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Abstract
The hand-eye calibration problem is an important application problem in robot
research. Based on the 2-norm of dual quaternion vectors, we propose a new dual
quaternion optimization method for the hand-eye calibration problem. The dual
quaternion optimization problem is decomposed to two quaternion optimization sub-
problems. The first quaternion optimization subproblem governs the rotation of the
robot hand. It can be solved efficiently by the eigenvalue decomposition or singular
value decomposition. If the optimal value of the first quaternion optimization sub-
problem is zero, then the system is rotationwise noiseless, i.e., there exists a “perfect”
robot hand motion which meets all the testing poses rotationwise exactly. In this case,
we apply the regularization technique for solving the second subproblem to minimize
the distance of the translation. Otherwise we apply the patching technique to solve
the second quaternion optimization subproblem. Then solving the second quaternion
optimization subproblem turns out to be solving a quadratically constrained quadratic
program. In this way, we give a complete description for the solution set of hand-eye
calibration problems. This is new in the hand-eye calibration literature. The numerical
results are also presented to show the efficiency of the proposed method.
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Regularization · Patching
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1 Introduction

The hand-eye calibration problem is an important part of robot calibration, which
has wide applications in aerospace, medical, automotive and industrial fields [10,
16]. The problem is to determine the homogeneous matrix between the robot gripper
and a camera mounted rigidly on the gripper or between a robot base and the world
coordinate system. In 1989, Shiu and Ahmad [32] and Tsai and Lenz [33] used one
motion (two poses) to formulate the hand-eye calibration problem as solving a matrix
equation

AX = XB, (1)

where X is the unknown homogeneous transformation matrix from the gripper (hand)
to the camera (eye), A is the measurable homogeneous transformation matrix of the
robot hand from its first to second position and B is the measurable homogeneous
transformationmatrix of the attached camera and also, from its first to second position.
To allow the simultaneous estimation of both the transformations from the robot base
frame to the world frame and from the robot hand frame to sensor frame, Zhuang et
al. [41] derived another homogeneous transformation equation

AX = Z B, (2)

where X and Z are unknown homogeneous transformation matrices from the gripper
to the camera and from the robot base to theworld coordinate system, respectively, A is
the transformationmatrix from the robot base to the gripper and B is the transformation
matrix from the world base to the camera. It is worth mentioning that there are other
kinds of mathematical models for hand-eye calibration problem. In this paper, we
focus on the models (1) and (2).

Over the years,manydifferentmethods and solutions are developed for the hand-eye
calibration problem. Based on how the rotation and translation parameters are esti-
mated, these approaches are broadly divided into two categories: separable solutions
and simultaneous solutions. The separable solutions arise from solving the orienta-
tional component separately from the positional component. By using rotation matrix
and translation vector to represent homogeneous transformation matrices, the hand-
eye calibration equation is decomposed into rotation equation and position equation.
The rotation parameters are first estimated. After that, the translation vectors could
be estimated by solving a linear system. The different techniques that focus on the
parametrization of rotation matrices include angle axis [32, 33, 35], Lie algebra [25],
quaternions [3, 4, 14], Kronecker product [21, 31] and so on. The main drawback in
thesemethods is that rotation estimation errors propagate to position estimation errors.

On the other hand, the simultaneous solutions arise from simultaneously solving the
orientational component and the positional component. The rotation and translation
parameters are solved either analytically or by means of numerical optimization. For
analytical approaches, many techniques were proposed including quaternions [22],
screw motion [2], Kronecker product [1], dual tensor [5], dual Lie algebra [6] and so
on. The approaches based on numerical optimization include Levenberg–Marquardt
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algorithm [28, 42], gradient/Newton method [11], linear matrix inequality [12], alter-
native linear programming [40] and so on. For more details about solution methods
for hand-eye calibration problem, one can refer to [10, 30] and references therein.

Among the solutionmethods for hand-eye calibrationproblem, the techniqueof dual
quaternions was used to represent rigid motions by Daniilidis and Bayro-Corrochano
[8]. Based on the dual quaternion parameterization, a simultaneous solution for the
hand-eye problem was proposed by using the singular value decomposition [7, 8].
Compared with homogeneous transformation matrices, dual quaternions are consid-
ered to be amore efficient and compact way of representing the rotation and translation
changes in a rigid body. Since the number of variables is reduced and the constraints
are simple, the methods based on dual quaternions are computationally more efficient
than the methods based on homogeneous transformation matrices [39]. In fact, it has
been shown that the dual quaternion representation gives an efficient and robust way to
estimate the solution of hand-eye calibration problem, as shown in [18–20, 23, 29, 34].
This also motivates us to use dual quaternions to formulate the hand-eye calibration
problem as an optimization problem.

As far aswe know,most existingmethods for solving hand-eye calibration problems
could handle the case when the rotation axes are not parallel. However, these methods
may fail for the special case when the rotation axes are parallel, which is called the
problem of pose singularity. For these methods, there is no description of the solution
when the rotation axes are parallel, and it is difficult to judge whether the derived
solutions are reliable or not.

In this paper, we propose a new dual quaternion optimization method for the hand-
eye calibration problem based on the 2-norm of dual quaternion vectors, aiming to
give a complete description of the solution set of the hand-eye calibration problem.

The theoretical base of dual quaternion optimization was established in [27], where
a total order for dual numbers, the magnitude of a dual quaternion and the norm
for dual quaternion vectors were proposed. Then, a two-stage solution scheme for
equality constrained dual quaternion optimization problems was proposed in [26],
with the hand-eye calibration problem and the simultaneous localization and mapping
problem as application examples. It was shown in [26] that an equality constrained
dual quaternion optimization problem could be solved by solving two quaternion
optimization subproblems.

