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Abstract The current study on digital factory (DF) meets 
some problems, such as, disconnected manufacturing sites, 
independent digital models, isolated data and non-self-
controlled applications, etc. In order to move current 
situation of DFs forward towards smart manufacturing, this 
paper attempts to present an overview of current digital 
situation of factories, and propose a systematical 
framework of cyber-physical integration in factories, with 
consideration of the concept of digital twin and the theory 
of manufacturing service. Particularly, the proposed 
framework includes four key issues, i.e., (a) fully-
interconnected physical elements integration, (b) faithful-
mirrored virtual models integration, (c) all of elements/ 
flows/ businesses-covered data fusion, and (d) data-driven 
& application-oriented services integration. The 
corresponding implementable solutions of these four key 
issues are discussed in turn. As a reference, this paper is 
promising to bridge the gap in factories from current digital 
situation to smart manufacturing, so as to effectively 
facilitate their smart production. 
Keywords Cyber-physical integration Smart 
manufacturing Digital factory (DF) Digital twin
Manufacturing service 

1. Introduction

To meet the inevitable trends and thereafter derived
requirements of socialization, personalization, 
servitization, intelligence and green in manufacturing, it is 
necessary to make smart manufacturing come true 
gradually based on current digital situation of factories and 
then to achieve therein smart production operation and 
management [1, 2]. Along with the maturity and 
applications into manufacturing of some new-emerging 
information technologies (ITs), such as cloud computing 
(CC), Internet of things (IoT), big data, mobile Internet, 
artificial intelligence (AI), etc., it makes both chances and 
challenges for industry and academia [3]. However, the 
most typical one of challenges is how to apply those new 
ITs comprehensively to cope with the aims of 
manufacturing industry around the world as indicated 
above. In response to this context, different countries have 
come up with their own national strategies [34], for 
instance, Industry 4.0, Industrial Internet, cyber-physical 
system based manufacturing or cyber-manufacturing, 
Made in China 2025, service-oriented manufacturing 
(SOM), etc. After analyzing those national strategies 
carefully, it is found that although the background is 
different, there still exists one common goal, namely to 
realize the interconnection and interoperability between 
physical world and cyber space of manufacturing so as to 
achieve smart manufacturing. Specifically, how to bring 

out the cyber-physical integration and interaction, is the 
most important one of hurdles [45]. 

In order to solve the main bottleneck of physical-cyber-
physical integration in different scopes, step by step , i.e., 
from manufacturing sites, to workshops, and even to 
factories, the concept of digital factory (DF) [56, 67] is 
proposed and discussed for years. Scholars and 
practitioners have carried out a large number of theoretical 
researches and valuable techniques on DF. These studies 
analyzed the issue of physical-cyber integration to a certain 
extent either in theoretical view or in technical view, and 
put forward some corresponding solutions.  However, no 
matter from which aspect, the core issue of cyber-physical 
integration to be addressed based on current digital 
situation of factories, could be exactly classified into two 
stages. In view of the production-related data in DF, the 
first one is physical data integration, and the second one is 
cyber-physical data integration. 

To realize tThe first stage of physical data integration, 
means collecting massive data from the manufacturing 
sites in physical world of factories and transmitting those 
data into the information systems deployed in factories. In 
recent years, many new ITs have been applied. For 
examples, IoT related technologies and devices, e.g., radio 
frequency identification devices (RFID), Zigbee, various 
kinds of advanced sensors, etc., are used to collect different 
types of data concerning the full production lifecycle. CC 
related technologies, e.g., Hadoop, MapReduce, etc., are 
adopted to store and process the collected data [78]. AI 
technologies such as deep learning could support 
manufacturing data mining and its value creation. 
Moreover, service-oriented technologies, e.g., service-
oriented architecture (SOA), web service, etc., help to 
achieve the service encapsulation and on-demand use of 
manufacturing data. As a result, the manufacturing service-
based approach devoting to realizing data integration 
especially the application of big manufacturing data [89] 
in factories, is proved to be an effective way and trend. 
However, the existing studies just concern (1) SOA based 
crusade of an information system deployed in factories, or 
(2) service based integration of some deployed information
systems. Unfortunately, as manufacturing services are
inseparable from data, just those finite data in the related
information systems are considered, while not including
the real-time collected data from the physical
manufacturing sites. It also lacks the presentation,
consideration and interaction of the real-time collected
data, thus it is really hard to reflect both physical world and
cyber space of factories relying on the existing theories and
methods of manufacturing services. Furthermore, when
applied manufacturing services to address some decision-
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making problems in the actual production operation 
processes, how to comprehensively reflect the interaction, 
iteration and fusion between the real-time collected data 
from physical world and other data existing in these 
deployed information systems which are both involved in 
manufacturing services? How to depict and support co-
existence, co-evolution and co-simulation between 
complex dynamic production activities in physical world 
and the corresponding data and models in cyber space of 
factories? Those are the key points to determine whether 
manufacturing services could be further applied into DFs, 
and then so as to improve production operation and 
management. 

