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Abstract
This study aims to propose Micro-electromechanical System (MEMS) accelerometers for 
leak localization in the water distribution network and assess the performance of machine 
learning models in accurately estimating leak locations. Intensive field experimentation 
was conducted to collect data for model development. Machine learning algorithms were 
employed to develop leak localization models, specifically artificial neural network (ANN) 
and support vector machine (SVM). Seventeen time-domain and frequency-domain fea-
tures were extracted, and feature selection was performed using the backward elimination 
method. The results indicate that the ANN and SVM models are suitable classifiers for 
localizing leak distance. Both models achieved leak location predictions with over 80% 
accuracy, and the mean absolute errors were measured at 0.858 and 0.95 for the ANN and 
SVM models, respectively. The validation results demonstrated that the models maintained 
accuracies close to 80% when the distance between sensors and the leak was less than 
15 m. However, the performance of the model deteriorates when leaks occur at distances 
greater than 15  m. This study demonstrates the applicability of MEMS accelerometers 
for leak localization in water distribution networks. The findings highlight the promising 
potential of employing MEMS accelerometers-based ANN and SVM models for accurate 
leak localization in urban networks, even under real-world, uncontrolled conditions. How-
ever, the current model exhibits limited performance in long-distance leak localization, 
requiring further research to address and resolve this issue.
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1  Introduction

According to recent statistics, water lost through leaks and bursts constitutes one-third of 
the total water supplied through distribution systems (Vrachimis et  al. 2021). This non-
revenue water (NRW) causes enormous financial losses (Puust et al. 2010). In Hong Kong 
alone, leaks and bursts cost US$173 million worth of damages annually (Gupta 2017). 
False alarms and localization errors cost time, money, and considerable effort. Unneces-
sary interference with the soil-pipeline environment can also cause damage to infrastruc-
ture. Therefore, accurate and timely leak localization is one of the pressing challenges in 
the world of water infrastructure expertise. Early localization of leaks can save repair costs 
by helping practitioners actively plan pipe repair/replacements (Hu et al. 2021).

Traditionally, leak localization methods can be divided into observation-based meth-
ods and data-driven methods (Covas et al. 2005). The observation-based methods require 
skilled workers to manually survey the pipes using listening sticks and ground microphones 
for condition assessment and to find the leak location. However, manual observation meth-
ods are time-consuming and labor-intensive. Besides, the accuracy largely depends on the 
experience of workers (Muggleton and Brennan 2004; Fahimipirehgalin et al. 2021). Data-
driven methods, on the other hand, are mainly based on data modeling. Such data include 
water flow, pressure changes, in-pipe acoustics, or pipe wall vibrations. They are collected 
via sensing technologies either on-site or wirelessly. For example, Candelieri et al. (2014a) 
proposed a spectral clustering-based approach to analyze the water flow and localize leak 
points. The dataset was derived from a hydraulic simulation model and transformed into 
a similarity graph applying spectral clustering. Similarly, Wang et  al. (2019b) adopted 
the spectral-based method to localize pipeline leaks. Alternatively, acoustics sensors have 
increasingly been used for leak localization (Gao et al. 2022; Cui et al. 2023).

However, the research mentioned above is mainly based on laboratory experiments and 
has low practicality. The proposed method can find leaks in a single leak scenario and pro-
vide a potential alternative for localizing multiple leaks. Lin et al. (2008) recently proposed 
a feature engineering-based localization method using multiple sensors. Leaks were iden-
tified and localized by modeling extracted features. Hu et al. (2021) conducted a critical 
literature survey to compare the performance of localization methods. They concluded that 
acoustic methods provide a balanced localization ability, simultaneously considering sensi-
tivity, accuracy, error rate, time, investment cost, and service time.

Acoustic methods localize leaks using signals collected from pipelines non-invasively 
through acoustic sensors like accelerometers, hydrophones, or noise loggers. Micro-
electromechanical system (MEMS) accelerometers are low-cost (Guru Manikandan et al. 
2021), require less initial deployment cost compared to hydrophones and noise loggers, 
and are more effective in plastic pipes (Tariq et al. 2021b, a). The application of MEMS-
based accelerometers for leak detection was recently investigated by Tariq et  al. (Tariq 
et  al. 2021a). Their use for leak detection in the Hong Kong pipeline systems was suc-
cessfully reported (Tariq et al. 2021a). As a follow-up, this study further investigates using 
MEMS accelerometers to locate leaks in real urban water systems such as Hong Kong.

