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Abstract
Landslides are frequent hillslope events that may present significant risks to humans and infrastructure. Researchers 
have made ongoing efforts to assess the potential danger associated with landslides, intending to ascertain the location, 
frequency, and magnitude of these events in a given area. This study is meant to supplement the previous study (Part I), 
which explored empirical and physically based causative thresholds. In this paper (Part II), a systematic review is used to 
conduct an in-depth study of existing research on prediction models. Deterministic physical approaches were investigated 
for local-scale landslides. Next, national-scale landslide susceptibility models are discussed, including qualitative and 
quantitative models. Consequently, key findings about rainfall-induced landslides are reviewed. The strategy selection is 
generally governed by data and input factors from a macroscopic perspective, while the better prediction model is defined 
by dataset quality and analysis model performance from a microscopic perspective. Physically based causative thresholds 
can be used with limited geotechnical or hydrological data; otherwise, numerical analysis provides optimal accuracy. 
Among all statistical models, the hybrid artificial intelligence model achieved the best accuracy. Finally, current challenges 
have concentrated on integrating AI and physical models to obtain high accuracy with little data, prompting research sug-
gestions. Advanced constitutive models for real-time situations are lacking. Dynamic and spatiotemporal susceptibility 
maps are also used, although their subjectivity needs further research. This study analyses how to choose the best model 
and determine its key traits. This research provides valuable insights for scholars and practitioners seeking innovative 
approaches to lessen the severity of landslides.
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Introduction

Landslides are the downward displacement of hillslope soil. 
They are a prevalent hazard in sloping terrestrial areas, caus-
ing fatalities, infrastructure damage, and economic losses 

(Chae et al. 2020), whereas rainfall-induced shallow land-
slides are extremely dangerous (Das et al. 2022; Formetta 
and Capparelli 2019; Saadatkhah et al. 2015; Thang et al. 
2022; Ebrahim et al. 2024a, b). Regardless of the authorities' 
attempts to reduce the danger of landslides, such catastro-
phes require further study to accurately predict when and 
where landslides will occur. Figure 1 presents the number of 
humans killed by landslides from 1 August to 31 December 
2020, according to the European Commission's Directorate-
General for European Civil Protection and Humanitarian Aid 
Operations in 2022. Online: Global overview of landslides 
with fatalities (1 August – 31 December 2020)—World | 
ReliefWeb (Visited on July 10, 2023).

Landslides can be classified into four sizes based on 
their volume: smaller (less than 200  m2), small (between 
200 and 2000  m2), medium (between 2000 and 10,000 
 m2), and huge (more than 10,000  m2) (Medwedeff et al. 
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2020). Furthermore, landslides can be studied from two 
perspectives: local (i.e., single slope to 10  km2) and 
national scales (i.e., hundreds to thousands of  km2) (Oguz 
et al. 2022). Thus, prediction models have been classified 
according to the scale of the landslide. Empirical and 
physical models are suitable for local scales (Bednarc-
zyk 2018; Cao et al. 2020; Davar et al. 2022; Ho et al. 
2012; Hong et al. 2018; Wu et al. 2015; Zhao et al. 2019); 
however, susceptibility, risk, and vulnerability maps are 
acceptable for national scales (Anbalagan et al. 2015; 
Bezerra et al. 2020; Ng et al. 2021; Shah et al. 2023). It 
should be emphasized that the danger of inaccurate or 
missing projections should be considered while evaluat-
ing landslide prediction models, considering the projected 
cost of infrastructure damage and the size of the afflicted 
population zone (Zhao et al. 2019). Figure 2 depicts the 
prediction models' categorization, illuminating the local 
and national scale models.

Earthquakes, volcanoes, floods, and intense rainstorms 
may all cause landslides (Román-Herrera et al. 2023). Mas-
sive landslides, which are becoming more prevalent as a 

result of climate change, can be triggered by rainstorms (Wu 
et al. 2020; Zhao et al. 2019). As a result, this study focuses 
on prediction methodologies for rainfall-induced landslides, 
the majority of which are shallow landslides (Das et al. 2022; 
Saadatkhah et al. 2015; Thang et al. 2022). Shallow land-
slides have a slip surface parallel to the ground surface and 
a depth of 2 to 5 m (Caine 1980; Huang et al. 2015; Zhang 
et al. 2011; Liu et al. 2022). Because of their quick develop-
ment and severity, shallow landslides are more dangerous 
than deep-seated ones (Formetta and Capparelli 2019).

Slope stabilization, monitoring, and prediction are viable 
approaches to decrease landslide risk. Stabilizing piles, soil 
nailing, drainage channels, and other mitigation techniques 
are required whenever the slope system is subjected to an 
unexpected event (such as rainfall or an earthquake) or deg-
radation of geotechnical components (Huang and He 2023): 
however, stabilizing the entire slope is not a practical solution. 
Landslide monitoring and prediction must be carried out to 
prioritize stabilizing the crucial slope. Landslide monitoring 
tracks and gathers data to understand better and study the 
phenomena (De Graff 2011). However, choosing the most 

Fig. 1  World map showing the number of people killed by landslides between 1 August and 31 December 2020: Figure adapted with permission 
from European Civil Protection and Humanitarian Aid Operations; Copyright European Union, 2021
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effective monitoring system necessitates a detailed under-
standing of the factors that cause occurrences (initial condi-
tions). For example, tilt measurement may not be appropriate 
for transitional landslides caused by limited toe support or 
for slow slope changes since tilting is uncommon under such 
conditions (Giri et al. 2018; Ma et al. 2017). Ebrahim et al. 
(2024b) discuss the most recent developments in landslide 
monitoring, which is different from the topic of this work.

According to Liang and Uchida (2022), using landslide 
prediction models can aid in mitigating the extent of damage 
caused by landslides triggered by rainfall and develop disas-
ter alert systems. It is crucial to employ landslide prediction 
models for some reasons. They can first assist in identifying 
areas that are susceptible to landslides. The danger can be 
decreased with the information given, for instance, by build-
ing retaining walls or adding vegetation. Second, landslide 
prediction models can provide an early warning of potential 
landslides. According to Valentino et al. (2014), this gives 
authorities the ability to protect houses and rescue people, 
perhaps averting casualties and property damage. Thus, this 
study aims to investigate the main factors that affect land-
slides triggered by rainfall, focusing on the critical role that 
each factor plays in obtaining precise predictions of land-
slide events.

This study will employ quantitative (scientometric) and 
qualitative (systematic) methodologies to address the exist-
ing research. Referring to Fig. 2, many landslide prediction 
techniques (empirical-statistical thresholds, physically based 
causative thresholds, physical analytical and numerical mod-
els, and landslide susceptibility analysis) will be illustrated in 
two articles. The first is restricted to physically based causative 
thresholds and empirical-statistical thresholds (Ebrahim et al. 
2024a). In the second (this research), deterministic models 
and models for landslide susceptibility analysis are included. 
Several statistical approaches (e.g., statistical regression, arti-
ficial intelligence, probabilistic, and mathematical analyti-
cal models) are combined with landslide prediction. Table 1 

summarizes several review papers that discuss landslide pre-
diction techniques based on the authors' knowledge and data 
that is available. A large number of them focus on a specific 
methodology and approach. Utilizing scientometric analysis 
has been rare. Thus, the following is how the innovation of this 
work might be expressed:

1. A bibliometric analysis is used in conjunction with a 
combined scientometric and systematic review to assess 
the accuracy of various models.

2. The theoretical geotechnical and hydrological concept of 
rainfall-induced landslides is provided with an extensive 
illustration of the initial condition.

3. This study's Parts I and II include nearly all current 
prediction techniques, including deterministic physical 
models, physically causative models, empirical statisti-
cal thresholds, and landslide susceptibility maps.

4. This analysis focuses on current research being used till 2023.

This study is organized as follows: The systematic study is 
described in Section "Systematic review", which is separated 
into two subsections: a) deterministic physical models and b) 
landslide susceptibility.  "Research gaps and future directions" 
highlights the research gaps and future directions; Section 
"Conclusions" provides the conclusion;  "Acknowledgements" 
acknowledges contributions; "Notations and Abbreviations" 
describes the notations and abbreviations; and "References" 
lists the sources.

Systematic review

Deterministic physical models

Empirical and physically based causative thresholds can 
be applied easily for early warning systems. Complex 

Fig. 2  Classifications of land-
slide prediction models
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physically based models provide accurate results compared 
with these models, excluding the cost and modelling com-
plexity of these models. A comparison between physically 
based models and empirical thresholds indicates that physi-
cally based models provide accurate predictions (Ho and 
Lee 2017; Wang et al. 2020; Zhao et al. 2019). Deterministic 
physical analysis combines both the hydrological process 
and slope stability analysis.

Landslides occur as a result of changes in pore water 
pressures and seepage forces throughout the hydrological 
process (Gerscovich et al. 2006). Generally, it is assumed 
that saturated steady-state flow occurs over a given depth. 
Thus, the safety factor is calculated considering the worst 
case (Collins and Znidarcic 2004; Ho et al. 2012). In this 
case, there is no effect of rainfall, while under rainfall con-
ditions, infiltration is one of the leading causes of initially 
unsaturated landslides (Formetta and Capparelli 2019). In 
saturated–unsaturated soil systems, the partial differential 
equations that may be used to calculate infiltration and soil 
moisture profiles using Darcy's law and unsaturated flow 
equations are rather complicated (refer to Eq. 1) (Rich-
ards 1931). Therefore, many analytical models, such as the 
widely used model developed by Green and Ampt (1911), 
consider some assumptions of the initial conditions to 
simplify the infiltration process. Some of these analytical 
models include the GR4J model (Perrin et al. 2003), TOP-
MODEL (Kirkby and Beven, 1979), SHETRAN (Birkin-
shaw and Ewen 2000), SIMTOP (Lee and Ho 2009), Modi-
fied Green-Ampt (Cho 2017), Modified TOPMODEL (Lee 
and Ho 2009), CREST (Wang et al. 2011), TiVaSS (An et al. 
2016), TRIGRS (Baum et al. 2008), HIRESSS (Rossi et al. 
2013), H-SLIDER (Uchida et al. 2009), TAG-FLOW (Thang 
et al. 2022), and SLIP (Valentino et al. 2014). Nevertheless, 
this approach fails to take into account the influence of the 

slope and variations in rainfall intensity. Thus, in order to 
get more precise data, it is essential to find the solution to 
the complicated equation. The numerical analysis integrates 
more advanced models of hydraulic properties (Rahimi et al. 
2010). Prime examples of such applied models in landslide 
analysis include GeoStudio (Geo-slope) (Das et al. 2022; 
Huang and He 2023; Xu et al. 2022; Calvello et al. 2009; 
Pagano et al. 2010; Wan et al. 2017); MIDAS/GTS (Qiu 
et al. 2019; Yang et al. 2023); ABAQUS (He et al. 2021); 
GEOtop 2.0 (Formetta and Capparelli 2019); Rocscience 
software (RS2) (Purnama et al. 2022); BGSlope (Abolmasov 
et al. 2015); SLIDE (He et al. 2016; Khan and Wang 2021; 
Liao et al. 2010); and PLAXIS (Arinze et al. 2021; Oguz 
et al. 2022).

where θw is the volumetric water content, k is the unsaturated 
hydraulic conductivity, and hw is the total head.

In the case of rainfall, the wetting front concept can be 
used to simplify matric suction. The following is how the 
suction effect is recognized: The suction rises during the dry 
season as a result of evapotranspiration and falls during the 
rainy season as a result of infiltration (Pagano et al. 2010). 
The difference between the air pressure and the pore water 
pressure in the unsaturated soil is the matric suction, which 
attracts water (He et al. 2021). The pore water pressure dis-
tribution can be classified into steady-state conditions and 
transient states, as shown in Fig. 3. The transient state is a 
transitional state between the initial state and the final state. 
Thus, the time required to reach the final state is a function 
of the hydraulic conductivity of the soil, ground surface flux, 
and water storage of the soil. The matric suction vanishes 
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Table 1  Related review articles for landslide prediction techniques are available

Study Year Approach Content

(Zhang et al. 2011) 2011 Systematic The concept of rainfall-induced landslides is considered from geotechnical and 
hydrological perspective

(Soga et al. 2016) 2016 Systematic Modeling of unsaturated soil using the material point method
(Chae et al. 2017) 2017 Systematic Landslide susceptibility, runout modeling, landslide monitoring, and early warning
(Segoni et al. 2018) 2018 Systematic Rainfall thresholds
(Merghadi et al. 2020) 2020 Systematic Algorithms for machine learning in landslide susceptibility
(Shano et al. 2020) 2020 Systematic Several prediction techniques focus on statistical models
(Yanbin et al. 2022) 2022 Systematic Machine learning models for assessing landslide susceptibility
(Zou and Zheng 2022) 2022 Scientometric Scientometric analysis, limited physical prediction methods, and case studies
(Huang et al. 2022) 2022 Bibliometric Landslide susceptibility based on GIS data
(Petrucci 2022) 2022 Systematic The primary causes of landslide fatalities
(Yerro et al. 2022) 2022 Systematic Modelling of unsaturated soil using the material point method
(Yusof et al. 2023) 2023 Systematic Application of support vector machines in landslide susceptibility mapping
(Bhardwaj and Singh 2023) 2023 Systematic Landslide susceptibility based on GIS data
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when the surface flux (q) exceeds or equals the saturated 
hydraulic conductivity  (ksat). Otherwise, the matric suction 
decreases. It should be noted that the variation in pore water 
pressure due to rainfall will affect the stresses and defor-
mation of the soil. This makes the infiltration and seepage 
analysis more complex; thus, numerical analysis is required 
(Zhang et  al. 2011). Soil hydraulics and shear strength 
parameters are essential for better prediction of saturated 
and unsaturated medium, which can be illustrated through 
the soil water characteristic curve (SWCC) and hydraulic 
conductivity function (HCF) (Das et al. 2022; Xu et al. 
2022). The SWCC can be accurately defined by Mualem-
van Genuchten (MVG) and Van Genuchten's model (Schaap 
and van Genuchten 2006).

Concerning the geotechnical model, the hydrological 
model can be combined with slope stability analysis to con-
sider both the infiltration process and failure criteria, such as 

Mohr-column failure criteria for unsaturated soil, as shown 
in Eq. 2 (Fredlund and Rahardjo 1993). It is reasonable to 
assume infinite slope stability because the depth of the fail-
ure surface to its length is shallow. Additionally, if the slope 
angle does not vary significantly along the slope height, the 
failure surface can be assumed to be parallel to the slope 
surface (Cho 2017; Ho and Lee 2017; Ho et al. 2012; Lee 
and Ho 2009; Wang et al. 2020; Wu et al. 2015). Further-
more, failure is assumed to be created between the surface 
soil and the bedrock layer. However, the failure surface can 
be above or at the soil–bedrock interface (Cho 2017; Thang 
et al. 2022; Valentino et al. 2014).

where c’ is the effective cohesion; ϕ’ is the effective fric-
tion angle; ψ = ua-uw is the matric suction; ua is atmospheric 

(2)� = c� + (� − ua) tan�� + � tan�b
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pressure; uw denotes the pore water pressure; ϕb is the inter-
nal friction angle corresponding to the matrix suction; and 
σ is the total stress.

Analytical models

Richards (1931) presents a 3D equation that suffers algo-
rithmic and computational challenges when considering the 
subsurface response due to rainwater infiltration. Even so, 
it can be reduced using analytical models based on compre-
hending the true initial state of the case study (Huo et al. 
2023). Analytical approaches can consider external factors 
such as rainfall and internal factors such as topographic, 
geological, geotechnical, and hydrological factors. By inte-
grating susceptibility maps with analytical models, precise 
landslide occurrence predictions may be made. Models like 
this have a notable advantage regarding computational time 
and cost. As a result, to benefit from such analytical models, 
an in-depth understanding of the initial conditions is funda-
mental. Several assumptions and cases are emphasized in 
the following lines (Table 2 and 3).

To simplify, the suction effect might be disregarded in cer-
tain areas that experience persistent and intense rainfall, leading 
to saturation of the region. Based on these assumptions, the fac-
tor of safety and critical rainfall can be calculated as illustrated 
in Eqs. 3 and 4 (Ho et al. 2012). Nevertheless, as previously 
stated, the fluctuation in pore water pressure caused by rainfall 
will impact the stresses and deformation. Consequently, the 

infiltration process is crucial and can be classified into steady-
state and transient-state conditions. This classification is based 
on the approximations of the Richards equation. Logically, the 
transient state provides reliable and accurate data compared 
with steady-state models. This finding is based on the compari-
son between dynamic and steady-state models developed by 
Liang and Uchida (2022) and Valentino et al. (2014).

 where FS is the factor of safety; C’ is the effective cohesion; 
g is the gravitational acceleration; γt is the soil bulk density; 
γw is the water density; hw is the saturated soil thickness 
above the slip surface; H is the soil thickness measured verti-
cally; β is the gradient of the hill slope; ϕ is the soil effective 
friction angle; icr the critical steady-state rainfall; and T is 
the saturated soil transmissivity. T = ksatH cos β, where ksat 
is the saturated conductivity.

The 1D infiltration model is suitable for a thick or thin 
layer with free drainage from the bottom (Pagano et al. 
2010). A widely used method called the Green Ampt (GA) 
(Green and Ampt 1911) method can provide a simple solu-
tion for the subsurface flow response. Based on Darcy’s law, 
the GA assumes a 1D vertical infiltration through a uniform 
soil medium. Additionally, GA assumes the presence of a 
thin sheet of water at the ground surface. GA considers a 
consistent approach of the wetting front that divides the 
saturated wetting zone from the unsaturated soil zone with 
a constant value of soil matric suction (refer to Fig. 4). Using 
the Green-Ampt method, the infiltration rate can be meas-
ured as provided in Eq. 5.