To achieve tThe second stage of physical-cyber data 
integration, signifies to add value and efficiency of both 
the data collected from the physical manufacturing sites 
and the data generated or existing in these deployed 
information systems. For these multi-sourcing 
heterogeneous data either from physical world or in cyber 
space of factories, digital twin [910] is being widely 
concerned. It is an effective way to realize the real-time 
interaction and integration between physical world and 
cyber space, and has the following three main 
characteristics features [1011, 1112]: (a) It integrates 
various types of data of the physical objects, and it is the 
faithful mirror of the physical objects. (b) It is co-
evolutionary with the physical objects, accompanied by the 
constantly updating of real-time data collected from the 
physical objects. (c) Based on virtual models, it could not 
only describe the physical objects, but also optimize the 
physical objects. Actually, digital twin has been 
successfully applied into the defense, aerospace and other 
important areas. For example, U.S. Department of Defense 
introduced the concept of digital twin to the health 
maintenance of aerospace crafts [1213], and defined it as 
an integrated simulation process of virtual models mirrored 
the whole lifecycle of the physical crafts. Grieves et al. 
combined the physical systems with their equivalent virtual 
systems as a comprehensive system based on digital twin 
to study fault prediction method, and validated it in the 
related systems of NASA [1314]. Parametric Technology 
Corporation (PTC) established a real-time connection 
between the virtual world and the real world of its products 
based on digital twin, to provide customers with efficient 
after-sales services based on digital twin data [1415]. 
Siemens put forward the concept of digital twin to help 
manufacturing enterprises build a production system model 
in cyber space, in order to achieve the entire digital process 
from product design to manufacturing in physical space 
[1516]. These mentioned typical examples and applications 
all indicate that digital twin is a promising effective 
method to achieve physical and cyber data integration and 
fusion of factories. 

Therefore, combining the concepts of digital twin and 
manufacturing service, their complementarity and 
interdependency pave the way for addressing the core issue 
of cyber-physical integration based on current situation of 
DFs. This paper attempts to propose a systematical 
framework of cyber-physical integration with consideration 
of these two concepts, in order to move current DFs 
forward towards the aims of smart manufacturing. The 
remainder of this paper is organized as follows. Section 2 
describes state-of-the-art of DFs. To reveal the gap 
between current situation of DFs and the objectives of 

smart manufacturing, Section 3 analyzes and summarizes 
the characteristics and aims of pursuing smart 
manufacturing in factories. Thereafter, to narrow this gap, 
a systematical framework of cyber-physical integration 
based on digital twin and manufacturing service, the 
derived operational mechanisms, as well as the 
corresponding enabling technologies, are presented in 
Section 4. Finally, Section 5 concludes the full text. 

2. State-of-the-art of digital factories 

In order to build a DF, to implement digitalization and 
virtualization in DFs, and their to achieve its operational 
improvements in final, the existing relevant studies are 
analyzed carefully from the following four aspects. 

2.1 Physical connection and data collection 

Physical connection, refers to make factories and their 
production processes have the ability to collect more data 
from the physical manufacturing sites through perception 
of separate manufacturing resources, thus supporting data 
acquisition and transmission from the underlying 
equipment to MES, and even supporting instruction release 
and control from MES to the underlying equipment. The 
related studies can be divided into the following two 
stages, i.e., intelligent perception and access of relevant 
elements for their data collection at the physical 
manufacturing sites, and processing of the collected data in 
order to ensure high-quality sources of those data to be 
transmitted and efficiency of data transmission. 