The length of the water distribution network (WDN) of Hong Kong is more than 
8605  km. Hong Kong Water Supplies Department (WSD) has made great efforts in the 
last two decades and reduced the leakage rate from exceeding 25% in 2000 to about 15% 
in 2019 (Water Supplies Department 2020). These efforts include replacing deteriorated 
pipelines and establishing new monitoring systems (Yue and Tang 2011). Data-driven 
models based on machine learning assist in increasing efficiency and reducing losses. The 
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current study, therefore, adopts a machine learning-driven methodology for facilitating 
water leak localization, increasing model accuracy and efficiency. The objectives of this 
study are three-fold: 1) to investigate the capability of MEMS-based accelerometers for 
localizing water pipe leaks in real WDNs; 2) to evaluate the performance of support vector 
machine (SVM) and artificial neural network (ANN) for localizing leaks in WDNs; and 3) 
to develop a model to localize the pipe leakages in real networks.

This study presents a novel approach utilizing accelerometers for leak localization in 
water distribution networks. The model result demonstrates the applicability of MEMS 
accelerometers and machine learning models for leak localization and points out the cur-
rent limitation. By introducing these innovative methods, this study provides potential 
solutions for efficient water resource management in other megacities.

2 � Literature Review

The vibration signal-based localization methodology can be categorized into traditional 
signal processing, beamforming, and statistical methods (Hu et al. 2021). Traditional sig-
nal processing mainly involves denoising the leak signal and extracting informative sig-
nal components for localizing leaks. For example, Mahmutoglu and Turk (2018) proposed 
an innovative passive acoustic system for leak localization. Based on background noise, 
detection method, receiver number, signal strength, and measurement number, leaks can 
be found with low average position errors from several kilometers away. On the other 
hand, Mahmutoglu and Turk (2019) used signal strength differences to locate pipeline 
leaks without any information on leak signal strength in absolute terms. Ting et al. (2021) 
recently introduced a dual-tree complex wavelet transform for water pipe signal processing. 
The proposed denoising algorithm highlights the peak of the cross-correlation function 
and improves the localization accuracy manifold. These signal-processing methods have 
greater robustness and ease of practical implementation. However, the results are sensitive 
to environmental uncertainties, such as different pipe materials, ambient noise, and soil 
characteristics.

Beamforming is also an alternative signal processing technique for obtaining direc-
tional signals from the sensor array. For example, (Wang and Ghidaoui 2018, 2019; Wang 
et al. 2019a) adopted an iterative beamform method for locating multiple leaks. Moreover, 
beamforming has been widely applied to detect the  acoustic signal under a noisy back-
ground. For example, Maxit et al. (2022) also adopted the beamform technique to improve 
the signal-to-noise ratio (SNR) of collected vibration data. The array gains are calculated 
using both the traditional and beamforming techniques. The result shows that the beam-
forming has improved performance, resulting in a much larger array gain. Overall, the 
beamforming method benefits from higher accuracy and reliability, requires more sensors 
and experiment points, and suffers from the high economic cost. Zhi et al. (2023) utilized 
cross-correlation for leak localization. Agrawal et  al. (Agrawal et  al. 2023) and Kousio-
poulos et al. (2022) utilized the technique of multiple time difference arrival, relying on 
cross-correlation calculations using signals acquired from pairs of sensors. However, the 
validation majorily took place through laboratory testing on bare pipes (not buried).

Lastly, statistical methods use extensive data to pinpoint the locations of pipe leaks. 
By analyzing the collected data, the characteristics of the signal can be summarized and 
proposed, thereby aiding in the localization of leaks. Advanced statistical techniques like 
machine learning-based regression and classification algorithms are considered effective 
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for leak localization. Applied algorithms include ANN, SVM, Bayesian, and convolutional 
neural networks (Poulakis et  al. 2003; Jin et  al. 2014; El-Abbasy et  al. 2016; Tijani and 
Zayed 2022). For instance, El-Abbasy et al. (2016) developed regression and ANN models 
based on the acoustic data from noise loggers. The developed models have been validated 
and proven to have around 90% localization accuracy in the established laboratory testbed. 
Zhou et al. (2019) innovatively proposed a deep-learning framework to localize pipe bursts 
further. The validation results show that the model has better robustness and applicabil-
ity than the linear neural network. Recently, Quiñones-Grueiro et al. (2021) attempted to 
solve the leak location problem from an inverse perspective and developed a deep learning 
model considering the topology of the WDN, modifying the location space and combin-
ing time series. The result reveals that the proposed model performs well on the exten-
sive pipe network of 268 nodes and 9 sensors. El-Zahab et al. (2022) developed a wireless 
leak detection and localization system for a building. In the study, vibration sensors were 
used to test the effectiveness of a wireless system to find leaks in PVC and iron pipes. 
More details about data-driven approaches and the use of machine learning can be found in 
recent literature review articles (Yussif et al. 2023; Nimri et al. 2023). Overall, data-driven 
methods have better performance as compared to other methods.

