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Abstract—High-power white light-emitting diodes (LEDs) have 

attracted much attention due to their versatility in a variety of 

applications and growing demand in markets such as general 

lighting, automotive lamps, communications devices, and medical 

devices. In particular, the need for high reliability and long 

lifetime poses new challenges for the research and development, 

production, and application of LED lighting. Accurate and 

effective prediction of the lifetime or reliability of LED lighting 

has emerged as one of the key issues in the solid-state lighting field. 

Prognostics is an engineering technology that predicts the future 

reliability or determines the remaining useful lifetime (RUL) of a 

product by assessing the extent of deviation or degradation of a 

product from its expected normal operating conditions. 

Prognostics bring benefits to both LED developers and users, such 

as optimizing system design, shortening qualification test times, 

enabling condition-based maintenance for LED-based systems, 

and providing information for return-on-investment (ROI) 

analysis. This paper provides an overview of the prognostic 

methods and models that have been applied to both LED devices 

and LED systems, especially for use in long-term operational 

conditions. These methods include statistical regression, static 

Bayesian network, Kalman filtering, particle filtering, artificial 

neural network, and physics-based methods. The general concepts 

and main features of these methods, the advantages and 

disadvantages of applying these methods, as well as LED 

application case studies, are discussed. The fundamental issues of 

prognostics and photo-electro-thermal (PET) theory for LED 

systems are also discussed for clear understanding of the 

reliability and lifetime concepts for LEDs. Finally, the challenges 
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I. INTRODUCTION

S a new type of solid-state lighting (SSL) source, 

light-emitting diodes (LEDs) have been applied in many

fields, including general illumination, automotive lighting, 

automobile devices, display backlighting, communication 

devices/networks, and medical applications [1]-[6]. For 

example, a large number of LED lighting designs were adopted 

in the development of the latest generation of airplanes, such as 

the Boeing 787-8 Dreamliner and Airbus A380-800, including 

the instrument panel lights, interior cabin lights (attractive 

mood-lighting), exterior beacon lights, and navigation lights [7]. 

Another example, LED headlamps have been used for both 

high and low beam in some high-end cars, such as the Lexus 

LS600h, Audi V10 R8, Cadillac Escalade, and Toyota Prius [4]. 

In recent years, interest in the application of high-power LED 

lighting systems (which consume at least 1 W of power) has 

been increasing. Compared with traditional light sources, they 

have many advantages, such as high efficiency, low power 

consumption, high reliability, long lifetime, and environmental 

friendliness. 

In recent years, researchers have carried out a number of 

studies on new materials, advanced manufacturing technology, 

improved packaging technology, thermal management, and 

reliability of LEDs and associated products [1][4]. Especially 

for high-power LEDs, with the characteristics of high-power 

operating conditions (over 1 W at least), high junction 

temperatures, and long operational life, the reliability issues 

have been of great concern. At present, the major worldwide 

LED manufacturers claim that the lifetime of LEDs is 50,000–

100,000 hours. In general, the rated lumen maintenance 

lifetime (Lp) is the most appropriate characteristic used to 

qualify the performance, lifetime, and reliability of LED 

lighting [8]. The Alliance for Solid-State Illumination Systems 

and Technologies (ASSIST) recommends two kinds of lumen 

lifetimes under specific conditions. One is the L50 lifetime for 

decorative lighting, which is based on the time for 50% light 

output degradation, and the other is the L70 lifetime for general 

lighting, which is based on the time for 70% light output 

degradation [9][10]. L70 or L50 indicates the time at which the 

lumen output declines by 30% or 50% from the initial value (or 

time to 70% lumen maintenance). LED reliability and lifetime 

are related to many factors, including the operating temperature, 
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driving forward current, packaging, materials, and 

manufacturing processes [1][4]. 

A wide range of literature has been published, underlining 

the reliability and failure behavior of LEDs. For example, 

Meneghini et al. [11] investigated the degradation mechanisms 

that limit the reliability of high-power LEDs for lighting 

applications. Chang et al. [1] presented a comprehensive 

review on LED reliability issues, focused on the failure 

mechanisms of LEDs. Several other reviews related to the 

reliability and failure mechanisms of LED have also been 

published [12]-[19]. The reliability information with respect to 

lifetime or remaining useful lifetime (RUL) of LEDs is of great 

significance to the manufacturers, as well as to the potential 

users and end-product manufacturers. For example, this 

information is used to maintain LED lighting systems (such as 

roadway lighting) after deployment. At present, however, the 

reliability and lifetime information provided by the LED 

manufacturers is neither sufficient nor accurate enough to be 

used for LED-based systems, especially for safety-critical 

systems such as aerospace, medical, energy, and nuclear.   

Prognostics refers to the process of predicting the future 

reliability or determining the RUL of a product by assessing the 

extent of deviation or degradation of a product from its 

expected normal operating conditions [20]. As one of the most 

efficient engineering methodologies for prediction of 

lifetime/reliability, prognostic techniques have been 

successfully applied to various engineering systems and 

products over the last 10 years. The potential benefits, 

challenges, and opportunities associated with system 

prognostics have been discussed in the literature [21]. Several 

reviews related to prognostics for different systems/products 

have been published [22]-[29]. Heng et al. [22] and Kan et al. 

[29] summarized the prognostic techniques that can be applied 

to rotating machinery and associated systems. Sikorska et al. 

[23] discussed business issues that need to be considered when 

selecting an appropriate modelling approach for industrial 

applications. An et al. [24][27] reviewed prognostic methods in 

terms of their attributes, pros, and cons by using simple 

examples and provided practical options for prognostics.  

Baraldi et al. [25] proposed a strategy for selecting the 

prognostic methods using different available information. Yin 

et al. [26] surveyed data-driven methods used for process 

monitoring and fault diagnosis. Oh et al. [28] summarized past 

developments and recent advances in the area of prognostics for 

insulated gate bipolar transistor (IGBT) modules. However, 

there are no reviews that cover the increasing number of 

publications on LED prognostics.  

Prognostics benefits both LED developers and users by 

improving the accuracy of reliability prediction and useful 

lifetime assessment, optimizing LED system design, shortening 

qualification test times, enabling condition-based maintenance 

for LED-based systems, and providing information for ROI 

analysis. To further promote and expand the application of 

LEDs, proper prognostic methods must be developed. This 

paper reviews the latest information regarding the prognostics 

of high-power white LEDs, with consideration of the efficiency 

and accuracy of each prognostic approach, and is intended to be 

helpful for improving the performance of prognostic methods 

for LEDs.  

This paper is organized as follows: Section 2 discusses the 

fundamental issues for the prognostics of LED devices 

(packages) and drivers, including failure modes, mechanisms, 

indicators, PET relationships, and lifetime characterization. 

Section 3 presents various data-driven and physics-based 

methods and discusses prognostics on the LED system level. 

Section 4 analyzes challenges and opportunities in order to 

promote appropriate and effective methods. Section 5 presents 

concluding remarks. 

II. FUNDAMENTAL ISSUES OF PROGNOSTICS FOR LEDS  

The fundamental issues of prognostics and 

photo-electro-thermal (PET) theory for LED systems are 

discussed for clear understanding of the reliability and lifetime 

concepts for LEDs. These issues include failure modes and 

mechanisms analysis of both LED devices (packages) and LED 

drivers, the PET theory for LED systems, and the lifetime 

characterization of LEDs. 

A. Failure Modes, Mechanisms, and Indicators of LED 

Devices (Packages) 

Generally, SSL begins with semiconductor-based LED 

technology and its packaging. There are six levels/processes in 

the whole SSL industrial chain, including LED chips, LED 

packages, multi-LED assemblies, LED modules, luminaires, 

and large SSL systems [2][3]. The multiple LED assembly is 

the basic assembly unit for the LED module and luminaire. 

While a high-power white LED has more comprehensive 

system reliability problems, this paper covers mainly white 

LED devices and LED systems. Nowadays, the 

phosphor-converted (pc) white LED has become one of the 

most widely used white light sources. There are several 

different and similar structures of the LED packaging between 

different LED manufacturers, such as Nichia (Japan), Cree 

(USA), Philips Lumileds (Netherlands), and Osram (Germany). 

For the convenience of further study, four typical structures of 

LEDs from the major vendors [30]-[34] are shown in Fig. 1. 

Typically, an LED package mounted on a printed circuit board 

(PCB) is composed of housing (such as polyphthalamide or 

liquid crystal polymer), plastic/silicone lens, resin encapsulant 

(such as epoxy or silicon), die/chip (such as InGaN/GaN), 

phosphor (such as cerium-doped yttrium aluminum garnet, 

YAG: Ce), bond wire, leadframe (anode and cathode), die 

attach (such as Ag paste and epoxy paste), and metal heat-sink 

slug.  
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Fig. 1. Some LED packages with different packaging types. 

 

As shown in Fig. 1(a), this type of LED package utilizes 

standard FR4 PCB and surface mount technology (SMT) with a 

4-lead gull-wing package outline. Fig. 1(b) shows that the 

leadless package outline with the thermal pad is electrically 

isolated from the anode and cathode contact pads. Similarly to 

Fig. 1(a), the LED package shown in Fig. 1(c) also utilizes 

SMT technology with 4-lead, and its gold-plated leadframe 

serves as a heat-sink. Fig. 1(d) shows another type of leadless 

package outline with the anode and cathode around the 

substrate. 

The LED die is a compound semiconductor (with p-n 

junction), and its manufacturing process is similar to that of a 

microelectronics device. However, due to their unique 

functional requirements, electrical and optical properties, 

materials, and interfaces, LEDs have different failure modes 

and mechanisms. Various failure sites, causes, effects, modes, 

and mechanisms related to LEDs have been summarized by 

Chang et al. [1]. LED failures are classified by three levels: the 

semiconductors (die/chip), the interconnects, and the package 

[1][3]. The failures related to semiconductors include 

generation and movement of defects and dislocations, dopant 

diffusion, electrostatic discharge, and electromigration, which 

lead to lumen degradation, increase in reverse leakage current, 

and parasitic series resistance. The failures related to 

interconnects include bond wire fracture, wire ball bond fatigue, 

and electrical contact metallurgical interdiffusion, which result 

in lumen degradation and electrical open/short circuits. The 

failures related to the package include encapsulant 

carbonization, encapsulant yellowing, encapsulant 

delamination, lens cracking, phosphor thermal quenching, and 

solder joint fatigue, which result in lumen degradation, color 

change, forward voltage increase, and severe encapsulant 

discoloration.  

Commonly, the high-power LED devices as 

microelectronics are created as wire-bond or flip-chip packages. 

For wire-bond and flip-chip interconnection technologies, the 

optical limitation of LEDs requires unique methods of 

transferring both heat and electrical signals through the bottom 

side of the package only, while leaving the top optical side 

exposed [35]. As discussed above, thermomechanical fatigue is 

a major issue of wire-bond and flip-chip packaged LEDs where 

the LED chip is mounted to the circuit board by a solder joint 

[2][3]. Recently, some of the new innovations for LED 

packaging are being adapted from advanced silicon and 

electronic packaging concepts such as chip-on-board (COB) 

[36], wafer-level packaging [37], and system-in-package 

concepts [2]-[4]. These efforts for changing the packaging of 

LEDs have been suggested to improve thermal performance 

and reliability. For example, in the case of the COB package, 

the critical factor for long-term reliability is degradation of the 

LED itself and not that of the board-level interconnects [4]. In 

future, the LED package will be designed to be capable of 

successfully providing general lighting with sufficient thermal 

management and reliability at a relatively low packaging and 

assembly cost.  

This section focuses on the performance indicators (PIs), 

also called feature parameters, that are derived from the 

analysis results and information on the failure sites, modes, and 

mechanisms at the semiconductor, interconnect, and the 

package levels. These PIs can then be used to establish the 

foundations of prognostics, such as monitoring/measuring 

parameters, failure criteria, and prognostic method selection 

(see details in Section 3). From the relationship between the 

failure causes and associated mechanisms, the PIs can be 

preliminarily determined (recommended representative 

parameters) as illustrated in Table I (FMEA stands for failure 

modes and effects analysis). 
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TABLE I. FMEA-based information towards prognostics of LEDs (*DD stands for data-driven methods, PB stands for 

physics-based methods). 