2.1.1 Perception and access of relevant elements 

With the expansion of digital degree and scope in 
factories, data collection from the physical manufacturing 
sites depends on intelligent numerical control (NC) 
equipment itself, or using intelligent acquisition devices 
combining with the corresponding automatic acquisition 
technologies. Therefore, the perception and access of 
production-related resources and other elements for their 
data collection, becomes the key point core of the 
integration and interaction between the physical 
manufacturing sites and the information systems. 

Perception and access of different production-related 
equipment. Traditional production-related equipment can 
be divided into NC equipment and non-NC equipment. For 
a single NC equipment, it mainly relies on a specific 
acquisition device, such as the embedded PLC acquisition 
module, to collect and read status information of the NC 
equipment and its running. For multiple different NC 
equipment, the perception and access mode is developed 
from early direct numerical control (namely early DNC) to 
current distributed numerical control (DNC) network 
systems [1617]. Indeed, in those DNC network systems, 
the sub-system of manufacturing data collection (MDC) 
could support five kinds of acquisition methods, i.e., 
including direct acquisition, adding the dedicated 
acquisition hardware, barcode scanning, special PLC based 
acquisition, and human-computer interaction. To date, 
those DNC network systems could achieve both the 
compatibility of hundreds of control systems and the 
compatibility of various hardware interfaces and 
communication standards. As to the type of non-NC 
equipment, the traditional acquisition method is based on 
large number of electrical sensors, strain gauges, fiber 
grating sensors, etc. However, this method could just 
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measure finite number and accuracy of physical parameters 
of the non-NC equipment [1718]. 

Perception and access of other production-related 
elements. A factory including the production activities in it, 
could be treated as a complex eco-system [1819], which is 
composited by all kinds of heterogeneous production-
related elements, e.g.such as, manufacturing machines and 
auxiliary equipment, materials, semi-products, operators, 
environment, etc. Only to realize data collection of the 
production-related equipment, cannot support the further 
optimal operation of in DFs. Considering all kinds of 
heterogeneous production-related elements in DFs, there 
are some technologies applied for collecting the real-time 
data of activities at from the physical manufacturing sites. , 
For for examples, data collection based on automatic 
identification technologies, online measurement 
technologies and corresponding digital detection 
equipment, information systems integration [1920], etc. 
Nowadays, RFID, wireless sensor network (WSN), and 
other IoT-related technologies as well as the corresponding 
specific devices, are more and more used. However, due to 
the shortages of incomplete elements access, finite 
collected data, and separate acquisition methods, it is still 
hard to make sure system-wide interconnection and 
interoperability considering all of heterogeneous elements 
and the related multi-sourcing data. 

2.1.2 Processing of the collected data  

Processing of the date data collected from the physical 
manufacturing sites, is to provide reliable data for status 
monitoring and health management of elements, and even 
operation optimizations of the entire factories. However, 
dynamics and complexity of the physical manufacturing 
sites result in some characteristics of the original perceived 
and collected data, . i.e., The characteristics includes 
multiply sources, wide types, and high redundancies, and 
so on. Then, unreliability and uncertainty in transmission 
process of the collected data, usually cause some typical 
problems [2021], such as data missing, packet loss, 
conflict, out-of-order, delay, etc. Facing the above 
characteristics and typical problems, processing of the 
collected data is mainly classified into data cleaning and 
data fusion operations.  

Data cleaning processing. The aim of data cleaning 
processing, is It aims to ensure higher quality of the 
sources and flows of the collected data. As 
aforementioned, most of data collections mainly rely on 
DNC network systems, RFID and WSN. There are lots of 
data cleaning models for the data collected by these 
perception and access methods in the existing studies 
[2122],. e.g.For example, space or time smoothing 
mechanism based model, machine learning based model 
for misreading problems of the collected data, path 
constraint based model for out-of-order problems of the 
collected data, and prepared path matching based model for 
dirty data, etc. However, these models have better 
performance for cleaning the static data, rather than 
considering the frequent transition, distributed processing, 
time delay and other dynamic characteristics in the data 
collection and transmission processes with multiple data 
sources. 