Previous research has made significant contributions to understanding the pipe leak 
localization problem. However, most studies are based on lab/testbed experiments (Martini 
et al. 2015; El-Zahab et al. 2018; Li et al. 2021). Due to the complicated influencing fac-
tors on-site, the leak models developed by lab experiments cannot be directly applied to a 
real WDN (El-Abbasy et al. 2016). First, the actual water distribution has high background 
noise, which does not conform to assumptions made while conducting experiments in the 
lab/testbed. Additionally, tests are performed on simplified pipe networks (e.g., a straight 
pipe) (Mostafapour and Davoudi 2013; El-Abbasy et  al. 2016), which cannot reveal the 
complexity of the in-service pipe network (Tariq et al. 2021a). Thus, there is a need to test 
methods on real sites with reported leaks. In line with the argumentation and data avail-
ability, machine learning has been adopted in the current study as the optimum choice for 
leak localization in real water networks. In particular, SVM and ANN were adopted and 
compared to identify their robustness to address the leak localization problem.

3 � Research Method

Figure  1 depicts the outline procedures to develop a localization model for water pipe 
leaks. The adopted research methodology can be divided into data collection, analysis, and 
machine learning modeling. First, field experiments were conducted on the WDN of Hong 
Kong in collaboration with the water supplies department (WSD). As the current study has 
been conducted with the assistance of the WSD, rich field data has been collected. MEMS 
accelerometers were deployed to collect signals from leak points. The collected informa-
tion was further analyzed and processed in the data analysis step. In this step, we filtered 
the collected data to reduce the bias imposed by outliers. In the modeling phase, the feature 
optimization algorithm was applied to extract the acoustic characteristics of the dataset. 
Then, the parameters of the machine learning models were optimized. The proposed model 
can output the leak distances, which are defined as the distance between the deploy site and 
the leak point. Finally, models with the optimized parameters were validated using samples 
from other WSD sites.
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3.1 � Data Collection

The experiment sites included the municipal water distribution network and the under-
ground pipe leak detection center established by WSD. The experimental duration ranged 
from Oct 1st, 2020 to Oct 19th, 2021. First, WSD reported leak points and provided the 
water pipe network map and corresponding pipe information (including pipe diameter, pipe 
material, and connection), as shown in Fig. 2. The research team subsequently designed the 
experimental plan and deployed sensors on proposed sites. For each site, 1 to 3 accelerom-
eters were deployed depending on the availability of surrounding chambers. Data collec-
tion at each site lasted for one to three days, collecting data at different time points for one 
minute duration. Leak distance was defined as the distance between the leak point and the 
location where the sensor was deployed. The field experiments were always conducted at 
midnight, avoiding the impact of noise caused by surrounding traffic vehicles and passen-
gers. Furthermore, the pipe flow is relatively stable at night.

Fig. 1   Research framework for developing leak localization models

Fig. 2   A typical location in real water supply network where the MEMS accelerometers were deployed
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The experiment equipment was MEMS accelerometer brand Beanair, enabling wireless 
data transmission and collecting time-synchronized data. Figure 3 depicts how the accelerom-
eters were used to collect signals on-site. The sampling frequency was 3000 Hz and the sam-
ple duration was 60 s. Therefore, each sample had 180000 data points. The data was collected 
from the Z-axis (Tariq et al. 2021b). The accelerometer sensors were deployed on the valve 
within the chamber. The gateway (the central controller) was connected to the laptop, sending 
commands to sensors through Beanscape software. Overall, 1347 samples were collected and 
saved in the format of text (g values at every 1/3000 s) for further analysis.

3.2 � Data Preprocessing

The quality of training data heavily impacts the performance of machine learning models 
(Budach et al. 2022). In this study, the collected acoustic dataset suffered from missing data 
(caused by inconsistent signal transmission) and background noises (emitted by vehicles and 
pedestrians). Therefore, it is necessary to adopt data preprocess, laying the foundation for the 
modeling phase.

We adoptrd the outlier removal process to eliminate the errors brought by noise signals. 
The interquartile rule (IQR) method was applied to find outliers. Specifically, quartiles and 
maximum and minimum values of signal data were computed. IQR and upper and lower 
bound values were calculated using Eq. (1), where Q1 represents the 25th percentile of the 
data; Q3 represents the 75th percentile of the data. Any data values above the upper and below 
the lower bounds were removed.

Ultimately, a total of 1347 samples remained. Table  1 depicts the details of the data 
distribution. Most samples (84%) were collected within a 15 m of leak distance from metal 

(1)
IQR = Q

3
− Q

1

Upper bound = Q
1
− 1.5IQR

Lower bound = Q
3
+ 1.5IQR

Fig. 3   Data collection system
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pipelines. Distance is the label of the dataset, and its unit is meter (m). Considering that 
this study did not use a deep learning model and the complexity of the model was relatively 
low, a more significant proportion of data was assigned to the test set and validation set 
to evaluate the model. A hold-out method was adopted, and 1347 samples were randomly 
split into the training dataset (808 samples), testing dataset (269 samples), and validation 
dataset (270 samples), taking up 60%, 20%, and 20%, respectively.