Failure 

Sites 

Failure 

Modes 

Failure 

Mechanisms 
Performance Indicators (PIs) 

Available 

Prognostic 

Methods 

Die 

Lumen degradation Generation and movement of defect and 

dislocation; die cracking; dopant 
diffusion 

Lumen maintenance (luminous flux) 

Light output power (spectral power 
distribution) 

Geometries, material, environmental and 

operational conditions 

DD*/PB* 

Increase in reverse 

leakage current 

Generation and movement of defect and 

dislocation 

Reverse leakage current 
DD 

Increase in parasitic 

series resistance 

Generation and movement of defect and 

dislocation; dopant diffusion 

Parasitic series resistance 
DD 

Increase in forward 

current 

Dopant diffusion Forward current 

Forward voltage 
DD 

No light/short 

circuit 

Electromigration Geometries, material, environmental, and 

operational conditions 
PB 

Interconnect 

No light/open 

circuit 

Electrical overstress induced bond wire 

fracture; wire ball bond fatigue; 

electrostatic discharge 

Geometries, material, environmental, and 

operational conditions PB 

Lumen degradation Electrical contact metallurgical 
interdiffusion 

Lumen maintenance (luminous flux) 
Light output power (spectral power 

distribution) 

DD 

Increase in parasitic 
series resistance 

Electrical contact metallurgical 
interdiffusion 

Parasitic series resistance 
DD 

Short circuit Electrical contact metallurgical 

interdiffusion 

Parasitic series resistance 
DD 

Package 

Lumen degradation Encapsulant carbonization; encapsulant 
delamination; encapsulant yellowing; 

lens cracking; phosphor thermal 

quenching; solder joint fatigue 

Lumen maintenance (luminous flux) 
Light output power (spectral power 

distribution) 

Color coordinates (x, y) 
(chromaticity coordinates (u′, v′)) 

Geometries, material, environmental, and 

operational conditions 

DD/PB 

Color 
change/discolora- 

tion of the 

encapsulant 

Encapsulant yellowing Color coordinates (x, y) 
(chromaticity coordinates (u′, v′)) 

Color rendering index 

Spectral radiant flux distribution 

DD 

Broadening of 

spectrum 
(color change) 

Phosphor thermal quenching Color coordinates (x, y) 

(chromaticity coordinates (u′, v′)) 
Color rendering index 

Spectral radiant flux distribution 

DD 

Forward voltage 

increase 

Solder joint fatigue Forward current/forward voltage 

Geometries, material, environmental, and 
operational conditions 

PB/DD 

 

 

B. Failure Modes and Mechanisms of LED Drivers 

LED drivers are integral to SSL systems; they provide 

constant current, stabilize the voltage, and adjust the brightness 

of the LED. However, because the LED driver is a kind of 

power electronic subsystem, it presents unique reliability 

problems for both power electronics and lighting sources 

[38][39]. The LED driver is found to be a weak point in an LED 

system, as reported by the U.S. Department of Energy [40]. It 

contributes up to 52% of the total system failure [18]. Hence, 

the reliability of LED drivers that match the life span of LED 

devices is one of the key barriers to further applications of 

LEDs. 

Many different LED driving solutions address a number of 

lighting design challenges, and many will still be developed at 

an increasing speed. From different aspects, the LED drivers 

can be classified into: constant current and constant/stable 

voltage (drive mode), passive and switched mode (circuit 

topology), or linear mode and switch mode (function element). 

The circuit topologies for LED drivers can be categorized into 

passive LED drivers and switched-mode LED drivers based on 

whether a high-frequency switching operation is performed 

[41]. Passive drivers do not control the output current tightly 

and provide a DC current with AC current ripple. They are 

composed of only passive components (such as resistor and 

capacitor), magnetic components (such as inductor and 

transformer), and diodes, and are operated at line or double-line 

frequency. They are thus reliable and applicable for outdoor 

applications and are cost-effective for some low-power 

applications. Switched-mode LED drivers operate at high 

frequency and can realize precise output current regulation. 

They are usually less reliable than passive LED drivers and are 

sensitive to extreme weather conditions such as wide variations 

in temperature and lighting. However, the properties of 

high-frequency operation, active control, and easily integrated 

novel functions make switched-mode drivers very attractive for 

a wide range of indoor applications. The reliability of LED 

systems depends on the type of switched converter used, their 

efforts on electronic devices, operation temperature, and 

heat-sink. Various driver architectures are applied for different 
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applications, such as buck, boost, flyback, and 

transformer-isolated converters. Among these types of 

converters, the flyback converter topology was chosen to 

provide galvanic isolation between the input AC voltage of 

120 V rms at 60 Hz and the output voltages. Flyback converters 

are well understood and have been widely used in traditional 

lighting applications [3].  

From a functional point of view, an LED driver can be 

divided into two types: switched-mode driver and linear-mode 

driver [45]. The linear-mode driver uses an error amplifier to 

control the output current linearly, while the switch-mode 

driver controls the output current by using a voltage-controlled 

switch with a feedback circuit. In the switch-mode driver’s 

configuration, the electrolytic capacitors (E-cap) serve as the 

energy storage part and play a more significant role in device 

failure [46]. Whereas in the linear-mode driver, the output 

current of the driver is maintained by adjusting the gate voltage 

of the output transistor through the feedback circuit. Thus, 

switching noise is absent in this type of driver, and an output 

electrolytic capacitor is not necessary [45]. Research on 

components and subsystems of LED drivers is attracting 

increasing attention since the U.S. DoE released its Multi-Year 

Planning Program for Solid State Lighting [6]. Recently, some 

emerging switched-mode drivers have been proposed that do 

not use the electrolytic capacitor. According to the power 

processing stages, these circuit topologies are classified as 

single stage, two stages, and three stages [41]. Research on 

eliminating the use of E-cap in lighting products has increased. 

For example, Chang et al. [42] presented AC driver and 

protection circuits of LEDs. An AC power source can be 

applied to drive an LED without a further conversion stage, and 

circuits provide failure indication and protection. Chen et al. 

[43] studied an AC-DC LED driver without E-cap. Compared 

with other methods to eliminate E-cap, this driver has the 

advantages of unity input power factor and constant output 

current for LEDs. Lin et al. [44] proposed a novel pulse current 

driving technique for LED drivers. Compared with a constant 

current driver, this new driver supply’s maximum peak current 

is 200 mA and operating frequency is between 500 kHz and 1 

MHz. The structure is simple without output capacitance 

compensation for stability and with low power consumption. It 

is implemented in integrated circuits with relatively longer 

lifetimes.  

Most of these studies focus on the reliability of external 

components (e.g., the electrolytic capacitor) and the internal 

circuitry of the driver IC. Lan et al. [38] presented a pseudo 

black-box testing method to study the reliability of the IC used 

in LED drivers. Sun et al. [39] proposed isolated component 

accelerated lifetime testing to investigate the effects of 

high-temperature degradation of electrolytic capacitors on the 

entire driver. Lan et al. [45][47] studied the degradation of a 

linear mode high-power LED driver and found that the hot 

carrier injection (HCI) was the main degradation mechanism. 

Lin et al. [48] established a thermal simulation model based on 

a tapped-inductor quasi-resonant buck LED driver to analyze 

the effect of temperature on performance and reliability.  

For analyzing the complex failure modes and mechanisms of 

LED drivers, Popovic et al. [49] introduced an approach to 

break down a power electronic converter to its construction 

parts according to the functions they perform. In different types 

of LED drivers, the functional elements (function level) are 

associated with different failure modes and mechanisms, as 

illustrated in Table II (column 2). In addition to the 

fundamental functions described above, other functional 

elements (package level) are necessary to provide the integrity 

of the driver to maintain the functionality, including 

interconnection, insulation, mechanical support, protection, 

and heat dissipation. Numerous studies on the failure 

mechanisms and reliability of these package elements have 

been reported in the literature [50][51]. 

 

 

TABLE II. FMEA of LED drivers towards prognostics. 

Driver 

Types 
Functional Elements Failure Modes Failure Mechanisms 

Linear 

mode 

Amplifier 

Open circuit 
Overcurrent damage; bond wire crack; electrostatic 
discharge 

Short circuit 
Dielectric breakdown; hot carrier effects; 

electromigration (EM) 
Electric leakage Corrosion in metallization 
Parameter drift PN junction defects 

Output transistor 
Dielectric breakdown Hot carrier injection (HCI) 

Electric parameter drift Electromigration; dopant diffusion 

Resistor 

Resistance drift exceeds the allowable range Corrosion in metallization; silver migration 

Open circuit Lead fracture; solder leads fatigue 

Contact damage Impurity contamination 

Transformer 

Reduction/loss of efficiency DC magnetization or displacement of the core steel 

Short circuit 
Winding transient overvoltage; hot spot; movement 
of transformer 

Insulation breakdown Aging; overload; corrosion; careless handling 
Coil short circuit Insulation breakdown 

Coil open circuit Overvoltage damage 

Switch 

mode 

Electrolytic capacitor 

Capacitance decrease and equivalent series 

resistance (ESR) increase 

Electrolyte evaporation; aging in the dielectric 
material; degradation of oxide film; degradation loss 

of capacitance of anode/cathode foil 

Open circuit Lead fracture; fatigue in solder leads 
Short circuit Insulating materials breakdown 

Metal oxide semiconductor Contact damage Contact spring break; impurity contamination 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

Driver 

Types 
Functional Elements Failure Modes Failure Mechanisms 

field effect transistor 

(MOSFET) 
Breakdown Overcurrent damage 

Inductor Electromagnetic transmission degradation 
Wire corrosion; silver migration; dielectric 
breakdown 

Diode 
Forward current decrease Dielectric breakdown; die cracking 
Reverse leakage current increase Die attach fatigue; dopant diffusion 
Short circuit EM in metallization 

Sampling/feedback resistor 
Resistance drift exceeds the allowable range Corrosion in metallization; silver migration 
Open circuit Lead fracture; solder leads fatigue 
Contact damage Impurity contamination 

 

 

C. Photo-Electro-Thermal Theory for LED Systems 

The LED product is a new kind of microelectronic device 

with complex multiple failure modes. The multi-dimensional 

performance requirements must be met, which include 

photometric parameters such as luminous flux and luminous 

efficacy; electrical parameters such as electric power; driven 

current and voltage; thermal parameters such as junction 

temperature; and thermal resistance of the heat-sink and 

junction to the case. Life characteristics and reliability issues 

are involved in the coupling of multiple physical fields, and the 

photometric, electrical, color, and thermal characteristics of 

LEDs are highly dependent on one another. Especially for 

high-power LED applications, increasing the electric power of 

LEDs can lead to an increase of the LED junction temperature, 

which will greatly affect the performance of the LED, including 

reduced output luminous flux and shortened lifetime [4]. For 

example, Christensen et al. [52] concluded that the LED 

lifetime decreases exponentially with the increase of the 

junction temperature. Meanwhile, Narendran et al. [53] found 

that the junction temperature increase from 40 °C to 50 °C will 

shorten the LED lifetime from 42,000 hours to 18,000 hours. 

Uddin et al. [54] found that the mechanism of the increased 

non-radiative recombination centers is related to the generation 

of defects in the active region due to the high current flow 

through the quantum well structure and the increase of LED 

chip temperature. Trevisanello et al. [55] reported that the 

luminous efficacy (lm/W) degradation with junction 

temperature can be up to 1% per °C after accelerated aging tests. 

Loo et al. [56] and Fu et al. [57] reported that research into 

theoretical modeling and parameter extraction is essential for 

understanding the interactions of heat, color, light, and power 

in LED systems under different driver methods, including 

direct current (DC), pulse width modulation (PWM), and 

bilevel drives. However, these studies focused only on the LED 

device and not the LED system, which includes the thermal 

design of the heat-sink and the electric power control. Hui et al. 