(3)FS =
C� + (H�t − hw�w)gcos

2�tan�
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Table 2  Error matrix arrangement

The total population P + N Predicted condition

Positive (PP) Negative (PN)

Actual condition Positive (P) True posi-
tive (TP)

False nega-
tive (FN)

Negative (N) False posi-
tive (FP)

True nega-
tive (TN)

Table 3  Landslide susceptibility ranges

Author Landslide susceptibility ranges

Very low Low Moderate High Very high

(Zangmene et al. 2023) 3% 10% 21% 66%
(Sharma and Mahajan 2018) 0 – 2% 3%—9% 10%—16% 17%—23% 24%—89%
(Liao and Dennis 2004; Yang 

et al. 2012; Ng et al. 2021)
0 – 20% 20%—40% 40%—60% 60%—80% 80%—100%

(Dang et al. 2019) 0 – 19.2% 19.3%—41.8% 41.9%—58.2% 58.3%—77.2% 77.3%—100%
(Hua et al. 2021) 0 – 10% 10%—30% 30%—70% 70%—90% 90%—100%
(Yu et al. 2023) 0—50% 50%—75% 75%—85% 85%—95% 95%—100%
(Yang et al. 2022) 0.5% – 9.8% 9.8%—26.8% 26.8%—43.5% 43.5%—64.6% 64.6%—96.9%
(Zhu and Huang 2006) 0 – 25% 25%—50% 50%—75% 75%—100%
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where: v is infiltration velocity; h is the depth of the moist 
peak shape perpendicular to the slope surface; and zψ is the 
matrix suction head at the moist peak shape.

A simple, theoretical, physically based approach assumes an 
infinite slope and combines Mohr–Coulomb and Darcy's laws, 
as shown in Eqs. 6 and 7 (Wu et al. 2015). The increase in pore 
water pressure causes the effective stress and strength to decrease. 
Therefore, it is assumed that the ratio between the height of the 
saturated layer and soil thickness determines the thresholds.

(5)� = Ksat

hcos� + z�

h

(6)

Fs =
cot�.[msat(n − 1) + Gs(1 − n) + n.Sr(1 − msat)]tan� +

2C�

sin2�.H.�w

[msat(n − 1) + Gs(1 − n) + n.Sr(1 − msat)] + msat

where Gs is the specific gravity; n is the porosity; Sr is the 
degree of saturation;  msat is the dimensionless thickness of 
the saturated layer which lies between 0 and 1; Ri is the rain-
fall depth; k is the infiltration rate; and t0 is the current time.

The infinite slope stability theory can involve stable and 
unstable grids based on the factor of safety calculated by Eq. 6. 
While previous researchers considered individual grid actions, 
shallow landslide prediction based on the Infinite Slope Model 
and TOPMODEL (SIMTOP) were used as hydrological mod-
els to assess the neighboring cell effect (Ho and Lee 2017). 
This can be illustrated as the stable neighboring cell assists the 
unstable cells until a sub-catchment reaches instability. Hence, 
the average factor of safety can be calculated from Eq. 8.

(7)

msat(i,0) =
Ri−1,i

n.H.(1 − Sr)
.exp

[
−k.

sin�

n.(1 − Sr)
(t0 − ti)

]
, (i = 0,−1,−2, ..)

where FS(t) represents the average FS of the sub-catchment 
at time t, and N indicates the number of grids in the sub-
catchment. When FS(t) < 1, shallow landslides occur in the 
sub-catchment zone. Conversely, the hillslope is stable when 
FS(t) > 1.

Physically based models often focus on small catchments 
due to the significant computing load they impose (Wang et al. 
2020). A coupled model, comprising the low-resolution hydro-
logical model CREST (Coupled Routing and Excess STor-
age) developed by Wang et al. (2011) and the high-resolution 
slope stability model SLIDE (SLope-Infiltration-Distributed 
Equilibrium) proposed by He et al. (2016), is available for the 
prediction of landslides in a vast catchment area. The SLIDE 
model was used to forecast landslides; At the same time, this 
model assumes that the rainfall penetrates entirely into the 
soil. The CREST model simulates the hydrological process 
considering evaporation and runoff to overcome this draw-
back. The soil moisture using the TWI is then downscaled 
before it is used in SLIDE to link the hydrological model with 
the stability model (Wang et al. 2020). As mentioned above, 
the traditional Green-Ampt model assumes that water flows 
into a vertical homogeneous soil, which is infinite in depth. 
Therefore, Cho (2017) modified this equation to account for 
the initial inhomogeneous water content distribution and to 
simulate rainfall intensity smaller than the saturated hydrau-
lic conductivity of the soil. When the rainfall intensity is 
lower than the saturated hydraulic conductivity of the over-
lying soil, the rain infiltrates to fill all the void space in the 
soil. Persistent rainfall leads to the upward displacement of 
soil caused by the refraction of the wetting front, resulting in 

(8)FS(t) =
1

N

N∑
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(
Cj

�sgHjsin�jcos�j
+

tan�j

tan�j
−

�wtan�j
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W

tan�

)
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surface bonding. Upon reaching complete saturation, the soil 
ceases to allow any more infiltration, causing rainfall to runoff 
at the surface. Similarly, the groundwater variation and runoff 
analysis are taken into consideration using a modified version 
of TOPMODEL (TOPography-based hydrological MODEL). 
Groundwater is time-dependent and fluctuates with time (Lee 
and Ho 2009). Thus, assuming the failure surface is parallel to 
the slope surface, the factor of safety can be determined based 
on Eq. 9 (refer to Fig. 5).
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where Wt is the weight of the soil slice, and σs is the suction 
stress expressed in terms of the normalized volumetric water 
content or effective degree of saturation Sr.

Furthermore, the TiVaSS model was created to address 
the significant non-linearity of the Richard equation in the 
3D subsurface flow module. This was achieved by the use of 
partly implicit temporal discretization and the simplification 
of first-order spatial discretization (An et al. 2016). TiVaSS is 
coded in C +  + and supports a GUI using the Qt framework. 
Assuming 1D infiltration, this model is vailed for uniform soil 
properties and initial pore water pressure without a horizontal 
flow. The results of both 3D Richard equations using numeri-
cal finite elements were comparable with results from TiVaSS, 
while TiVaSS has an advantage in computational cost (An et al. 
2016). Similarly, TRIGRS is a transient rainfall infiltration and 
grid-based regional stability analysis model (Baum et al. 2008). 
The Richards equation's Iverson solution is used in the TRIGRS 
model. This model is coded using Fortran to consider the time-
variant safety factor with rainfall conditions (refer to Eq. 10) 
assuming a rigid block in a sloping plane (Saadatkhah et al. 
2015). PG-TRIGRS (probabilistic, geostatistic-based, transient 
rainfall infiltration, and grid-based slope stability) was devel-
oped to increase the accuracy by combining TRIGRS with 
probabilistic analysis (Salciarini et al. 2017).

where t is the time; ψ is the pore water pressure; C(ψ) is the 
specific moisture capacity; θ is the volumetric water content; 
 ksat,  kres(ψ) is saturated and residual permeability; ϕ′* = φ′ if 
the magnitude of pwp is positive; ϕ′* = φb if pwp is negative; 
ϕ′ is the soil friction angle; ϕb is the friction angle related to 
the contribution of matric suction to the shear strength; α is 
the parameter of SWCC.

Moreover, HIRESSS (HIgh-REsolution Slope Stability 
Simulator) was first developed by Rossi et al. (2013). In 
terms of hydrology, this model offers an analytical solu-
tion for Richard's equation that takes into consideration the 
dynamic response of infiltration. Geotechnically, this model 
considers the metric suction of unsaturated soil conditions 
and accounts for the vegetation index as a soil reinforcement 
(Salvatici et al. 2018). Vegetation has a positive impact on 
the cohesion parameter (Eq. 11), but has no effect on the 
friction angle. To accommodate this alteration, the factors 
of safety for unsaturated conditions and saturated conditions 
may be approximated using Eqs. 12 and 13, respectively.
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where Tr is the root failure strength, Ar/A is the root area 
ratio, f is a coefficient dependent on the effective soil fric-
tion angle and the orientation of roots, γd is the dry soil unit 
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weight, uw is the pressure head, hb is the bubbling pressure, 
and λ is the pore size index distribution.

For precise predictions, soil deterioration and weathering 
due to water level fluctuations must be considered. (Wan 
et al. 2017). A minimal internal friction angle should be 
expected since the water–rock contact went through several 
dry–wet cycles, resulting in zero cohesiveness. This process 
depends on hydrostatic pressure. To illustrate, Eqs. 14 and 
15 present the degraded cohesion and internal friction angle 
when the hydrostatic pressure is 0.15 MPa. However, the 
abovementioned equations can give an illogical number of 
cycles; therefore, field interval tests are required to calibrate 
these equations.

(14)c = c0.[1 − 0.1149ln(1 + 0.2070N1.8771)]

(15)� = �0

[
1 − 0.0337ln

(
1 + 0.6836N3.3055

)]
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Fig. 5  Stability analysis of a shallow infinite landslide



Bulletin of Engineering Geology and the Environment           (2024) 83:85  Page 9 of 30    85 

 where c is the degraded cohesive force; c0 is the initial 
cohesive force; ϕ is the degraded angle of internal friction; 
ϕ0 is the initial angle of internal friction values; and N is 
water–rock interaction times.

Previous academics have noted that the location and size 
of shallow landslides are influenced by the spatial variation 
in geotechnical properties of the soil, the thickness of the 
unstable layer, topography, duration and intensity of rainfall, 
and the hydraulic transient condition of the soil. Previous 
rainfall zonation maps are not suitable for use as a dynamic 
tool that changes over time. Therefore, choosing dynamic 
maps as an option will be favorable to saving infrastructure, 
warning humans, and taking probable actions to save the 
economy (Valentino et al. 2014). Thus, a time-dependent 
model (SLIP-Shallow Landslides Instability Prediction) 
based on the limit equilibrium method and using the Mohr-
column strength criterion (Valentino et al. 2014). This model 
accounts for saturated and partially saturated hydro geotech-
nical processes. Additionally, it correlates the factor of safety 
with rainfall amount, including previous rainfall. The SLIP 
model is a transient hydrological model that considers verti-
cal and horizontal flow, unlike TRIGRS, which assumes that 
infiltration and the change in pore water pressure are in the 
vertical dimension based only on the analytical solution of 
Richard’s equations. Thus, the SLIP model accounts for the 
destabilizing filtration model, as TRIGRS does not consider 
these forces. The failure mechanism can be illustrated as fol-
lows: in full saturation, the pore water pressure can increase 
due to rainfall or water accumulation at a certain depth. 
In this case, the failure is due to decreased shear strength 
parameters. In partial saturation, soil can reach instability 
without being fully saturated due to the saturation of parts of 
the soil. Therefore, the failure surface can be above or at the 
soil–bedrock surface. The influence of nearby cells is taken 
into account since the unsaturated zone might be impacted 
by the adjacent saturated region, which in turn influences 
the stability of a catchment. Thus, sliding will occur when 
a relatively wide continuous stratum of saturated soil has 
formed. It should be noted that the model is affected by an 
effective rainfall amount due to the evaporation and runoff 
process. Runoff depends on the existing soil moisture at the 
time of the rainfall event.

Considering the most recent model, accurate prediction 
mainly depends on the actual initial conditions. (TAG-
FLOW) the three surface regimes (infiltration, runoff, and 
exfiltration) can be identified to imitate the real initial 
conditions. To ease the computational challenges of the 
Richard equation, a model (TAG-FLOW) was constructed 
in Fortran 90 (Thang et al. 2022). The modelling process 
is presented in Fig. 6. Based on the Mohr–Coulomb law, 
this model assumes an infinite slope that fails at the inter-
face between shallow soil and bedrock substrate. The GA 
model estimates the slope surface's infiltration capacity 
to separate infiltration and extra rainwater from precipi-
tation. According to this model, the wetting front raises 
the groundwater level when it reaches that level. Simul-
taneously, the soil matric suction at the wetting front is 
set to zero to ensure complete saturation in the Green-
Ampt model. However, lateral flow in the saturated soil 
layer, dependent on the hydraulic gradient, also causes 
the groundwater level to fluctuate. The groundwater exfil-
tration that occurs when the groundwater level reaches 
the ground surface at any site combines with any excess 
rainfall there to create surface water on the ground surface. 
It is concluded that either subsurface flow or surface flow 
controls the landslides. Like available numerical models, 
TAG-FLOW is highly dependent on initial conditions that 
require a massive effort to be collected for a wide catch-
ment. TAG-FLOW prediction slightly outweighs the TRI-
GRS model.

As a rule, it was essential to include geometrical condi-
tions as input parameters, in addition to physical–mechani-
cal and hydrological ones. This kind of large-scale opera-
tion, however, is difficult to do with an acceptable level 
of precision and uncertainty. One alternative approach to 
prediction is to look at the loading–unloading response 
ratio (LURR) (Wang et al. 2016). LURR is defined as the 
ratio of the loading to unloading reactions, and a quick 
rise suggests imminent failure (Yin et al. 1995). LURR 
is advantageous over previous studies as it is suitable for 
long-term triggered and deep-seated landslides. Zhang 
et al. (2006) adopted this theory between rainfall and land-
slide displacement. Wang et al. (2016) utilized this theory 
between the sliding force inside the slope as a load and 
unload parameter and displacement of the slope surface as 

Fig. 6  Schematic diagram of the 
modeling strategy
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a response parameter. This technique, in contrast to availa-
ble literature, takes into account solely internal factors and 
can be used for both shallow and deep-seated landslides. 
To clarify, this method can be used in case of insufficient 
data about rainfall or any external dynamic triggering fac-
tor (Wang et al. 2016).

Fluidized landslides and debris flows induce more severe 
damage than shallow landslides (Shu et al. 2016; Chae et al. 
2020). The SHALSTAB model (Shu et al. 2016) and Debris 
2D (Chae et al. 2020) can quantify this catastrophe based 
on different geomorphology and hydrology factors where 
the runoff distance mainly depends on the volume of debris 
and slope angle (Chae et al. 2020). This is out of the scope 
of this study.

Numerical models

Previous analytical equations tried to simplify the com-
plex equations using reasonable assumptions based on the 
initial conditions for a case study with a specific loca-
tion. These models can only be generalized by consider-
ing real situations. Numerical analysis is time-consuming 
and costly, but it provides a more precise picture of the 
issue and can solve soil nonlinearity equations and compli-
cated functions iteratively. Similar to analytical methods, 
numerical analysis is not recommended in large catch-
ments (Huang and He 2023). Moreover, internal factors 
such as topographic, geological, geotechnical, and hydro-
logical factors can be considered.

Numerical models have several advantages compared 
with analytical models, which can be mentioned as fol-
lows: 1) These models can consider various triggering fac-
tors such as rainfall (Calvello et al. 2009; Das et al. 2022; 
Huang and He 2023), reservoir level fluctuation (Li et al. 
2021; Wan et al. 2017; Xu et al. 2022), earthquakes (Yang 
et al. 2023), and energy provided by high waves (Hobbs et al. 
2020) where these factors can be separated or combined; 2) 
They include complex geometry such as deep soil depth, 
steep gradients, and material anisotropy (Liang and Uchida 
2022); 3) They include virtual monitoring points that repli-
cate the real monitoring locations in the slope considering 
the three-dimensional impacts that may affect slope seepage 
and stability during rainfall infiltration (Qiu et al. 2019); 4) 
They consider the delayed rainfall peak pattern effect (Liang 
and Uchida 2022); 5) They reflect the effective stress due to 
volumetric water content and the influence of dead weight 
under the effect of rainfall (Qiu et al. 2019); 6) They can 
overcome the problem of unmonitored physical character-
istics using back analysis of the available data (Abolmasov 
et al. 2015; Li et al. 2021); 7) They conseders the change in 
failures mechanism using full model geometry instead of the 
soil–bedrock interface assumptions (Li et al. 2021); 8) They 
can consider some asymmetric factors such as a surcharge 

on slope crest that can reduce the stability of 3D slopes (Sun 
et al. 2022; Purnama et al. 2022); 8) They can build a para-
metric study to create various relationships (i.e., the relation 
between shear strength (τ), shear stress (σ) and slope angle 
(β) on the factor of safety) (Khan and Wang 2021); 9) They 
consider various analytical techniques for example Bishop 
simplified, Corps of Engineers #1, Corps of Engineers #2, 
GLE/Morgenstern-Price, Janbu simplified, Janbu corrected, 
Lowe-Karafiath, Ordinary/Fellenius, and Spencer method, 
which are available in the limit equilibrium program, SLIDE 
(Khan and Wang 2021); 10) They combine both seepage 
analysis (i.e., infiltration, evaporation, runoff) with slope 
stability analysis (Das et al. 2022); 11) They consider the 
nature of the bedrock layer, which can delay or decrease the 
failure time (Pagano et al. 2010); 12) The factor of safety 
against time considering hydro-fluctuation can be analyzed 
(Wan et al. 2017).

A comparison between dynamic and steady-state hydro-
logical models was utilized to prove this. Liang and Uchida 
(2022) adopted the H-SLIDER (hillslope-scale shallow land-
slide-induced debris flow risk evaluation) method based on 
Darcy’s law (Uchida et al. 2009) model as a steady-state model 
to calculate the factor of safety and critical rainfall. Then, a 
comparison is made with the finite element method to solve 
the three-dimensional Richards equation for a small catchment 
considering shallow rainfall-induced landslides. Steady-state 
hydrological models provide a simple approach based on Dar-
cy’s law or topographic-driven wetness. In contrast, dynamic 
models represent time-varying groundwater responses to rain-
fall intensity and can be described based on kinematic wave 
equations or Richards equations. It is important to note that the 
dynamic model illuminates the delayed rainfall peak pattern 
effect that is not considered using a steady model. In addition, 
steady models underestimate the number of unstable locations 
relative to dynamic methods. Dynamic models provide double-
precision considering deep soil depth and steep gradients than 
steady models, while the steady model is better for predicting 
large areas (Liang and Uchida 2022).

A wide range of literature neglects the horizontal flow, 
considering only the isotropic vertical flow of water because 
the horizontal flow is slower than the vertical flow The 
assumption mentioned above leads to overestimating the 
safety factor (Formetta and Capparelli 2019). Thus, con-
sidering the prototype's complex initial condition, a new 
method does not theorize any potential future surface using 
GEOtop 2.0 as a hydrological model. This high-resolution 
distributed water and energy budget model considers flows 
of variably saturated soil, snow cover dynamics, soil freez-
ing, and terrain effects. This model uses a full three-dimen-
sional description of the Richard equations. This model 
calculates the combined effect of various anisotropy ratios 
and replicates the dynamics of soil moisture as well as the 
shapes (convex, concave, and planar) on the stability of 
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slopes. Increasing the anisotropy results in a decrease in the 
duration before failure. Convex morphologies have a wider 
unstable area than planar and concave morphologies.