3.3 � Feature Extraction and Selection

Adopted features constitute the most critical building block for machine learning modeling, 
assisting to summarize the characteristics of signals and promote model learning (Li et al. 
2017). The quality of modeling training data and feature extraction determines the per-
formance optimality of machine learning models. Parameter optimization and experiment 
testing facilitate achieving more optimum performance. Feature extraction consists of two 
steps: feature collection and feature selection.

A literature review was conducted to select water pipe leak localization features in the 
feature collection step. Various studies adopted different combinations of acoustic-based 
features. These features consist of time, frequency, and power dimensions. A total of 17 
features were initially introduced from the literature.

Table 2 depicts the corresponding expression of these features, where xi and xf  refers to 
the signal in the time specturm and frequency spectrum. f represents the frequency band. 
df is the resolution of the spectrum. N denotes the number of data samples. F is the maxi-
mum frequency in a spectrum. T is the time length of the signal. j is the index when xi − xj 
is the smallest over the signal. Rxx is the autocorrelation function of x. �xx and �xx are the 
mean and standard deviation of Rxx . n is the number of data where xf  is larger than 33 per-
cent of max xf  . �f  and �f  are mean and the standard deviation of xf .

Table 3 depicts the value distribution of extracted features. The distribution is catego-
rized by leak distances, including lower than 3.5 m, between 3.5 m to 15 m, and larger 
than 15 m. The comparison of the values of each feature was visualized through box plots 
appended in Supplementary Material (SM) Figures SM.1 to SM.17. The result shows that 
there is generally a distinction in values for different leak distances. Though values of fea-
tures under different leak distances overlap, machine learning models can utilize various 
features and fit the multiple dimensions dataset. In the next stage, the initially collected 17 
features would be analyzed and finalized.

Though features help to develop the relationship between the input dataset and 
target output (Mitra et  al. 2002; Naghibi et  al. 2015), inappropriate feature selection 
would decrease model accuracy and performance (Li et al. 2017). Thus, feature selec-
tion and optimization is urgently needed for establishing the water pipe leak locali-
zation models. Current feature optimization methodologies can be divided into three 

Table 1   Details of the finalized 
dataset

Distance (m) Total Number Proportion

 < 3.5 m 850 62%
3.5 m to 15 m 282 21%
 > 15 m 215 17%
Total 1347  100%
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types, Filter (Peng et  al. 2005; Wang et  al. 2008), Wrapper (Yang and Ong 2011; 
Mafarja and Mirjalili 2018), Embedded method (Guyon et al. 2002).

Considering that the acoustic features are generally co-correlated and data volume 
is limited, this study has adopted the Wrapper method to optimize the features. Regard-
ing Wrapper, this method would packaged all features as a feature set. Each sub-feature 
set would be used to establish a model to learn or fit the target dataset. The perfor-
mances of these models were compared to find the optimum feature set (Liu and Wang 
2021). Though Wrapper considers the combination of features, it requires a significant 
additional time when there are numerous features. In addition, Wrapper might suffer 
from overfitting when there are limited data samples (Maldonado and Weber 2009).

Specifically, the backward selection, as a category of Wrapper method, was selected. 
First all features were used for modeling. Then, it temporarily discards one feature to 
check whether the model performance has decreased. If such a decrease is observed, 
the feature is retained; otherwise, it is dropped. This process is repeatedly conducted 
for each feature. Because the feature optimization results are varied for different mod-
els, the backward selections are respectively conducted on ANN and SVM. The 17 fea-
tures that are presented in Table 2 were used as the initial feature set for the backward 
selection algorithm.

Feature selection for the SVM yielded 15 critical features, including Level, Spread, 
RMS, TD Avg. Amp, Peak Amp., Energy, MLE, Autocorr. MLE, FD Avg. Amp., Peak 
Freq., Max. Amp., Freq. Centroid, Skewness, Kurtosis, Autocorr. MLE, Freq. Spread. 
Only four features were selected for the ANN model, which included Skewness, RMS, 
Level, and Freq. Centroid. The optimized features were adopted to train the models.