[58]-[60] presented a general and extended PET theory for LED 

systems as shown in Fig. 2. 
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Ambient temperature
 Junction temperature
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-kh represents the portion of the LED 

power that turns into heat.

  

Fig. 2. Schematic diagram illustrating PET theory.
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Fig. 2 shows that photometric parameters such as luminous 

flux and luminous efficacy; electrical parameters such as 

electric power, current, and voltage of an LED; and thermal 

parameters such as junction and heat-sink temperature and 

thermal resistance are closely linked. Through the relationship 

of each two types of parameters, a universal equation can be 

established that integrates the PET features of the LED system. 

On the basis of general PET theory, Tao et al. [61] developed a 

dynamic PET theory for LED systems by incorporating the 

time domain into the generalized equations. Hence, the fact that 

the luminous flux of an LED system will decrease with the time 

from the initial state to the steady state due to the rising 

temperature of the heat-sink and the LED devices can be 

quantitatively explained. Further, Almeida et al. [62] presented 

a static and dynamic PET model by considering the impact of 

low-frequency current ripple on LED performance.  

The PET theory has been verified as useful in the optimal 

design and thermal management of both LED devices (e.g., 

optimal operating point of electric power, reduced junction 

thermal resistance) and LED systems (e.g., optimal thermal 

design of the heat-sink).  For example, the peak wavelength of 

GaN-based white LED shifts in opposite directions under the 

influence of the drive current, and the junction temperature 

changes on the correlated color temperature (CCT) of white 

LEDs [56]. The optimal thermal management approach can be 

adopted for improving the color stability in all pc-white 

LED-based lighting systems under DC, PWM, and bilevel 

drives. 

Generally, the IRC of the LED and the LED driver is affected 

by PET of LED, such as increased resistance with increased 

temperature, decreased current and electric power, and 

decreased luminous flux. However, these problems have not 

been fully considered in the existing PET theory. Besides, for 

compact systems with multiple LED devices closely placed 

together, the improper geometrical arrangement of the devices 

on the heat-sink and its uneven heat distribution can degrade 

both the devices’ and system’s performance. The thermal, 

optical, and electrical properties of the LED can be affected by 

LED’s geometrical placements on the heat-sink [63]. The PET 

theory can be used to help understand the impact of LED array 

density, LED power density, and active versus passive cooling 

methods on device operation. Further, this PET theory can also 

provide a way of predicting the luminous flux output accurately 

for a given LED system design. Therefore, the PET theory is 

expected to be extended to the PET-lifetime theory in future 

studies. Thus, the prognostics can be implemented more easily 

by considering physical explanations. 

D. Lifetime Characterization of LEDs and Drivers 

In the process of the literature search, many similar 

words/concepts appear to describe the life/reliability 

characteristics of LEDs, including useful life/lifetime, 

operation lifetime, RUL, residual life, lumen maintenance life, 

long-term lumen maintenance (life), long-term performance, 

lumen lifetime, L70 life, luminaire lifetime, and luminous flux 

lifetime. Accordingly, the terms prediction, estimation, 

assessment, projection, and prognostics are used for 

characterization. Since a number of concepts are mentioned 

throughout the manuscript, the scope and intention of each 

concept must be discussed. Among these concepts, the rated 

lifetime, the useful/operation lifetime, and reliability 

characteristic parameters are essential for characterization of 

LEDs. Other characterizations can be classified in terms of 

these essential parameters.  

The reliability of electronic products is usually characterized 

by MTTF (mean time to failure)/MTBF (mean time between 

failure)/failure rate, whereas rated lifetime is commonly used 

for LEDs. For electronic devices and equipment, the military or 

industrial standard, such as MIL-HDBK-217F Note2 [64], 

IEEE-STD-1413 [65], IEC-62380 [66], RiAC-HDBK-217Plus 

[67], and Telcordia SR-332 [68], are usually used for failure 

rate and MTBF prediction. However, these standards have a lot 

of limitations when they are applied to new electronic products. 

For example, most of the above-mentioned handbooks on 

reliability prediction are less able to keep pace with new 

technologies, account for complex usage profiles, address soft 

and intermittent faults, and so on. Until now, there has been no 

standard method to predict the reliability of LEDs due to their 

longer lifetime, high reliability, and different mechanisms 

compared to traditional light sources. There are often large gaps 

between the warranted life of an LED product and its real 

application life.  

The rated lifetime specified by a manufacturer is a statistical 

estimate of the expected operational time that a product can 

perform its intended functions under specific/typical 

operational and environmental conditions. Typically, a single 

number is given as an estimate of more complex failure 

distributions, such as L70/L50 life of LEDs. In other words, the 

average lifetime of LEDs is specified by the manufacturer. 

Unavoidable uncertainty exists in the LEDs’ design, materials, 

component selection, manufacturing process, and operation 

environment, among other factors. Reliability is a different 

statistical measure of product performance that describes the 

ability of a product to perform its intended functions under 

specific operational and environmental conditions for a specific 

period of time. Reliability metrics (such as MTBF) are useful 

for approximating the average maintenance interval of 

repairable systems. However, MTBF only describes an average 

failure rate, and the accuracy of such estimation is reduced for 

products that do not have a constant failure rate during their 

useful life. Narendran et al. [69]-[71] initiated discussion 

within the lighting community regarding standardized 

measurement procedures and definitions for useful life in LED 

technology. From this point of view, prognostic techniques can 

be used to improve the ability to estimate the in situ/actual 

lifetime and reliability characteristics of LEDs.  

Some methodologies for classical/traditional estimation of 

reliability/life compounds using life testing methods or 

accelerated life testing (ALT) methods (with life data) are 

beyond the scope of this paper. These classical reliability 

approaches basically use historical time-to-failure (life) data to 

estimate the population characteristics (such as MTTF and 

probability of reliable operation). Elsayed [72], Nelson [73], 

and Turner [74] summarized the general procedures and 

models of reliability tests and accelerated testing. For LEDs, 

the ALT-based research has been conducted from different 

aspects. For example, Yanagisawa et al. [75] performed 

reliability tests under accelerated current conditions and 

estimated mean half-life of white LEDs. Trevisanello et al. [55] 

and Vazquez et al. [76] reported the ALT submitted to two 
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types of stress conditions: high temperature and high drive 

current. In addition to different stress types, ALT has also been 

carried out from the perspective of interconnect [77][78] and 

package [79] failure. Lifetime predictions based on ALT have 

also been conducted on white organic LED (OLED) and LED 

lamps [80]-[82].  

In practical terms, however, because it is difficult to obtain 

the lifetime data of LEDs due to their characteristics of high 

reliability and long lifetime, accelerated degradation testing 

(ADT) and RUL estimation methods have been utilized. This 

section discusses these concepts and points out the differences 

between them, as illustrated in Fig. 3. The different 

perspectives in this figure illustrate the relationships among the 

terms/concepts: lifetime, reliability, and RUL. For the 

convenience of further study, the general process of failure 

diagnostics and prognostics related to LEDs is also illustrated. 

The implementation of a prognostic process generally 

includes several key steps and models/methods, such as data 

acquisition/monitoring, data processing, diagnostics, 

prognostics, and decision reasoning [20][21]. In every step, 

several models and methods are used to handle 

data/information and obtain reliability characterization in 

different forms. For instance, at the current prognosis time 

(tpresent) as shown in Fig. 3, the LED’s failure indicator (such as 

lumen flux/maintenance, chromaticity coordinates, forward 

voltage, spectral power distribution, Euclidean/Mahalanobis 

distance) should be compared with the failure threshold (such 

as 30% reduction in the light output, decrease of 20% or 

4.7 mW for optical power [157], and 0.007 color shift on the 

CIE 1976 chromaticity diagram [105]-[107]); this comparison 

is the process of anomaly detection or failure diagnostics. As 

shown in the central part of Fig. 3, the indicator degradation 

path from the starting point of operation or testing to the present 

can be modeled with linear, nonlinear, and other mathematical 

models (such as regression models, Kalman filters, and particle 

filters). Further, considering the uncertainty and statistical 

properties of these model parameters, reliability-related 

characteristics can be derived (normal, lognormal, and Weibull 

models are usually used for distribution fitting) by using a 

generalized stress-strength (comparing indicator with failure 

criterion) interference model, as shown in the upper-right part 

of Fig. 3. As mentioned above, for long-lifetime components 

like LEDs, accelerated (degradation) test conditions are often 

used to replace the normal operating conditions to shorten the 

test and analysis time. The Arrhenius model is generally used to 

calculate an acceleration factor (AF). Then, the lifetime under 

operational conditions can be predicted by using the AF 

multiplied by the lifetime of the accelerated conditions, as 

shown in the upper-left part of Fig. 3. Further, the future status 

of the reliability can be extrapolated and the RUL of LEDs can 

be determined by using various prognostic methods and models 

(details are given in Section III). In summary, the 

understanding of the above fundamental issues is essential to 

develop an effective prognostic method that can provide better 

lifetime prediction for LEDs and drivers. 
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Fig. 3. Schematic diagram illustrating lifetime and reliability concepts.  
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III. DISCUSSION OF PROGNOSTIC METHODS FOR LEDS 

This section provides an overview of the available 

prognostic methods and models that have been applied to both 

LED devices and LED systems. These methods include 

statistical regression, static Bayesian network, Kalman filtering, 

particle filtering, artificial neural network, and physics-based 

methods. The general concepts and main features of these 

methods, the pros and cons of applying these methods, as well 

as LED application case studies, are discussed. 

A. Overview of Available Prognostic Methods 

Prognostic methods can be grouped into data-driven methods, 

physics-based methods, and hybrid/fusion methods 

[20][21][24]-[29]. Data-driven (DD) methods use prior 

experience, information, and observed/monitoring data as 

training data to identify the current system reliability state, 

further forecast the trends, and predict the future system 

reliability state without using any particular physical model 

[21][24][25]. DD methods are mainly based on artificial 

intelligence (AI) or statistics originating from machine learning 

(ML) or pattern recognition techniques. For physics-based 

methods, information about system failure mechanisms and 

models and operational and environmental conditions in the 

system life cycle are used to assess the RUL and reliability of a 

system [21][24][25]. A physical model that represents the 

system failure behavior is available for physics-based methods. 

Then, the measured/monitoring data is combined with the 

physical model to identify model parameters and predict the 

future failure behavior of a system. Fusion/hybrid methods 

combine the above-mentioned methods to improve the 

prediction performance [20]. 

Various prognostic methods have been widely adopted for 

products/systems with different characteristics and failure 

modes. Selecting an accurate and effective method is the key to 

the successful application of prognostic techniques. 

Researchers have also carried out lots of studies and tried to 

apply various optional methods for the prognostics of 

high-power LEDs, as summarized in Fig. 4. A comprehensive 

summary of these methods or models and literature cited is 

presented in the Appendix, Table A1, which lists the input data, 

failure criterion, and output data of these methods applied to 

LEDs. 
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Fig. 4. Available prognostic methods/models for LEDs and categorization. 
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B. Data-Driven Methods 

At present, five types of data-driven methods have been 

applied to LED prognostics. All of these methods are discussed 

in detail in the following sections. 

1) Statistical Regression  

A simple and direct idea for prognostics is based on trend 

analysis/extrapolation (or model-fitting/curve-fitting) of 

characteristic parameters correlated with lifetime. The 

characteristic parameter may be a single variable or a set of 

variables. Multiple variables can sometimes be further 

aggregated into a single variable that is plotted as a function of 

time. Different types of statistical regression models are then 

implemented to evaluate the RUL of a component or system 

[84]-[87]. There are many application cases for the prognostics 

of LEDs in the refereed literature.  

Due to their simplicity, statistical regression methods are 

usually used for lifetime estimation in engineering practice. 