Landslide prediction can be analyzed based on the maxi-
mum movement velocity and displacement scenarios using 
the commercial finite element transient groundwater model 
SEEP/W (Geo-Slope 2004) (Calvello et al. 2009). To illus-
trate, the time-dependent changes in groundwater pressures 
control the landslide movements. The landslide starts to move, 
accelerate, or stop based on the groundwater pressure fluc-
tuation. A creep threshold above which displacement occurs 
based on the residual strength envelope in the Mohr-Column 
plan is presented in Eq. 16. The effective normal stress on the 
slip area is calculated, assuming that the only variable with 
time is porewater pressure (Eq. 17). Finally, the safety and 
creep displacement factors varying with time are computed 
(Eqs. 18 and 19, respectively) (Calvello et al. 2009).

where σ’slip is the effective normal stress on the slip surface; 
ϕ’r is the residual friction angle of the soil within the deep 
creep zone; B represents the constant of the typical velocity 
of the phenomenon; and nv constant represents the variation 
of viscosity with the excess shear stress.

Based on the mathematical equations, the innovative criti-
cal curve model of the rainfall intensity − time required to 
form the shallow saturated zone is established and calcu-
lated. ABAQUS software using a CPE4P element in a quad-
rate shape is used as a numerical model assisting in infil-
tration analysis (He et al. 2021). Equation 20 presents the 
relationship between rainfall intensity and hydraulic conduc-
tivity, considering the slope angle and depth of the infiltra-
tion layer. The SWCC can be accurately defined by Mualem-
van Genuchten (MVG) (Schaap and van Genuchten 2006). 
The critical curve is used to predict landslides through the 
saturated zone and is developed based on a piecewise func-
tion (Eq. 21 and Fig. 7) (He et al. 2021).
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where  Se is the effective saturation; I is the rainfall intensity; a and 
b are the fitting parameters; and c is the correction coefficient.

Three categories of numerical analysis models are avail-
able: large deformation analysis, small deformation analy-
sis, and non-deformable analysis. In other words, numeri-
cal modeling can be categorized to be pre-failure analysis 
(limit equilibrium analysis and finite element analysis) and 
post-failure analysis (large deformation analysis). Limit 
equilibrium analysis (LEA) can be used to study the non-
deformable (uncoupled) analysis. The LEA methods are 
single free body methods (i.e., infinite slope, log spiral, 
and Swedish circle) or multiple free bodies (Fredlund and 
Krahn 1977) (i.e., ordinary method of slices (Fellenius, 
1936), simplified Bishop’s method (Bishop 1955), Spen-
cer’s method (Spencer 1967), Morgenstern and Price’s 
method (Morgenstern and Price 1965), Duncan’s method 
(Duncan 1996), Chen and Morgenstern’s method (Chen and 
Morgenstern 1983), and Sarma’s method (Sarma 1987)). 
LEA ignores soil deformation by assuming only seepage 
analysis and does not account for variations in vertical 
and shear stresses caused by pore water pressure varia-
tions (i.e., consider only the weight of the slice) (Feng et al. 
2023; Nguyen et al. 2019; Oliveira et al. 2022). Coupled 
analysis (small deformation finite element analysis) consid-
ers both seepage and soil deformation over time (Matyas 
and Radhakrishna 1968; Sitarenios et al. 2021; Cuomo 
et al. 2021; Postill et al. 2021; Song et al. 2020; Tang et al. 
2019). However, this type of analysis is more complex 
and requires computational power compared with LEA. 
In large deformation, finite element analysis suffers from 
mesh distortion. The hydro-mechanical coupled process 
is seldom taken into account when forecasting landslides 
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(Zhang et al. 2011). Large deformation analysis (fully cou-
pled analysis) has been used recently by some research-
ers (Cuomo et al. 2021; Liu et al. 2020; Yamaguchi et al. 
2023; Zhu et al. 2022; Lee et al. 2021). Large deformation 
analysis can be handled by several methods, including the 
Material Point Method (Cuomo et al. 2021), Particle Finite 
Element Method, Finite Element Method with Lagrangian 
Integration Points, Smooth Particle Hydrodynamics, and 
Coupled Eulerian–Lagrangian methods (Chen et al. 2019). 
However, such models are hugely time-consuming and 
sometimes unfeasible as they are implemented in explicit 
schemes that necessitate small time steps (Yerro et al. 
2022). This study focuses on pre-failure prediction, for 
post-failure prediction please refer to the review papers by 
Soga et al. (2016) and Yerro et al. (2022).

Combined models (probabilistic and artificial intelligence 
with physical models)

Most researchers have adopted physical models considering the 
local scale and fixed values for input parameters. Multiple stud-
ies have merged physical models with landslide susceptibility 
maps to take advantage of the physical model’s accuracy. Due 
to a lack of input data related to time-varying rainfall, topog-
raphy, soil thickness, initiating water table depth, material 
strength, and hydraulic characteristics, these models will likely 
experience significant uncertainty. Thus, model calibration is a 
critical component in deploying physical-based models. Uncer-
tainties in loadings, soil qualities, other factors, computational 
models, and human actions are among the uncertainties in slope 
engineering. The soil is a naturally occurring substance cre-
ated by complicated geological processes resulting in signifi-
cant uncertainty in the spatial variability of soil characteristics. 
Therefore, the probabilistic analysis offers a viable way to over-
come this limitation, such as utilizing Monte Carlo simulation 
(Huang and He 2023; Salvatici et al. 2018; Wu et al. 2015) 
and employing logistic regression (Chae et al. 2020). How-
ever, statistical measures such as the mean, standard deviation 
(STD), and probability density function (PDF) for random vari-
ables adequately reflect the data properties when used in the 
probabilistic analysis approach. Therefore, the reliability of the 
probabilistic analysis would suffer if these statistical parameters 
were wrong. Nevertheless, due to time constraints, site acces-
sibility issues, and budget constraints, landslide susceptibility 
studies are typically conducted across a large region, making 

it challenging to acquire enough data to analyze the statisti-
cal characteristics appropriately. As a result, the lack of suf-
ficient information limits the determination of precise statisti-
cal parameters for random variables, which would negatively 
impact the probabilistic analysis's dependability. Depina et al. 
(2020) considered the spatial uncertainty of physically based 
model parameters using the Bayesian framework to overcome 
such issues. Ji et al. (2022) used Python programming and the 
GIS-FORM landslide prediction toolbox.

Liu et al. (2022) utilized a slope digital twin model that 
is updated in real-time to account for temporal variations 
in landslide stability and to minimize uncertainty. Bayes-
ian probabilistic back analysis is used to update the slope 
model while accounting for various slope model uncertain-
ties. Hwang et al. (2023) utilized the bootstrap and point 
estimation methods to consider the uncertainty coming 
from limited information on spatially distributed soil mate-
rial. The bootstrap-PEM method can provide better results 
than the Monte Carlo (MC) simulation method. Oguz et al. 
(2022) developed the 3-dimensional probabilistic landslide 
susceptibility (3DPLS) for assessing landslide susceptibility 
to account for the three-dimensional effect of slope stability. 
This model surpasses the Monte Carlo simulation model, 
while the MC model has better performance regarding com-
putational time and memory. The probability of failure,  Pf, 
for each cell individually is calculated as follows (Eq. 22):

where NS is the number of simulations;  FS, i is the factor 
of safety of  ith simulation; and IF is the indicator function 
providing 1 in case of failure, when  FS, i ≤ 1, otherwise 0.

Artificial models lack accuracy, while physical models 
suffer from complexity. Thus, it is proven that by reasonable 
training, artificial models can provide good accuracy (Utomo 
et al. 2019; Marrapu et al. 2021). A new model called the 
model switch-based landslide prediction system (MoSLaPS) 
was proposed by Utomo et al. (2019). This model can over-
come the drawbacks of ANN models that cannot predict the 
pattern of the minority class. The newly proposed model 
can predict the occurrence of a landslide 44.2 min before 
the event. MoSLaPS consists of 1) a physically based model 
SHALSTAB to calculate the factor of safety based on geo-
technical, environmental, and geological data; 2) an adaptive 

(22)Pf = P(Fs ≤ 1.0) =
1
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synthetic sampling (ADASYN) method to solve the imbal-
anced data; and 3) an ANN model to switch and train the 
model (see Fig. 8). This model is compared with the BPNN, 
SVM, and AdaBoost models. All models have an accuracy 
greater than 90%; however, the best model should achieve 
the highest TPR and the lowest FPR, which was achieved 
by the MoSLaPS model (98.40% and 2.01%, respectively). 
BPNN, SVM, Adaboost, and MoSLaPS achieved an accu-
racy greater than 90% due to a well-established dataset that 
considers the physical properties (Utomo et al. 2019).

Unlike Utomo et al. (2019), who employed the simple 
physical model to construct their model, Marrapu et al. (2021) 
built extensive data of 15,000 datasets that account for more 
complex features. ANN was used to train the above-mentioned 
comprehensive datasets of the following features: slope geom-
etry (height and slope), shear strength parameter (cohesion, 
internal friction angle, and density), and factor of safety. The 
Michalowski stability chart method developed the stability 
analysis, which is verified with the numerical model Geostudio 
(2012) software (Bishop method). One of the major advantages 
of this study is that using an ANN trained with an extensive 
dataset can be applied to any other region, unlike all previous 
models that can only represent regional areas. The factor of 
safety of the ANN with comprehensive training data achieved 
the best accuracy compared with the ANN with limited data 
according to the MSE, RMSE,  R2, and VAR values (0.010, 
0.099, 0.987, and 98.716, respectively).

Dai et al. (2022) proposed a unique model that can provide 
perfect accuracy by merging numerical analyses with deep 
learning models. This methodology overcomes the uncertain-
ties of geotechnical parameters using the displacement back 
analysis technique (DBA). The horizontal and vertical GNSS 
surface displacements in DBA were assigned in the input layer. 
At the same time, the modified geotechnical factors (modi-
fied cohesion and internal friction angle) were the output of 
the LSTM model. LSTM can increase the effectiveness of 
back calculations and substitute for time-consuming numeri-
cal simulations. Then, numerical modeling can be run based 
on the modified parameters using the tension–shear damage 
strength reduction method (Wang et al. 2014). Not only can a 
numerical model analyze the slope, but it can also provide fail-
ure thresholds (Zhang et al. 2023). The DBA-LSTM was com-
pared with DBA-BPNN, and the MAPE was 0.62% and 1.63%, 
respectively. Moreover, it utilized a unique dataset extracted 
from the verified numerical model for perfect prediction of the 
factor of safety using the deep learning LSTM model.

Discussion of deterministic models (advantages, 
assumptions, and limitations)

Physical models have numerous advantages: Accurate predic-
tion can be obtained by considering the infiltration and seepage 
process, actual stress, and deformation under different dynamic 

factors such as rainfall, earthquake, and reservoir level fluctua-
tion. Numerical models provide a viable tool for considering 
such complex behavior and identifying the actual complex ini-
tial conditions. Physically based models are dependable, effec-
tive, and accurate tools in cases of rainfall-induced landslide 
evaluation. However, higher accuracy is needed in evaluating 
input geotechnical parameters, particularly regarding the influ-
ence of shear strength parameters (Bicocchi et al. 2019; Valen-
tino et al. 2014). Furthermore, these models demand extensive 
geotechnical work that is not readily available.

In some cases, while reasonable assumptions can be 
made, analytical analysis can simplify the complexity of the 
initial conditions. Considering the infinite slope analysis, the 
limit equilibrium method can be used to calculate the factor 
of safety. The area can be divided into grids of cells in the 
GIS framework. The stability of each cell can be obtained 
considering the neighboring effect. The input data for each 
cell or model can be summarized as follows: 1) topographic 
data such as elevation and slope; 2) geotechnical data such 
as soil profile, initial water condition, and soil properties; 
3) hydrological properties; and 4) triggering factors such as 
rainfall patterns. The factor of safety corresponding to time-
varying pore water pressure can be developed, as FS > 1 
indicates a stable slope or no landslides, and FS < 1 indicates 
that the slope is unsafe or there is a landslide.

Some limitations of the current research can be illustrated 
as follows: It is seen that coupled analysis is not widely used 
as the complexity of the landslide mechanism is simplified 
to be a seepage problem neglecting soil deformation which 
may be misleading in terms of temporal and spatial predic-
tion. The weathering effect (i.e., the randomity of the rainfall 
pattern) is not widely considered (Postill et al. 2021). The 
influence of groundwater chemistry is disregarded in this 
case. For instance, when rainwater seeps into a landslide, 
several gases dissolve in it and cause a higher level of chemi-
cal aggression. This will amplify the porosity and perme-
ability of the soil. Rock weathering is another effect. As a 
result, the physical characteristics of the soil will change.

Landslide susceptibility maps

Landslide susceptibility, risk, and vulnerability maps are 
crucial for land use, development, and planning. Suscep-
tibility maps can be defined as the likelihood of landslides 
occurring in a specific location where risk is not properly 
quantified as the time is not expressly considered (Fell et al. 
2008; Corominas et al. 2023). Landslide risk maps clas-
sify the areas of the ground surface based on the risk of 
landslides or other mass movements on slopes, either actu-
ally or potentially, within a given period (Corominas et al. 
2023). Therefore, these additional data are used to quantify 
the risk, such as landslide volume, material involved, type 
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of movement, and depth of failure surface (Anbalagan et al. 
2015; Bezerra et al. 2020; Riaz et al. 2023; Pecoraro et al. 
2023). The term "vulnerability" refers to the range of conse-
quences that follow the effect of the landslide on the exposed 
element or elements (Corominas et al. 2023). Vulnerability 
assessment refers to the severity of loss for objects that are 
at risk (Shah et al. 2023). It necessitates more information 
on the probable damage to the local population, economy, 
and property. In this section, the landslide susceptibility 
for shallow landslides is discussed. Figure 9 represents the 
flowchart for landslide susceptibility mapping. The analysis 
process can be summarized in six steps: landslide inventory 
and controlling features; landslide event-based and sampling 
ratios; model selection; landslide maps; and evaluation of 
the model. Each process will be discussed briefly in the fol-
lowing lines.

Data inventory, controlling features, and landslide event 
maps

An important first step to enhance the accuracy of pre-
dictions is data inventory. Satellite images, geological 
maps, digital elevation models, aerial photographs, maps 
of rock-mass structure, maps of rock strength, maps of 
roads, recordings of site monitoring, historical datasets, 
reports from governments, publicly accessible spatial 
data, and so on may all be used to compile data inven-
tory. Nevertheless, the precision and detail of such data 
are of utmost importance in order to minimize the impact 
of any background noise on the predicted model's accu-
racy. The source of data is related to landslide monitoring 
techniques and will be further discussed in future research. 
Data inventory can be mapped using GIS. Afterward, more 
than 50 different factors can be extracted (Yang 2017). 
Generally, the factors can be defined as creep features 
combined with external triggering or dynamic factors. 
Creep features have almost minimal change with time. At 
the same time, the most affecting parameters are dynamic, 

such as rainfall (Hu et al. 2019), earthquakes (Hu et al. 
2013), reservoir level fluctuation (Hua et al. 2021), and 
change in land use (i.e., infrastructure project develop-
ments) (Yu et al. 2023). Figure 10 presents the causative 
feature classification (Varnes 1984). However, based on 
the available data and initial conditions, each case study 
has its key features, which will be further discussed in the 
following lines for each case study (Table 4).

Inventory maps can be categorized as spatial maps 
(Al-Batah et al. 2015; Dang et al. 2019; Guo et al. 2022; 
Hanafiah et al. 2019; Hu et al. 2019, 2013; Kainthura and 
Sharma 2022; Karim et al. 2019; Liao and Dennis 2004; 
Manchar et al. 2018; Midhuna et al. 2022; Oh and Lee 
2017; Selamat et al. 2023; Sharma and Mahajan 2018; 
Tengtrairat et al. 2021; Tien Bui et al. 2017; Wang et al. 
2009; Wang and Niu 2010; Wubalem 2021; Wubalem et al. 
2022; Yang et al. 2022; Yang 2016, 2017; Zhu and Huang 
2006), dynamic (Hua et al. 2021; Yu et al. 2023), and spa-
tiotemporal maps (Collini et al. 2022; Harsa et al. 2023; 
Mondini et al. 2023; Ng et al. 2021; Shano et al. 2021; 
Xiao and Zhang 2023; Xiao et al. 2022). Spatial maps may 
be defined as the geographic likelihood of occurrence of 
landslides depending on a set of geo-environmental param-
eters. An effective way for spatially analyzing landslide 
susceptibility maps is to use GIS and similar data inven-
tory sources. Dynamic maps present the change in land-
slide susceptibility with time with the rapid change in land 
use. Spatiotemporal maps represent the chance of landslide 
occurrence during a certain era (when) and area (where). 
Thus, after extracting and assigning the causative factors 
using GIS, event-based landslide maps can be established 
by comparing pre-event and post-event maps.

Feature weighting, optimization, and model analysis

Landslide susceptibility maps can be classified into direct 
(qualitative) and indirect (quantitative) maps. Figure 11 

Fig. 9  Landslide susceptibility 
mapping flowchart Landslide inventory and controlling 

features.

•Creep

•Dynamic

Landslide event based maps and 
sampling.

•Spatial.

•Temporal.

Feature weighting, optimization and 
model analysis.

•Qualitative.

•Quantitative.

Landslide maps.

•Susceptibility maps.

•Risk maps.

•Vulnerability maps.

Evaluation and validation.

•ROC/AUC, OA, F1 score, Kappa, 
and MCC. Final landslide map

Improvement needed.



Bulletin of Engineering Geology and the Environment           (2024) 83:85  Page 15 of 30    85 

illuminates the sequence and classification of different 
methods. For more refinement, Fig. 12 highlights differ-
ent intelligence models, and each method will be further 
discussed in the following subsections.