In the solution scheme of [26], the optimization solution set of the first quaternion
optimization subproblem is designed as a constraint of the second quaternion optimiza-
tion subproblem. This poses a challenge for implementing such a two-stage solution
scheme in practice. In this paper, we propose a regularization-patching method to
solve such a dual quaternion optimization problem arising from the hand-eye cali-
bration problem. To apply the two-stage scheme of [26] to the hand-eye calibration
problem, we may solve the first quaternion optimization subproblem efficiently by
the eigenvalue decomposition or singular value decomposition. If the optimal value
of the first subproblem is equal to zero, a regularization function is used to solve the
second quaternion optimization subproblem. Otherwise, the solution of the second
subproblem is determined by solving a patched quaternion optimization problem. In
fact, the optimal value of the first subproblem is equal to zero if and only if there exists
a “perfect” robot hand motion which meets all the testing poses exactly. In this case,
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Fig. 1 Flowchart of proposed method

we say that the hand-eye calibration system is rotationwise noiseless. The flowchart
of proposed method is presented in Fig. 1. In this way, we give a complete description
for the solution set of the hand-eye calibration problem. This is new in the hand-eye
calibration literature and should be useful in applications.

In the next section, we present some preliminary knowledge on dual numbers,
quaternions and dual quaternions. Based on dual quaternion optimization, the refor-
mulations and analysis for hand-eye calibration equations AX = XB and AX = Z B
are given in Sects. 3 and 4, respectively. In Sect. 5, we present the numerical results to
show the efficiency of proposed methods. Some final remarks are made in Sect. 6.

Throughout the paper, the sets of real numbers, dual numbers, quaternion numbers
and dual quaternion numbers are denoted by R, D, Q and DQ, respectively. The sets
of n-dimensional real vectors, quaternion vectors and dual quaternion vectors are
denoted by R

n , Qn and DQ
n , respectively. Scalars, vectors and matrices are denoted

by lowercase letters, bold lowercase letters and capital letters, respectively.

2 Preliminaries

2.1 Dual Numbers

A dual number q ∈ D can be written as q = qst + qIε, where qst , qI ∈ R and ε

is the infinitesimal unit satisfying ε2 = 0. We call qst the standard part of q, and qI
the infinitesimal part of q. Dual numbers can be added in terms of components and
multiplied by the formula

(pst + pIε)(qst + qIε) = pstqst + (pstqI + pIqst )ε.

The dual numbers form a commutative algebra of dimension two over the reals. The
absolute value of q = qst + qIε ∈ D is defined as

|q| =
⎧
⎨

⎩

|qst | + qstqI
|qst | ε, if qst �= 0,

|qI |ε, otherwise.
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A total order “≤” for dual numbers was introduced in [27]. Given two dual numbers
p, q ∈ D, p = pst + pIε, q = qst + qIε, where pst , pI , qst , qI ∈ R, we say that
p ≤ q, if either pst < qst , or pst = qst and pI ≤ qI . In particular, we say that p
is positive, nonnegative, non-positive or negative, if p > 0, p ≥ 0, p ≤ 0 or p < 0,
respectively.

2.2 Quaternion Numbers

A quaternion number q ∈ Q has the form q = q0 + q1i + q2j + q3k, where
q0, q1, q2, q3 ∈ R and i, j,k are three imaginary units of quaternions satisfying

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The conjugate of q is the quaternion q∗ = q0 − q1i − q2j − q3k. The scalar part of
q is Sc(q) = 1

2 (q + q∗) = q0. Clearly, Sc(q∗) = Sc(q) and (pq)∗ = q∗ p∗ for any
p, q ∈ Q. The multiplication of quaternions is associative and distributive over vector
addition, but is not commutative. The magnitude of q is

|q| = √
qq∗ = √

q∗q =
√

q20 + q21 + q22 + q23 .

The quaternion q ∈ Q is called a unit quaternion if |q| = 1. It is well known [36]
that the unit quaternion

q = cos

(
θ

2

)

+ sin

(
θ

2

)

n1i + sin

(
θ

2

)

n2j + sin

(
θ

2

)

n3k,

can be used to described the rotation around a unit axis n = (n1, n2, n3)� ∈ R
3

with an angle of −π ≤ θ ≤ π . On the other hand, given a unit quaternion q =
q0 + q1i + q2j + q3k ∈ Q, the rotation matrix R can be obtained by

R =
⎛

⎝
q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎞

⎠ . (3)

For any a = a0 + a1i + a2j + a3k ∈ Q, denote −→a = (a0, a1, a2, a3)� ∈ R
4 and

M(a) =

⎛

⎜
⎜
⎝

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎞

⎟
⎟
⎠ , W (a) =

⎛

⎜
⎜
⎝

a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1
a3 a2 −a1 a0

⎞

⎟
⎟
⎠ .

Clearly, |a| = ‖−→a ‖2. By direct calculations, we have the following propositions.

Proposition 2.1 For any a = a0+a1i+a2j+a3k ∈ Q and b = b0+b1i+b2j+b3k ∈
Q, the following statements hold:
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(i) Sc(r1a + r2b) = r1Sc(a) + r2Sc(b) for any r1, r2 ∈ R.

(ii) Sc(a∗b) = Sc(ab∗) = Sc(b∗a) = Sc(ba∗) = −→a �−→
b .

(iii) M(a∗) = M(a)�, W (a∗) = W (a)�.
(iv)

−→
ab = M(a)

−→
b = W (b)−→a .

(v) M(a)�M(a) = W (a)�W (a) = ‖−→a ‖22 I4×4, where I4×4 is the identity matrix of
size 4 × 4.

Proposition 2.2 If a and b are two quaternion numbers satisfying Sc(a∗b) = 0, then
for any q ∈ Q, we have Sc(q∗a∗bq) = Sc(q∗b∗aq) = 0.

Proof Since Sc(a∗b) = 0, we have a∗b + b∗a = 0. According to Proposition 2.1,

one can obtain that Sc(q∗a∗bq) = Sc(q∗b∗aq) = Sc
(
q∗( a∗b+b∗a

2 )q
)

= 0 for any

q ∈ Q. 
�
Next we introduce the 2-norm for quaternion vectors, which can be found in [27].

Denote x = (x1, x2, · · · , xn)� ∈ Q
n for quaternion vectors. The 2-norm of x ∈ Q

n

is defined as

‖x‖2 =
√
√
√
√

n∑

i=1

|xi |2 =
√
√
√
√

n∑

i=1

‖−→xi ‖22.