These methods project the health/degradation of systems by 

key performance indicators (PIs) that are then monitored and 

trended. The RUL is eventually predicted by comparing the PIs 

against a predetermined threshold. As a typical example, the 

IES-TM-21 standard [8] recommends a statistical regression 

method to predict the long-term lumen maintenance of an LED 

light source. Approved by the Illuminating Engineering Society 

of North America (IESNA), IES-TM-21 is the most commonly 

used standard in the LED industry. The collected lumen 

maintenance data is based on 6,000 hours (or more) of testing 

following the IES-LM-80 standard [10]. The IES-TM-28 

standard [88] was recently promulgated by IESNA to project 

the long-term luminous flux maintenance under different 

operational temperature conditions. Similarly, the required data 

can be obtained using approved methods according to relevant 

measurement standards [89]-[93]. The exponential regression 

model and least-squares regression (LSR) approach are 

employed in IES-TM-21 and IES-TM-28. However, in 

practical applications, both IES-TM-21 and IES-TM-28 will 

generate large errors caused by different types of uncertainties, 

such as discontinuous measurement, operating environment, 

and future load. The above-mentioned standards have been 

carried out without consideration of the statistical 

characteristics and do not provide detailed reliability 

information [101][117][126]. In fact, the reliability information 

with respect to lifetime or RUL of LEDs is of great significance 

to manufacturers, as well as to potential users. Therefore, 

accurate lifetime prediction for such highly reliable electronic 

products is still a key issue in popularizing this novel device in 

the LED lighting market. 

Along the line of IES-TM-21, many variants and extensions 

have been developed, including linear regression [80][94]-[101] 

and nonlinear regression [83][94][102][103], where the 

least-squares method (LSM) and maximum likelihood 

estimation (MLE) are two popular methods used for fitting 

function and estimating function parameters. For example, a 

data-driven approach for the RUL prediction of LED packaging 

based on two kinds of distance measure 

techniques—Mahalanobis distance (MD) and Euclidean 

distance (ED)—was developed by Sutharssan et al. [95][96]. 

MD and ED were used to measure the deviation or degradation 

of an LED’s light output, and a linear extrapolation model was 

then used to predict the RUL of LEDs. For nonlinear regression, 

the commonly used function forms include exponential 

function [94], inverse power law model [102], Arrhenius model 

[83], and Weibull function [103].  

Researchers have also developed many variants by 

considering time-varying performance indicators and 

monitoring/measuring data or prior knowledge by using a 

two-stage method [86][104]-[108], logistic regression 

[84][98][109][110], approximation methods 

[104]-[108][111][112], analytical methods [104]-[108][112], 

the Wiener process (Brownian motion with drift) [113]-[117], 

the Gaussian process [118], and the gamma process [119][121]. 

For example, Fan et al. [104] used the general degradation path 

model to analyze the lumen maintenance data of LEDs with 

three approaches (approximation approach, analytical approach, 

and two-stage method) and three statistical models (Weibull, 

lognormal, and normal) to predict the lumen lifetime of LEDs. 

The final predicted results showed that much more reliability 

information (e.g., mean time to failure, confidence interval, 

reliability function) and more accurate prediction results could 

be obtained by the above methods compared to the IES-TM-21 

lumen lifetime estimation method. Logistic regression is 

another method widely used to deal with the nonlinear 

regression problem by introducing a sigmoid function based on 

the linear regression model. Sutharssan et al. [110] further 

compared the performance of data-driven methods and 

model-driven methods. This study used the logistic regression 

method and identified the key parameters in the logistic 

function of LEDs as temperature and forward current. These 

two approaches were both found suitable for prognostics of 

LEDs. As discussed by Burmen et al. [94] and Song et al. [122], 

the spectral power distribution (SPD) change, which has been 

caused by the degradation into the contributions of individual 

degradation mechanisms, such as chip degradation, phosphor 

layer degradation, and packaging material degradation, can 

significantly affect the reliability of LEDs. Further, Qian et al. 

[123] developed an SPD-based method to analyze and predict 

reliability of LED lamps. In this study, an exponential 

degradation model was used to fit the decomposed SPD model 

parameters extracted from the test data of an LED lamp during 

the aging process.  

The basic Wiener process has had wide applications in 

degradation analysis. A Wiener process {Y(t), t ≥ 0} can be 

represented as Y(t) = λt + σB(t), where λ is a defined drift 

parameter, σ > 0 is a diffusion coefficient, and B(t) is the 

standard Brownian motion. For the case of a degradation 

process varying bi-directionally over time with Gaussian noise, 

Wiener processes for degradation modeling are appropriate. 

One of the advantages of degradation modeling with Wiener 

processes is that the distribution of the first passage time (FPT) 

can be analytically formulated and is known as the inverse 

Gaussian distribution. As an example, Ye [114] took the LED 

as an illustrative example to define the lifetime as the time 

when the lumen output of the LED lighting first crosses the 

threshold line of 70% of its initial lumen output level. Huang 

[117] employed a modified Wiener process for modeling the 

degradation of LED devices. The MTTF was obtained and 

showed a comparable result with the IES-TM-21 predictions, 

indicating the feasibility of the proposed method. The Wiener 

process with drift is a Gaussian process given by X(t) = x0 + μt + 
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σW(t), where W(t) denotes a standard Brownian motion, x0 is 

some initial degradation level, and μ and σ are the drift and the 

variance coefficient, respectively. For example, Goebel [118] 

compared the relevance vector machine (RVM), Gaussian 

process regression (GPR), and neural network-based 

approaches and employed them on relatively sparse training 

sets with very high noise content. The results showed that all of 

the methods can provide RUL estimates, although with 

different damage estimates of the data. However, such an 

application in prognostics for LEDs has not been found.  

Sometimes, degradation processes vary one-directionally 

and are monotonic, for example, light output degradation 

processes of LEDs. The gamma process is a natural model for 

the degradation processes in which the deterioration is 

supposed to take place gradually over time in a sequence of tiny 

positive increments. Since the gamma distribution is used in 

gamma processes, the mathematical advantage is that the sum 

of the gamma-distributed increments remains a variable 

obeying the gamma distribution. Gamma process-based 

methods have been proven effective for the prediction of LED 

lifetime, where the light intensity assumed the performance 

characteristic was governed by a random-effects gamma 

process [119][121]. Another advantage of modeling 

degradation processes with a gamma process is that the 

contained physical meaning is easy to understand and the 

required mathematical calculations are relatively 

straightforward. In summary, the above statistical methods are 

more suitable for engineering applications because it is easier to 

program them and estimate the model parameters. 

2) Static Bayesian Network 

A Bayesian network (BN) is a probabilistic graphical model 

that represents a set of random variables and their conditional 

or probabilistic dependencies by using a directed acyclic graph 

(DAG). BN is often also referred to as a Bayesian belief 

network (BBN), belief network, or causal probabilistic network 

[124][125]. BN is a probabilistic approach that is used to model 

and predict the behavior of a system based on observed 

stochastic events. It consists of a set of nodes and directional 

arcs. Each node represents a random variable that denotes an 

attribute, feature, or hypothesis for the system under study. 

Each directional arc represents the relationship between nodes. 

This relationship is usually a direct causal relationship, and its 

strengths can be quantified by conditional probabilities. 

Compared with the traditional statistical models mentioned 

above, BN does not distinguish between independent and 

dependent variables. Alternatively, it approximates the entire 

joint probability distribution of the system under study. As a 

result, BN can be used for omnidirectional inference. For 

example, forward application (i.e., from cause to effect) will 

provide prognostic abilities, while reverse application (i.e., 

from effect to cause) will provide diagnostic abilities.  

Developing a BN model consists of: (1) network design; (2) 

network training; (3) instantiation of new evidence; (4) 

evidence propagation; (5) belief updating; and (6) belief 

propagation. A few studies have been conducted on LED 

prognostics by using the static BN method. Lall et al. 

[126]-[129] introduced Bayesian probabilistic models into life 

prediction and failure mode classification in Philips LED lamps. 

Bayesian probabilistic generative models have been used to 

classify and separate damaged solid-state luminaire assemblies 

from healthy assemblies. Further, the Bayesian regression 

method was used to determine the RUL for every test lamp. 

Lumen maintenance degradation has been used as the main 

indicator of system decay, by fitting the lumen maintenance 

degradation curve. The response variables of the luminous flux 

output and correlated color temperature (CCT) are the target 

variables for the Bayesian regression models. In addition, a 

degradation path-dependent approach for RUL estimation was 

presented through the combination of Bayesian updating and 

the expectation maximization (EM) algorithm [130]. The 

model parameters and RUL distribution are updated when 

newly observed data are obtained by using both Bayesian 

updating and the EM algorithm.  

There are many advantages to the BN-based prognostic 

method, such as (but not limited to): (1) incomplete or 

multivariate data can be derived; (2) models are simple to 

construct and easy to modify; (3) computer modeling software 

is available; and (4) confidence limits are intrinsically provided. 

However, the historical and empirical information must be 

considered when using BN methods to predict the failure time 

of LEDs. Therefore, a comprehensive understanding of the 

failure modes, causes, and effects of LEDs; conditional 

probabilities; and prior distribution is a prerequisite for 

effective and validated prediction results. Ultimately, static BN 

cannot deal with time-dependent situations because the 

directional arcs used are time-independent. Hence, dynamic 

Bayesian networks have been introduced in which the 

directional arcs flow forward time-dependently. The most 

commonly used dynamic Bayesian networks include Kalman 

filters and particle filters (as discussed in the next two sections). 

Dynamic Bayesian networks are useful for modeling time 

series data, such as LED lumen degradation or color shift data. 

3) Kalman Filtering  

Kalman filtering (KF) is frequently used as an optimized 

prognostic technique [131]-[133]. It is one kind of recursive 

method used to predict the system state by combining the prior 

information with the measured/monitoring data. KF is based on 

the assumption that the posterior density at every time step is 

Gaussian and hence is parameterized by the mean and 

covariance. Sutharssan et al. [98] introduced Kalman filters to 

filter the noisy output data from the logistic regression model. 

Their results showed that this method filters the output data 

from the logistic regression model very effectively and 

provides a better approximate curve for the diagnostics and 

prognostics of LEDs.  

For linear systems with Gaussian noise, the Kalman filter has 

been proven to be effective for state estimation. However, the 

degradation process is nonlinear and/or the related noise is 

non-Gaussian, so the application of the Kalman filter is limited 

and restricted. To overcome these problems, many variants, 

from different aspects, have been developed based on the basic 

Kalman filter, such as the extended Kalman filter (EKF), the 

Gaussian-sum filter, the unscented Kalman filter (UKF), or the 

grid-based filter.  

The EKF is the nonlinear version of the basic Kalman filter 

without any assumptions of linearity. Neither the underlying 

degradation process nor the relationship between the process 

and the measurements need to assume linearity. Through a 

Jacobian matrix and first-order Taylor series expansions, a 

nonlinear model can be converted to a linear model, then the 
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nonlinear problem can be solved by approximate solutions. 

Sakalaukus [134] used KF and EKF methods to predict the 

RUL of aluminum electrolytic capacitors (AECs) inside an 

electrical driver (ED) as a potential indication of failure for 

LED systems. This analysis demonstrated that the EKF is best 

suited to predict the RUL of AECs in terms of both leading 

indications of failure, relative capacitance (CAP), and relative 

equivalent series resistance (ESR). In Lall [135][136] and 

Padmasali [137], EKF was employed to predict the lumen 

degradation, color temperature degradation, and chromaticity 

shift over the life of an LED luminaire. The estimated 

state-space parameters based on lumen degradation and 

chromaticity were used to extrapolate the feature vector into the 

future and predict the time-to-failure at which the feature vector 

will cross the failure threshold of 70% lumen output. RUL was 

calculated based on the evolution of the state-space feature 

vector. Failure distributions of the L70 life have been 

constructed based on normal, lognormal, and Weibull 

distributions. The proposed algorithm EKF eliminates the 

shortcomings of the regression method employed in 

IES-TM-21 L70 life estimation. This prediction method is not 

complex and can be implemented practically as an alternative 

to the linear regression method for better accuracy. 

When the system state transition and observation are highly 

nonlinear, the EKF will introduce large errors and perform 

poorly. As an improved filtering method, the UKF addresses 

this problem by using a deterministic sampling approach. 