Qualitative models

Direct mapping is mainly pertinent to historical land-
slides and experts' experience. These maps are subjec-
tive or qualitative, or semi-quantitative processes such 
as the analytic hierarchy process (AHP) (Hanafiah et al. 
2019; Sharma and Mahajan 2018; Zangmene et al. 2023) 
weighted linear combination (WLC) (Liao and Dennis 
2004), and fuzzy logic (FL) (Wang et  al. 2009). The 
limitation of the qualitative method is that its accuracy 
depends on the knowledge of the experts conducting the 
investigation. However, quantitative methods examine the 
correlation between landslides and triggering factors to 
predict the likelihood of their occurrence by weighting 
landslide contributory variables.

Quantitative models

Indirect mapping includes a statistical analysis of numerous 
features controlling landslide occurrence. Indirect mapping 
can be classified as bivariate, multivariate, and intelligence 
analysis models to investigate the relationship between land-
slide-controlling features and spatial susceptibility. These 
models are quantitative approaches.

I. Bivariate and multivariate models Bivariate models 
compare the landslide-controlling feature maps with the 
inventory maps to classify the function of each feature 
regarding landslide occurrence. These models include infor-
mation value (IV) (Karim et al. 2019; Manchar et al. 2018; 
Wubalem 2021; Wubalem and Meten 2020), frequency ratio 
(FR) (Karim et al. 2019; Manchar et al. 2018; Midhuna et al. 
2022; Wubalem 2021; Wubalem et al. 2022), weight of evi-
dence (WoE) (Karim et al. 2019; Manchar et al. 2018), cer-
tainty factor (CF) (Wubalem 2021), and index of entropy 
(IOE) (Wubalem et al. 2022). These approaches are simple 

Fig. 10  Causative feature clas-
sifications
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to implement but could be more reliable and have higher 
forecast accuracy.

However, the most adapted statistical models were mul-
tivariate models such as logistic regression models (LR) 

(Dang et al. 2019; Hu et al. 2013; Karim et al. 2019; Ng 
et al. 2021; Shano et al. 2021; Wubalem and Meten 2020; 
Xiao and Zhang 2023; Yang et al. 2012; Yang 2016; Zhu and 
Huang 2006) and discriminate analysis (Dang et al. 2019; 

Fig. 11  Statistical model clas-
sification
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Yang 2017). Multivariate models can be defined as those 
that explain the connection between the single or categori-
cal response variable. These coefficients function as weights 
in an algorithm that may be applied to the GIS database to 
generate a map showing the likelihood that a landslide would 
occur. These models are fundamentally linear and need the 
creation of databases with information on the relevant envi-
ronmental parameters and landslide occurrences. In contrast 
to bivariate techniques, the multivariate (LR) methodology 
cannot examine each component class's impact on landslide 
probability (Wubalem et al. 2022).

The widely used statistical models can be defined as 
follows: FR compares the landslide occurrence probabil-
ity against the non-occurrence likelihood for a particular 
property. It is quick, easy, and used to assess the impact of 
each factor class. The IV model generates the weight for 
every element class by dividing the landslide density of a 
specific category by the overall area landslide density; how-
ever, this model cannot determine the controlling features 
(Wubalem and Meten 2020). The WoE derives prediction 
outputs from landslide occurrences as training points, con-
sidering the uncertainties associated with it. The log-linear 
from the Bayesian probability model is used in the WoE 
technique to determine the relative value of evidence by sta-
tistical means (Karim et al. 2019; Manchar et al. 2018). WoE 
has no assumptions for variable distribution. The certainty 
factor is one of the probabilistic approaches extensively 
used for mapping landslide susceptibility for various data 
(Wubalem 2021); LR computes the nonlinear relationship 
between the occurrence of landslides and the causative fac-
tors. This model can highlight the most dominant factors. At 
the same time, it mainly relies on historical landslides, as it 
assumes that past events will reoccur in the future, which 
can be considered a limitation.

II. Artificial intelligence models The "black-box" nature of 
intelligence and data mining models makes them accessi-
ble to anyone who may lack expertise in statistical analysis. 
When dealing with complicated and nonlinear interactions, 
these approaches are superior to regression models. In order 
to identify the multicollinearity issue, these models begin 
with a dataset containing all accessible attributes. With the 
rapid development of monitoring techniques and computer 
performance, geographic information systems (GIS), remote 
sensing techniques (RS), and global positioning systems 
(GPS) can be utilized in disaster analysis, providing enor-
mous datasets. Thus, developing and applying advanced 
models to analyze these data is crucial. After analyzing the 
collected data to assemble information about landslide his-
tory and the key features related to factors, selecting intel-
ligence techniques to use computational intelligence to 
calculate the probability of landslides began. Data mining 
techniques were recently developed and are incredibly useful 

for dealing with a wide range of dynamic scenarios, such 
as artificial neural networks, decision trees, boosted trees, 
Bayesian networks, support vector machines, and random 
forests (Fig. 12). Such models tolerate ambiguity, impreci-
sion, and imperfect actual values, have low cost, and are 
highly adaptable (Yanbin et al. 2022).

These models include single intelligence models: ANN 
(Oh and Lee 2017; Yu et al. 2023), BT (Oh and Lee 2017), 
DT (Wang and Niu 2010), MLP (BPNN) (Dang et al. 2019; 
Hu et al. 2013; Kainthura and Sharma 2022; Ng et al. 2021), 
RVMs (Dang et al. 2019), SVMs (Dang et al. 2019; Yu et al. 
2023), (Ng et al. 2021), RF (Collini et al. 2022; Dang et al. 
2019; Hua et al. 2021; Kainthura and Sharma 2022; Ng et al. 
2021), GRU, and LSTM (Tengtrairat et al. 2021), CNN (Yu 
et al. 2023), (Collini et al. 2022), BN (Kainthura and Sharma 
2022), Adaboost tree (Ng et al. 2021), AE (Collini et al. 
2022), and XGBoost (Collini et al. 2022; Harsa et al. 2023), 
uncertain DM-chameleon algorithm (Hu et al. 2019), LMT 
model (Yang et al. 2022), GLM, DRF, and GBM (Harsa 
et al. 2023), and DNN (Harsa et al. 2023; Hua et al. 2021; 
Mondini et al. 2023). Recently, more advanced hybrid mod-
els were introduced to create a better model, such as CFNN 
with 11 different algorithms (Al-Batah et al. 2015), LSSVM-
ABC (Tien Bui et al. 2017), SOM-RF, PCA-IE (Long et al. 
2021), MLP-FR (Guo et al. 2022), LMT-RF, LMT-bagging 
model, LMT boosting model, LMT model (Yang et  al. 
2022), Bi-LSTM-RF, Bi-LSTM (Tengtrairat et al. 2021), 
COA-MLP, and SFO-MLP (Ikram et al. 2023).

Merghadi et al. (2020) listed the theoretical background 
for most adopted machine learning models in landslide sus-
ceptibility. However, this study presents the most recent 
contribution in this field and deeply investigates the effect 
of different factors, initial conditions, model selection, and 
data preparation on prediction accuracy.

Sampling ratio

The precision of the model relies significantly on the sam-
pling ratio. There are three methods to adapt. The first is 
using data from the whole research region, resulting in an 
unequal number of pixels with landslide and non-landslide 
events. The second technique involves equal numbers of 
non-landslide and landslide pixels. However, the model's 
dependability may be lowered if it was built and verified 
using the same landslide data. The most sensible approach 
is to split the landslide pixels into training and test sets (Zhu 
and Huang 2006).

Hua et  al. (2021) utilized different ratios (80%:20%, 
70%:30%, 60%:40%, and 50%:50%) with different datasets, 
as shown in (Fig. 13-a). The 70% -30% ratio was almost sta-
ble with different datasets. Similarly, Selamat et al. (2023) 
investigated the most suitable sampling ratio using ANN 
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using four sampling ratios (50%:50%, 60%:40%, 70%:30%, 
and 80%:20%), and the 80%:20% ratio achieved the best accu-
racy, followed by 70%:30%, 60%:40%, and 50%:50% ratios 
(Fig. 13-b). Ng et al. (2021) investigated the effect of different 
training ratios (50%, 60%, 70%, 80%, and 90%) with differ-
ent models (LR, RF, ABT, SVM, and MLP). 70% achieved 
the best accuracy for RF, ABT, SVM, and MLP, while 60% 
recorded the best accuracy for LR. Hu et al. (2019) applied 
different testing samples (1%, 2%, 5%, 8%, and 10%), where 
10% achieved better results. Zhu and Huang (2006) adopted 
all pixels in the training dataset due to the minimum amount 
of data, while the non-landslide pixels were selected randomly 
to overcome the issue of unequal proportions. Yang (2016) 
and Yang et al. (2012) utilized one rainfall event for training, 
while another rainfall event was used for model testing.

However, based on the current study, the ratio of 
70%:30% is widely used (Guo et al. 2022; Hua et al. 2021; 
Karim et al. 2019; Long et al. 2021; Manchar et al. 2018; 
Ng et al. 2021; Shano et al. 2021; Wubalem 2021; Wubalem 
et al. 2022; Xiao et al. 2022; Yang et al. 2022; Yu et al. 2023; 
Ikram et al. 2023). This was followed by 80%:20% (Col-
lini et al. 2022; Mondini et al. 2023; Selamat et al. 2023; 
Tengtrairat et al. 2021) and 75%:25% (Kainthura and Sharma 
2022; Sharma and Mahajan 2018). Minor scholars proposed 
a 50%:50% ratio (Oh and Lee 2017), 66.67%:33.33% (Al-
Batah et al. 2015), 78%:22% (Wubalem and Meten 2020), 
74%:26% (Tien Bui et al. 2017), 60%:40% (Yang 2017), 
fivefold (Dang et al. 2019), and 20-fold (Harsa et al. 2023). 
Generally, the most adapted ratio was 70%: 30%.

Performance metrics

It is critical not only to select reliable factors and optimize 
features but also to cross-check and validate the model's 
dependability. The widely used performance value is 
AUC (refer to Fig. 14). AUC represents the area under 
the receiver operating characteristic (ROC) curve between 

sensitivity and specificity. AUC ranges between 1 and 0. A 
value of 1 means that the model is perfect, and 0.5 means 
that the model behaves randomly as a coin toss. Likewise, 
the error matrix or confusion matrix is commonly adopted. 
An error matrix is a particular type of table arrangement 
that makes it possible to see how an algorithm performs 
(Table  2) (Stehman 1997). Six common performance 
metrics can be calculated: specificity, sensitivity (recall), 
accuracy (ACC) (classification accuracy rate-CAR (Dang 
et al. 2019)), positive predictive value (PPV) (precision), 
negative predictive value (NPP), and AUC can be calcu-
lated using Eqs. 23, 24, 25, 26, 27, and 28, respectively 
(Fawcett 2006). The  F1 score (Eq. 29), which ranges from 
0 (worst) to 1 (perfect), shows the harmonic median of the 
sensitivity and positive predictive value (Ng et al. 2021). 
The overall accuracy (OA) combines the accuracy,  F1 
score, and AUC (Eq. 30). The greater the OA is, the better 
the results (Ng et al. 2021). Matthew’s correlation coef-
ficient (MCC), where perfect prediction is represented by 
a coefficient of 1, average random forecast by 0, inverse 
prediction by a coefficient of -1 (Chicco et al. 2021), and 

Fig. 13  a) Model accuracy 
(AUC) with different datasets 
and different sampling ratios, b) 
Different accuracy metrics with 
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Kappa index (k) nearest to 1 (Sim and Wright 2005), are 
presented in Eqs. 31 and 32, respectively.

FP and FN are the inaccurately recognized landslide or 
non-landslide occurrences; TP is the successfully identified 
landslide event; and TN is the correctly identified non-land-
slide event. P represents the total number of landslides, and 
N represents the total number of non-landslide events.

where  Pr(a) is the relative observed agreement, and  Pr(e) is 
the hypothetical probability of chance agreement.

Discussion of susceptibility models (prediction accuracy)

In order to assess the connection between various variables 
and the frequency of landslides, many statistical models have 
been developed. However, at this point, there has yet to be a 
consensus on which method is superior, although the general 
view is that each has strengths and drawbacks (Manchar et al. 
2018). Nevertheless, the accuracy of such models depends 
on the quality of the monitored data, such as remote-sensing 
images (Yu et al. 2023). Previous Research has shown that 
by minimizing noise uncertainty, model prediction accu-
racy may be significantly improved through optimization 
and suitable feature selection (Shano et al. 2021; Wubalem 
et al. 2022; Yu et al. 2023). The sampling ratio also has 
a noticeable effect on the accuracy, as mentioned before 
(refer to Fig. 13) (Hua et al. 2021; Selamat et al. 2023). 
Hybrid algorithms also affect the accuracy of the model for 

(23)Sensitivity = TP∕(TP + FN)

(24)Specitificity = TN∕(TN + FP)

(25)Accuracy = (TP + TN)∕(TP + TN + FP + FN)

(26)PPV = TP∕(FP + TP)

(27)NPP = TN∕(FN + TN)

(28)AUC =
(∑

TF + TN
)
∕(P + N)

(29)
F1 − score = 2∗

(
recall∗precision

)
∕(recall + precision)

(30)OA = ACC + F1 + AUC

(31)

MCC =
TP∗TN − FP∗FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(32)k =
(
Pr(a) − Pr(e)

)
∕
(
1 − Pr(e)

)

the same dataset features (Al-Batah et al. 2015). Measuring 
the frequency of data affects the accuracy (Xiao and Zhang 
2023) (please see Fig. 15). The quality of the dataset itself 
greatly affects the results. To prove this, the accuracy of LR 
and SVM was recorded at 88.52% and 91.88%, respectively 
(Hua et al. 2021). Thus, this emphasizes that the closer the 
dataset is to representing the actual initial conditions, the 
higher the accuracy of the model, even for simple models 
(Hua et al. 2021; Ng et al. 2021). The model may, therefore, 
be judged based on the information provided, the study's 
objectives, scalability, ease of use, speed, and capacity to 
deliver accurate findings (Wubalem et al. 2022). To clarify, 
there are two major issues: 1) choosing reasonable features 
based on a better understanding of the initial conditions of 
the case study, and 2) choosing a reasonable model to solve 
the relationship between such features. Table 4 represents 
the recent contribution toward landslide susceptibility maps, 
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mentioning the causative features, selected model, sampling 
ratio, model performances, assumptions, etc. Figures 16 and 
17 present a comparison between different models in terms 
of AUC%. Figure 16 illuminates the different hybrid models 
adopted for landslide susceptibility, where Bi-LSTM-FR, 
LSSVM-BC, and MLP-FR recorded the maximum AUC 
(100, 98.4, and 97.19, respectively). Figure 17 highlights 
the AUC for different statistical models in terms of maxi-
mum, minimum, average, and normalized AUC. Normalized 
AUC is measured as the ratio between the maximum AUC 

divided by the average AUC for the same model as a per-
centage of the maximum value recorded to solve the issue 
of the different number of studies. WoE and DA recorded 
accuracies below 80%, followed by AHP, IV, and CNN, with 
values lower than 90%. RF and LR achieved an accuracy of 
99%, while the other models recorded an accuracy between 
92 and 98%, assuming a well-established dataset. The vari-
ance between the maximum and the minimum AUC for each 
model indicates the effect of other influencing parameters, 
which is shown in Table 4.

Landslide susceptibility ranges

The landslide susceptibility of each cell is measured by the 
landslide number ratio (LNR) or landslide susceptibility index 
(LSI), which represents the spatial distribution of the landslide 
occurrence probability. Landslide susceptibility ranges from 
0% (non-landslide) to 100% (landslide). Generally, susceptibil-
ity maps are presented at different probabilistic levels. While no 
statistical function exists for such probabilistic categorization, 
expert opinion with available literature (pleasee see Table 3) can 
be used (Ayalew and Yamagishi 2005; Yang 2017). Based on the 
current study, a five-fold classification (very low, low, moderate, 
high, and very high) is widely adopted (Dang et al. 2019; Guo 
et al. 2022; Hanafiah et al. 2019; Hua et al. 2021; Liao and Den-
nis 2004; Long et al. 2021; Manchar et al. 2018; Midhuna et al. 
2022; Ng et al. 2021; Shano et al. 2021; Sharma and Mahajan 
2018; Tien Bui et al. 2017; Wang et al. 2009; Wubalem 2021; 
Wubalem et al. 2022; Wubalem and Meten 2020; Xiao et al. 
2022; Yang et al. 2022, 2012; Yu et al. 2023; Zhu and Huang 
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Table 5  Research gaps in landslide prediction models (Deterministic and susceptibility maps models)

Research Gaps Recommendations

Consideration of the random effect of the rainfall pattern itself and 
the real-time monitoring of subsurface geotechnical characteris-
tics needs to be improved. Constitutive modeling was required to 
account for internal changes in soil characteristics produced by 
triggering factors. Previous studies employed fixed values for soil 
characteristics or widely accounted for soil uncertainty using proba-
bilistic and artificial intelligence models

It is recommended to provide real-time, multi-field (displacement, seep-
age, stress, etc.) and online observation with high-precision data to 
establish a real-time extensive dataset. There is a need to develop an 
advanced constitutive model to consider such complex behavior (i.e., 
the randomity of the rainfall events. Moreover, training an AI model 
with an extensive subsurface dataset helps predict such complicated 
mechanisms better

Considering the effect of chemical aggression is missing. In other 
words, when rainwater seeps into a landslide, several gases dissolve 
in it and cause a higher level of chemical aggression

The influence of groundwater chemistry shall be considered, as this 
will affect the porosity and permeability of the soil and may delay or 
accelerate the failure mechanism

Widely, prediction models were built based on the assumption that 
historical events will reoccur in the future, neglecting the change of 
features with time. However, rainfall is not the only dynamic factor; 
reservoir level, soil moisture, land use, and human activities can be 
considered dynamic factors that change with time

Implementing event-based maps and considering the dynamic change 
in the causal elements over time may aid in effectively detecting land-
slide susceptibility and avoiding inaccurate forecasts

Landslide susceptibility maps suffer high subjectivity (refer to 
Table 2)

A spatiotemporal susceptibility map based on the actual mechanism of 
the slop (i.e., the safety factor) may overcome the limitation of such 
subjectivity

The effect of the initial conditions, key features, sampling ratio, obser-
vation frequency, dataset, and model selection on the AI prediction 
accuracy for susceptibility maps still needs research

A sensitivity analysis considering several AI models, different sampling 
ratios, and data rates assists in selecting the optimum model and best 
data set that may help achieve higher prediction accuracy
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2006), while for each class, the percentage can differ as shown 
in Table 2. Hu et al. (2019) and Kainthura and Sharma (2022) 

adopted a three-fold classification (low, moderate, and high). 
Hu et al. (2013), Oh and Lee (2017), Wang and Niu (2010) and 
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Zhu and Huang (2006) utilized a four-fold classification (very 
low, low, moderate, and high). Zangmene et al. (2023) employed 
a four-fold classification (low, moderate, high, and very high). 
Yang (2017) used a six-fold classification (stable; < 1%; 1 to 5%; 
5 to 10%; 10 to 15%;15 to 20%; 20 to 25%; > 25%).

