilize three metrics
[18,33,29,3,4]: RMSE, MAE and SMAPE. For qualitative evaluation, we visualize
two representative predictions on the test set, and more visualized results are
presented in the supplementary material.
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Table 2: Ablation study on main components. OC denotes the ordinal classifica-
tion baseline. MFF denotes multi-scale feature fusion. AUX denotes the auxiliary
task. MNT denotes mitigating negative transfer from Eq.(5).

OC MFF AUX MNT RMSE (↓) MAE (↓)

✓ ✓ ✓ ✓ 3.69 ± 0.033.69 ± 0.03 2.41 ± 0.042.41 ± 0.04
✓ ✓ ✓ 3.74 ± 0.02 2.46 ± 0.03
✓ ✓ 3.73 ± 0.04 2.45 ± 0.02
✓ 3.77 ± 0.02 2.49 ± 0.03

Baseline methods. We mainly compare our method to conventional regres-
sion that estimates VF from fundus. Besides, for a more comprehensive compar-
ison, we also compare our approach to conventional regression using different
retinal thicknesses. In detail, we consider three variants: (a) the combination of
GCIPL, RNFL and RCL [33], (b) the combination of GCIPL and RNFL [18], (c)
only RNFL [4]. Due to the limited data, we compare our method to conventional
regression using the above thickness by K-fold cross-validation on training data.

Implementation details. We utilize the ResNet-18 [8] as the backbone. For
the regression baseline, we use only one linear layer at last. For our method, we
use the combination of Conv2D, BatchNorm2D and ReLU as the classification
head for Tpri. For the MFF, we utilize the above classification head to aggregate
features from different blocks. Note that the features from earlier blocks have
relatively large features, thus we use AdaptiveAvgPooling2D to perform down-
sampling first. For Taux, we use only one linear layer as the classifier. For a fair
comparison, we train all methods with the same training configurations. Specifi-
cally, we train the models with 80 training epochs and the SGD optimizer, where
the batch size is set to 32, the learning rate is set to 0.01, momentum is set to
0.9 and L2 weight decay is set to 1e−4. Besides, we utilize a cosine learning rate
decay [9] to adjust the learning rate per epoch. Finally, we fix all input reso-
lutions to 384 × 384 for both training and evaluation. All experiments are run
independently with four seeds: 0, 1, 2, and 3. As for hyper-parameters, we search
them on training data with K-fold cross-validation.

4.3 Experimental Results

Main results. Table 1 reports the performance of our method and baselines. In
general, our method achieves the best performance compared to these baselines.
Specifically, compared to conventional regression using fundus, our method out-
performs it by 13.79% and 16.61% according to the RMSE and MAE metric on
test data. Besides, our method achieves better performance than baselines using
different retinal thicknesses.

Visualization of predictions. As shown in Fig. 1, we visualize predictions
from methods using fundus on two representative cases. Specifically, conventional
regression fails to predict local vision loss, as its predictions share a similar and
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Fig. 3: Visualization of (a) Negative transfer when optimizing Eq.(1) directly,
(b) Impact of hyper-parameter λ, and (c) Different methods for mitigating the
negative transfer.

consistent pattern for both cases. In contrast, predictions from our method are
more precise, revealing the local vision loss. More visualized results are presented
in the supplementary material.

4.4 Ablation Study

To get a better understanding of the effectiveness of the main components in
our proposed method, we conduct a series of ablation studies.

Effectiveness of main components. We first examine the effectiveness of
the main components by ablating them. The results are reported in Table 2. In
general, we can observe that all components can improve performance except
AUX. Specifically, AUX denotes solely introducing the auxiliary task, which
brings a degradation, because of the existence of negative transfer. Meanwhile,
with the help of Eq.(5), the negative transfer can be mitigated. Besides, we
observe these main components allow the model to learn high-entropy feature
representations, thereby improving the model’s performance [31]. More details
are reported in the supplementary material.

Impact of hyper-parameter λ. We study the impact of the hyper-parameter
λ with K-fold cross validation on training data. We choose λ ∈ {1.0, 0.1, 0.01,
0.001, 0.0001}. According to the results shown in Fig. 3b, we observe that λ = 0.1
achieves the best performance.

Different methods for mitigating the negative transfer. We consider
three alternatives to refine the auxiliary gradient for mitigating the negative
transfer: (1) weighted cosine (WC) similarity [6] (2) unweighted cosine (UC)
similarity [6] (3) projection (P) [22]. For a fair comparison, we set λ = 0.1, then
conduct experiments on training data with K-fold cross-validation. As shown in
Fig. 3c, and we observe that (1) WC achieves the best performance.

5 Conclusion

In this work, we propose VF-HM for estimating VF from fundus for HM, which
is the first work for VF estimation in HM; and it provides a more convenient
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and cost-effective way to detect HM-related vision loss. The major limitations
include: first, our sample size is limited; second, we utilize both eyes from one
patient as two independent inputs, which ignores their similarity; third, we only
include the MM severity as the auxiliary information. Future work could be
conducted as follows. First, collecting more data from different clinical sites.
Second, modeling the relationship between both eyes from the same patient [33].
Third, exploring more auxiliary information. Besides, studying how to adapt our
method to different domains is a crucial problem [24], as we seek to improve the
generalizability. In addition, exploring VF prediction with the missing modalities
[23]: either fundus or thickness is another interesting direction.
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