The conjugate transpose of x is defined as x∗ = (x∗
1 , x

∗
2 , · · · , x∗

n ). More details about
quaternions and quaternion vectors could be found in [37].

2.3 Dual Quaternion Numbers

A dual quaternion number q ∈ DQ has the form q = qst + qIε, where qst , qI ∈ Q.
The conjugate of q = qst +qIε is q∗ = q∗

st +q∗
Iε. Themagnitude of a dual quaternion

number q = qst + qIε is defined as

|q| =
⎧
⎨

⎩

|qst | + Sc(q∗
st qI)

|qst | ε, if qst �= 0,

|qI |ε, otherwise.

The dual quaternion number q ∈ DQ is called a unit dual quaternion if |q| = 1. Note
that q = qst + qIε ∈ DQ is a unit dual quaternion if and only if q∗

st qst = 1 and
q∗
st qI + q∗

Iqst = 0. According to Proposition 2.2, we have the following result.

Corollary 2.3 If q = qst + qIε ∈ DQ is a unit dual quaternion, then Sc(q∗
st qI) =

Sc(q∗
Iqst ) = 0, and for any a ∈ Q, we have Sc(a∗q∗

st qIa) = Sc(a∗q∗
Iqsta) = 0.

It has been shown that the 3D motion of a rigid body can be represented by a
unit dual quaternion [7]. Consider a rigid motion in SE(3) represented by a 4 × 4
homogeneous transformation matrix

T =
(

R t
0� 1

)

, (4)
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where R ∈ R
3×3 is the rotation matrix about an axis through the origin and t ∈ R

3 is
the translation vector. Let qst ∈ Q be the unit quaternion encoding the rotation matrix

R, and let t ∈ Q be the quaternion satisfying −→
t =

(
0
t

)

. Then the transformation

matrix T is represented by the dual quaternion q = qst + qIε, where qI = 1
2 tqst . It

is not difficult to check that q ∈ DQ is a unit dual quaternion since

Sc(q∗
st qI) = 1

2
Sc(q∗

st tqst ) = 0.

On the other hand, given a unit dual quaternionq = qst+qIε ∈ DQ, the corresponding
homogeneous transformation matrix T can be obtained by (4), where the rotation
matrix R ∈ R

3×3 can be derived from the unit quaternion qst according to (3) and the
translation vector t ∈ R

3 can be derived from
(
0
t

)

= −−−→
2qIq∗

st . (5)

It follows that ‖t‖22 = 4qIq∗
st qstq

∗
I = 4|qI |2. In other words, for a unit dual quater-

nion, the magnitude of its infinitesimal part is half of the length of the corresponding
translation vector.

Denote x = (x1, x2, · · · , xn)� ∈ DQ
n for dual quaternion vectors. We may also

write

x = xst + xIε,

where xst , xI ∈ Q
n . The 2-norm of x ∈ DQ

n is defined as

‖x‖2 =

⎧
⎪⎪⎨

⎪⎪⎩

√
√
√
√

n∑

i=1

|xi |2, if xst �= 0,

‖xI‖2ε, otherwise.

(6)

Denote by x∗ := (x∗
1 , x

∗
2 , · · · , x∗

n ) the conjugate transpose of x ∈ DQ
n . According to

Proposition 6.3 of [27], it holds that

‖x‖2 = ‖xst‖2 + Sc(x∗
stxI)

‖xst‖2 ε, (7)

for any x ∈ DQ
n with xst �= 0.

3 Hand-Eye Calibration Equation AX = XB

The hand-eye calibration problem is to find the matrix X such that

A(i)X = XB(i) (8)
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for i = 1, 2, . . . , n, where X is transformation matrix from the gripper (hand) to the
camera (eye), A(i) is the transformation matrix between the grippers of two differ-
ent poses and B(i) the transformation matrix between the cameras of two different
poses. The transformation matrices X , A(i) and B(i) are encoded with the unit dual
quaternions

x = xst + xIε, a(i) = a(i)
st + a(i)

I ε, b(i) = b(i)
st + b(i)

I ε,

for i = 1, 2, . . . , n. Let a = (
a(1), a(2), . . . , a(n)

)� ∈ DQ
n and b = (

b(1), b(2), . . . ,

b(n)
)� ∈ DQ

n . The hand-eye calibration problem (8) can be reformulated as the dual
quaternion optimization problem

min ‖ax − xb‖2
s.t. |x | = 1, x ∈ DQ.

(9)

In the following, we assume that the optimal solution set of (9) is non-empty.
Denote f(x) = ax − xb ∈ DQ

n . According to (6) and (7), we have

‖f(x)‖2 =
{

‖fst (x)‖2 + Sc(f∗st (x)fI (x))
‖fst (x)‖2 ε, if fst (x) �= 0,

‖fI(x)‖2ε, otherwise.

Problem (9) can be divided to two different cases, which need to be handled very
differently. One case is that the standard part of the optimal value of (9) is zero. Another
case is that the standard part of the optimal value of (9) is positive. Physically, the
standard part of the optimal value of (9) is zero if and only if there exists a “perfect”
robot hand motion x , which meets all the n testing poses rotationwise exactly. In this
case, we say that system is rotationwise noiseless. The following proposition provides
a way to check whether the system is rotationwise noiseless or not.

Proposition 3.1 If x̂ is an optimal solution of (9), the standard part x̂st is an optimal
solution of the quaternion optimization problem

min ‖ast xst − xstbst‖22
s.t. |xst | = 1, xst ∈ Q.

(10)

Hence, the system is rotationwise noiseless if and only if the optimal value of (10) is
equal to zero.

Proof According to the definition of total order for dual numbers, the result could be
easily proved since fst (x) = ast xst − xstbst . 
�

Denote the optimal solution set of (10) by Xst . If the optimal value of (10) is equal
to zero, we consider the regularized quaternion optimization problem

min ‖fI(x)‖22 + γ (x∗
st xst + x∗

IxI)

s.t. xst ∈ Xst , x∗
st xI + x∗

Ixst = 0, xst ∈ Q, xI ∈ Q,
(11)
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where γ is the parameter that balances the loss function and the regularization term.
In fact, xst ∈ Xst implies x∗

st xst = 1, and x∗
IxI is proportional to the norm square of

translation vector. By adding the regularization term, we try to find the best solution
with minimal distance of translation. This explains the role of regularization.