Data fusion processing. Data fusion processingIt is an 
operation to generate meaningful information from the 
original collected data. Besides the widespread applications 

of RFID in factories, WSN is also increasingly playing an 
important role in monitoring the ever-changing 
environment in factories. The existing related researches 
focus on two aspects, i.e., (1) data fusion within WSN, and 
(2) heterogeneous data fusion between RFID and WSN. 
For the aspect of data fusion within WSN, because of 
different configuration environment of sensors and therein 
different monitored objects, there are four kinds of 
architectures adopted, i.e., the centralized, distributed, 
mixed and heuristic architectures. As to the other aspect of 
heterogeneous data fusion between RFID and WSN, the 
existing related discussion refers to the following three 
kinds of architecture, i.e., heterogeneous wireless 
integrated networks, distributed intelligent node networks, 
and smart sensing tag networks. However, when 
integrating the systems of RFID, WSN, and DNC network 
to support a wider scope of data acquisitions at the physical 
manufacturing sites, and even to promote further 
integration and fusion of all of heterogeneous perceived 
data, it brings out big difficulties for both data cleaning and 
data fusion processing. 

2.2 Digital/virtual models and simulation 

Digitization stimulates feasibility verification of 
production activities and optimization of production 
management through the relevant virtual models building 
and simulation. The modeling ability is an important 
criterion to measure the digitization degree of DFs [2223]. 
The vVirtual models are treated as another kind of 
existence of data, and would generate much valuable 
information by their simulation processes. Considering 
different modeling objects and virtual models, The the 
existing related studies are analyzed from the following 
two aspects. 

2.2.1 Virtual modeling and simulation of for DFs 

Considering various elements and entities as well as the 
real production operation processes in DFs, it leads to 
differences in both variety and function of virtual models 
of DFs. There are almost the following three kinds of 
virtual modeling and simulation applications. (a) For 
production layout [2324]., there are two categories of 
simulation optimization, either based on mathematical 
models and algorithms, or based on virtual models. (b) For 
specific entities [2425]., The the most typical one of 
entities modeling is based on digital prototyping [2526] in 
order to achieve structure and performance optimization, 
assembly simulation, mechanical dynamics simulation, 
multi-dimensional display of the entities’ appearance and 
function, and so on. (c) For production processes [2627]., 
It it is to create the relevant entities classes with their 
logical relationships in the modeling and simulation 
environment, thus to carry out simulations to verify the 
details of production processes, to test production plans, 
and as well as to balance production lines. 

2.2.2 Classification of DFs-related virtual models 

Most of DFs-related virtual models take on the modeling 
and simulation analysis for the preliminary production 
operation. The existing typical virtual models can be 
mainly classified into the following categories:. (a) 
Product models [2728], extract the product structure and 
shape characteristics through methods of mapping, abstract 
and others. (b) Resource geometric models, describe size, 
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shape and trajectory of the relevant elements to achieve the 
interference tests for production processes and the 
simulations of time or cost. (c) Resource physical models, 
consider physical factors based on resource geometric 
models [2122]. Most researches focus on the modeling of 
equipment and personnel, and the simulation to discuss 
physical parameters varying and compensation of 
equipment. (d) Production capability models, depict 
production capability and characteristics of the systems. 
They are used to both describe the feasibility of a specific 
product design and evaluate the detail production process 
with low cost under a particular manufacturing system 
[2829]. (e) Process models, link process-related parameters 
to design attributes of a product, and reflect interaction 
between the models of the production process and the 
corresponding product [2930]. Therefore, due to different 
purposes of simulations, the existing virtual models are 
such independent that it still needs a set of systematic 
modeling methods and unified standards for models 
integration [3031], so as to enrich DFs-related virtual 
models to support the faithful mirror and to meet various 
application requirements of the dynamic production 
operation processes. 