Table 3   Range of the values of the extracted features

Feature  < 3.5 m 3.5–15 m  > 15 m

MIN MAX MIN MAX MIN MAX

Level 34.40 54.16 34.35 66.73 36.11 38.92
Spread 0.24 12.24 0.00 22.83 0.24 5.23
RMS 1.06E-03 1.06E-02 1.05E-03 4.29E-02 1.31E-03 1.75E-03
TD Avg. Amp 8.53E-04 8.39E-03 8.26E-04 3.28E-02 1.04E-03 1.39E-03
Peak Amp 2.81E-03 5.33E-02 2.93E-03 4.21E-01 3.37E-03 7.05E-03
Crest Factor 2.42 5.08 2.15 11.98 2.41 4.36
Energy 2.43E-07 1.12E-03 2.11E-07 1.34E-02 3.59E-07 1.62E-06
MLE -5.68 431.97 -3.49 2759.21 0.00 172.33
Autocorr. Kurt 72.71 502.61 3.22 309.82 40.29 269.95
Autocorr. MLE 0.00 4149.71 0.00 4229.28 0.00 293.26
FD Avg. Amp 5.63E-05 1.51E-04 7.23E-05 5.52E-03 7.26E-05 1.57E-04
Peak Freq 3.04 489.58 59.08 332.75 2.57 410.83
Max. Amp 1.83E-04 2.09E-03 3.17E-04 3.50E-02 2.57E-04 7.99E-04
Freq. Centroid 251.55 343.04 172.40 366.52 271.12 314.84
Skewness 0.41 3.72 0.65 6.40 0.67 2.15
Kurtosis 2.26 22.39 3.32 75.94 2.63 12.04
Freq. Spread 2.00E-02 2.25E-01 1.33E-03 1.73E-01 1.07E-02 1.14E-01
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3.4 � Modeling and Optimization

Leak distance estimation in water distribution networks presents a complex challenge due 
to the various distinct characteristics of this task (Tyagi et  al. 2023). The multi-dimen-
sional nature of sensor data, including parameters like pressure, flow rate, and acoustic 
signals, increases the complexity (Cody and Narasimhan 2020). Additionally, the relation-
ships between these sensor parameters and leak distances are often non-linear, making tra-
ditional linear methods less effective. Real-world data introduces noise and variability into 
the equation, further complicating accurate predictions.

In this context, SVM and ANN offer unique strengths compared to other machine learn-
ing models. SVM excels at recognizing complex patterns within multi-dimensional data, 
making it suitable for capturing intricate relationships between sensor readings and leak 
distances. ANN, especially deep neural networks, is highly adept at modeling non-linear 
relationships, which is essential for accurate leak distance prediction (Fan et al. 2021).

In summary, SVM and ANN are well-suited for leak distance estimation due to their 
capacity to address the multi-dimensional, non-linear, and noisy aspects of this task. Thus, 
this study adopted SVM and ANN for subsequent modeling.

3.4.1 � Basic Theory

	 (i)	 Artificial Neural Network (ANN): The artificial neural network is inspired by the 
structure of bio-neuron (Abiodun et al. 2018). It is designated to solve multi-dimen-
sional and complicated problems (Nagajothi and Elavenil 2020). An ANN model 
mainly consists of three layers: input, hidden, and output, as shown in Fig. 4. The 
input layer represents dataset features, and the hidden layer, which can vary in com-
plexity, is the core of the ANN, and the output layer produces model results. In 
literature, ANN has been widely applied to solve the leak problems in gas (Wang 

Fig. 4   Basic Structure for artificial neural network (ANN) model
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et al. 2021) and water (Sattar et al. 2019; Almheiri et al. 2020) pipelines. Thus, it 
is introduced as an effective method for pinpointing water leaks in the actual water 
distribution network case of Hong Kong.

	 (ii)	 Support vector machine (SVM): Support vector machine is a supervised learning 
approach based on the linear classifier (Cortes and Vapnik 1995). As shown in Fig. 5, 
the SVM model tries to establish a hyperplane to classify different samples. The 
samples closest to the hyperplane are defined as the support vector. Margin is the 
distance between the support vector and hyperplane. SVM model is trained by maxi-
mizing the margin. Meanwhile, introducing the kernel helps the model to establish a 
more complicated hypersurface (decision boundary), solving the linear inseparable 
problem (Jain et al. 2018). In the literature, SVM reaches promising performance in 
solving water pipe leak problems (Mounce et al. 2011; Mashford et al. 2012).

	 (iii)	 Performance Evaluation of Machine Learning Models: The performance of the clas-
sification models can be directly evaluated using explicit indicators such as predic-
tion accuracy, recall rate, and precision. However, the regression model output is 
continuous and requires different types of performance indicators, including the 
mean square error (MSE), root mean squared error (RMSE), and mean absolute error 
(MAE). These indicators have been widely used in significant regression models 
(Chicco et al. 2021) and are presented in Eqs. (2) to (4).

The values of MAE, MSE and RMSE denote the model error. Thus, the model with the 
lower MAE, MSE, and RMSE has a better model prediction. In Eqs. (2) to (4), ŷt denotes 
the value deduced by the model. yt denotes the real value of samples. and T denotes the total 
number of samples.

(2)RMSE =

�∑T

t=1

�
ŷt − yt

�2

T

Fig. 5   The basic concept of SVM
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MAE directly reveals the real bias or error between real and fake values. Its robust-
ness to outliers and interpretability make it suitable for practical understanding. RMSE 
emphasizes large errors and retains the same unit of measurement compared to MSE 
(Chai and Draxler 2014; Hodson 2022).