If the optimal value of (10) is not equal to zero, we consider the quaternion opti-
mization problem

min Sc
(
f∗st (x)fI(x)

)

s.t. xst ∈ Xst , x∗
st xI + x∗

Ixst = 0, xst ∈ Q, xI ∈ Q.
(12)

By using the matrix representation for quaternion numbers, problems (10), (11)
and (12) could be solved efficiently. For i = 1, 2, . . . , n, we have

−−−−−−−−−−→
a(i)
st xst − xst b

(i)
st =

[
M
(
a(i)
st

)
− W

(
b(i)
st

)]−→xst

and

∣
∣
∣a

(i)
st xst − xst b

(i)
st

∣
∣
∣
2 = −→xst�

[
M
(
a(i)
st

)
− W

(
b(i)
st

)]� [
M
(
a(i)
st

)
− W

(
b(i)
st

)]−→xst .

Denote

L11 =
n∑

i=1

[
M
(
a(i)
st

)
− W

(
b(i)
st

)]� [
M
(
a(i)
st

)
− W

(
b(i)
st

)]
. (13)

It follows that

‖ast xst − xstbst‖22 =
n∑

i=1

∣
∣
∣a

(i)
st xst − xst b

(i)
st

∣
∣
∣
2 = −→xst�L11

−→xst .

Denote the minimal eigenvalue of matrix L11 by λ0. As a result, problem (10) is
equivalent to finding the unit eigenvectors corresponding to λ0.

Similarly, for i = 1, 2, . . . , n, we have

−−−−−−−−−−−−−−−−−−−−−−−−→
a(i)
st xI + a(i)

I xst − xst b
(i)
I − xIb(i)

st =
[
M
(
a(i)
st

)
− W

(
b(i)
st

)]−→xI +
[
M
(
a(i)
I
)

− W
(
b(i)
I
)]−→xst .

Denote

L22 =
n∑

i=1

[
M
(
a(i)
I
)

− W
(
b(i)
I
)]� [

M
(
a(i)
I
)

− W
(
b(i)
I
)]

(14)

and

L12 =
n∑

i=1

[
M
(
a(i)
st

)
− W

(
b(i)
st

)]� [
M
(
a(i)
I
)

− W
(
b(i)
I
)]

. (15)
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It follows that

‖fI(x)‖22 =
n∑

i=1

∣
∣
∣a

(i)
st xI + a(i)

I xst − xst b
(i)
I − xIb(i)

st

∣
∣
∣
2 = −→xI�L11

−→xI

+2−→xI�L12
−→xst + −→xst�L22

−→xst .
As a result, problem (11) is equivalent to the optimization problem

min −→xI�(L11 + γ I )−→xI + 2−→xI�L12
−→xst + −→xst�(L22 + γ I )−→xst

s.t. −→xst ∈ −→
Xst ,

−→xst�−→xI = 0, −→xst ∈ R
4,

−→xI ∈ R
4,

(16)

where
−→
Xst is the set of all the unit eigenvectors corresponding to the minimal eigen-

value of matrix L11. Once the set
−→
Xst is determined, problem (16) turns out to be a

quadratically constrained quadratic program (QCQP).
To be specific, suppose that the dimension of the eigenspace of the minimal

eigenvalue of L11 is k. Let Q ∈ R
4×k be the matrix whose columns form an

orthonormal basis of the eigenspace, i.e., Q�Q = Ik×k . It is not difficult to see
that

−→
Xst = {Qy : y�y = 1, y ∈ R

k}. Problem (16) can be rewritten as

min −→xI�(L11 + γ I )−→xI + 2−→xI�L12Qy + y�Q�(L22 + γ I )Qy
s.t. y�y = 1, y�Q�−→xI = 0, y ∈ R

k,
−→xI ∈ R

4.
(17)

In particular, if the dimension of the eigenspace is one, i.e., k = 1, the solution set−→
Xst = {q,−q}, where q ∈ R

4 is the normalized basis of the eigenspace. In this
case, problem (17) could be solved efficiently by representing −→xI in the orthogonal
complement space of q.

In the following, we reformulate problem (12) as an optimization problem by using
the matrix representation for quaternion numbers. According to Proposition 2.1, we
have

Sc
((

a(i)
st xst − xst b

(i)
st

)∗ (
a(i)
st xI + a(i)

I xst − xst b
(i)
I − xIb(i)

st

))

= −→xst�
[
M
(
a(i)
st

)
− W

(
b(i)
st

)]� [
M
(
a(i)
st

)
− W

(
b(i)
st

)]−→xI
+ −→xst�

[
M
(
a(i)
st

)
− W

(
b(i)
st

)]� [
M
(
a(i)
I
)

− W
(
b(i)
I
)]−→xst

for i = 1, 2, . . . , n. It follows that

Sc
(
f∗st (x)fI(x)

) =
n∑

i=1

Sc
((

a(i)
st xst − xst b

(i)
st

)∗ (
a(i)
st xI + a(i)

I xst − xst b
(i)
I − xIb

(i)
st

))

= −→xst�L11
−→xI + −→xst�L12

−→xst ,

where L11 and L12 are given by (13) and (15), respectively. Note that
−→
Xst is the set

of all unit eigenvectors corresponding to the minimal eigenvalue λ0 of L11. Under the
constraints of (12), one can obtain that
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−→xst�L11
−→xI = λ0

−→xst�−→xI = 0,

since L11 is symmetric. It turns out that problem (12) is equivalent to the optimization
problem

min −→xst�L12
−→xst

s.t. −→xst ∈ −→
Xst ,

−→xst�−→xI = 0, −→xst ∈ R
4,

−→xI ∈ R
4.