2.3 Data and information systems integration 

Data integration is not only the inevitable trend and 
requirement of DFs, but also the essential premise for 
comprehensive applications of those information systems 
deployed in DFs. In order to overcome information islands 
and improve management efficiency, more and more 
researchers pay attention to data or information integration 
in favor of much broader sharing and wider applications. 

2.3.1 Data/information integration in cyber layer 

The existing relevant researches mainly reveal the data 
or information integration and sharing only in cyber layer, 
which relies on a certain platform integrated with some 
information systems [3132]. In light of different scopes of 
data integration in DFs, it can be divided into the following 
five cases: . (a) Integration of different deployed 
information systems, e.g., the integrations between PDM 
and ERP, between PDM and MES, and between ERP and 
SCM, etc. (b) Integration among different modules within 
the same one deployed information system, e.g., integration 
among fieldbuses, and integration between fieldbus and 
industrial Ethernet, etc. (c) Data conversion between 
different information systems or between different CAx 
software. (d) Integration between the internal ERP and the 
external e-commerce platform [2425], etc. (e) Integration 
between software and hardware systems, e.g., the 
integrations between ERP and bar code system, and 
between ERP and automated storage & retrieval system 
[3233], etc. However, with the increasing demand for 
information sharing and applications, it is difficult to adapt 
to the requirements just integrating the data or part of real-
time data in the deployed information systems. The 
comprehensive integration covering different information 
systems and running through upstream and downstream of 
business processes, is becoming the inevitable trend of 
digital improvements in DFs. 

2.3.2 Data integration from physical layer to cyber layer 

Driven by the rapid development and gradual 
applications of ITs and automation technologies in DFs, 

various kinds of advanced sensors and data acquisition 
devices provide the capability to collect massive real-time 
physical data. The environment of production operation in 
a DF is complex and changeable, thus the real-time data 
collected from physical world is not enough [3334]. 
Actually, the existing ERP, PDM, CAx and other deployed 
information systems cannot support the bi-directional 
interconnection and integration between the data collected 
from physical layer and the data existing or generated in 
cyber layer [3435],. so asIt is hard to ensure the sharing of 
all of data which could cover each production stage and 
suit various application requirements. Furthermore, due to 
the integrated data either in cyber layer or collected from 
physical layer would be used across different information 
systems and multiply production stages, it needs to unify 
the existing data modeling methods are still difficult to be 
unified so as to be more widely used. In general, the 
collection and integration of real-time data from physical 
layer is relatively less considered. The lack of data 
integration from physical layer to cyber layer, and 
especially the lack of real-time interaction and fusion 
between these two layers of data, both result in big 
separation between the real production processes in 
physical factories and the operation management in cyber 
space. 

2.4 Data based production operation modes and 
management methods 

The high-efficient production operation and 
management is the ultimate goal of DFs. No matter the 
efforts for their digitalization upgrading based on physical 
connection and information integration, or the efforts for 
their virtualization improvement based on digital/virtual 
factories modeling and simulation, they collectively push 
forward the continuous evolution of production operation 
modes and management methods. 

2.4.1 Improvement of production operation modes 

The production operation in a factory faces a variety of 
optimization issues, e.g.including, product quality control 
[3536], production planning/scheduling and control [3637], 
fault diagnosis [3738], predictive maintenance, etc. In 
order to To solve those issues, most of the existing studies 
modeled the optimization problems based on limited data, 
and then figured them out by some analytical methods. 
Most of them are carried out with the common procedures, 
which include the in-order steps of ‘problem analysis, 
modeling, algorithm design and solution, and optimized 
control’. As the complexity of production operation 
increases, the traditional operation modes are of poor 
adaptability because of the high-complexity of problem 
models and algorithms. After big data, IoT and other new 
ITs applied into manufacturing, the researches and 
approaches begin to be converted. Firstly, those enough 
data are collected by intelligent equipment and sensors, 
which are reflecting the real-time status of production 
operation. Then, some correlations and knowledge are 
mined from those collected data, some dynamic evolution 
rules of those data are also studied to reveal and find the 
potential information. Finally, the potential information 
stimulates the active and predicted production operation 
mode [3839]. That is to say, this mode is based on the 
procedures of ‘data and correlation mining, dynamic 
evolution, simulation and prediction, and intelligent 
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control’. 