Several sampling points (sigma points) are generated through 

unscented transformation and second- or higher-order Taylor 

series expansions. Since UKF develops sigma point sampling, 

it increases the accuracy and reduces the computational cost 

drastically. To improve the prediction accuracy and overcome 

the limitations of the IES-TM-21 recommended projecting 

method, a UKF method based on short-term measured data 

(collected from the IES-LM-80 test) was presented for 

prediction of LED lumen maintenance [105][138]-[141]. 

Compared to PF and EKF, UKF shows many advantages 

including making the estimation procedure easier, increasing 

the estimation accuracy, and reducing the computational cost. 

In the literature [139][141], the lumen flux degradation was 

taken into consideration, and in [138][140], the chromaticity 

state shift was considered. 

4) Particle Filtering 

On the basis of the sequential Monte Carlo simulation, 

particle filtering (PF) uses a set of “particles” to approximate 

the posteriori distribution (probability densities) [134]. PF is 

based on the concept of sequential important sampling (SIS) 

and Bayesian theory. Theoretically, PF is suitable for highly 

nonlinear or non-Gaussian processes or in the observation of 

noise. PF has demonstrated its robustness in nonlinear 

projection in forecasting and online (real-time) estimation of 

the RUL of a system [142]-[146]. Similar to EKF and UKF 

without assumptions of linearity or Gaussian noise, PF can also 

be used to estimate the posterior distribution by using BN 

models. In particular, when the posterior distribution is 

multivariate or non-standard, the PF method is more useful than 

EKF and UKF. In the case of sufficient samples, the results 

provided by the PF method are more accurate than EKF or UKF. 

PF has been employed to assess the RUL of the LEDs 

[141][147]-[150].  

Recently, a PF-based algorithm was proposed to overcome 

the shortcomings of the linear regression method for L70 

prediction approved by IES-TM-21 [112]. The prediction 

results are further compared with the L70 results obtained from 

the IES-TM-21 regression method and the EKF method. PF is 

the most accurate of these methods, followed by UKF and then 

EKF. Meanwhile, PF has been employed to assess the RUL of a 

bare LED [147]-[149]. The shift of the 

forward-voltage/forward-current curve and lumen degradation 

was recorded to help build the failure model and predict the 

RUL. The experiments were done on single LEDs subjected to 

combined temperature-humidity environments of 85 °C, 85% 

relative humidity. The results showed that prediction of RUL of 

LEDs by PF works with acceptable error-bounds. The 

presented method can be employed to predict the failure of 

LEDs caused by thermal and humid stresses. 

A PF-based prognostic approach has also been developed for 

improving the prediction accuracy and shortening the 

qualification testing time of the long-term lumen maintenance 

life for LEDs [150]. The presented approach was intended to 

replace the IES-TM-21 recommended LSR method. By taking 

into account the measurement noise, this PF-based approach 

can estimate the prognostic model parameters and adjust these 

parameters as new measurement data becomes available. 

Compared with the IES-TM-21 method, the PF-based method 

obtained a higher accuracy (error less than 5%) in its prediction 

of LED lifetime. Lan et al. [173] applied PF for lifetime 

determination of LED drivers. For improving the accuracy of 

lifetime estimation, PF was implemented and combined with 

nonlinear least squares (NLS) for a single test unit, and with 

nonlinear mixed-effect estimation (NLME) for grouped test 

units. 

However, the initialization of PF-based prognostic model 

parameters and the existence of unavoidable uncertainties have 

a greater impact on the prediction accuracy. Especially for new 

LED product qualification, this limits use of the PF-based 

approach. In order to overcome this limitation, it is necessary to 

make full use of historical data for used products and to carry 

out calibration testing for new products, which leads to a 

reasonable initialization process of the model parameters. 

5) Artificial Neural Network 

The artificial neural network (ANN) is a data-driven method 

widely used in prognostics [23][29][85]. ANN directly or 

indirectly computes an estimated output for the RUL of a 

product/system from a mathematical representation of the 

product/system derived from observation data rather than a 

physical understanding of the failure processes. The major 

advantage of ANN is that it can usually be used without any 

assumptions regarding the functional form of the underlying 

system behavior model. ANN can effectively and efficiently 

model complex, multi-dimensional, unstable, and nonlinear 

systems. The ANN-based prognostic method has been applied 

to numerous applications for different types of 

components/systems [151]-[155].  

A typical ANN consists of a layer of input nodes, one or 

more layers of hidden nodes, one layer of output nodes, and 

connecting weights. The network learns the unknown function 

by adjusting its weights with repetitive observations of inputs 

and outputs. This process is usually called training of an ANN. 

The inputs of the ANN can include various types of data, such 
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as process variables, condition monitoring parameters, 

performance indicators, and key characteristics. The outputs of 

ANN depend on the purpose and intention of the modeling 

application, such as RUL or other lifetime/reliability 

characterizations. The main determinants of a particular ANN 

include network architecture (i.e., arrangement of nodes), 

synaptic weights, and nodal activation function parameters.  

Neural network models applied in system prognostics 

include the feed-forward neural network (FFNN), 

back-propagation neural network (BPNN), radial basis function 

neural network (RBFNN), recurrent neural network (RNN), 

and self-organizing map (SOM) [29]. ANN is commonly used 

as an alternative to the statically regression method in cases 

where there is less understanding of the system behavior. 

Goebel et al. [118] provided a comparison study of three 

data-driven methods—relevance vector machine (RVM), 

Gaussian process regression (GPR), and NN-based method. 

The results showed that all the methods can provide RUL 

estimation, although different damage estimates of the data 

(diagnostic output) change the outcome considerably. Similarly, 

Riad et al. [156] used the multilayer perceptron neural network 

(MLP NN) to overcome the complexity of using dynamic 

models, and showed that MLP NN, as a static network, is 

extensively superior to the linear regression model and does not 

involve the complexity of dynamic models.  

Although the ANN methods are suitable for prognostic 

modeling, few application cases relating to LEDs have been 

found in the literature. Sutharssan et al. [98] developed a simple 

NN with one hidden layer and two hidden neurons for the 

prognostics of LEDs. In this case, the NN approach is only a 

preliminary application without comprehensive consideration 

of the relevant factors that affect and reflect the reliability of 

LEDs. This study seems to be the first application of ANN for 

LED prognostics. The use of NNs offers significant potential 

for applications since the failure behavior of LEDs is too 

complex to establish an analytical deterministic prognostic 

model. However, the ANN method cannot provide the failure 

mechanism details, which will limit the effective design 

feedback and cannot fundamentally improve the reliability of 

the LED product. High computational efficiency is one of the 

advantages of ANN. Parallel processing can be realized by the 

ANN multiple nodes when computing the activation function. 

In addition, many software packages (i.e., MATLAB®, 

Mathematica®, R statistical programming language) are 

available for developing ANN, making the modeling and 

computing process more simple and operational. 

C. Physics-Based Methods  

Physics-based methods assume that a physical model 

describing the behavior of degradation or damage is available 

and combines the physical model with measured data (life cycle 

loading and operating conditions) to identify model parameters 

and to predict the future behavior of degradation or damage. 

The model parameters are usually obtained from laboratory 

tests under normal or accelerated conditions, or estimated using 

real-time measurement data. Finally, the RUL can be estimated 

when the degradation state or accumulated damage reaches a 

predefined failure threshold. Compared to data-driven methods, 

the specific algorithms for physics-based methods are not so 

different from each other.  

Three kinds of physical models can be used for LED 

prognostics, as illustrated in the upper left part of Fig. 4. They 

are: special physics-of-failure (PoF) models (special failure 

mechanism models for different components or sites, such as 

chip-level degradation and solder interconnection fatigue), 

general PoF models (general models that can describe different 

failure mechanisms, such as Arrhenius, Eyring, and inverse 

power law), and empirical models (that represent electrical and 

optical characteristics). For example, Deshayes et al. [157] 

reported the results for commercial InGaAs/GaAs 935-nm 

packaged LEDs using electrical and optical measurements 

versus aging time. Cumulative failure distributions were 

calculated using degradation laws and process distribution data 

of optical power. Sutharssan et al. [98] presented an empirical 

model by considering the voltage-current characteristics of 

LEDs. The model parameters were estimated with data 

obtained under accelerated life conditions. Philips Corp. [158] 

carried out a cross study of the evolution of electrical and 

optical characteristics. Models of the typical lumen 

depreciation and leakage resistance depreciation were made 

using electrical and optical measurements during the aging tests. 

The LED lifetime was then defined as the minimum value 

between optical lifetime L70 and electrical lifetime t2. These 

empirical models mainly depend on the electrical and optical 

characteristics of performance without detailed consideration 

of failure mechanisms for LEDs.  

Further, Fan et al. [105][159] established PoF-based damage 

models for high-power white LED lighting. Failure modes, 

mechanisms, and effects analysis (FMMEA) was used to 

identify and rank the potential failures emerging from the 

design process at different levels (i.e., chips, packages, and 

systems). In this study, thermal-induced luminous degradation 

and thermal cycle-induced solder interconnect fatigue were the 

two potential failure mechanisms with the highest degree of 

risk. However, this study only dealt with simple and single 

situations without consideration of the complex mechanism 

interactions and uncertainty that exist in real-life predictions. 

Meanwhile, Shailesh et al. [160] obtained the 

Arrhenius-Weibull, generalized Eyring-Weibull, and inverse 

power-Weibull models from the IES-LM-80 test data. The 

models proposed in this work can be used to model and predict 

long-term lumen maintenance (reliability) of LED arrays by 

using IES-LM-80 test data of single LEDs. Edirisinghe et al. 

[161] used an Arrhenius accelerated life test model with the 

modeling parameter as the junction temperature in the 

determination of the useful lifetime of 1-W HBLEDs 

(high-bright light-emitting diodes). However, the proposed PoF 

models are too general, and they do not provide details about 

the various failure/degradation mechanisms for LEDs. For 

LED drivers,  Zhou et al.  [172] proposed a PoF-based approach 

for the prognostics of RUL by considering the failure 

mechanisms and degradation models of three critical 

components, including aluminum electrolytic capacitors, 

diodes, and MOSFETs.  

The physics-based method provides details about the various 

degradation mechanisms and thereby improves understanding 

of the associated root causes of the failure. Hence, this method 

can help in designing better LED luminaires and effectively 

assessing their long-term reliability with identification of 

failure locations and failure mechanisms. Despite the 
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advantages of the physics-based method, one of its limitations 

is that the establishment of models requires a sufficient 

understanding of the physical processes leading to system 

failure. Especially for complex systems, it is more difficult to 

establish a unified dynamic model denoting the underlying 

multiple PoF processes [21]. It is important to note that the 

physics-based method has higher requirements for data sources, 

such as design parameters, material parameters, process 

parameters, operational conditions, and environmental 

conditions. These data are necessary but may not always be 

available or may be difficult to obtain. Thus, the physics-based 

methods are much more suitable than DD methods for LED 

devices or components and power electronics in LED drivers. 

While for LED systems, the data-driven prognostic methods 

may be more applicable. 

D. LED System-Level Prognostics 

As discussed above, the LED-based lighting product itself is 

a complex system. To ensure long lifetime, the reliability of 

each part in an entire LED system must be assessed. For 

example, Ishizaki et al. [83] applied the ALT method and the 

Arrhenius model to estimate the lifetime of early developed 

LED modules. Such a module contains five LED chips in a 

package, and they are connected in series to obtain a high light 

flux. Further, a hierarchical model to assess the lifetime of an 

actively cooled LED-based luminaire was proposed [162]. The 

model was articulated on four levels: LED, optical components 

in the fixture, heat-sink, and active cooling device. Each 

submodel of the proposed hierarchical model is a PoF model 

that describes the degradation mechanisms of different 

components. However, a mature PoF model should be 

developed for each degradation mechanism. An example of 

another component is the plastic lens, in which an exponential 

luminous decay model and the Arrhenius equation were used to 

predict the lumen depreciation over different times and 

temperatures [163]. 