(18)

Similarly, if Q is the matrix whose columns form an orthonormal basis of
the eigenspace of λ0, the optimal −→xst can be derived by computing the unit
eigenvectors corresponding to the minimal eigenvalue of Sym

(
Q�L12Q

) =
(
Q�L12Q + Q�L�

12Q
)
/2. Since the objective function in (18) does not contain −→xI ,

the optimal −→xI can be any vector which is orthogonal to the optimal −→xst . We may need
to find a proper one via sewing a patch on the optimal set of −→xI once the optimal −→xst is
determined. Considering the continuity of the norm, it is naturally necessary to further
search for xI under the constrains of −→xst�−→xI = 0, such that ‖fI(x)‖2 is reduced as
much as possible, i.e.,

min−→xI
−→xI�L11

−→xI + 2−→xI�L12
−→xst + −→xst�L22

−→xst
s.t. −→xst�−→xI = 0, −→xI ∈ R

4.
(19)

This explains the role of the patching.
Note that in this way, we give a complete description for the solution set of the

hand-eye calibration problem. This is new in the hand-eye calibration literature and
should be useful in applications.

To conclude, the solution method for hand-eye calibration equation AX = XB is
summarized in Algorithm 1.

Algorithm 1 Dual quaternion optimization for AX = XB

Require: Motions
(
A(i), B(i)

)n

i=1
, regularization parameter γ .

Ensure: The hand-eye transformation matrix X .
1: Construct the matrix L11, L22 and L12 according to (13), (14) and (15), respectively.
2: Compute the minimal eigenvalue λ0 of L11, and deduce the orthonormal basis Q for the eigenspace of

λ0.
3: if λ0 = 0 then
4: Compute xst and xI by solving QCQP (17).
5: else
6: Compute xst by finding the unit eigenvector corresponding to the minimal eigenvalue of

Sym
(
Q�L12Q

)
.

7: Compute xI by solving (19) with the optimal xst .
8: end if

9: Compute X =
(

R t
0� 1

)

, where R is computed from xst by (3) and t is computed from xst and xI by

using (5).
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4 Hand-Eye Calibration Equation AX = ZB

In 1994, Zhuang et al. [41] generalized (1) to AX = Z B, where X is transformation
matrix from the gripper to the camera, Z is the transformation matrix from the robot
base to theworld coordinate system, A is the transformationmatrix from the robot base
to the gripper and B is the transformation matrix from the world base to the camera.
Given n measurements

(
A(i), B(i)

)n
i=1, the problem is to find the best solution X and

Z such that

A(i)X = Z B(i) (20)

for i = 1, 2, . . . , n. The transformation matrices X , Z , A(i) and B(i) are encoded with
the unit dual quaternions

x = xst + xIε, z = zst + zIε, a(i) = a(i)
st + a(i)

I ε, b(i) = b(i)
st + b(i)

I ε,

for i = 1, 2, . . . , n. Let a = (
a(1), a(2), . . . , a(n)

)� ∈ DQ
n and b = (

b(1), b(2), . . . ,

b(n)
)� ∈ DQ

n . The hand-eye calibration problem (20) can be reformulated as the dual
quaternion optimization problem

min ‖ax − zb‖2
s.t. |x | = |z| = 1, x ∈ DQ, z ∈ DQ.

(21)

Similarly, we say that the system is rotationwise noiseless if and only if the standard
part of the optimal value of (21) is zero.

Denoteg(x, z) = ax−zb ∈ DQ
n . To solve problem (21), according to the definition

of 2-norm for dual quaternion vectors, we first consider the quaternion optimization
problem

min ‖gst (x, z)‖22 = ‖ast xst − zstbst‖22
s.t. |xst | = |zst | = 1, xst ∈ Q, zst ∈ Q.

(22)

Note that a = ast + aIε ∈ DQ is a unit dual quaternion if and only if a∗
st ast = 1 and

Sc
(
a∗
st aI

) = a∗
st aI + a∗

Iast = 0. For i = 1, 2, . . . , n, we have

∣
∣
∣a

(i)
st xst − zst b

(i)
st

∣
∣
∣
2 =

(
a(i)
st xst − zst b

(i)
st

)∗ (
a(i)
st xst − zst b

(i)
st

)

= 2 − 2Sc
(
x∗
st

(
a(i)
st

)∗
zst b

(i)
st

)

= 2 − 2−→xst�M
(
a(i)
st

)�
W

(
b(i)
st

)−→zst

since x , z, a(i) and b(i) are unit dual quaternions. Denote

K11 =
n∑

i=1

M
(
a(i)
st

)�
W

(
b(i)
st

)
. (23)
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It follows that

‖ast xst − zstbst‖22 =
n∑

i=1

∣
∣
∣a

(i)
st xst − zst b

(i)
st

∣
∣
∣
2 = 2n − 2−→xst�K11

−→zst .

Then problem (22) is equivalent to the optimization problem

max −→xst�K11
−→zst

s.t. −→xst�−→xst = −→zst�−→zst = 1, −→xst ∈ R
4,

−→zst ∈ R
4.

(24)

Denote the maximal singular value of K11 by σ1, the set of optimal vector pairs of
(24) by

−→
�st . As a result, problem (22) aims at finding the unit singular vector pairs for

σ1, which can be solved efficiently by the singular value decomposition (SVD).
If the optimal value of (22) is equal to zero, i.e., σ1 = n, consider the regularized

optimization problem

min ‖gI(x, z)‖22 + γ
(‖−→xst‖22 + ‖−→xI‖22 + ‖−→zst‖22 + ‖−→zI‖22

)

s.t.
(−→xst ,−→zst

) ∈ −→
�st ,

−→xst�−→xI = 0, −→zst�−→zI = 0, −→xst ,−→xI ∈ R
4,

−→zst ,−→zI ∈ R
4,

(25)

where γ is the regularization parameter and

‖gI(x, z)‖22 =
n∑

i=1

∥
∥
∥M

(
a(i)
st

)−→xI + M
(
a(i)
I
)−→xst − W

(
b(i)
I
)−→zst − W

(
b(i)
st

)−→zI
∥
∥
∥
2

2
.