This study also introduces the model accuracy as the indicator. If the leakage dis-
tance output by the model deviates from the actual leakage distance by less than 1 m, 
it will be considered as correctly identified. Therefore, the model accuracy reflects the 
proportion of cases where the leakage prediction error is less than 1 m. Thus, the cur-
rent study adopts RMSE, MAE, and Accuracy as the model performance indicators.

3.4.2 � Model Optimization

(i)	 ANN model optimization: In the current study, ANN was developed using RapidMiner. 
The proposed model adopts Sigmoid as the activation function between the input and 
hidden layers. In the structure of ANN, the number of neurons in the input layer is 4, 
corresponding to the features mentioned in the last section. However, there is no spe-
cific methodology to determine the structure of ANN (Jin et al. 2021). In addition, the 
learning rate and the training recycling also significantly affect the model performance. 
Thus, experiments and tests were conducted to regulate the model structure to reach 
the optimum result.

Considering ANN only uses four features, this study adopted one hidden layer to 
simplify and avoid overfitting. Figure 6 depicts the performance of ANN models with 
different neurons. The architectures featuring 6 and 9 hidden neurons demonstrate supe-
rior performance, reaching closely comparable RMSE and MAE. Considering that com-
plex structures demand higher computational resources and may potentially give rise to 
overfitting issues (Sun et al. 2017), this study adopts hidden layer comprising 6 neurons 
for the subsequent modeling phase. The overall structure of ANN is shown in Fig. 7. 
Based on parametric experiments and empirical rules, the learning rate is 0.03, and the 
training epochs are 300.

The established ANN models were transformed into a mathematical expression to 
describe the relationship among input attributes, variables, and the final output. Hence, 
the weights and biases of the selected optimum architectures are presented in Table 4, 
which were used accordingly to develop the prediction expression.

Subsequently, the resulting mathematical expression based on the weights and biases 
of the model for WDNs is presented in Eq. (5). LD denotes the leak location formula-
tion. xi can be obtained based on the weights and bias in Table 4. f (x) denotes the acti-
vation function:

(3)MSE =

∑T

t=1

�
ŷt − yt

�2

T

(4)MAE =

∑T

i=1
��̂yt − yt

��
T
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Fig. 6   Impacts of the number of neurons on ANN performance

Fig. 7   Selected optimum ANN structure
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(ii) SVM model optimization: The performance of SVM is greatly dependent on the 
type of kernel function k and the corresponding parameters (Liu et al. 2016). This study 
adopted the radial kernel, the Gaussian kernel function (Liu et  al. 2011). The main 
parameter of the radial kernel is the penalty coefficient C and kernel gamma, �.

The above two parameters mainly balance the relationship between the model complex-
ity and the error rate. When C is large, the loss function will be more significant, and the 
model gives up distant outliers. SVM establishes a more complex hyperplane to fit the dis-
tant sample and reach higher accuracy. However, it is also easier to cause the overfitting 
problem. 

On the other hand, � is the other parameter of the kernel function. It mainly defines the 
influence of a single sample on the whole classification hyperplane. When � is small, a 
single sample imposes a greater impact on the hyperplane, and the sample is easier to be 
selected as a support vector.

Overall, SVM is more complicated and have more support vector when C and � are 
large. Conversely, the model would be simpler when C and � are minor. Thus, the setting of 
C and � should be optimized by comparing the RMSE and MAE of models.

Figure 8 depicts the optimization result of SVM. The analysis reveals that RMSE falls 
within the range of 2 to 4 for most SVM models. As observed in Fig. 8, models exhibited 
lower RMSE when γ and C values are high. However, it is crucial to exercise caution with 

(5)