After reviewing the system structure and failure modes of 

LED lamps, Philips [164] proposed a methodology for the 

reliability of LED lamps. In this study, the LED lamp included 

four subsystems: LED light source, electronic driver, 

mechanical housing (used for thermal dissipation, electronic 

isolation, and final installation), and optical lens. The reliability 

of the whole LED lamp was described with a simple series 

model. Narendran et al. [165] further discussed the LED 

system’s lifetime versus LED package lifetime. Meanwhile, 

luminaire manufacturers have also carried out parallel studies 

on the failure behavior and lifetime estimation of the many 

other components that constitute the whole LED system, 

including drivers, optics, mechanical fixings, and housings. 

Each component is a factor in the determination of the lifetime 

of a luminaire [166]. 

Compared to the LED device, the claimed lifetime of an LED 

driver is generally 10,000–30,000 hours, which is a major 

obstacle to further and wider application of LEDs in the general 

and public lighting industry. LED drivers with long (>15 years) 

lifetime are expected by LED manufacturers and potential 

end-users. Recently, Li et al. [41] reviewed the current status, 

design challenges, and selection guidelines of LED drivers, and 

the lifetime and reliability were mentioned as one of the 

primary challenges. To select the appropriate circuit topologies 

for a given application, an application-based LED driver design 

flowchart was suggested, which can help the designers make 

appropriate choices. Literature that focuses on the reliability 

and useful life of an LED driver has also been published. For 

example, Han et al. [167] predicted the useful life of an LED 

driver by using the ALT method, in which the electrolytic 

capacitor was considered as the weakest link. Bo et al. [46] 

considered the failure of aluminum electrolytic capacitors as 

one of the major failure modes of the LED drivers and proposed 

a degradation model by considering the impacts of operation 

time and temperature. Lall et al. [168]-[170] conducted an 

accelerated aging test in order to assess the reliability of the 

LED drivers, in which the electrical drivers were exposed to a 

standard wet hot-temperature operating life of 85% RH and 

85 °C. Lan et al. [38] presented a pseudo black-box testing 

method to evaluate the reliability of the integrated circuit used 

in LED drivers. Similarly, the critical component(s) were 

isolated and tested to estimate the reliability or lifetime of the 

LED drivers, such as electrolytic capacitors [39] and voltage 

regulators [171]. Recently, Sun et al. [253] developed a 

PoF-based reliability prediction method to estimate the failure 

rate distribution of electrolytic capacitors used in LED drivers 

with considering the temperature effect of electrolytic 

capacitors under operation conditions. Furthermore, Sun et al. 

[254] also applied the reliability assessment method on the 

electrolytic capacitor-free LED drivers to investigate the failure 

rate of MOSFETs in the drivers. Comparatively little research 

has been conducted on the prognostics of LED drivers 

[172][173]. However, as a typical application of a 

constant-current switch mode power supply (CC-SMPS), the 

relevant prognostic methods suitable for CC-SMPS can be 

directly applied to LED drivers. Currently, these methods are 

relatively rich and mature in terms of data-driven, 

physical-based, and/or fusion prognostics [174]-[179]. In the 

future, the suitable prognostic methods for LED drivers will be 

further developed with respect to the emerging types of drivers, 

such as drivers without capacitor converters, or converters that 

provide a pulsed current to the LED. In addition, to increase the 

accuracy of lifetime prediction for an integrated LED lamp, the 

interaction between the degradations of the LED light source 

and the driver should be considered in establishing the 

PoF-based model. 

IV. CHALLENGES AND OPPORTUNITIES 

Although numerous studies on prognostics have been 

conducted for LEDs using data-driven or physics-based 

methods in recent years, prognostic technologies are still not 

mature enough for practical engineering applications. 

Undoubtedly, all prognostic techniques that are reviewed in this 

paper need further development and improvement in their 

ability to accommodate proprietary features of LEDs and be 

used in practical situations. The implementation of prognostic 

technologies for LEDs includes several aspects, such as 

selecting and developing effective methods and models, 

addressing the uncertainty existing in the prognostic process, 

assessing the prognostic performance, validating prognostic 
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models, and analyzing cost–benefit of different applications 

(see Fig. 5). The following subsections discuss the challenges 

and opportunities facing the implementation of prognostics for 

LEDs. 
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Fig. 5. Major challenges in the implementation of LED prognostics. 

 

 

A. Developing Effective Methods for Accurate Prediction 

Up to the present, a number of prognostic methods have 

already been applied to LEDs by researchers. There are still 

other available methods as indicated in Fig. 3 that have been 

proven effective for various products or systems. Some typical 

examples include hidden Markov models (HMMs) 

[29][180]-[182], the support vector machine (SVM) 

[29][184]-[186], the relevance vector machine (RVM) 

[118][187][188], fuzzy logic [29][189], and other pattern 

recognition approaches. In order to achieve successful and 

effective applications for LEDs, selecting an appropriate 

prognostic model is crucial. Future research should also focus 

on overcoming the shortcomings/limitations of the various 

methods. 

Essentially, the advantages and disadvantages of different 

prognostic methods must be explored, and the requirements and 

restrictions from the application objectives for proper model 

selection must be considered. There have been excellent review 

papers on the comparison of related modeling techniques and 

prognostics; see, for example, Sikorska et al. [23], which shows 

the generic advantages and disadvantages that can be attributed 

to a type of model and summarizes the necessary considerations 

for using or avoiding a particular type of model. Baraldi et al. 

[25] proposed a prognostic methods/models selection strategy 

based on the information available for the model development. 

The information setting included the availability of 

physics-based degradation models, similar degradation 

observations, and degradation observations. The accuracy of 

the RUL prediction and the ability of confidence measurement 

were evaluated. Kan [29] described the advantages and 

disadvantages of different prognostic methods in applications 

in rotating systems. These general conclusions are also 

applicable for LEDs.  

In theory, the physics-based prognostic methods are more 

accurate than the data-driven methods. However, the overall 

degradation in LED lumen maintenance and chromaticity may 

result from several combined long-term decay functions 

triggered by multiple failure modes and mechanisms, such as 

chip degradation, encapsulant degradation, and phosphor 

degradation. Thus, the true degradation profile may be fairly 

complicated. For all these different degradations, it is difficult 

to determine the single activation energy used for PoF models. 

Although the weight method can be used to give each failure 

mechanism a different weight, a large amount of population 

statistics is required. Even in the case that the physical model is 

known, the accurate estimation of RUL is also difficult due to 

particular limitations, such as a not directly observable 

degradation state, noise, and disturbances influencing 

measurements.  

Because the data-driven methods do not require special 

failure models or failure-specific knowledge, they are 

considered a black-box method. Monitored and historical data 

are used to identify the characteristics of the currently measured 
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degradation state and to perform the prognostics. From this 

point of view, data-driven methods are more suitable for 

complex systems in which failure behavior cannot be derived 

and assessed from basic physical principles. One major 

advantage of data-driven methods is the simplicity of their 

implementation and computation, which can be carried out on a 

programmable calculator. For example, the underlying 

IES-TM-21 standard provides an Excel-based calculator. 

However, these methods rely on past patterns of degradation to 

project future degradation. It is not easy to apply due to the lack 

of efficient procedures to obtain the training data and specific 

knowledge, which are required to train the models. So far, most 

of the applications in the literature only used experimental data 

for model training. Because the performance-related 

parameters and other key parameters that can indicate the state 

of the underlying system are used, data-driven methods depend 

substantially on the measurement data. Therefore, unavoidable 

measurement error and noise can significantly affect prediction 

accuracy. In some cases, information about failure mechanisms 

has been a concern for LED developers and users. The active 

failure mechanisms (such as degradation of chip, encapsulant, 

phosphor, and reflector) cannot be distinguished, which is 

another major disadvantage for data-driven methods.  

A fusion/hybrid prognostic approach that combines 

physics-based and data-driven methods to estimate the RUL in 

actual life cycle conditions has been presented [190]-[197]. 

This method integrates the advantages and overcomes the 

limitations of the data-driven and the physics-based methods to 

provide better and advanced predictions. Fusion prognostic 

approaches have been found effective for electronic products 

[190][191], mechatronic systems [194], lithium-ion batteries 

[196], and micro-electro-mechanical systems (MEMS) [197]. 

However, a review of the recent literature has failed to extract 

studies conducted for specific LED applications. There are only 

a few conceptual descriptions and no substantive studies. For 

example, Sutharssan [98][110] conducted preliminary research 

and proposed a fusion approach based on the Kalman filter to 

estimate the best RUL from the estimated RULs from the 

model-driven and data-driven approaches. The model-driven 

and data-driven approach estimates were assumed to have 

errors and respectively follow a Gaussian distribution with 

mean μ1, standard deviation σ1 and mean μ2, standard deviation 

σ2. Different weights were given for RUL estimation from these 

kinds of approaches according to accuracy. In fact, Sutharssan 

claimed that he attempted to demonstrate the fusion approach 

using the Kalman filter. The fusion approach that incorporates 

the model-driven and data-driven approaches can be developed 

further to obtain better performance. 

B. Addressing Uncertainties and Assessing Prognostic 

Performance 

One of the most significant characteristics of prognostics is 

the ability to deal with objective uncertainty. A proper 

prognostic method not only provides accurate and precise 

prediction of RUL but also specifies the confidence level 

associated with such predictions. Without such statistical 

information about uncertainty, any prognostic estimate is of 

limited use and cannot be incorporated in decision-making 

activities and mission-critical applications. Common sources of 

uncertainty affecting prognostic accuracy include modeling 

uncertainties (e.g., model simplification, model parameters 

estimation, and model errors), measurement uncertainties (e.g., 

sensor noise, data preprocessing, approximations, and 

simplifications), operating environment uncertainties and 

future load uncertainties (e.g., unforeseen future and variability 

in usage history data), and input data uncertainties (e.g., 

estimate of initial state of the system, variability in material 

properties, and manufacturing variability). These uncertainties 

can lead to significant deviation of the prognostic results from 

the actual situation. 

Existing methods need further improvement to be able to 

address uncertainty. The importance of considering uncertainty 

in prognostics has been noted by researchers [198]-[201]. For 

LED applications, the situation is also quite complex, due to 

multiple operating factors (e.g., forward current, usage 

patterns), environmental factors (e.g., temperature, humidity) 

in real life, and multiple failure modes with different indicators 

(e.g., luminance degradation, color shift). The ability to 

consider the complexities is crucial in selecting an appropriate 

prognostic method for real-life applications. In general, the 

data-driven methods for RUL prediction can provide 

confidence limits for their predictions. As shown in Table A1, 

only a few studies and prognostic results for RUL or MTTF are 

within the confidence intervals/limits/boundaries 

[108][117][126]-[129][147]-[150]. As for physics-based 

methods, the confidence limits cannot be naturally provided for 

their predictions. The Monte Carlo simulation method should 

be used for considering the uncertainties existing in prognostic 

processes to obtain relevant information on the confidence 

limits.  

Apart from addressing different sources of uncertainty in 

prognostics, there is a lack of standard and uniform criteria for 

evaluating the performance of prognostic methods applied to 

LEDs. Prognostic methods have their own advantages and 

disadvantages, and they behave differently depending on the 

situation. However, there are no widely accepted appropriate 

metrics that can be effectively employed to assess the technical 

performance of prognostics. These metrics include prediction 

accuracy, computation time, sample size requirement, 

prediction horizons, reliance on historical data, the ability to 

deal with high-dimensional and multi-source data, difficulty in 

implementation, real-time analytical capability, and the 

requirement of specifying the failure threshold. In the past few 

years, the prognostic performance and evaluation method has 

attracted the attention of some researchers [202]-[210]. For 

example, Leão et al. [205][206] described a set of metrics 

developed to evaluate the performance of prognostic 

algorithms, including prognostic hit score (PHS), false alarm 

rate (FAR), missed estimation rate (MER), correct rejection 

rate (CRR), and prognostic affectivity. The usefulness of this 

set of metrics for prognostic algorithm design, verification, and 

cost-benefit analysis was further illustrated with a sample 

application. Saxena et al. [207][208] also suggested a series of 

metrics to evaluate key aspects of RUL predictions, such as 

prognostic horizon (PH), prediction spread, relative accuracy 

(RA), convergence, and horizon/precision ratio. Further, Tang 

et al. [209] proposed several new metrics and methodologies 

stemming from weather forecast verification. Although the 

proposed metrics have tried to cover most prognostic 

performance requirements, further refinements in concepts and 
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definitions are still expected as prognostics matures, especially 

for LED applications. 