Once the set
−→
�st is determined, problem (25) could be also written as an QCQP. To be

specific, suppose the singular value decomposition of matrix K11 is K11 = U	V�,
whereU , V ∈ R

4×4 are orthogonal and 	 ∈ R
4×4 is diagonal. Let Q1 ∈ R

4×k be the
matrixwhose columns are the columns ofU corresponding toσ1, and let Q2 ∈ R

4×k be
the matrix whose columns are the columns of V corresponding to σ1. It is not difficult
to see that

−→
�st = {

(Q1y, Q2y) : y�y = 1, y ∈ R
k
}
. In fact, for any unit vectors y1

and y2, the value of objective function of (24) at the point
(−→xst ,−→zst

) = (Q1y1, Q2y2)
is

−→xst�K11
−→zst = y�

1 Q�
1 K11Q2y2 = σ1y�

1 y2 ≤ σ1,

according to the Cauchy–Schwarz inequality. Without loss of generality, we assume
σ1 > 0. Then the equality holds if and only if y1 = y2. As a result, problem (25) can
be rewritten as an QCQP:

min
n∑

i=1

∥
∥
∥M

(
a(i)
st

)−→xI + M
(
a(i)
I
)
Q1y − W

(
b(i)
I
)
Q2y − W

(
b(i)
st

)−→zI
∥
∥
∥
2

2

+γ
(
‖−→xI‖22 + ‖−→zI‖22 + 2‖y‖22

)

s.t. y�y = 1, y�Q�
1
−→xI = 0, y�Q�

2
−→zI = 0, y ∈ R

k,
−→xI ∈ R

4,
−→zI ∈ R

4.

(26)
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In particular, when k = 1, problem (26) could be solved efficiently by representing−→xI
and−→zI in the corresponding orthogonal complement space of Q1 and Q2, respectively.

On the other hand, if the optimal value of (22) is not equal to zero, consider the
optimization problem

min Sc
(
g∗
st (x, z)gI(x, z)

)

s.t.
(−→xst ,−→zst

) ∈ −→
�st ,

−→xst�−→xI = 0, −→zst�−→zI = 0, −→xst ,−→xI ∈ R
4,

−→zst ,−→zI ∈ R
4.

(27)

According to Corollary 2.3, we have

Sc
((

a(i)
st xst

)∗
a(i)
st xI

)
= Sc

((
a(i)
st xst

)∗
a(i)
I xst

)
= Sc

((
zst b

(i)
st

)∗
zst b

(i)
I
)

= Sc
((

zst b
(i)
st

)∗
zIb(i)

st

)
= 0

since x , z, a(i) and b(i) are unit quaternions for i = 1, 2, . . . , n. It follows that

Sc
((

a(i)
st xst − zst b

(i)
st

)∗ (
a(i)
st xI + a(i)

I xst − zst b
(i)
I − zIb(i)

st

))

= −Sc
((

a(i)
st xst

)∗
zst b

(i)
I +

(
a(i)
st xst

)∗
zIb(i)

st +
(
zst b

(i)
st

)∗
a(i)
st xI +

(
zst b

(i)
st

)∗
a(i)
I xst

)

= −−→xst�
[

M
(
a(i)
st

)�
W

(
b(i)
I
)

+ M
(
a(i)
I
)�

W
(
b(i)
st

)]−→zst

− −→xst�M
(
a(i)
st

)�
W

(
b(i)
st

)−→zI − −→xI�M
(
a(i)
st

)�
W

(
b(i)
st

)−→zst .

Denote

K12 =
n∑

i=1

M
(
a(i)
st

)�
W

(
b(i)
I
)

(28)

and

K21 =
n∑

i=1

M
(
a(i)
I
)�

W
(
b(i)
st

)
. (29)

By simple computation, one can obtain that

Sc
(
g∗
st (x, z)gI(x, z)

) =
n∑

i=1

Sc
((

a(i)
st xst − zst b

(i)
st

)∗ (
a(i)
st xI + a(i)

I xst − zst b
(i)
I − zIb(i)

st

))

= −
[−→xst�(K12 + K21)

−→zst + −→xst�K11
−→zI + −→xI�K11

−→zst
]
,

where K11, K12 and K21 are given by (23), (28) and (29), respectively. Under the
constraints of problem (27), −→xst and −→zst are left-singular and right-singular vectors
corresponding to the maximal singular value σ1 for K11, which means
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K11
−→zst = σ1

−→xst and K�
11

−→xst = σ1
−→zst .

Then we have −→xst�K11
−→zI = σ1

−→zst�−→zI = 0 and −→xI�K11
−→zst = σ1

−→xI�−→xst = 0 under
the constraints of problem (27). As a result, problem (27) is equivalent to the opti-
mization

max −→xst�(K12 + K21)
−→zst

s.t.
(−→xst ,−→zst

) ∈ −→
�st ,

−→xst�−→xI = 0, −→zst�−→zI = 0, −→xst ,−→xI ∈ R
4,

−→zst ,−→zI ∈ R
4.

(30)

Similarly, given the singular value decomposition K11 = U	V�, let Q1 be thematrix
whose columns are the columns of U corresponding to σ1, and let Q2 be the matrix
whose columns are the columns of V corresponding to σ1. The optimal −→xst and −→zst
can be derived by computing the unit eigenvectors corresponding to the maximal
eigenvalue of Sym

(
Q�

1 (K12 + K21)Q2
)
. Since the objective function in (30) does

not contain −→xI and −→zI , the optimal −→xI can be any vector which is orthogonal to the
optimal−→xst , and the optimal−→zI can be any vectorwhich is orthogonal to the optimal−→zst .
Considering the continuity of the norm, once the optimal −→xst and −→zst are determined,
we try to find the best one in the optimal set of −→xI and −→zI such that the patching
function ‖gI(x, z)‖22 is minimized, i.e.,

max−→xI ,
−→zI

n∑

i=1

∥
∥
∥M

(
a(i)
st

)−→xI + M
(
a(i)
I
)−→xst − W

(
b(i)
I
)−→zst − W

(
b(i)
st

)−→zI
∥
∥
∥
2

2

s.t. −→xst�−→xI = 0, −→zst�−→zI = 0, −→xI ∈ R
4,

−→zI ∈ R
4.