Discussion of susceptibility model (advantages, 
assumptions, and limitations)

Landslide susceptibility maps have an advantage over deter-
ministic studies, as they can be applied to large catchments 
regardless of the availability of proper detailed geotechnical 
parameters (Hua et al. 2021). Prediction maps provide an effec-
tive, affordable, and quick tool for planners to channel their 
efforts and resources in areas with higher susceptibility (Liao 
and Dennis 2004). These maps can aid in decision-making to 
take appropriate actions to prevent such catastrophes (Karim 
et al. 2019). For example, landslide susceptibility maps can 
be used to evaluate the probability of road closure (Yang et al. 
2012; Yang 2016), which will help in road maintenance selec-
tion and hazard mitigation. In other words, the construction of 
infrastructure or planning development should be avoided in 
areas with significant landslide risk unless appropriate land-
slide mitigation measures are taken (Shano et al. 2021). Land-
slide susceptibility maps are built based on the assumption that 
the relationship between the landslide and the feature factor 
controlling this phenomenon will remain relatively the same 
in the future (Dang et al. 2019; Wubalem et al. 2022).

Yet, these techniques fail to quantify slope safety over 
time; all they can do is give the likelihood of landslides or 
non-landslides. Furthermore, there are certain limits to these 
models. The performance of the models depends on a number 
of factors, including the frequency of observations, the ratio 
of training to testing samples, and the availability of previ-
ous landslide data (Hua et al. 2021; Xiao and Zhang 2023; 
Wubalem et al. 2022). Thus, a sensitivity analysis is required 
to select the optimal model performance. Therefore, to over-
come these drawbacks of the dependency on the volume and 
accuracy of the dataset (Yao et al. 2014), it is recommended to 
provide real-time, multi-field (displacement, seepage, stress, 
etc.) and online observation with high-precision data to estab-
lish a real-time extensive dataset (Wang et al. 2023).

Research gaps and future directions

There are two main ways to improve prediction accuracy. The 
first is to increase the quality of the input data, while the sec-
ond is to use new models to achieve greater accuracy. Regarding 
the dataset itself, it is worth noting that real rainfall patterns and 
underlying geotechnical properties require improvement. Despite 
the advances in numerical modelling, several gaps still need to be 

filled (refer to Table 5). Dynamic spatiotemporal maps have lately 
been employed in newly established national regions, although 
additional research is required (refer to Table 5).

Conclusions

This study showcased the latest advancements and cutting-
edge models for predicting landslides caused by rainfall. 
These models include physical deterministic models and 
mapping of landslide susceptibility. Physical models, such as 
analytical and numerical models, have the capability to attain 
outstanding precision. These models consider the actual ini-
tial conditions, such as slope dimensions, infiltration process, 
and soil characteristics. Analytical models integrate infiltra-
tion analysis (infiltration, evaporation, and surface runoff) 
with slope stability analysis, considering both saturated and 
unsaturated conditions. Analytical models can incorporate 
complex features such as steady-state and transient water 
flow conditions, the impact of vegetation cover, weathering, 
degradation, and the neighbouring effect between stable and 
unstable grids. Recently, the TAG-FLOW model has proven 
to be the most accurate. Numerical analysis offers various 
advantages since it uses actual conditions without making 
any assumptions. Numerical models can simulate various 
triggering factors in actual conditions (i.e., real rainfall pat-
terns with time delay effects) and create complex 3D geom-
etries. The real bedrock and overlying soil can be simulated 
precisely considering the hydro-fluctuation effect. Recently, 
the combination of physical models and probabilistic analysis 
has been employed to generate susceptibility maps. In addi-
tion, physical models may be combined with artificial intel-
ligence models to create an early warning prediction model. 
However, physical models require thorough geotechnical 
analysis, which might be unavailable and excessively costly. 
The aforementioned models are generally suitable for local-
scale landslides if spatial input data are available.

Landslide susceptibility maps can be used for land use 
planning and development. Statistical models used to evalu-
ate such maps are classified as direct (qualitative) or indirect 
(quantitative). The qualitative approach is based on expert 
knowledge, whereas quantitative models use various statis-
tical methods to weigh the link between input characteris-
tics. Bivariate models, multivariate models, and artificial 
intelligence models are included in the quantitative analysis. 
Bivariate and multivariate models are linear, which makes it 
difficult to cope with the intricate interaction between trig-
gering factors and slope-controlling characteristics. Arti-
ficial intelligence models have recently become popular. 
These models might be single or hybrid; among all models, 
hybrid models are believed to give a feasible solution to 
cope with complicated relationships between controlling 
characteristics. However, model performance is affected 
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by both the input parameters and the model used. Dynamic 
and spatiotemporal susceptibility have recently emerged as 
prominent study issues.

Despite advancements in deterministic and susceptibility 
models, several gaps still need to be discovered (see Table 5 
for additional information). As a result, an extensive consti-
tutive model that can simulate the weathering process (i.e., 
rainfall randomness) is suggested to be developed (Postill 
et al. 2021). Real-time multi-field subsurface monitoring is 
required to train AI models to forecast such complicated 
mechanisms. Considering several AI models, different sam-
pling ratios, and data rates helps in selecting the best model 
and best data set that may help achieve higher prediction 
accuracy. Groundwater chemistry must be assessed since it 
may alter the temporal forecast of landslides. Considering 
dynamic changes in causative features may assist in under-
standing landslide susceptibility and preventing incorrect 
predictions. To avoid the subjectivity of susceptibility maps, 
analyze the physical mechanism of the slope.

In summary, the research is vital as it investigates the pro-
cedure for choosing the best model and identifies its essen-
tial characteristics. Researchers and professionals seeking 
innovative methods to decrease the severity of landslides 
will benefit significantly from the information this study 
offers. Figure 18 shows models at the local and national 
scales, input parameters, and accuracy. It examines how one 
approach leads to another from a macroscopic perspective, 
depending on input parameters and initial conditions, to a 
microscopic illustration of different analysis models for the 
same method.

Notations

Ra: Antecedent rainfall; Ro: Rolling rainfall; R: Cumu-
lative rainfall; t: Time; C: Cohesion; C’: Effective cohe-
sion; C(ψ): Moisture capacity; ϕ: Internal friction angle; 
ϕ’: Effective internal friction angle; ϕb: Internal friction 
angle corresponding to ψ; ϕ’r:  Residual friction angle; 
ψ: Matric suction; zψ: Matrix suction head; v: Infiltration 
velocity; ua: Atmospheric pressure; uw: Pour water pres-
sure; hw: Water head; hb: Bubbling pressure; Ig: Gradient; 
λ: Pore size index distribution; θw: Volumetric water con-
tent; k: Unsaturated hydraulic conductivity; ksat: Saturated 
hydraulic conductivity; kr: Residual hydraulic conductivity; 
q: Surface flux; Q: Discharge; σ: Normal stress; σs: Suc-
tion stress; τ: Shear stress; τf: Shear strength; nv: Viscosity 
variation with excess shear stress; g: Gravitational accelera-
tion; γd: Dry soil unit weight; γw: The unit weight of water; 
γt: Wet unit weight; γsat: Saturated unit weight; Gs: Specific 
gravity; n: Porosity; Sr: Degree of saturation; Se: Effective 
saturation; T: Saturated soil transmissivity; Wt: Weight of 
soil; H: Thickness above the bedrock layer; z: Unsaturated 
thickness; h : Saturated thickness; W: Width; β: Slope angle; 
msat: Dimensionless thickness for saturated layer; Tr: Root 

failure strength; Ar/A: Root area ratio; f: Coefficient function 
of (friction angle and roots orientation); Pf: Probability of 
failure; Pr(a): Relative observed agreement; Pr(e) : Hypo-
thetical probability of chance agreement; FS: Factor of safety

Abbreviation

DBA: Displacement back analysis; SWCC : Soil Water Char-
acteristic Curve; HCF: Hydraulic Conductivity Function; 
MVG: Mualem-van Genuchten; ATI: Average topographic 
index; FRC: Flow recession coefficient; TWI: Topographic 
witness Index; NDVI: Normalized difference vegetation 
index; LUC: Land-use change; BMFC: Band math fac-
tor combination; LUFC:  Land-use factor combination; 
LUCFC: Land-use change factor combination; GA: Green 
ampt model; TOPMODEL:  TOPography-based hydro-
logical MODEL; SLIDE: SLope-Infiltration-Distributed 
Equilibrium; CREST: Coupled Routing and Excess STor-
age; SLIDE: SLope-Infiltration-Distributed Equilibrium; 
TRIGRS: Transient Rainfall Infiltration and Grid-based 
Slope stability; HIRESSS:  HIgh-REsolution Slope Sta-
bility Simulator; SLIP:  Shallow Landslides Instability 
Prediction; LURR : Loading-Unloading-Response Ratio; 
IF: Indicator function; 3DPLS: 3-Dimensional Probabil-
istic Landslide Susceptibility; MC: Monte Carlo simula-
tion; PDF: Probability density function; MoSLaPS: Model 
Switch-based Landslide Prediction System; PC4City: Civil 
protection for the city; AUC : The area under the ROC curve; 
ROC: Receiver operating characteristic; FPR: False positive 
rate; R2: Coefficient of determination; RMSE: Root mean 
square error; MSE: Mean square error; MAE: Mean abso-
lute error; SDR: Standard deviation ratio; PRC: Pearson-
R correlation; ACC : Classification Accuracy Rate-CAR ; 
PPV: Positive Predictive Value; NPP: Negative Predictive 
Value; OA: Overall accuracy; MCC: Matthew’s correla-
tion coefficient; k: Kappa index; AHP: Analytic hierarchy 
process; WLC: Weighted linear combination; RVM: Rel-
evance vector machines; GLM: Generalized linear model; 
IV: Information value; FL: Fuzzy logic; TFNW: Trapezoidal 
fuzzy number weighting; FR: Frequency ratio; WoE: Weight 
of evidence; CF: Certainty factor; IOE: Index of entropy; 
LR:  Logistic regression; DA:  Discriminate analysis; 
ANN: Artificial neural networks; MLP: Multilayer percep-
tron; DT: Decision tree; BPNN: Backpropagation neural net-
works; SVM: Support vector mechanism; RF: Random for-
est model; LSSVM: Least squares support vector machines; 
LSTM: Long short-term memory; GRU : Gated recurrent 
unite; DNN:  Deep neural networks; BT:  Boosted Tree; 
BN: Bayesian networks; CNN: Conventional neural network; 
AT: Adaboost tree; AE: Autoencoder; AXBoost: EXtreme 
gradient boosting; GBM: Generalized boosing machine; 
LMT:  Logistic model tree; LM:  Levenberg–Marquardt 
algorithm; BFG: Broyden Fletcher Goldfarb; Rp: Resilient 
backpropagation; SCG: Conjugate gradient with Beale; 
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CFG: Conjugate gradient with Fletcher Reeves’ updates; 
CGP:  Conjugate Gradient with Polakribiere updates; 
OSS: One Step Secant; GD: Gradient Descent; GDX: Gra-
dient descent with momentum and adaptive learning rate; 
PCA: Principal component analysis; GDM: Gradient Descent 
with Momentum; CFNN: Cascade Forward Neural Network; 
ABC: Artificial bee colony; SOM: Self-organizing mapping; 
Bi: Bidirectional; KNN: K-Nearest Neighbor; LASSO: Least 
absolute shrinkage and selection operator; ABT: Adaboost 
tree; DRF: Distributed random forest; SFO: SailFish opti-
mizer; COA: Cuckoo optimization algorithm

Acknowledgements The authors gratefully acknowledge the fund pro-
vided by the Hong Kong Polytechnic University and partially acknowl-
edge the Innovation and Technology Support Programme (ITSP) of the 
Hong Kong SAR [Grant No. ITS/033/20FP].

Funding Open access funding provided by The Hong Kong Polytechnic 
University.

Data Availability The data used in this article were either provided 
in tables for examples, or are the data that can be found in the cited 
references.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abolmasov B, Milenković S, Marjanović M, Đurić U, Jelisavac 
B (2015) A geotechnical model of the Umka landslide with 
reference to landslides in weathered Neogene marls in Ser-
bia. Landslides 12(4):689–702. https:// doi. org/ 10. 1007/ 
s10346- 014- 0499-4

Al-Batah MS, Alkhasawneh MS, Tay LT, Ngah UK, Lateh H, Mat 
Isa NA (2015) Landslide occurrence prediction using trainable 
cascade forward network and multilayer perceptron. Math Probl 
Eng 2015:512158. https:// doi. org/ 10. 1155/ 2015/ 512158

An H, Viet TT, Lee G, Kim Y, Kim M, Noh S, Noh J (2016) Develop-
ment of time-variant landslide-prediction software considering 
three-dimensional subsurface unsaturated flow. Environ Model 
Softw 85:172–183. https:// doi. org/ 10. 1016/j. envso ft. 2016. 08. 009

Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) 
Landslide hazard zonation mapping using frequency ratio and 
fuzzy logic approach, a case study of Lachung Valley Sik-
kim. Geoenviron Disasters 2(1):6. https:// doi. org/ 10. 1186/ 
s40677- 014- 0009-y

Arinze EE, Okonkwo UN, Afolabi SO, Ahaiwe CM, Ojobo MO (2021) 
Geotechnical and Geological Analysis of Amuzukwu Landslide. 
Am J Environ Protect 10(4):84–89. https:// doi. org/ 10. 11648/j. 
ajep. 20211 004. 12

Ayalew L, Yamagishi H (2005) The application of GIS-based logistic 
regression for landslide susceptibility mapping in the Kakuda-
Yahiko Mountains Central Japan. Geomorphology 65(1–2):15–
31. https:// doi. org/ 10. 1016/j. geomo rph. 2004. 06. 010

Baum RL, Savage WZ, Godt JW (2008) TRIGRS: a Fortran program for 
transient rainfall infiltration and grid-based regional slope-stability 
analysis, version 2.0. U.S. Geological Survey Open-File Report 1159

Bednarczyk Z (2018) Identification of flysch landslide triggers using 
conventional and ‘nearly real-time monitoring methods–An 
example from the Carpathian Mountains, Poland. Eng Geol 
244:41–56. https:// doi. org/ 10. 1016/j. enggeo. 2018. 07. 012

Bezerra L, Neto ODF, Santos O Jr, Mickovski S (2020) Landslide risk 
mapping in an urban area of the city of Natal. Brazil Sustain-
ability (switzerland) 12(22):9601. https:// doi. org/ 10. 3390/ su122 
29601

Beven KJ, Kirkby MJ (1979) A physically based, variable contributing 
area model of basin hydrology/Un modèle à base physique de 
zone d’appel variable de l’hydrologie du bassin versant. Hydrol 
Sci Bull 24(1):43–69. https:// doi. org/ 10. 1080/ 02626 66790 94918 
34

Bhardwaj V, Singh K (2023) Landslide Susceptibility Assessment 
using Remote Sensing and GIS-a. Journal of Mining and Envi-
ronment 14(1):133–154. https:// doi. org/ 10. 22044/ jme. 2023. 
12580. 2283

Bicocchi G, Tofani V, D’Ambrosio M, Tacconi-Stefanelli C, Vannocci 
P, Casagli N, Lavorini G, Trevisani M, Catani F (2019) Geo-
technical and hydrological characterization of hillslope deposits 
for regional landslide prediction modeling. Bull Eng Geol Env 
78(7):4875–4891. https:// doi. org/ 10. 1007/ s10064- 018- 01449-z

Birkinshaw SJ, Ewen J (2000) Nitrogen transformation component 
for SHETRAN catchment nitrate transport modelling. J Hydrol 
230(1–2):1–17. https:// doi. org/ 10. 1016/ S0022- 1694(00) 00174-8

Bishop AW (1955) The use of the slip circle in the stability analysis 
of slopes. Géotechnique 5(1):7–17. https:// doi. org/ 10. 1680/ geot. 
1955.5. 1.7

Calvello M, Cascini L, Grimaldi GM (2009) Displacement scenarios 
of a rainfall-controlled slow moving active slide in stiff clays. 
Georisk 3(3):116–125. https:// doi. org/ 10. 1080/ 17499 51090 
27938 50

Cao Y, Yin K, Zhou C, Ahmed B (2020) Establishment of landslide 
groundwater level prediction model based on GA-SVM and influ-
encing factor analysis. Sensors (switzerland) 20(3):845. https:// 
doi. org/ 10. 3390/ s2003 0845

Caine N (1980) The rainfall intensity-duration control of shallow land-
slides and debris flows. Geogr Ann Ser B 62(1–2):23–27. https:// 
doi. org/ 10. 1080/ 04353 676. 1980. 11879 996

Chicco D, Tötsch N, Jurman G (2021) The Matthews correlation coeffi-
cient (MCC) is more reliable than balanced accuracy, bookmaker 
informedness, and markedness in two-class confusion matrix 
evaluation. BioData Mining 14(1):13. https:// doi. org/ 10. 1186/ 
s13040- 021- 00244-z

Cho SE (2017) Prediction of shallow landslide by surficial stability 
analysis considering rainfall infiltration. Eng Geol 231:126–138. 
https:// doi. org/ 10. 1016/j. enggeo. 2017. 10. 018

Chae BG, Park HJ, Catani F, Simoni A, Berti M (2017) Landslide 
prediction, monitoring and early warning: a concise review of 
state-of-the-art. Geosci J 21(6):1033–1070. https:// doi. org/ 10. 
1007/ s12303- 017- 0034-4