C. Validating the Prognostic Model 

Verification and validation (V&V) remains a challenge for 

prognostic techniques and systems development [211]-[214]. 

V&V has been identified as a critical phase in the practical 

engineering application of prognostic technologies. V&V 

consists of correlated entities with distinct definitions 

depending on the application objective and scope. Different 

industries use different definitions and approaches [212]. For 

prognostic application, “verification” denotes the process of 

determining that a prognostic model accurately represents the 

developer’s conceptual description as a function of the design 

specifications, whereas “validation” denotes the process of 

determining the degree to which the prognostic model achieves 

the performance specifications within the system constraints 

and provides accurate results in the operational environment.  

Further to the prognostics of LEDs, three types of systems 

are specifically related: the conceptual system 

(failure/degradation behavior of LEDs), the realized system 

(prognostic model), and the real system (practical failure of 

LEDs). This means that verification deals with the relationship 

between the conceptual system and the realized system and that 

validation deals with the relationship between the experimental 

measurements and reality. Normally, the off-line available data 

(e.g., historical and empirical data) are used for verification, 

and the on-line available data (e.g., monitoring and 

measurement data) are used for validation.  

The difficulties lie in the fact that usually insufficient 

statistical data are used for V&V. As mentioned above, for 

long-lifetime and high-reliability components like LEDs, 

monitoring and sampling the degradation data under normal 

operational conditions is expensive and time-consuming. In 

order to make these data available, ALT is usually used 

[129][160][215]. Especially for data-driven models, historical 

data play an essential role in performing prognoses. The need 

for historical data is a challenge for implementation of 

prognostic systems in real industrial applications because 

historical data are not always available or are well 

stored/catalogued/collected. Taking into account the basic 

characteristics of data-driven methods, available historical and 

empirical data have a great influence on the confidence level of 

predictions. For example, these data are required for training 

the prognostic model and for defining the respective failure 

threshold values. Another disadvantage of data-driven methods 

is that they cannot distinguish different failure modes and 

mechanisms in the system. This will limit root-cause analysis 

(RCA) and increase uncertainty in V&V.  

To validate different prognostic methods, the prediction 

errors of LED lifetime are always used to rate these validation 

results. Prognostic accuracy assessment technologies are 

necessary for building and quantifying the confidence level of a 

prognostic method. Methods to impartially evaluate the 

effectiveness and accuracy of prognostics are required [21]. 

There is no general agreement on an appropriate and acceptable 

set of metrics that can be employed effectively to assess the 

technical performance of prognostic methods. Some 

researchers presented a series of metrics for evaluating the 

performance of prognostic techniques from different 

perspectives. For example, Saxena et al. [216] suggested a list 

of metrics to assess critical aspects of RUL predictions, such as 

prognostic horizon, prediction spread, relative accuracy, 

convergence, and horizon/precision ratio. Tang et al. [217] and 

Leão et al. [218] also proposed several metrics and 

methodologies stemming from weather forecast verification, 

nonlinear exact filtering, nonlinear uncertainty propagation, 

and the Monte Carlo method. Although efforts have been made 

to cover most PHM requirements, further refinements in 

concepts and definitions are expected as prognostic matures. 

In summary, many reliability problems and characteristics of 

LEDs are related to temperature [1][4][219][220]. In particular, 

the junction temperature directly affects the accuracy of results. 

Therefore, the junction temperature of LEDs plays an important 

role in the V&V process [221]. Cai et al. [99] proposed a hybrid 

method for estimating the junction temperature of high-power 

LEDs at the system level by combining thermal modeling with 

temperature measurement. A hybrid numerical approach [120] 

was also presented to provide a way to predict the lifetime 

based on the maximum junction temperature of LED products, 

instead of running lumen maintenance tests at the system level 

to extrapolate the lifetime. Complete verification and 

successful real-life implementation of prognostic techniques 

are still big challenges. More effort should be made to improve 

the simplicity of technique implementation, as well as establish 

effective methods to validate the technique. Ultimately, the 

implementation of prognostic systems in real-life industries can 

be improved. 

D. Developing a Unified Standard for Anomaly Detection and 

Qualification 

Similar to traditional lighting systems, an LED system 

should comply with associated luminaire standards and 

international regulations. These standards and regulations set 

basic requirements for LED systems. They could affect the 

designer’s selection of a proper circuit topology and control 

method. The LED industry is growing rapidly, and this 

naturally brings up the need for reliable measurements of LED 

and SSL products. These measurements often form the 

foundation for a fair comparison between SSL products from 

different vendors. Consequently, there is an industry-wide push 

for standards and regulations with respect to accurate and 

repeatable measurements of optical, electrical, and thermal 

properties, and safety and warranty aspects for LED and SSL 

products. These standards have been developed or approved by 

ANSI [222][223], JEDEC [224], NEMA [225][226], IEC [227] 

[228], and leading LED manufacturers [229]-[233]. Despite the 

current use of IES-TM-21 by many LED manufacturers, there 

are still no widely accepted standards and procedures for 

assessing LED useful/operation lifetime for lighting 

applications. There is a big gap between the lifetime prediction 

results according to IES-TM-21 and the actual failure results. 

Besides, IES-TM-21 requires a long testing time (usually more 

than 6,000 h) and costly testing processes [1]. Particularly, it is 

not acceptable for manufacturers to wait for 6,000 h of testing 

data for lifetime prediction before a product launch. Further, as 

a newly released standard, IES-TM-28 recommends the use of 

the Arrhenius equation to determine SSL device-specific 

reaction rates from thermally driven failure mechanisms used 

to characterize a single failure mode (the relative change in the 
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luminous flux output or “light power” of the SSL luminaire). 

One problem with IES-TM-28 is the lack of additional stresses 

or parameters needed to characterize 

non-temperature-dependent failure mechanisms. Another 

problem is that IES-TM-28 has no process for the 

determination of acceleration factors or lifetime estimations. 

Therefore, effective qualification testing needs to be developed 

to assist designers in preliminary verification in order to 

eliminate failures and make improvements before product 

release.  

Some researchers have tried to solve these problems 

encountered by the LED industry. Lin et al. [234] proposed an 

automated detection method for surface blemishes that fall 

across two different background textures in an LED chip. Jeong 

et al. [235] suggested a method that enables screening the 

potential field failure LEDs in mass production, in which the 

failure can occur by an external noise factor, by adding a “turn 

on current level screen” on an “operating current level screen”. 

Dong et al. [236] proposed an estimation approach to 

diagnosing individual LED failures using a photosensor system. 

Fan et al. [237] used a data-driven method based on a 

multivariate distance measure, the Mahalanobis distance (MD), 

to detect the chromaticity shift anomaly of high-power white 

LEDs after aging tests. Philips [238] demonstrated the trend of 

lumen maintenance in the wet high-temperature operation test 

(WHTOT), indicating that a prediction method for LED lumen 

maintenance could be initiated with a rather short testing time. 

Yang et al. [239] proposed an accelerated aging test for 

high-power LEDs under different high-temperature stresses 

without input current. The results of this accelerated aging test 

show that a sufficiently high-temperature stress effectively 

shortens the unstable period of the LED chip. Chang et al. [240] 

developed a prognostics-based anomaly detection technique, 

called the similarity-based metric test, to identify anomalies 

without using historical libraries of healthy and unhealthy data. 

Zhang [241] also studied the fast qualification of solder 

reliability in SSL systems. Qian et al. [215] developed an 

accelerated test method based on the lumen maintenance 

boundary curve for luminous flux depreciation to solve some 

problems in IES-TM-28 and reduce the test time to less than 

2,000 h at an elevated temperature.  

Most traditional methods and standards for anomaly 

detection, lifetime prognostics, and reliability assessment 

depend on off-line measurements, which involve high costs and 

long testing times. Off-line methods lead to other problems, 

such as ignoring the random degradation status of tested LED 

samples with non-continuous measurement, and result in 

evaluation error in an uncontrollable testing environment. 

Recently, anomaly detection methods for LEDs related to 

online/in situ measurement have been published [242]-[245]. 

The partial luminous flux on the receiving surface of a fiber 

cable was captured, and it was proportional to the total 

luminous flux of the LED light source. The lumen depreciation 

of LEDs can be monitored in continuous forms. As a result, 

on-line methods can help improve the accuracy of 

measurement and prognostics, enhance the discrimination of 

LED degradation details, and highlight the analysis of failure 

mechanisms of LED devices.  

The LED light source community must develop a 

preliminary unified methodology for assessing lamp life and a 

definition for useful life for LEDs. When life values are 

reported by manufacturers, the lighting community can 

compare LEDs to other sources and develop this unified 

methodology for practical lighting applications. Currently, 

sufficient information regarding the lifetime and reliability of 

these LEDs is not available for developing good definitions of 

useful life and assessment technique. The lack of uniform 

standards allows LED manufacturers to publish reliability and 

lifetime data however they choose. The published reliability 

data and claimed lifetimes for LEDs are often limited or 

mistakenly used in practice. Uniform standards for LED 

qualification still need to be derived as a means to compare 

luminaires and reliability data that have been tested and 

claimed at different facilities, research labs, or companies. 

E. Analyzing the Cost–Benefit of LED Prognostics 

Applications 

Although prognostics can provide many benefits, its 

implementation is costly and these costs vary across different 

engineering practices [21][246]. Especially in large-scale 

applications such as street lighting and traffic lights, and 

safety-related applications such as automotive headlights, the 

return-on-investment (ROI) for LED lighting systems is a 

concern for designers. To reduce life cycle cost (LLC), 

prognostics-based maintenance with health 

monitoring/management (HM) is considered as a cost-effective 

approach that can provide advanced failure warning, minimize 

unscheduled maintenance, and increase maintenance 

effectiveness. Currently, few researchers are working on ROI 

evaluation of LED lighting systems with prognostics-based 

maintenance by comparing them with LED lighting systems 

with unscheduled maintenance [247].  

ROI is the monetary benefit derived from having spent 

money on developing, changing, or managing a product or 

system. ROI is a common economic measure used to evaluate 

the efficiency of an investment or to compare the efficiency of a 

number of different investments. As the ratio of gain to 

investment, ROI is often calculated by the equation: ROI = 

(return – investment)/investment. An ROI equal to zero means 

a break-even situation, an ROI less than zero means a loss 

situation, and an ROI greater than zero means a gain situation 

[248].  

A cost–benefit analysis (CBA) of alternative LED lighting 

systems was conducted by comparing with traditional lighting 

systems [248]. ROI research on LED lighting systems has 

assumed that LED lighting systems are successfully maintained 

over long lifetimes (e.g., 100,000 operating hours) [249]-[251]. 

Compared with traditional light sources, the LED light sources 

have obvious financial benefits owing to their longevity. 

However, little research has been conducted on how ROI is 

determined and thus how prognostics-based maintenance using 

HM can be cost-effective and applicable to the LED lighting 

industry. As a case study, the ROI for implementing 

prognostics in LED lighting systems was evaluated in the view 

of the LLC [247][248]. This study assumed exponential TTF 

distributions with three different failure rates and normal TTF 

distributions with three different MTTFs to investigate how 

ROI is impacted. The annual rate of total LLCs for an LED 

lighting system with prognostics-based maintenance is 

compared with that of an LED lighting system with 
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unscheduled maintenance. According to the calculated results, 

the annualized costs decreased due to advanced warning 

replacement of failed LEDs—the time for replacement 

decreased from 157.3 h to 1.5 h, replacement maintenance costs 

decreased from $245 to $170, and downtime costs decreased 

from $3.59 to $1.55 per hour out of service for single LEDs.  