(31)

To conclude, the solution method for hand-eye calibration equation AX = Z B is
summarized in Algorithm 2.

Algorithm 2 Dual quaternion optimization for AX = Z B

Require: Measurements
(
A(i), B(i)

)n

i=1
, regularization parameter γ .

Ensure: The hand-eye transformation matrix X and robot–word transformation matrix Z .
1: Construct the matrix K11, K12 and K21 according to (23), (28) and (29), respectively.
2: Compute SVD for K11, and deduce the maximal singular value σ1 with corresponding column–

orthogonal matrices Q1 and Q2.
3: if σ1 = n then
4: Compute xst , zst , xI and zI by solving QCQP (26).
5: else
6: Compute xst and zst by finding the unit eigenvector corresponding to the maximal eigenvalue of

Sym
(
Q�
1 (K12 + K21)Q2

)
.

7: Compute xI and zI by solving (31) with the optimal xst and zst .
8: end if
9: Compute X and Z from the dual quaternions x = xst + xIε and z = zst + zIε, respectively.
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5 Numerical Experiments

In this section, we report a set of synthetic experiments to show the efficiency of
proposedmethods for hand-eye calibration problem. All the codes are written inMAT-
LAB R2017a. The numerical experiments were done on a desktop with an Intel Core
i5-2430M CPU dual-core processor running at 2.4GHz and 6GB of RAM.

In the implementation of our proposedmethods, we useGloptiPoly [13] to construct
SDP relaxations of QCQPs, and call the interior point optimizer in MOSEK [24] to
solve SDPs. Further, GloptiPoly can also recover the solution to the original problem
and certify its optimality.We set the regularization parameter γ = 2×10−6. For hand-
eye calibration model AX = XB, we compare our method with the direct estimation
proposed by Tsai et al. [33] (denoted by “Tsai89”), the Kronecker method proposed
by Andreff et al. [1] (denoted by “Andreff99”), the classic dual quaternion method
proposed by Daniilidis [7] (denoted by “Daniilidis99”), the improved dual quaternion
method proposed by Malti et al. [23] (denoted by “Malti10”) and the dual quaternion
method using polynomial optimization proposed by Heller et al. [12] (denoted by
“Heller14”).

For hand-eye calibration model AX = Z B, we compare our method with the
quaternion method proposed by Zhuang et al. [41] (denoted by “Zhuang94”), the
quaternion method proposed by Dornaika et al. [9] (denoted by “Dornaika98”), the
classic dual quaternion method proposed by Li et al. [18] (denoted by “Li10”), the
dual quaternion method using polynomial optimization proposed by Heller et al. [12]
(denoted by “Heller14”) and the dual quaternion method proposed by Li et al. [20]
(denoted by “Li18”).

Numerical experiments are carried out as follows. First, the original homogeneous
transformation matrices X̂ and Ẑ in (2) are given by

X̂ =

⎛

⎜
⎜
⎝

0.9995 −0.0100 0.0297 9.190
0.0116 0.9986 −0.0523 5.397

−0.0291 0.0526 0.9982 0
0 0 0 1.0000

⎞

⎟
⎟
⎠ , (32)

and

Ẑ =

⎛

⎜
⎜
⎝

0.2790 −0.0981 −0.9553 164.226
−0.5439 0.8037 −0.2414 301.638
0.7914 0.5869 0.1709 0

0 0 0 1.0000

⎞

⎟
⎟
⎠ . (33)

Second, we generate n transformation matrices A(i), i = 1, 2, . . . , n. Then the trans-
formation matrix B(i) is computed by B(i) = Ẑ−1A(i) X̂ for i = 1, 2, . . . , n. We use
the methods Zhuang94,Dornaika98, Li10,Heller14, Li18 and Algorithm 2 to solve
the hand-eye calibration equation AX = Z B with the given matrices

(
A(i), B(i)

)n
i=1.

For hand-eye calibration equation AX = XB, we construct n(n−1)
2 pairs of matri-

ces
((

A(i)
)−1

A( j),
(
B(i)

)−1
B( j)

)

i< j
, denoted by

(
Ã(s), B̃(s)

)n(n−1)/2

s=1
. Then the

123



Journal of Optimization Theory and Applications (2024) 200:1193–1215 1209

methods Tsai89, Andreff99, Daniilidis99, Malti10, Heller14 and Algorithm 1 are
used to solve the hand-eye calibration equation AX = XB with the given matrices
(
Ã(s), B̃(s)

)n(n−1)/2

s=1
. The estimation errors are computed by

eX = ‖X − X̂‖2, eZ = ‖Z − Ẑ‖2.

It is worth mentioning that the computation time for our algorithms consists of
the time of constructing SDP relaxations, the time of solving SDPs and the time
of checking the optimality of the solutions. This is the reason why the proposed
algorithms may need more time to get the solution when compared with other direct
methods, such as Tsai89, Andreff99, Daniilidis99 for hand-eye calibration model
AX = XB and Zhuang94, Dornaika98 and Li10 for hand-eye calibration model
AX = Z B. Herewemainly focus on the quality of the solutions and the comparison of
the computation timewithin the same type ofmethods. In fact, the proposed algorithms
could be improved by using other efficient ways of solving the resulting QCQP, such
as copositive relaxations or doubly nonnegative relaxations as in [15, 17].

5.1 Measurements with Non-parallel Rotation Axis

Four measurements of A with non-parallel rotation axis are given by

A(1) =

⎛

⎜
⎜
⎝

0.1752 −0.6574 0.7329 −10.5536
0.6325 −0.4954 −0.5954 −30.5304
0.7545 0.5679 0.3290 50.4851

0 0 0 1.0000

⎞

⎟
⎟
⎠ ,

A(2) =

⎛

⎜
⎜
⎝

−0.0745 0.9661 0.2471 −20.4123
0.8573 −0.0645 0.5108 −50.8904
0.5094 0.2499 −0.8234 80.8685

0 0 0 1.0000

⎞

⎟
⎟
⎠ ,

A(3) =

⎛

⎜
⎜
⎝

−0.1456 −0.6867 0.7122 −20.5519
0.8252 −0.4814 −0.2955 −30.6491
0.5458 0.5447 0.6367 60.4312

0 0 0 1.0000

⎞

⎟
⎟
⎠ ,

A(4) =

⎛

⎜
⎜
⎝

−0.1434 −0.5250 0.8389 −10.5892
0.8158 −0.5427 −0.2001 −50.6730
0.5603 0.6557 0.5061 80.4641

0 0 0 1.0000

⎞

⎟
⎟
⎠ .