Chae BG, Wu YH, Liu KF, Choi J, Park HJ (2020) Simulation of 
debris-flow runout near a construction site in Korea. Appl Sci 
10(17):6079. https:// doi. org/ 10. 3390/ app10 176079

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10346-014-0499-4
https://doi.org/10.1007/s10346-014-0499-4
https://doi.org/10.1155/2015/512158
https://doi.org/10.1016/j.envsoft.2016.08.009
https://doi.org/10.1186/s40677-014-0009-y
https://doi.org/10.1186/s40677-014-0009-y
https://doi.org/10.11648/j.ajep.20211004.12
https://doi.org/10.11648/j.ajep.20211004.12
https://doi.org/10.1016/j.geomorph.2004.06.010
https://doi.org/10.1016/j.enggeo.2018.07.012
https://doi.org/10.3390/su12229601
https://doi.org/10.3390/su12229601
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1080/02626667909491834
https://doi.org/10.22044/jme.2023.12580.2283
https://doi.org/10.22044/jme.2023.12580.2283
https://doi.org/10.1007/s10064-018-01449-z
https://doi.org/10.1016/S0022-1694(00)00174-8
https://doi.org/10.1680/geot.1955.5.1.7
https://doi.org/10.1680/geot.1955.5.1.7
https://doi.org/10.1080/17499510902793850
https://doi.org/10.1080/17499510902793850
https://doi.org/10.3390/s20030845
https://doi.org/10.3390/s20030845
https://doi.org/10.1080/04353676.1980.11879996
https://doi.org/10.1080/04353676.1980.11879996
https://doi.org/10.1186/s13040-021-00244-z
https://doi.org/10.1186/s13040-021-00244-z
https://doi.org/10.1016/j.enggeo.2017.10.018
https://doi.org/10.1007/s12303-017-0034-4
https://doi.org/10.1007/s12303-017-0034-4
https://doi.org/10.3390/app10176079


 Bulletin of Engineering Geology and the Environment           (2024) 83:85    85  Page 26 of 30

Chen ZY, Morgenstern N (1983) Extensions to the generalized method 
of slices for stability analysis. Can Geotech J 20(1):104–119. 
https:// doi. org/ 10. 1139/ t83- 010

Chen X, Zhang L, Chen L, Li X, Liu D (2019) Slope stability analy-
sis based on the Coupled Eulerian-Lagrangian finite element 
method. Bull Eng Geol Env 78(6):4451–4463. https:// doi. org/ 
10. 1007/ s10064- 018- 1413-4

Collini E, Palesi LI, Nesi P, Pantaleo G, Nocentini N, Rosi A (2022) 
Predicting and understanding landslide events with explainable 
AI. IEEE Access 10:31175–31189. https:// doi. org/ 10. 1109/ 
ACCESS. 2022. 31583 28

Collins BD, Znidarcic D (2004) Stability analyses of rainfall induced 
landslides. J Geotech Geoenviron Eng 130(4):362–372. https:// 
doi. org/ 10. 1061/ (ASCE) 1090- 0241(2004) 130: 4(362)

Corominas J, Guzzetti F, Lan H, Macciotta R, Marunteranu C, McDou-
gall S, Strom A (2023) Revisiting landslide risk terms: IAEG 
commission C-37 working group on landslide risk nomencla-
ture. Bull Eng Geol Env 82(12):450. https:// doi. org/ 10. 1007/ 
s10064- 023- 03474-z

Cuomo S, Di Perna A, Martinelli M (2021) Modelling the spatio-tem-
poral evolution of a rainfall-induced retrogressive landslide in 
an unsaturated slope. Eng Geol 294:106371. https:// doi. org/ 10. 
1016/j. enggeo. 2021. 106371

Dai Y, Dai W, Yu W, Bai D (2022) Determination of landslide displace-
ment warning thresholds by applying DBA-LSTM and numeri-
cal simulation algorithms. Appl Sci (switzerland) 12(13):6690. 
https:// doi. org/ 10. 3390/ app12 136690

Dang VH, Dieu TB, Tran XL, Hoang ND (2019) Enhancing the 
accuracy of rainfall-induced landslide prediction along moun-
tain roads with a GIS-based random forest classifier. Bull 
Eng Geol Env 78(4):2835–2849. https:// doi. org/ 10. 1007/ 
s10064- 018- 1273-y

Das P, Patwa D, Bharat TV (2022) Influencing factors on the simu-
lation of rainfall-induced landslide prediction based on case 
study. Bull Eng Geol Env 81(5):194. https:// doi. org/ 10. 1007/ 
s10064- 022- 02682-3

Davar S, Nobahar M, Khan MS, Amini F (2022) The development of 
PSO-ANN and BOA-ANN models for predicting matric suction 
in expansive clay soil. Mathematics 10(16):2825. https:// doi. org/ 
10. 3390/ math1 01628 25

Depina I, Oguz EA, Thakur V (2020) Novel Bayesian framework for 
calibration of spatially distributed physical-based landslide pre-
diction models. Comput Geotech 125:103660. https:// doi. org/ 10. 
1016/j. compg eo. 2020. 103660

De Graff JV (2011) Perspectives for systematic landslide monitoring. 
Environ Eng Geosci 17(1):67–76. https:// doi. org/ 10. 2113/ gseeg 
eosci. 17.1. 67

Duncan JM (1996) State of the art: limit equilibrium and finite-element 
analysis of slopes. J Geotechn Eng 122(7):577–596. https:// doi. 
org/ 10. 1061/ (ASCE) 0733- 9410(1996) 122: 7(577)

Ebrahim KMP, Gomaa SMMH, Zayed T, Alfalah G (2024a) Landslide 
prediction models, Part I: Empirical-statistical and physically 
based causative thresholds [Manuscript submitted for publica-
tion]. Faculty of Construction and Environment, The Hong Kong 
Polytechnic University, Department of Building and Real Estate

Ebrahim KMP, Gomaa SMMH, Zayed T, Alfalah G (2024b) Phenom-
enal and investigational recent subsurface landslide monitoring 
techniques: A mixed review. Remote Sensing 16(2):385. https:// 
doi. org/ 10. 3390/ rs160 20385

Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn 
Lett 27(8):861–874. https:// doi. org/ 10. 1016/j. patrec. 2005. 10. 010

Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) 
Guidelines for landslide susceptibility, hazard and risk zoning 
for land use planning. Eng Geol 102(3):85–98. https:// doi. org/ 
10. 1016/j. enggeo. 2008. 03. 022

Feng Y, Yan F, Wu L, Lu G, Liu T (2023) Numerical Analyses of 
Slope Stability Considering Grading and Seepage Prevention. 
Water 15(9):1745. https:// www. mdpi. com/ 2073- 4441/ 15/9/ 1745

Formetta G, Capparelli G (2019) Quantifying the three-dimensional 
effects of anisotropic soil horizons on hillslope hydrology and 
stability. J Hydrol 570:329–342. https:// doi. org/ 10. 1016/j. jhydr 
ol. 2018. 12. 064

Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. 
John Wiley and Sons

Fredlund DG, Krahn J (1977) Comparison of slope stability methods 
of analysis. Can Geotech J 14(3):429–439. https:// doi. org/ 10. 
1139/ t77- 045

Gerscovich DMS, Vargas EA Jr, De Campos TMP (2006) On the evalu-
ation of unsaturated flow in a natural slope in Rio de Janeiro. 
Brazil Eng Geol 88(1–2):23–40. https:// doi. org/ 10. 1016/j. 
enggeo. 2006. 07. 008

Guo C, Wu J, Zhao S, Wang Z, Meena SR, Zhang F (2022) Landslide 
susceptibility assessment based on multi GPUs: A deep learning 
approach. CCF Trans High Performance Comput 4(2):135–149. 
https:// doi. org/ 10. 1007/ s42514- 022- 00097-w

Green WH, Ampt GA (1911) Studies on Soil Phyics. J Agric Sci 
4(1):1–24. https:// doi. org/ 10. 1017/ S0021 85960 00014 41

Giri P, Ng K, Phillips W (2018) Wireless sensor network system for 
landslide monitoring and warning. IEEE Trans Instrum Meas 
68(4):1210–1220. https:// doi. org/ 10. 1109/ TIM. 2018. 28619 99

Hanafiah MIM, Solemon B, Omar R, Roslan R, Wahab WA, Baharud-
din INZ, Gunasagaran V (2019) Landslide susceptibility assess-
ment for cameron highlands using analytical hierarchy process. 
Int J Eng Adv Technol 9(1):3494–3499. https:// doi. org/ 10. 35940/ 
ijeat. A2673. 109119

Harsa H, Hidyat AM, Mulsandi A, Suprihadi B, Kurniawan R, Habibie 
MN, Hutapea TD, Swarinoto YS, Makmur EES, Fitria W, Sri 
Sudewi RS, Praja AS (2023) Machine learning and artificial 
intelligence models development in rainfall-induced landslide 
prediction. IAES Int J Artif Intell 12(1):262–270. https:// doi. org/ 
10. 11591/ ijai. v12. i1. pp262- 270

He J, Wang S, Liu H, Nguyen V, Han W (2021) The critical curve for 
shallow saturated zone in soil slope under rainfall and its predic-
tion for landslide characteristics. Bull Eng Geol Env 80(3):1927–
1945. https:// doi. org/ 10. 1007/ s10064- 020- 02016-1

He X, Hong Y, Vergara H, Zhang K, Kirstetter PE, Gourley JJ, Zhang 
Y, Qiao G, Liu C (2016) Development of a coupled hydrological-
geotechnical framework for rainfall-induced landslides predic-
tion. J Hydrol 543(Part B):395–405. https:// doi. org/ 10. 1016/j. 
jhydr ol. 2016. 10. 016

Ho JY, Lee KT (2017) Performance evaluation of a physically based 
model for shallow landslide prediction. Landslides 14(3):961–
980. https:// doi. org/ 10. 1007/ s10346- 016- 0762-y

Ho JY, Lee KT, Chang TC, Wang ZY, Liao YH (2012) Influences of 
spatial distribution of soil thickness on shallow landslide predic-
tion. Eng Geol 124(1):38–46. https:// doi. org/ 10. 1016/j. enggeo. 
2011. 09. 013

Hobbs PRN, Jones LD, Kirkham MP, Pennington CVL, Morgan DJR, 
Dashwood C (2020) Coastal landslide monitoring at aldbrough, 
east riding of Yorkshire, UK. Q J Eng GeolHydrogeol 53(1):101–
116. https:// doi. org/ 10. 1144/ qjegh 2018- 210

Hong M, Kim J, Jeong S (2018) Rainfall intensity-duration thresholds 
for landslide prediction in South Korea by considering the effects 
of antecedent rainfall. Landslides 15(3):523–534. https:// doi. org/ 
10. 1007/ s10346- 017- 0892-x

Hu J, Zhu H, Mao Y, Zhang C, Liang T, Mao D (2019) Using uncertain 
DM-chameleon clustering algorithm based on machine learning 
to predict landslide hazards. J Robotics Mechatron 31(2):329–
338. https:// doi. org/ 10. 20965/ jrm. 2019. p0329

https://doi.org/10.1139/t83-010
https://doi.org/10.1007/s10064-018-1413-4
https://doi.org/10.1007/s10064-018-1413-4
https://doi.org/10.1109/ACCESS.2022.3158328
https://doi.org/10.1109/ACCESS.2022.3158328
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(362)
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(362)
https://doi.org/10.1007/s10064-023-03474-z
https://doi.org/10.1007/s10064-023-03474-z
https://doi.org/10.1016/j.enggeo.2021.106371
https://doi.org/10.1016/j.enggeo.2021.106371
https://doi.org/10.3390/app12136690
https://doi.org/10.1007/s10064-018-1273-y
https://doi.org/10.1007/s10064-018-1273-y
https://doi.org/10.1007/s10064-022-02682-3
https://doi.org/10.1007/s10064-022-02682-3
https://doi.org/10.3390/math10162825
https://doi.org/10.3390/math10162825
https://doi.org/10.1016/j.compgeo.2020.103660
https://doi.org/10.1016/j.compgeo.2020.103660
https://doi.org/10.2113/gseegeosci.17.1.67
https://doi.org/10.2113/gseegeosci.17.1.67
https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
https://doi.org/10.3390/rs16020385
https://doi.org/10.3390/rs16020385
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.enggeo.2008.03.022
https://doi.org/10.1016/j.enggeo.2008.03.022
https://www.mdpi.com/2073-4441/15/9/1745
https://doi.org/10.1016/j.jhydrol.2018.12.064
https://doi.org/10.1016/j.jhydrol.2018.12.064
https://doi.org/10.1139/t77-045
https://doi.org/10.1139/t77-045
https://doi.org/10.1016/j.enggeo.2006.07.008
https://doi.org/10.1016/j.enggeo.2006.07.008
https://doi.org/10.1007/s42514-022-00097-w
https://doi.org/10.1017/S0021859600001441
https://doi.org/10.1109/TIM.2018.2861999
https://doi.org/10.35940/ijeat.A2673.109119
https://doi.org/10.35940/ijeat.A2673.109119
https://doi.org/10.11591/ijai.v12.i1.pp262-270
https://doi.org/10.11591/ijai.v12.i1.pp262-270
https://doi.org/10.1007/s10064-020-02016-1
https://doi.org/10.1016/j.jhydrol.2016.10.016
https://doi.org/10.1016/j.jhydrol.2016.10.016
https://doi.org/10.1007/s10346-016-0762-y
https://doi.org/10.1016/j.enggeo.2011.09.013
https://doi.org/10.1016/j.enggeo.2011.09.013
https://doi.org/10.1144/qjegh2018-210
https://doi.org/10.1007/s10346-017-0892-x
https://doi.org/10.1007/s10346-017-0892-x
https://doi.org/10.20965/jrm.2019.p0329


Bulletin of Engineering Geology and the Environment           (2024) 83:85  Page 27 of 30    85 

Hu Z, Wei L, Fang D, Lai T, Wang Q (2013) Spatial prediction of 
earthquake-induced secondary landslide disaster in Beichuan 
County based on GIS. Res J Appl Sci Eng Technol 6(20):3828–
3837. https:// doi. org/ 10. 19026/ rjaset. 6. 3598

Hua Y, Wang X, Li Y, Xu P, Xia W (2021) Dynamic development 
of landslide susceptibility based on slope unit and deep neural 
networks. Landslides 18(1):281–302. https:// doi. org/ 10. 1007/ 
s10346- 020- 01444-0

Huang J, Ju NP, Liao YJ, Liu DD (2015) Determination of rainfall 
thresholds for shallow landslides by a probabilistic and empirical 
method. Nat Hazard 15(12):2715–2723. https:// doi. org/ 10. 5194/ 
nhess- 15- 2715- 2015

Huang J, Wu X, Ling S, Li X, Wu Y, Peng L, He Z (2022) A bib-
liometric and content analysis of research trends on GIS-
based landslide susceptibility from 2001 to 2020. Environ 
Sci Pollut Res 29(58):86954–86993. https:// doi. org/ 10. 1007/ 
s11356- 022- 23732-z

Huang Y, He Z (2023) Rainfall-oriented resilient design for slope sys-
tem: Resilience-enhancing strategies. Soils Found 63(2):101297. 
https:// doi. org/ 10. 1016/j. sandf. 2023. 101297

Huo YX, Gomaa SM, Zayed T, Meguid M (2023) Review of analytical 
methods for stress and deformation analysis of buried water pipes 
considering pipe-soil interaction. Underground Space 13:205–
227. https:// doi. org/ 10. 1016/j. undsp. 2023. 02. 017

Hwang IT, Park HJ, Lee JH (2023) Probabilistic analysis of rainfall-
induced shallow landslide susceptibility using a physically based 
model and the bootstrap method. Landslides 20(4):829–844. 
https:// doi. org/ 10. 1007/ s10346- 022- 02014-2

Ikram RMA, Dehrashid AA, Zhang B, Chen Z, Le BN, Moayedi H 
(2023) A novel swarm intelligence: cuckoo optimization algo-
rithm (COA) and SailFish optimizer (SFO) in landslide suscepti-
bility assessment. Stoch Env Res Risk Assess 37(5):1717–1743. 
https:// doi. org/ 10. 1007/ s00477- 022- 02361-5

Ji J, Cui H, Zhang T, Song J, Gao Y (2022) A GIS-based tool for 
probabilistic physical modelling and prediction of land-
slides: GIS-FORM landslide susceptibility analysis in seismic 
areas. Landslides 19(9):2213–2231. https:// doi. org/ 10. 1007/ 
s10346- 022- 01885-9

Kainthura P, Sharma N (2022) Machine learning driven landslide sus-
ceptibility prediction for the Uttarkashi region of Uttarakhand 
in India. Georisk: Assess Manag Risk for Eng Syst Geohazards 
16(3):570–583. https:// doi. org/ 10. 1080/ 17499 518. 2021. 19574 84

Karim Z, Hadji R, Hamed Y (2019) GIS-based approaches for the 
landslide susceptibility prediction in Setif Region (NE Alge-
ria). Geotech Geol Eng 37(1):359–374. https:// doi. org/ 10. 1007/ 
s10706- 018- 0615-7

Khan MI, Wang S (2021) Slope stability analysis to correlate shear 
strength with slope angle and shear stress by considering satu-
rated and unsaturated seismic conditions. Appl Sci (switzerland) 
11(10):4568. https:// doi. org/ 10. 3390/ app11 104568

Lee KT, Ho JY (2009) Prediction of landslide occurrence based on 
slope-instability analysis and hydrological model simulation. 
J Hydrol 375(3–4):489–497. https:// doi. org/ 10. 1016/j. jhydr ol. 
2009. 06. 053

Lee W-L, Martinelli M, Shieh C-L (2021) An Investigation of Rain-
fall-Induced Landslides From the Pre-Failure Stage to the Post-
Failure Stage Using the Material Point Method. Front Earth Sci 
9:764393. https:// doi. org/ 10. 3389/ feart. 2021. 764393

Li Y, Utili S, Milledge D, Chen L, Yin K (2021) Chasing a complete 
understanding of the failure mechanisms and potential hazards of 
the slow moving Liangshuijing landslide. Eng Geol 281:105977. 
https:// doi. org/ 10. 1016/j. enggeo. 2020. 105977