2.4.2 Evolution of production management methods 

The evolution of production management methods has 
undergone several typical stages. So far, service-based 
production management [3940] is paid more and more 
attention. With the continuous development of 
digitalization degree in DFs, the service-based method 
could effectively integrate the resources and information in 
both physical layer and cyber layer, and then pave the way 
to achieve high-efficient and precise production 
management. The typical evolution stages are listed as 
follows [4041]:. (a) Based on manual management. The 
production factors and plans- related data are recorded and 
stored in the form of papers. To obtain the required data in 
this stage is of low quality, efficiency and accuracy, and as 
well as poor real-time performance, etc. (b) Based on an 
independent information system. Some data in the specific 
independent information system can reflect the physical 
real-time status, but it still exists characteristics of complex 
relationships, high-degree correlations, data redundancy, 
etc. (c) Based on the integrated information systems and 
services. The relevant resources, and the corresponding 
models and data could be organized effectively based on 
some information systems integration in the form of 
services. It is the basis of data integration, fusion and 
further utilization for optimal production management.  

Known from above analysis, production operation and 
management in DFs depend on the relevant models and 
data. The lacks of physical data collection, virtual models 
integration and system-wide physical-cyber data fusion, 
collectively hinder the consistency and synchronism 
between cyber and physical layers of DFs and restrict the 
accuracy of their operation optimizations. 

2.5 A brief summary 

There summarizes the following four findings 
corresponding to the above four aspects of analysis on DFs.  

For physical connection and data collection: At the 
underlying manufacturing sites in factories, it is an 
extremely complex situation consisting of various 
machines, materials, humans and other heterogeneous 
elements. Even though it achieves physical connection of 
some production-related elements in DFs, but lacks 
technologies for system-wide physical connection and even 
interconnection of all of relevant elements, as well as the 
corresponding general device which cloud support both 
perception and access of heterogeneous elements and 
processing of all kinds of data collected from multiple 
sources. 

For digital/virtual models and simulation: The existing 
researches mainly focus on building models of the systems 
and processes, or simulation analysis of the geometric 
models of some specific elementsHowever, in order to 
depict and reflect all of the real production-related 
activities, behaviors, rules and constrains in factories, it 
still lacks the comprehensive faithful-mirrored models, and 
is also without consideration of the real-time data in their 
simulation processes. It is necessary to carry out the multi-
dimensional integrated models to cover both the geometric 
information of each element as well as its behaviors, rules, 
constrains and others.  

For data and information systems integration: The 
situation of information integration and sharing, depends 
on the related information systems deployed in factories. 
The existing researches mainly focus on data integration 
and sharing in the deployed information systems, such as 
manufacturing execution systems (MES), enterprise 
resource planning (ERP), computer-aided process planning 
(CAPP), etc. Due to lack the device for system-wide 
interconnection of all elements, they are almost with rare 
consideration of the real-time collected data from the 
physical connected elements. There is still a long way to go 
for realizing the system-wide data fusion and 
interoperability of the integrated data from both physical 
and cyber layers.  

As to data based production operation modes and 
management methods: As different ITs developed and 
applied into manufacturing, production operation and 
management in factories have been changing from the 
traditional procedures of ‘problem analysis, modeling, 
algorithm design and solution, and optimized control’ to 
the innovative procedures of ‘data and correlation mining, 
dynamic evolution, simulation and prediction, and 
intelligent control’. No matter how the mode changes, it 
always depends on the data and models which are 
reflecting real processes and status of production operation. 
However, physical elements and information systems are 
separate, and multi-dimensional integrated models are 
scarce. They both result that management in cyber space 
and operations in physical production are out of sync and 
consistence, and restrict the accuracy of their operation 
optimizations. 