Another challenge for determining ROI in prognostics for 

LED systems is that cost savings must be estimated by using 

prognostics-based methods in related LED development 

processes, such as design and analysis and testing and 

qualification. Specifically, the efficiency and cost of 

qualification testing have a great impact on the final market 

price for an LED. A financial function can be established to 

evaluate the operation cost of a qualification test by taking two 

metrics, time and cost, into account. The total cost can be 

calculated using the following formula [105]: 

( 1)T S m d eC nC n C t C                          (1) 

where Cs is the cost of a single test sample; n is the sample size; 

Cm is the cost of one inspection on one test sample; τ is the 

inspection frequency; and Ce is the operation cost in the time 

interval td between two inspections. 

As far as the whole life cycle is concerned, LEDs can be even 

more environmentally friendly if they are recycled correctly 

and effectively. With a large number of LED applications, the 

issue of recycling is becoming more and more critical. The U.S. 

Department of Energy (DOE) noted this issue in its 2012 report 

“Part 2: LED Manufacturing and Performance” [252], in which 

the life-cycle environmental and resource costs for the 

manufacturing, transport, use, and disposal of LED lighting 

products were assessed in relation to comparable traditional 

lighting technologies. In this study, a life-cycle assessment 

(LCA) method was used to quantify the environmental and 

sustainability impacts across a range of categories for an LED 

product over its entire life cycle. ROI research on LED lighting 

systems can provide a useful data source and information base 

for both life-cycle inventory (LCI) analysis and life-cycle 

impact assessment. The assessment results will further provide 

evidence that LEDs are a sensible and appropriate alternative to 

traditional light sources.  

An LED lighting system with prognostics capability can 

meet the requirements of energy savings, emission reduction, 

and a green environment. A large number of qualification tests 

have to be conducted per year before new LED products can be 

released to the market. However, if the traditional qualification 

testing plans continue to be used, the total cost will be a huge 

expense for LED manufacturers. An optimal qualification 

testing plan that uses prognostic methods will shorten testing 

time and testing operational costs. All these cost savings will 

further reduce the price of LEDs and promote the replacement 

of traditional light sources. 

V. CONCLUDING REMARKS 

Prognostics is a necessary engineering activity in industry 

for predicting the RUL/reliability and further optimizing the 

design, testing, manufacture, and usage of LEDs. This review 

paper has attempted to summarize recent research and 

development in prognostic technologies for high-power white 

LEDs. As for common prognostic methods, statistical 

regression, static Bayesian network, Kalman filtering, particle 

filtering, artificial neural network, and physics-based methods 

have been reviewed to illustrate their basic concepts, pros and 

cons, applicable conditions, and LED application case studies. 

For professionals involved in LED prognostics, this review will 

be helpful in choosing the most appropriate method for their 

application. The fundamental issues of prognostics have been 

discussed for a clear understanding of the reliability and 

lifetime concepts for LEDs. The challenges and opportunities 

for new developments have been addressed. The research 

directions will be useful for researchers who are interested in 

implementing prognostics for high-power white LEDs. The 

following benefits of prognostics for LEDs can be derived for 

the development and application of a new generation of SSL 

products.  

1) Prognostics can improve the accuracy and effectiveness of 

reliability prediction and useful lifetime assessment of LED 

lighting systems, thereby improving customer satisfaction, 

increasing market share, and reducing warranty costs. 

2) The PET interaction in LEDs should be considered in 

optimized prognostic methods. A prediction error caused by 

neglecting this multi-physical field coupling can be avoided.  

3) The reliability and prediction of LED drivers is important 

for real applications of LEDs, and prognostics can provide 

useful information and guidelines for selecting an appropriate 

LED driver for a specific application. The relevant prognostic 

methods suitable and appropriate for CC-SMPS can be directly 

applied to LED drivers from the point of view of power 

electronics. 

4) The optimal prognostic methods involve the ability to 

identify failure mechanisms and failure sites, further enabling 

root-cause analysis (RCA) and providing feedback for the 

design and manufacture of LEDs with improved inherent 

reliability.  

5) The standardization of prognostic methods is necessary 

for wider application of these methods in the LED industry. A 

universally accepted standard needs to be established, 

including the selection of appropriate methods, monitoring 

and/or measurement of performance indicators/parameters, 

prognostics procedures, and support software tools.  

6) Anomaly detection and RUL prediction of LEDs in a 

shorter timeframe (e.g., ≤1,000 h) than the currently adopted 

qualification method according to IES-TM-21 or IES-TM-28 

(e.g., >6,000 h) is possible by using prognostic models and the 

observed/monitoring electrical, optical, and thermal 

characteristics data under test. Shorter test/qualification times 

will result in lower energy consumption, low-cost LED lighting 

products, shorter time-to-market, and reduced carbon 

emissions.  

7) Prognostics capability is necessary for LED-based 

systems with the requirement of prognostics and health 

management (PHM) for condition-based maintenance (CBM), 

especially for safety-critical systems and emergency 

applications. The accurate reliability assessment of LED 

lighting systems is a requirement for these applications. 

Prognostic techniques make more accurate reliability 

information available for use with respect to the maintainability 

of the LED lighting systems, which can remove the barriers to 

the further expansion of the LED application scope.  

8) Prognostics can become a key enabling technology for the 
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research and development of high-reliability and low-cost 

LEDs, which can potentially meet the requirements for greener 

technology and environmental protection. 

 

 

APPENDIX  

TABLE A1. Inputs and Outputs of Prognostic Approaches/Models for LEDs. 

Classification Approaches/Models 

Input Data 

(Performance Indicators/ 

Key Parameters) 

Failure Mode/ 

Failure Threshold 

Output Data 

(Lifetime or Reliability 

Characteristics) 

Statistical 

Regression 
Methods 

Linear regression (including 

least-squares, maximum 
likelihood)  

[8] [80][88][89][94]-[101]  
Nonlinear regression 
(including exponential function, 

inverse power law, Arrhenius 

model, Weibull function) 
[83][94][102][103] 

Logistic regression [98][109] 

[110]  
Two-stage method [104]-[108]  

Approximation method 

[104]-[108][111][112]  
Analytical method [104]-[108] 

[112]  

Wiener process [114][117]  
Gamma process [119][121]  

Gaussian process [118] 

Lumen maintenance (collected from 

IES-LM-80) [8][88][89][99]-[101] 
[104]-[108][112][117] 

Light output power spectrum 

[83][102] 

Thermal resistance (R0) (calculated 

for junction temperature) [83] 

Light intensity 

[96][109][114][119][121] 

Spectra S(λ, t, i) [94] 

Color coordinates (x, y) [94] 

Luminosity [111] 
Forward current (current through p-n 

junction) [95]-[98][110] 

Junction temperature [95]-[99][110] 
Output in volts [95]-[98] 

Euclidean distance (ED) and 
Mahalanobis distance (MD) [95]-[98] 

Average luminance at each current 

stress [103] 
Color shift [117] 

Maintained percentage of 

the initial lumen output [8] 
[88][89][99]-[101][104]-[108

][112][117] 

50% reduction in luminous 
flux [83][102][103] 

Degradation critical level 

[109][114][119][121] 
Spectral degradation (initial 

intensity decreases to d%) 

[94] 
Decrease in luminosity [111] 

30% of initial lumen 

depreciation [95]-[98] 
Probability for the LED 

health status (healthy = 0.99, 

not healthy = 0.01)/healthy 
margin [98][110] 

Lumen maintenance life 

Lp (L50/L70) [8][88][89] 

[99]-[101][104]-[108][112

] 
Lifetime [83][102] 

Failure probability and 

reliability 

[109][114][119][121] 

Lifetime Td (i) [94] 

Lifetime distribution 

[111] 

RUL [95]-[98][110][119] 
Time-to-failure (TTF) 

[95]-[98] 

Reliability (Weibull, 
lognormal and normal) 

[104]-[108][112] 

MTTF with confidence 
interval [108][117] 

Average life [103] 

Static  

Bayesian  

network  

Bayesian probabilistic and 

regression models [126]-[129] 

Luminous flux and correlated color 

temperature (CCT) [126]-[129] 

70% light output 

maintenance [126]-[129] 

RUL with confidence 

interval [126]-[129] 

Kalman 
filtering 

(KF) 

 

Kalman filter [98][110]  

 
Extended Kalman filter (EKF) 

[134]-[137] 

 
Unscented Kalman filter 

(UKF) [105][138]-[141]  

  

Forward current, forward voltage, 

board temperature, light output [98] 

Lumen flux (lumen maintenance) 
[105][137]-[139][141]  

Chromaticity coordinates (u′, v′) 

[105] [135]-[137][139][140] 

Forward voltage [105][139] 

Euclidean distance [105][140] 

Color shift distance (Duv) [135]-[138]  

Correlated color temperature (CCT) 
[135]-[137] 

Probability for the LED 

health status (healthy = 0.99, 

not healthy = 0.01) [98] 
Maintained percentage of 

the initial lumen output 

[105][137]-[139][141]  

Chromaticity state shift   (△
u′, v′) [105][135]-[138][140] 

RUL without confidence 

limits [98][138] 

Lumen maintenance life 

Lp (L50/L70) [105] 

[135]-[137][139][141] 
Depend on different 

application (2-step, 4-step, 

5-step, or 7-step SDCM) 
[105][137][138][140]  

Particle 

filtering 

(PF) 

 

Particle filter model [141] 

[147]-[150]  

 

Peak forward voltage and forward 

current [147][148][149]  

Luminous flux [141][147]-[150]  

 

Shift of 

forward-voltage/forward-curr

ent curve [147]-[149]  

Lumen degradation 

(luminous flux drops to 70%) 

[141][147]-[150]  

L70 life time [141] 

RUL with confidence 

boundary [147]-[150] 

 

Artificial 

neural 

network 
(ANN) 

Three layers NN (forward- and 

back-propagation algorithms) 

[98] 

Forward current, board temperature 

[98] 

Probability for the LED 

health status (healthy = 0.99, 

not healthy = 0.01) [98] 

RUL without confidence 

limits [98] 

Physics-based 
methods 

Empirical model based on V-I 

characteristics [98] 

Electrical and optical models 
(Fick’s law), analytical 

degradation law [157] 

Lumen depreciation and 
leakage resistance depreciation 

[158] 

Relevant PoF models for 

potential high-risk failure 

mechanism, exponential 

degradation model (two 
parameters estimated by 

least-squares method) 
[105][159] 

Arrhenius-Weibull, 

generalized Eyring-Weibull, 

Forward current, forward voltage 

[98] 

Electrical (Ihj, Ir, Is, nid, Vth, Ith, Rs) and 

optical (γ, α, Eg, △E, Ec) parameters, 

temperature [157] 

Optical characterizations (optical 

power, luminous flux, forward 
voltage) and electrical 

characterizations (current-voltage) 

[158] 
Geometries, material construction, 

environmental and operational 

conditions [105][159] 
Case temperature, drive current [160] 

Junction temperature, forward current 

(ID), forward voltage (VD) [161] 

Residual (difference 

between predicted and actual 

current) [98] 
Increase in recombination 

current, decrease of 20% or 

4.7 mW for optical power 
(optical power drift) [157] 

Lost 30% of its initial flux, 

increase of the leakage 

resistance and non-radiative 

current (IL) up to a critical 

value [158] 

Chip-level luminous 

degradation and solder 
inter-connection fatigue 

damage [105][159] 

50% light output reduction 

RUL without confidence 

limits [98] 

F(t), MTTF, failure rates, 
minimal and maximal 

lifetime [157] 

Optical lifetime (L70) and 
electrical lifetime t2 [158] 

TTF (ex. L70 age) 

[105][157] [159] 

L70 values and 60% 

reliability values [160] 

70% luminary lifetime 
(L70) [161] 
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Classification Approaches/Models 

Input Data 

(Performance Indicators/ 

Key Parameters) 

Failure Mode/ 

Failure Threshold 

Output Data 

(Lifetime or Reliability 

Characteristics) 

and inverse power-Weibull 
[160] 

Arrhenius accelerated life test 

model [161] 

[160] 
70% light output 

maintenance [161] 
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