Liang WL, Uchida T (2022) Performance and topographic preferences 
of dynamic and steady models for shallow landslide prediction 
in a small catchment. Landslides 19(1):51–66. https:// doi. org/ 10. 
1007/ s10346- 021- 01771-w

Liao Q, Dennis ND (2004) Focusing landslide investigation efforts with 
geographic information system screening techniques. Transp Res 
Rec 1868(1):113–123. https:// doi. org/ 10. 3141/ 1868- 12

Liao Z, Hong Y, Wang J, Fukuoka H, Sassa K, Karnawati D, Fathani 
F (2010) Prototyping an experimental early warning system for 
rainfall-induced landslides in Indonesia using satellite remote 
sensing and geospatial datasets. Landslides 7(3):317–324. 
https:// doi. org/ 10. 1007/ s10346- 010- 0219-7

Liu X, Wang Y, Koo RC, Kwan JS (2022) Development of a slope 
digital twin for predicting temporal variation of rainfall-induced 
slope instability using past slope performance records and mon-
itoring data. Eng Geol 308:106825. https:// doi. org/ 10. 1016/j. 
enggeo. 2022. 106825

Liu X, Wang Y, Li D-Q (2020) Numerical simulation of the 1995 
rainfall-induced Fei Tsui Road landslide in Hong Kong: new 
insights from hydro-mechanically coupled material point 
method. Landslides 17:2755–2775. https:// doi. org/ 10. 1007/ 
s10346- 020- 01442-2

Long J, Liu Y, Li C, Fu Z, Zhang H (2021) A novel model for 
regional susceptibility mapping of rainfall-reservoir induced 
landslides in Jurassic slide-prone strata of western Hubei Prov-
ince, Three Gorges Reservoir area. Stoch Env Res Risk Assess 
35(7):1403–1426. https:// doi. org/ 10. 1007/ s00477- 020- 01892-z

Manchar N, Benabbas C, Hadji R, Bouaicha F, Grecu F (2018) 
Landslide susceptibility assessment in Constantine region 
(NE Algeria) by means of statistical models. Studia Geotech-
nica Et Mechanica 40(3):208–219. https:// doi. org/ 10. 2478/ 
sgem- 2018- 0024

Marrapu BM, Kukunuri A, Jakka RS (2021) Improvement in pre-
diction of slope stability & relative importance factors using 
ANN. Geotech Geol Eng 39(8):5879–5894. https:// doi. org/ 10. 
1007/ s10706- 021- 01872-2

Ma J, Tang H, Hu X, Bobet A, Yong R, Ez Eldin MA (2017) Model 
testing of the spatial–temporal evolution of a landslide failure. 
Bull Eng Geol Env 76(1):323–339. https:// doi. org/ 10. 1007/ 
s10064- 016- 0884-4

Matyas EL, Radhakrishna HS (1968) Volume Change Characteris-
tics of Partially Saturated Soils. Géotechnique 18(4):432–448. 
https:// doi. org/ 10. 1680/ geot. 1968. 18.4. 432

Medwedeff WG, Clark MK, Zekkos D, West AJ (2020) Character-
istic landslide distributions: An investigation of landscape 
controls on landslide size. Earth Planet Sci Lett 539:116203. 
https:// doi. org/ 10. 1016/j. epsl. 2020. 116203

Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, 
Avtar R, Abderrahmane B (2020) Machine learning methods 
for landslide susceptibility studies: A comparative overview 
of algorithm performance. Earth Sci Rev 207:103225. https:// 
doi. org/ 10. 1016/j. earsc irev. 2020. 103225

Midhuna V, Grurugnanam B, Bairavi S (2022) Landslide Susceptibil-
ity Mapping using Frequency Ratio, a case study of Vythiri-
block in Wayanad, the northern part of Kerala India. Disaster 
Adv 15(1):1–15. https:// doi. org/ 10. 25303/ 1501d a0010 15

Mondini AC, Guzzetti F, Melillo M (2023) Deep learning forecast of 
rainfall-induced shallow landslides. Nat Commun 14(1):2466. 
https:// doi. org/ 10. 1038/ s41467- 023- 38135-y

Morgenstern NU, Price VE (1965) The analysis of the stability of 
general slip surfaces. Géotechnique 15(1):79–93. https:// doi. 
org/ 10. 1680/ geot. 1965. 15.1. 79

Ng CWW, Yang B, Liu ZQ, Kwan JSH, Chen L (2021) Spatiotem-
poral modelling of rainfall-induced landslides using machine 
learning. Landslides 18(7):2499–2514. https:// doi. org/ 10. 1007/ 
s10346- 021- 01662-0

Nguyen TS, Likitlersuang S, Jotisankasa A (2019) Influence of the 
spatial variability of the root cohesion on a slope-scale sta-
bility model: a case study of residual soil slope in Thailand. 

https://doi.org/10.19026/rjaset.6.3598
https://doi.org/10.1007/s10346-020-01444-0
https://doi.org/10.1007/s10346-020-01444-0
https://doi.org/10.5194/nhess-15-2715-2015
https://doi.org/10.5194/nhess-15-2715-2015
https://doi.org/10.1007/s11356-022-23732-z
https://doi.org/10.1007/s11356-022-23732-z
https://doi.org/10.1016/j.sandf.2023.101297
https://doi.org/10.1016/j.undsp.2023.02.017
https://doi.org/10.1007/s10346-022-02014-2
https://doi.org/10.1007/s00477-022-02361-5
https://doi.org/10.1007/s10346-022-01885-9
https://doi.org/10.1007/s10346-022-01885-9
https://doi.org/10.1080/17499518.2021.1957484
https://doi.org/10.1007/s10706-018-0615-7
https://doi.org/10.1007/s10706-018-0615-7
https://doi.org/10.3390/app11104568
https://doi.org/10.1016/j.jhydrol.2009.06.053
https://doi.org/10.1016/j.jhydrol.2009.06.053
https://doi.org/10.3389/feart.2021.764393
https://doi.org/10.1016/j.enggeo.2020.105977
https://doi.org/10.1007/s10346-021-01771-w
https://doi.org/10.1007/s10346-021-01771-w
https://doi.org/10.3141/1868-12
https://doi.org/10.1007/s10346-010-0219-7
https://doi.org/10.1016/j.enggeo.2022.106825
https://doi.org/10.1016/j.enggeo.2022.106825
https://doi.org/10.1007/s10346-020-01442-2
https://doi.org/10.1007/s10346-020-01442-2
https://doi.org/10.1007/s00477-020-01892-z
https://doi.org/10.2478/sgem-2018-0024
https://doi.org/10.2478/sgem-2018-0024
https://doi.org/10.1007/s10706-021-01872-2
https://doi.org/10.1007/s10706-021-01872-2
https://doi.org/10.1007/s10064-016-0884-4
https://doi.org/10.1007/s10064-016-0884-4
https://doi.org/10.1680/geot.1968.18.4.432
https://doi.org/10.1016/j.epsl.2020.116203
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.25303/1501da001015
https://doi.org/10.1038/s41467-023-38135-y
https://doi.org/10.1680/geot.1965.15.1.79
https://doi.org/10.1680/geot.1965.15.1.79
https://doi.org/10.1007/s10346-021-01662-0
https://doi.org/10.1007/s10346-021-01662-0


 Bulletin of Engineering Geology and the Environment           (2024) 83:85    85  Page 28 of 30

Bull Eng Geol Env 78(5):3337–3351. https:// doi. org/ 10. 1007/ 
s10064- 018- 1380-9

Oguz EA, Depina I, Thakur V (2022) Effects of soil heterogeneity on 
susceptibility of shallow landslides. Landslides 19(1):67–83. 
https:// doi. org/ 10. 1007/ s10346- 021- 01738-x

Oh HJ, Lee S (2017) Shallow landslide susceptibility modeling using 
the data mining models artificial neural network and boosted 
tree. Applied Sciences (switzerland) 7(10):1000. https:// doi. 
org/ 10. 3390/ app71 01000

Oliveira EdP, Acevedo AMG, Moreira VS, Faro VP, Kormann ACM 
(2022) The Key Parameters Involved in a Rainfall-Triggered 
Landslide. Water 14(21): 3561. https:// www. mdpi. com/ 2073- 
4441/ 14/ 21/ 3561

Pagano L, Picarelli L, Rianna G, Urciuoli G (2010) A simple 
numerical procedure for timely prediction of precipitation-
induced landslides in unsaturated pyroclastic soils. Landslides 
7(3):273–289. https:// doi. org/ 10. 1007/ s10346- 010- 0216-x

Pecoraro G, Nicodemo G, Menichini R, Luongo D, Peduto D, Calvello 
M (2023) Combining Statistical, Displacement and Damage 
Analyses to Study Slow-Moving Landslides Interacting with 
Roads: Two Case Studies in Southern Italy. Appl Sci 13(5):3368. 
https:// doi. org/ 10. 3390/ app13 053368

Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimo-
nious model for streamflow simulation. J Hydrol 279(1–4):275–
289. https:// doi. org/ 10. 1016/ S0022- 1694(03) 00225-7

Petrucci O (2022) Landslide fatality occurrence: a systematic review 
of research published between January 2010 and March 2022. 
Sustainability (switzerland) 14(15):9346. https:// doi. org/ 10. 
3390/ su141 59346

Postill H, Helm PR, Dixon N, Glendinning S, Smethurst JA, Rouainia 
M, Briggs KM, El-Hamalawi A, Blake AP (2021) Forecasting 
the long-term deterioration of a cut slope in high-plasticity clay 
using a numerical model. Eng Geol 280:105912. https:// doi. org/ 
10. 1016/j. enggeo. 2020. 105912

Purnama AY, Latif DO, Kurniawan AW, Adriyati M (2022) Implemen-
tation of building information modeling on slope stability and 
mitigation analysis in Aceh Indonesia. J Appl Eng Sci 20(1):293–
299. https:// doi. org/ 10. 5937/ jaes0- 29558

Qiu D, Wang L, Luo D, Huang H, Ye Q, Zhang Y (2019) Landslide 
monitoring analysis of single-frequency BDS/GPS combined 
positioning with constraints on deformation characteristics. Surv 
Rev 51(367):364–372. https:// doi. org/ 10. 1080/ 00396 265. 2018. 
14670 75

Rahimi A, Rahardjo H, Leong EC (2010) Effect of hydraulic properties 
of soil on rainfall-induced slope failure. Eng Geol 114(3–4):135–
143. https:// doi. org/ 10. 1016/j. enggeo. 2010. 04. 010

Richards LA (1931) Capillary conduction of liquids through porous 
mediums. J Appl Phys 1(5):318–333. https:// doi. org/ 10. 1063/1. 
17450 10

Riaz MT, Basharat M, Brunetti MT, Riaz MT (2023) Semi-quantitative 
landslide risk assessment of district Muzaffarabad, northwestern 
Himalayas, Pakistan. Stoch Env Res Risk Assess 37(9):3551–
3570. https:// doi. org/ 10. 1007/ s00477- 023- 02462-9

Román-Herrera JC, Rodríguez-Peces MJ, Garzón-Roca J (2023) Com-
parison between Machine Learning and Physical Models Applied 
to the Evaluation of Co-Seismic Landslide Hazard. Appl Sci 
13(14):8285. https:// doi. org/ 10. 3390/ app13 148285

Rossi G, Catani F, Leoni L, Segoni S, Tofani V (2013) HIRESSS: a 
physically based slope stability simulator for HPC applications. 
Nat Hazards Earth Syst Sci 13(1):151–166. https:// doi. org/ 10. 
5194/ nhess- 13- 151- 2013

Saadatkhah N, Kassim A, Lee LM (2015) Hulu Kelang, Malaysia 
regional mapping of rainfall-induced landslides using TRIGRS 
model. Arab J Geosci 8(5):3183–3194. https:// doi. org/ 10. 1007/ 
s12517- 014- 1410-2

Salciarini D, Fanelli G, Tamagnini C (2017) A probabilistic model for 
rainfall—induced shallow landslide prediction at the regional 
scale. Landslides 14(5):1731–1746. https:// doi. org/ 10. 1007/ 
s10346- 017- 0812-0

Salvatici T, Tofani V, Rossi G, D’Ambrosio M, Tacconi Stefanelli 
C, Benedetta Masi E, Rosi A, Pazzi V, Vannocci P, Petrolo M, 
Catani F, Ratto S (2018) Application of a physically based model 
to forecast shallow landslides at a regional scale. Nat Hazard 
18(7):1919–1935. https:// doi. org/ 10. 5194/ nhess- 18- 1919- 2018

Sarma S (1987) A note on the stability analysis of slopes. Géotechnique 
37(1):107–111. https:// doi. org/ 10. 1680/ geot. 1987. 37.1. 107

Segoni S, Piciullo L, Gariano SL (2018) A review of the recent litera-
ture on rainfall thresholds for landslide occurrence. Landslides 
15(8):1483–1501. https:// doi. org/ 10. 1007/ s10346- 018- 0966-4

Schaap MG, Van Genuchten MT (2006) A modified Mualem–van 
Genuchten formulation for improved description of the hydrau-
lic conductivity near saturation. Vadose Zone Journal 5(1):27–
34. https:// doi. org/ 10. 2136/ vzj20 05. 0005

Selamat SN, Abd Majid N, Mohd Taib A (2023) A Comparative 
Assessment of Sampling Ratios Using Artificial Neural 
Network (ANN) for Landslide Predictive Model in Langat 
River Basin, Selangor Malaysia. Sustainability (switzerland) 
15(1):861. https:// doi. org/ 10. 3390/ su150 10861

Shah NA, Shafique M, Ishfaq M, Faisal K, Van der Meijde M (2023) 
Integrated Approach for Landslide Risk Assessment Using 
Geoinformation Tools and Field Data in Hindukush Moun-
tain Ranges, Northern Pakistan. Sustainability (switzerland) 
15(4):3102. https:// doi. org/ 10. 3390/ su150 43102

Shano L, Raghuvanshi TK, Meten M (2020) Landslide suscepti-
bility evaluation and hazard zonation techniques–a review. 
Geoenviron Disasters 7(1):18. https:// doi. org/ 10. 1186/ 
s40677- 020- 00152-0

Shano L, Raghuvanshi TK, Meten M (2021) Landslide hazard zona-
tion using logistic regression model: The case of Shafe and 
Baso catchments, Gamo highland Southern Ethiopia. Geo-
tech Geol ineering 40(1):83–101. https:// doi. org/ 10. 1007/ 
s10706- 021- 01873-1

Sharma S, Mahajan AK (2018) Comparative evaluation of GIS-
based landslide susceptibility mapping using statistical and 
heuristic approach for Dharamshala region of Kangra Valley 
India. Geoenviron Disasters 5(1):4. https:// doi. org/ 10. 1186/ 
s40677- 018- 0097-1

Shu HM, Chen TC, Yang WC, Luo YX (2016) Interpretation and 
Analysis of Potential Fluidized Landslide Slope. Geotechn Eng 
J SEAGS and AGSSEA 47(2):101–111

Sim J, Wright CC (2005) The kappa statistic in reliability studies: 
use, interpretation, and sample size requirements. Phys Ther 
85(3):257–268. https:// doi. org/ 10. 1093/ ptj/ 85.3. 257

Sitarenios P, Casini F, Askarinejad A, Springman S (2021) Hydro-
mechanical analysis of a surficial landslide triggered by arti-
ficial rainfall: the Ruedlingen field experiment. Geotechnique 
71(2):96–109. https:// doi. org/ 10. 1680/ jgeot. 18.P. 188

Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in 
large-deformation analysis of landslide mass movements with 
particular emphasis on the material point method. Geotechnique 
66(3):248–273. https:// doi. org/ 10. 1680/ jgeot. 15. LM. 005

Song Z, Li X, Lizárraga JJ, Zhao L, Buscarnera G (2020) Spatially 
distributed landslide triggering analyses accounting for coupled 
infiltration and volume change. Landslides 17(12):2811–2824. 
https:// doi. org/ 10. 1007/ s10346- 020- 01451-1

Spencer E (1967) A method of analysis of the stability of embankments 
assuming parallel inter-slice forces. Géotechnique 17(1):11–26. 
https:// doi. org/ 10. 1680/ geot. 1967. 17.1. 11

Stehman SV (1997) Selecting and interpreting measures of thematic 
classification accuracy. Remote Sens Environ 62(1):77–89. 
https:// doi. org/ 10. 1016/ S0034- 4257(97) 00083-7

https://doi.org/10.1007/s10064-018-1380-9
https://doi.org/10.1007/s10064-018-1380-9
https://doi.org/10.1007/s10346-021-01738-x
https://doi.org/10.3390/app7101000
https://doi.org/10.3390/app7101000
https://www.mdpi.com/2073-4441/14/21/3561
https://www.mdpi.com/2073-4441/14/21/3561
https://doi.org/10.1007/s10346-010-0216-x
https://doi.org/10.3390/app13053368
https://doi.org/10.1016/S0022-1694(03)00225-7
https://doi.org/10.3390/su14159346
https://doi.org/10.3390/su14159346
https://doi.org/10.1016/j.enggeo.2020.105912
https://doi.org/10.1016/j.enggeo.2020.105912
https://doi.org/10.5937/jaes0-29558
https://doi.org/10.1080/00396265.2018.1467075
https://doi.org/10.1080/00396265.2018.1467075
https://doi.org/10.1016/j.enggeo.2010.04.010
https://doi.org/10.1063/1.1745010
https://doi.org/10.1063/1.1745010
https://doi.org/10.1007/s00477-023-02462-9
https://doi.org/10.3390/app13148285
https://doi.org/10.5194/nhess-13-151-2013
https://doi.org/10.5194/nhess-13-151-2013
https://doi.org/10.1007/s12517-014-1410-2
https://doi.org/10.1007/s12517-014-1410-2
https://doi.org/10.1007/s10346-017-0812-0
https://doi.org/10.1007/s10346-017-0812-0
https://doi.org/10.5194/nhess-18-1919-2018
https://doi.org/10.1680/geot.1987.37.1.107
https://doi.org/10.1007/s10346-018-0966-4
https://doi.org/10.2136/vzj2005.0005
https://doi.org/10.3390/su15010861
https://doi.org/10.3390/su15043102
https://doi.org/10.1186/s40677-020-00152-0
https://doi.org/10.1186/s40677-020-00152-0
https://doi.org/10.1007/s10706-021-01873-1
https://doi.org/10.1007/s10706-021-01873-1
https://doi.org/10.1186/s40677-018-0097-1
https://doi.org/10.1186/s40677-018-0097-1
https://doi.org/10.1093/ptj/85.3.257
https://doi.org/10.1680/jgeot.18.P.188
https://doi.org/10.1680/jgeot.15.LM.005
https://doi.org/10.1007/s10346-020-01451-1
https://doi.org/10.1680/geot.1967.17.1.11
https://doi.org/10.1016/S0034-4257(97)00083-7