x
1
= w

1−1 × f

�
6.643 level + 0.23 RMS − 1.638 Freq.Centroid

+4.248 Skewness + 1.514

�

x
2
= w

1−2 × f

�
1.267 level + 2.248 RMS + 9.14 Freq.Centroid

+1.251 Skewness − 3.09

�

x
3
= w

1−3 × f

�
−24.439 level + 13.47 RMS + 16.253 Freq.Centroid

−8.222 Skewness − 18.919

�

x
4
= w

1−4 × f

�
0.996 level − 1.075 RMS + 0.433 Freq.Centroid

+1.46Skewness − 3.186

�

x
5
= w

1−5 × f

�
1.334 level − 0.7 RMS + 0.64 Freq.Centroid

+0.889Skewness − 3.174

�

x
6
= w

1−6 × f

�
1.017 level − 0.795 RMS − 2.721 Freq.Centroid

−0.005 Skewness − 2.136

�

LD =
∑6

i=1
xi − B

2

Table 4   Weights and biases of the selected optimum ANN structure

No. of the node in 
the hidden layer

Weights Bias

W1 W2

Level RMS Freq. Centroid Skewness B1 B2

1 6.643 0.236 -1.638 4.248 -2.128 1.514 0.872
2 1.267 2.248 9.14 1.251 0.887 -3.09
3 -24.439 13.47 16.253 -8.222 -1.976 -18.919
4 0.996 -1.075 0.433 1.46 0.438 -3.186
5 1.334 -0.7 0.64 0.889 0.311 -3.174
6 1.017 -0.795 -2.721 -0.005 1.007 -2.136
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elevated γ and C values, as they may induce overfitting. To balance the model performance 
and structure complexity, SVM parameters were configured as follows: γ is 0.42, and C is 
10. Table 5 shows the weights of 15 adopted features and biases for better describing the 
established signal. The total number of support vectors is 809.

4 � Results

4.1 � Model Testing Results

Table  6 presents the test results of ANN and SVM. Regarding RMSE, the value of ANN 
(1.9960) is about 20% less than SVM (2.5410). The mean average error of ANN is ±0.8580m , 

Fig. 8   Optimization results of the 
SVM model for different param-
eters: a RMSE; b MAE
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which is more than 0.1 m lower than the respective value of SVM ( ±0.9500m ). The accuracy 
of ANN (86.25%) is more than 6% better than SVM (80.67%). Regarding the training results, 
ANN might have a more accurate prediction ability than SVM. On the other hand, both the 
MAE of ANN and SVM are lower than 1 m. The prediction accuracies of the two models are 
over 80%. The testing result reveals that the proposed ANN and SVM models have been well-
trained and achieved promising localization ability. However, it still needs further validation.

4.2 � Model Validation Results

For model validation, this study randomly extracted 20% of the dataset before model train-
ing, including 270 samples (167 samples were collected within 3.5  m, and 57 samples 

Table 5   Weights of SVM model Feature Weight

Level -0.9463
Spread -19.2997
RMS -3.1598
TD Avg. Amp -4.4032
Peak Amp -0.5368
Energy -4.6384
MLE -1.7758
Autocorr. MLE -26.5902
FD Avg. Amp 12.5322
Peak Freq -50.8835
Max. Amp 1.3475
Freq. Centroid -13.2211
Skewness 1.5192
Kurtosis -4.9189
Freq. Spread -68.0868
Bias 3.555
Total number of Support Vector 809

Table 6   Testing results of ANN 
and SVM model

RMSE MAE True Prediction False 
Predic-
tion

Accuracy Rate

ANN 1.996 0.858 232 37 86.25%
SVM 2.541 0.95 217 52 80.67%

Table 7   Validation results of 
ANN and SVM models

RMSE MAE Accuracy Rate True Prediction False 
Predic-
tion

ANN 2.486 1.074 80.37% 217 53
SVM 2.699 1.088 78.89% 213 57
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were collected from leak distances between 3.5 m to 5 m; 46 samples were collected from 
leak distance larger than 15  m). The trained ANN and SVM models have been respec-
tively applied to the validation set. When models fail to meet the validation requirements, 
it necessitates revisiting the data preprocessing stage to identify and address issues in order 
to enhance model performance.

Table 7 shows the validation result of ANN and SVM. Regarding RMSE, MAE, and 
accuracy, the performance of ANN was slightly better than SVM. The accuracy gap 
between ANN and SVM is lower than 2%, with 80.37% and 78.89%, respectively. Over-
all, the MAE of ANN and SVM are close to 1 m, and the accuracy rates are close to 80%. 
The model validation performance is generally lower than the performance in the testing 
set. However, the performance of ANN and SVM is still acceptable, with MAE 1.074 
and 1.088, denoting that the performance of SVM and ANN initially meets the standard 
requirement.

Figure 9 depicts the distribution of absolute bias from the SVM and ANN models. The 
absolute bias denotes the absolute value of the difference between the model distance and 
the real distance. From the perspective of the SVM model, nearly 21% of the bias was 
larger than 1 m. Only 7% of bias was between 1 and 2 m. The bias among 2 m to 3 m and 
3 m to 4 m only took up 4% and 2% of the total sample, respectively. Nearly half of the 
samples were from 1 to 2 m. The bias distribution of ANN was similar to SVM, but the 

Fig. 9   The absolute bias distribution of ANN and SVM model
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overall bias of ANN was slightly lower than SVM. In this regard, most biases were below 
or close to 1 m, and only nearly 7% to 8% of the samples had more than 4 m bias.