As described above, we have four measurements
(
A(i), B(i)

)
for equation AX = Z B,

and six motions
(
Ã(s), B̃(s)

)
for equation AX = XB. The numerical results for

AX = XB and AX = Z B with non-parallel rotation axis are reported in Tables 1
and 2, respectively. Algorithms 1 and 2 show the best behavior in terms of estimation
error. Note that the first three methods in Table 1 and the first three methods in Table 2
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Table 1 Numerical results for AX = XB with non-parallel rotation axis

Tsai89 Andreff99 Daniilidis99 Malti10 Heller14 Alg. 1

eX 0.0030 0.0027 0.0014 0.0019 0.0014 0.0003

Time(s) 0.0419 0.0188 0.0747 3.8888 1.4171 1.1649

Table 2 Numerical results for AX = Z B with non-parallel rotation axis

Zhuang94 Dornaika98 Li10 Heller14 Li18 Alg. 2

eX 0.0010 0.0362 0.0005 0.0012 0.0029 0.0004

eZ 0.0135 0.0712 0.0155 0.0138 0.0142 0.0132

Time(s) 0.0200 0.0190 0.0761 40.3641 1.9992 1.0494

get the solution via solving linear equations, while the other methods need to call SDP
solvers to get the solution. That explainswhyAlgorithm 1may needmore computation
time to get the solution when compared with the first three methods in Table 1, and
Algorithm 2may needmore computation time to get the solution when compared with
the first three methods in Table 2.

5.2 Measurements with Parallel Rotation Axis

In this subsection, we test our algorithms for the case that all the axes of measurements
are parallel, which is often the situation for the hand-eye calibration of SCARA robots
[34]. In this case, it has been shown that the problem is not well defined and there
exists a 1D manifold of equivalent solutions with identical algebraic error [2, 38].
To evaluate the quality of solutions, we try to find the solution such that the third
component of its translation vector is equal to zero, and then compare it with the real
solution X̂ and Ẑ given by (32) and (33), respectively.

Fourmeasurements of A are generatedwith the same rotation axis, butwith different
angles. Without loss of generality, the normalized rotation axis is n = (0, 0, 1)�. For
A(1), A(2), A(3), A(4), the rotation angles are θ1 = π

6 , θ2 = π
3 , θ3 = −π

6 and θ4 = −π
3 ,

while their translation vectors are randomly generated given by

t1 = (−10.9865, 12.3788,−27.2571)�, t2 = (38.8986, 84.6736,−93.8814)�,

t3 = (−75.7189,−53.6187, 28.5794)�, t4 = (−52.8133, 93.3732,−70.1666)�,

respectively. The numerical results for AX = XB and AX = Z B with parallel rota-
tion axis are reported in Tables 3 and 4, respectively. As we can see, the transformation
matrices could be also estimated by the proposed algorithms with the minimal error.
In this case, the linear equations used in Tsai89, Andreff99, Zhuang94 and Dor-
naika98 have infinite solutions, and the SVDs used inMalti10 and Li18 have infinite
unit singular vectors corresponding to the minimal singular value. As expected, the
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Table 3 Numerical results for AX = XB with parallel rotation axis

Tsai89 Andreff99 Daniilidis99 Malti10 Heller14 Alg. 1

eX 11.8042 57.2739 0.0042 44.1233 0.0042 0.0040

Time(s) 0.0566 0.0212 0.2014 3.8501 1.3656 1.1441

Table 4 Numerical results for AX = Z B with parallel rotation axis

Zhuang94 Dornaika98 Li10 Heller14 Li18 Alg. 2

eX 45.3702 112.3677 0.0064 0.0068 21.8262 0.0023

eZ 259.5928 642.9365 0.0125 0.0382 124.8814 0.0128

Time(s) 0.0191 0.0179 0.0839 39.2364 2.2217 1.5278

Fig. 2 Robustness testing for
AX = XB

particular solutions derived by these methods could result in larger estimation errors
when compared with other methods.

5.3 Measurement Estimation with Noise

In practice, the measurement of B is typically estimated using visual processing. Since
visual estimation is noisy, this set of experiment aims comparing the robustness of the
different methods to disturbances in the measurement of B.

The four measurements
(
A(i), B(i)

)4
i=1 are the same as those in Sect. 5.1. The

rotation and translation of B(i) are disturbed by adding zero mean Gaussian noise
with increasing standard deviation. Note that the motions B̃(s) are also disturbed when
adding noise to the measurements B(i). The standard deviation of the additive noise
increases from 0 to 0.02 in steps of 0.002. For each standard deviation, the average
errors of eX and eZ are recorded after 10 runs of each method. The robustness testing
for AX = XB and AX = Z B with noisy measurements of B are plotted in Figs. 2
and 3, respectively. For AX = XB, Algorithm 1 may be not as robust asDaniilidis99
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Fig. 3 Robustness testing for AX = Z B

and Heller14. However, Algorithm 2 shows the competitive robustness to the noise
when compared with other methods for AX = Z B.

6 Final Remarks

In this paper, we establish a new dual quaternion optimization method for the hand-
eye calibration problem based on the 2-norm of dual quaternion vectors. A two-stage
method is also proposed by using the techniques of regularization and patching. How-
ever, there are still some problems that need further study. We have the following final
remarks.

1. Can we use some other norms for dual quaternion vectors, e.g., 1-norm, ∞-norm,
instead of 2-norm in this method?

2. We may also consider some other hand-eye calibration models, such as multi-
camera hand-eye calibration.

3. How can we choose the regularization parameter γ to improve the efficiency of
the method?

4. Canwe extend thismethod to the simultaneous localization andmapping problem?
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