Bulletin of Engineering Geology and the Environment           (2024) 83:85  Page 29 of 30    85 

Sun J, Yu T, Dong P (2022) Evaluation of 3D slope stability based 
on the minimum potential energy principle. Comput Geotech 
146:104717. https:// doi. org/ 10. 1016/j. compg eo. 2022. 104717

Tang Y, Wu W, Yin K, Wang S, Lei G (2019) A hydro-mechanical 
coupled analysis of rainfall induced landslide using a hypoplastic 
constitutive model. Comput Geotech 112:284–292. https:// doi. 
org/ 10. 1016/j. compg eo. 2019. 04. 024

Tengtrairat N, Woo WL, Parathai P, Aryupong C, Jitsangiam P, 
Rinchumphu D (2021) Automated landslide-risk prediction using 
web gis and machine learning models. Sensors (switzerland) 
21(13):4620. https:// doi. org/ 10. 3390/ s2113 4620

Thang NV, Wakai A, Sato G, Viet TT, Kitamura N (2022) Simple 
Method for Shallow Landslide Prediction Based on Wide-Area 
Terrain Analysis Incorporated with Surface and Subsurface 
Flows. Nat Hazard Rev 23(4):04022028. https:// doi. org/ 10. 1061/ 
(ASCE) NH. 1527- 6996. 00005 78

Tien Bui D, Tuan TA, Hoang ND, Thanh NQ, Nguyen DB, Van Liem 
N, Pradhan B (2017) Spatial prediction of rainfall-induced 
landslides for the Lao Cai area (Vietnam) using a hybrid intel-
ligent approach of least squares support vector machines infer-
ence model and artificial bee colony optimization. Landslides 
14(2):447–458. https:// doi. org/ 10. 1007/ s10346- 016- 0711-9

Uchida T, Mori N, Tamura K, Terada H, Takiguchi S, Kamee K 
(2009) The role of data preparation on shallow landslide pre-
diction. J Japan Soc Erosion Control Eng 62(1):23–31

Utomo D, Chen SF, Hsiung PA (2019) Landslide prediction with 
model switching. Appl Sci (switzerland) 9(9):1839. https:// 
doi. org/ 10. 3390/ app90 91839

Valentino R, Meisina C, Montrasio L, Losi GL, Zizioli D (2014) 
Predictive power evaluation of a physically based model for 
shallow landslides in the area of Oltrepò Pavese Northern Italy. 
Geotechn Geol Eng 32(4):783–805. https:// doi. org/ 10. 1007/ 
s10706- 014- 9758-3

Varnes DJ (1984) Landslide hazard zonation: a review of principles 
and practice, United Nations Educational, Scientific and Cul-
tural Organization. Nat Hazards 3

Wan LP, Zhou ML, Desar S (2017) Long-term stability calculation 
of reservoir bank slope considering water-rock interaction. 
Tehnicki vjesnik/Technical Gazette 24(1):283–289. https:// 
doi. org/ 10. 17559/ TV- 20160 51708 3309

Wang JJ, Liang Y, Zhang HP, Wu Y, Lin X (2014) A loess landslide 
induced by excavation and rainfall. Landslides 11(1):141–152. 
https:// doi. org/ 10. 1007/ s10346- 013- 0418-0

Wang J, Hong Y, Li L, Gourley JJ, Khan SI, Yilmaz KK, Adler RF, 
Policelli FS, Habib S, Irwn D, Limaye AS, Korme T (2011) 
The coupled routing and excess storage (CREST) distributed 
hydrological model. Hydrol Sci J 56(1):84–98. https:// doi. org/ 
10. 1080/ 02626 667. 2010. 543087

Wang L, Yan E, Wang Y, Huang S, Liu Y (2016) Load-Unload 
Response Characteristics and Prediction of Reservoir Land-
slides. Electron J Geotech Eng 21(17):5599–5608

Wang R, Zhang K, Wang W, Meng Y, Yang L, Huang H (2023) 
Hydrodynamic landslide displacement prediction using com-
bined extreme learning machine and random search support 
vector regression model. Eur J Environ Civ Eng 27(6):2345–
2357. https:// doi. org/ 10. 1080/ 19648 189. 2020. 17542 98

Wang S, Zhang K, van Beek LP, Tian X, Bogaard TA (2020) Phys-
ically-based landslide prediction over a large region: Scaling 
low-resolution hydrological model results for high-resolution 
slope stability assessment. Environ Model Softw 124:104607. 
https:// doi. org/ 10. 1016/j. envso ft. 2019. 104607

Wang WD, Xie CM, Du XG (2009) Landslides susceptibility map-
ping in Guizhou province based on fuzzy theory. Mining Sci 
ogy (china) 19(3):399–404. https:// doi. org/ 10. 1016/ S1674- 
5264(09) 60075-2

Wang X, Niu R (2010) Landslide intelligent prediction using object-
oriented method. Soil Dyn Earthq Eng 30(12):1478–1486. 
https:// doi. org/ 10. 1016/j. soild yn. 2010. 06. 017

Wu L, Huang R, Li X (2020) Hydro-mechanical analysis of rainfall-
induced landslides. Springer Singapore, 1–235. https:// doi. org/ 
10. 1007/ 978- 981- 15- 0761-8

Wu YM, Lan HX, Gao X, Li LP, Yang ZH (2015) A simplified 
physically based coupled rainfall threshold model for trigger-
ing landslides. Eng Geol 195:63–69. https:// doi. org/ 10. 1016/j. 
enggeo. 2015. 05. 022

Wubalem A (2021) Landslide susceptibility mapping using statisti-
cal methods in Uatzau catchment area, northwestern Ethio-
pia. Geoenviron Disasters 8(1):1. https:// doi. org/ 10. 1186/ 
s40677- 020- 00170-y

Wubalem A, Meten M (2020) Landslide susceptibility mapping using 
information value and logistic regression models in Goncha 
Siso Eneses area, northwestern Ethiopia. Applied Sciences 
2:1–19. https:// doi. org/ 10. 1007/ s42452- 020- 2563-0

Wubalem A, Getahun B, Hailemariam Y, Mesele A, Tesfaw G, Dawit 
Z, Goshe E (2022) Landslide susceptibility modeling using 
the index of entropy and frequency ratio method from nefas-
mewcha to weldiya road corridor, northwestern Ethiopia. Geo-
tech Geol Eng 40(10):5249–5278. https:// doi. org/ 10. 1007/ 
s10706- 022- 02214-6

Xiao T, Zhang LM (2023) Data-driven landslide forecasting: Methods, 
data completeness, and real-time warning. Eng Geol 317:107068. 
https:// doi. org/ 10. 1016/j. enggeo. 2023. 107068

Xiao T, Zhang LM, Cheung RWM, Lacasse S (2022) Predicting spatio-
temporal man-made slope failures induced by rainfall in Hong 
Kong using machine learning techniques. Géotechnique 1–17. 
https:// doi. org/ 10. 1680/ jgeot. 21. 00160

Xu W, Xu H, Chen J, Kang Y, Pu Y, Ye Y, Tong J (2022) Combining 
numerical simulation and deep learning for landslide displace-
ment prediction: An attempt to expand the deep learning data-
set. Sustainability (switzerland) 14(11):6908. https:// doi. org/ 10. 
3390/ su141 16908

Yang P, Wang N, Guo Y, Ma X, Wang C (2022) Performance Analysis 
of Logistic Model Tree-Based Ensemble Learning Algorithms 
for Landslide Susceptibility Mapping. J Sensors 2022:8254356. 
https:// doi. org/ 10. 1155/ 2022/ 82543 56

Yang SR, Shen CW, Huang CM, Lee CT, Cheng CT, Chen CY (2012) 
Prediction of mountain road closure due to rainfall-induced land-
slides. J Perform Constr Facil 26(2):197–202. https:// doi. org/ 10. 
1061/ (ASCE) CF. 1943- 5509. 00002 42

Yang SR (2016) Probability of road interruption due to landslides 
under different rainfall-return periods using remote sensing tech-
niques. J Perform Constr Facil 30(1):C4015002. https:// doi. org/ 
10. 1061/ (ASCE) CF. 1943- 5509. 00007 37

Yang SR (2017) Assessment of rainfall-induced landslide susceptibil-
ity using GIS-based slope unit approach. J Perform Constr Facil 
31(4):04017026. https:// doi. org/ 10. 1061/ (ASCE) CF. 1943- 5509. 
00009 97

Yang X, Diao X, Zhou T, Hu F, Wang S (2023) Study on the stabil-
ity of accumulated layer landslide under the coupling action of 
earthquake and rainfall. KSCE J Civ Eng 27(1):98–108. https:// 
doi. org/ 10. 1007/ s12205- 022- 0110-9

Yao W, Zeng Z, Lian C, Tang H (2015) Training enhanced reser-
voir computing predictor for landslide displacement. Eng Geol 
188:101–109. https:// doi. org/ 10. 1016/j. enggeo. 2014. 11. 008

Yanbin M, Hongrui L, Lin W, Wengang Z, Zhengwei Z, Haiqing Y, 
Luqi W, Xingzhong Y (2022) Machine learning algorithms and 
techniques for landslide susceptibility investigation: A literature 
review. Tumu yu Huanjing Gongcheng Xuebao/J Civil Environ 
Eng 44(1):53–67. https:// doi. org/ 10. 11835/j. issn. 2096- 6717. 
2021. 102

https://doi.org/10.1016/j.compgeo.2022.104717
https://doi.org/10.1016/j.compgeo.2019.04.024
https://doi.org/10.1016/j.compgeo.2019.04.024
https://doi.org/10.3390/s21134620
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000578
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000578
https://doi.org/10.1007/s10346-016-0711-9
https://doi.org/10.3390/app9091839
https://doi.org/10.3390/app9091839
https://doi.org/10.1007/s10706-014-9758-3
https://doi.org/10.1007/s10706-014-9758-3
https://doi.org/10.17559/TV-20160517083309
https://doi.org/10.17559/TV-20160517083309
https://doi.org/10.1007/s10346-013-0418-0
https://doi.org/10.1080/02626667.2010.543087
https://doi.org/10.1080/02626667.2010.543087
https://doi.org/10.1080/19648189.2020.1754298
https://doi.org/10.1016/j.envsoft.2019.104607
https://doi.org/10.1016/S1674-5264(09)60075-2
https://doi.org/10.1016/S1674-5264(09)60075-2
https://doi.org/10.1016/j.soildyn.2010.06.017
https://doi.org/10.1007/978-981-15-0761-8
https://doi.org/10.1007/978-981-15-0761-8
https://doi.org/10.1016/j.enggeo.2015.05.022
https://doi.org/10.1016/j.enggeo.2015.05.022
https://doi.org/10.1186/s40677-020-00170-y
https://doi.org/10.1186/s40677-020-00170-y
https://doi.org/10.1007/s42452-020-2563-0
https://doi.org/10.1007/s10706-022-02214-6
https://doi.org/10.1007/s10706-022-02214-6
https://doi.org/10.1016/j.enggeo.2023.107068
https://doi.org/10.1680/jgeot.21.00160
https://doi.org/10.3390/su14116908
https://doi.org/10.3390/su14116908
https://doi.org/10.1155/2022/8254356
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000242
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000242
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000737
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000737
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000997
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000997
https://doi.org/10.1007/s12205-022-0110-9
https://doi.org/10.1007/s12205-022-0110-9
https://doi.org/10.1016/j.enggeo.2014.11.008
https://doi.org/10.11835/j.issn.2096-6717.2021.102
https://doi.org/10.11835/j.issn.2096-6717.2021.102


 Bulletin of Engineering Geology and the Environment           (2024) 83:85    85  Page 30 of 30

Yamaguchi Y, Makinoshima F, Oishi Y (2023) Simulating the 
entire rainfall-induced landslide process using the material 
point method for unsaturated soil with implicit and explicit 
formulations. Landslides 1–22. https:// doi. org/ 10. 1007/ 
s10346- 023- 02052-4

Yerro A, Girardi V, Martinelli M, Ceccato F (2022) Modelling unsat-
urated soils with the Material Point Method. A discussion of 
the state-of-the-art. Geomech Energy Environment 32:100343. 
https:// doi. org/ 10. 1016/j. gete. 2022. 100343

Yin XC, Chen XZ, Song ZP, Yin C (1995) A new approach to earth-
quake prediction: The Load/Unload Response Ratio (LURR) 
theory. Pure Appl Geophys 145(3–4):701–715. https:// doi. org/ 
10. 1007/ BF008 79596

Yu X, Xia Y, Zhou J, Jiang W (2023) Landslide susceptibility mapping 
based on multitemporal remote sensing image change detection 
and multiexponential band math. Sustainability (switzerland) 
15(3):2226. https:// doi. org/ 10. 3390/ su150 32226

Yusof MKTM, Rashid ASA, Apandi NM, Khanan MFBA, Rahman 
MZBA (2023) A review of the application of support vector 
machines in landslide susceptibility mapping. Disaster Advances 
16(11):71–83. https:// doi. org/ 10. 25303/ 1611d a0710 83

Zangmene FL, Ngapna MN, Ateba MCB, Mboudou GMM, Defo PLW, 
Kouo RT, Dongmo AK, Owona S (2023) Landslide susceptibil-
ity zonation using the analytical hierarchy process (AHP) in the 
Bafoussam-Dschang region (West Cameroon). Adv Space Res 
71(12):5282–5301. https:// doi. org/ 10. 1016/j. asr. 2023. 02. 014

Zhang R, Gomaa SM, Hussein M, Zayed T, Meguid M (2023) Review 
of Numerical Approaches used in Soil-Pipe Interaction Analysis 
of Water Mains. Transp Geotechnics 101008. https:// doi. org/ 10. 
1016/j. trgeo. 2023. 101008

Zhang LL, Zhang J, Zhang LM, Tang WH (2011) Stability analysis 
of rainfall-induced slope failure: a review. Proc Inst Civil Eng-
Geotech Eng 164(5):299–316. https:// doi. org/ 10. 1680/ geng. 
2011. 164.5. 299

Zhang WJ, Chen YM, Zhan LT (2006) Loading/Unloading response 
ratio theory applied in predicting deep-seated landslides trigger-
ing. Eng Geol 82(4):234–240. https:// doi. org/ 10. 1016/j. enggeo. 
2005. 11. 005

Zhao B, Dai Q, Han D, Dai H, Mao J, Zhuo L (2019) Probabilistic 
thresholds for landslides warning by integrating soil moisture 
conditions with rainfall thresholds. J Hydrol 574:276–287. 
https:// doi. org/ 10. 1016/j. jhydr ol. 2019. 04. 062

Zhao B, Dai Q, Han D, Zhang J, Zhuo L, Berti M (2020) Application of 
hydrological model simulations in landslide predictions. Landslides 
17(4):877–891. https:// doi. org/ 10. 1007/ s10346- 019- 01296-3

Zhu L, Huang JF (2006) GIS-based logistic regression method for 
landslide susceptibility mapping in regional scale. J Zhejiang 
Univ-Sci A 7(12):2007–2017. https:// doi. org/ 10. 1631/ jzus. 2006. 
A2007

Zhu Y, Ishikawa T, Zhang Y, Nguyen BT, Subramanian SS (2022) 
A FEM-MPM hybrid coupled framework based on local shear 
strength method for simulating rainfall/runoff-induced landslide 
runout. Landslides 19(8):2021–2032. https:// doi. org/ 10. 1007/ 
s10346- 022- 01849-z

Zou Y, Zheng C (2022) A Scientometric analysis of predicting meth-
ods for identifying the environmental risks caused by landslides. 
Appl Sci (switzerland) 12(9):4333. https:// doi. org/ 10. 3390/ app12 
094333

https://doi.org/10.1007/s10346-023-02052-4
https://doi.org/10.1007/s10346-023-02052-4
https://doi.org/10.1016/j.gete.2022.100343
https://doi.org/10.1007/BF00879596
https://doi.org/10.1007/BF00879596
https://doi.org/10.3390/su15032226
https://doi.org/10.25303/1611da071083
https://doi.org/10.1016/j.asr.2023.02.014
https://doi.org/10.1016/j.trgeo.2023.101008
https://doi.org/10.1016/j.trgeo.2023.101008
https://doi.org/10.1680/geng.2011.164.5.299
https://doi.org/10.1680/geng.2011.164.5.299
https://doi.org/10.1016/j.enggeo.2005.11.005
https://doi.org/10.1016/j.enggeo.2005.11.005
https://doi.org/10.1016/j.jhydrol.2019.04.062
https://doi.org/10.1007/s10346-019-01296-3
https://doi.org/10.1631/jzus.2006.A2007
https://doi.org/10.1631/jzus.2006.A2007
https://doi.org/10.1007/s10346-022-01849-z
https://doi.org/10.1007/s10346-022-01849-z
https://doi.org/10.3390/app12094333
https://doi.org/10.3390/app12094333

	Rainfall-induced landslide prediction models, part ii: deterministic physical and phenomenologically models
	Abstract
	Introduction
	Systematic review
	Deterministic physical models
	Analytical models
	Numerical models
	Combined models (probabilistic and artificial intelligence with physical models)
	Discussion of deterministic models (advantages, assumptions, and limitations)

	Landslide susceptibility maps
	Data inventory, controlling features, and landslide event maps
	Feature weighting, optimization, and model analysis
	Qualitative models
	Quantitative models
	Sampling ratio
	Performance metrics
	Discussion of susceptibility models (prediction accuracy)
	Landslide susceptibility ranges
	Discussion of susceptibility model (advantages, assumptions, and limitations)


	Research gaps and future directions
	Conclusions
	Acknowledgements 
	References