In the validation set, the location of the water leak mainly consisted of three ranges, 
including lower than 3  m, between 3.5 and 15  m, and larger than 15  m. The validation 
results categorized into different leak distances are shown in Table  8. Regarding ANN, 
the model reached 88.02% accuracy for leaks within the range below 3.5 m and 82.76% 
accuracy for leaks within the range of 3.5 m to 15 m. However, the localization accuracy 
was decreased to 48.89% in the leak distance larger than 15 m. When the leak distance was 
lower than 15 m, MAE in other points was all under or close to 1 m. Regarding SVM, most 
leaks between 3.5 and 15 m have been correctly predicted, with 94.83% accuracy. Regard-
ing leaks lower than 3.5 m, SVM achieved over 86.83% accuracy. However, the model was 
invalid in finding leaks larger than 15 m, with only 28.89% accuracy. When the distances of 
leaks were lower than 15 m, MAE values were all below 0.51. When the distances of leaks 
were larger than 15 m, the MAE value was larger than the value in other points, with 4.43.

5 � Discussion

The validation results show that ANN and SVM reach nearly 80% accuracy and the 
MAE close to 1 m. However, it is worth noting that other studies have achieved a higher 
localization performance. For instance, Candelieri et  al. (2014b) have developed SVM 
and achieved nearly 98% accuracy. Besides, Fan and Yu (2021) also developed a WDN 
machine learning model with over 83% localization accuracy. Though previous models 
reached high-level prediction accuracy, most were conducted based on hypothetical con-
ditions or simulated experiments. The modeling and validation data are characterized by 
clarity and less noise. This controlled setting may explain the higher prediction accuracy 
they achieved.

In contrast, when the laboratory-based model is applied to real-world scenarios, its 
performance may significantly deteriorate. Real-world conditions introduce various com-
plexities and uncertainties that are not present in controlled laboratory settings, leading to 
decreased model performance. The performance of the laboratory-based model was sig-
nificantly deteriorate when applied to other scenarios (Terao and Mita 2008; Tariq et al. 
2021a). It is crucial to consider the limitations and potential performance degradation 
when comparing laboratory-based models to field-experiment-based models. Thus, the 
proposed models still demonstrate their applicability in accurately localizing leaks in real-
world scenarios.

Table 8   The validation result from the perspective of leak distance

Model Distance (m) Total Number Number of 
correct

Number of 
Error

Accuracy MAE

ANN  < 3.5 m 167 20 20 88.02% 0.661315
3.5–15 58 10 10 82.76% 0.75357
 > 15 m 45 23 23 48.89% 3.031617

SVM  < 3.5 m 167 22 22 86.83% 0.502375
3.5–15 58 3 3 94.83% 0.179026
 > 15 m 45 32 32 28.89% 4.430931



Data‑Driven Approaches for Vibroacoustic Localization of…

1 3

Page 19 of 23     14 

Regarding leak distance, both models demonstrate limited performance in finding leaks 
at long distances (larger than 15 m). This is caused by the attenuation of the acoustic signal 
during propagation. As the acoustic signal travels longer distances, it gradually weakens 
and loses its strength, making it more challenging for the models to identify and accurately 
locate leaks (Muggleton and Brennan 2004; Almeida et al. 2015). Similarly, Bui Quy and 
Kim (2020) also find difficulty locating pipeline leaks influenced by attenuation. Regarding 
accuracy using the mean absolute error (MAE) and the root mean square error (RMSE), 
the ANN and SVM models demonstrated comparable levels of accuracy.

6 � Conclusions

This study adopted an acoustic methodology, using the Micro-electromechanical System 
(MEMS) accelerometer to localize pipe leaks in the Hong Kong water distribution network. 
First, field experiments were conducted to collect accelerometer signals. Subsequently, 
backward selection was respectively applied to ANN and SVM models for feature selec-
tion. As a result, four features were selected for the ANN model, while the SVM model 
utilized fifteen features. Through model optimizing experiments, parameters of ANN and 
SVM were finalized, reaching the optimum performance. Finally, models have been tested 
and validated through various perspectives.

According to modeling results, ANN and SVM reach promising performance on the 
testing set, with over 80% accuracy (86.25% for ANN; 80.67% for SVM), and MAE lower 
than 1 m (0.858 for ANN; 0.95 for SVM). However, the model performance decreased in 
the validation cases, indicating that models have an encouraging result when finding long-
distance leaks. Overall, the above results have proved that the applicability of implement-
ing MEMS accelerometer signals in localizing water pipe leaks, which reveals the potential 
of applying machine learning models, ANN and SVM, to pinpoint water pipe leaks.

However, certain limitations still hinder the validity of current models. First, the experi-
ments were conducted in the city center, and the maximum detection range of the method 
in real situations has not been thoroughly tested. Second, because of the limitation of the 
collected dataset, the model cannot correctly handle the long-distance leaks. Third, the 
localization accuracy can be further improved by utilizing larger databases and enhanc-
ing data. Thus, future research should investigate using MEMS accelerometers that can 
be permanently installed and enable wireless remote distance signal transmission. Transfer 
learning algorithms can be used in water leak localization, which might help to combine 
and best use the previous models and water pipe leak datasets.
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