3. Aims and characteristics of smart manufacturing in 
factories 

By the creation and innovation of ITs applied into 
manufacturing, smart manufacturing is both the trend and 
result of sustainable development of current DFs. The 
concept of smart factory (SF) is accordingly derived, 
representing the aim to carry out smart manufacturing in 
factories. To date, there is no consistent definition about 
SF, while there are some concepts similar to it, e.g., the 
ubiquitous factory [4142], and factory-of-things [4243], 
etc. According to the selected typical one of various 
definitions on SF [4344], the smartness of a developed DF 
comes from data as well as the ability to carry out the 
process of ‘Data-Information-Knowledge-Wisdom’ 
(DIKW) [3940]. More specifically, it uses advanced 
sensors to collect data,. data Data and models provide real-
time information. Information is then used to run the 
factories better and generate knowledge. When knowledge 
is used across factories and enterprises, this is where smart 
manufacturing and wisdom are achieved [3536, 3940]. 
Exactly, it is similar to the coming procedures indicated in 
Section 2.4.1. Therefore, the main aims of SF are marked 
in brief as information transparency, autonomous control, 
sustainable manufacturing, etc. Indeed, all of these depend 
on data, actually, the big manufacturing data. 

However, there also is no uniform description and 
classification of the characteristics of SF. Based on the 
above four findings summarized on current situation of 
DFs, the relevant characteristics that are pursued in a SF 
are correspondingly discussed in the following items. 
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Table 1 Comparison between current digital situation and the further aims of smart manufacturing in factories 
Analysis aspects Current DFs Aims of SFs The gap features 

Physical 
connection and 
data collection 

Physical connections in 
part of production-
related elements, which 
are separate and 
independent in their 
location 

Physical separation but ubiquitous 
interconnection supporting data 
collection, interaction and 
interoperation, so as to make real 
production be with context-
awareness and collaborative 
initiative 

Fully-interconnected physical 
integration of any production-
related elements (e.g., equipment, 
materials, humans, environments, 
etc.), and their corresponding 
behaviors and rules 

Digital/virtual 
models and 
simulation 

Specific digital 
modelling and 
independent simulation 
of some elements, 
production systems and 
processes 

Systematic virtual models-based 
digital counterpart of factories and 
therein productions supporting co-
simulation (both reliable and 
synchronous), closed-loop 
correction and control 

Faithful-mirrored virtual models 
integration considering multi-
dimensional models which include 
geometrical and physical properties 
models of elements, response 
models of behaviors, and logical 
models of rules, etc. 

Data and 
information 

systems integration 

Information integration 
and data sharing in part 
of information systems 
deployed in factories 

Thorough integration and 
transparent fusion of all of data 
both perceived from physical world 
and existed in cyber space, as well 
as generated iteratively in their co-
evolution process 

All of elements/ flows/ businesses-
covered data fusion both 
accompanying with and resulting in 
the dynamic generation, iteration 
and evolution of big manufacturing 
data 

Data based 
production 

operation mode 
and management 

method 

Few data assisting to 
analysis and decision 
making related to 
product design and 
manufacturing 

Value creation/adding of data by 
its utilization based on physical-
cyber consistency and 
synchronization, for operation 
optimizations in factories 

Data-driven services integration 
and application by the on-demand 
matching and utilization of services 
for the real production 

 
(1) Physical separation but ubiquitous interconnection. 

Ubiquitous interconnection with scalable and modular 
structure, is to make real production be with context-
awareness and collaborative initiative by physical data 
collection, interaction and even interoperation. It means 
that, the autonomous decision-making and sustainable 
production take place by gathering, exchanging and using 
information transparently anywhere and anytime with 
networked interaction between man, machine, materials 
and systems [3839, 4041]. 

(2) Systematic virtual models-based digital counterpart. 
The digital counterpart of factories and therein productions 
based on systematic virtual models, is desired to support 
reliable and synchronous co-simulation, and then closed-
loop correction and control. The co-existence and co-
simulation of the digital counterpart include operations of 
virtual commissioning, the real line commissioning, and 
running/operation in reality [4445]. 

(3) Thorough integration and transparent fusion of all of 
data. Considering all of data both perceived from physical 
world and existed in cyber space, as well as generated 
iteratively in their co-evolution process by their bi-
directional interoperability, the core to achieve smartness is 
thorough integration and transparent fusion of all of data. 
Moreover, the co-evolution of both the physical factory 
and the digital counterpart is also as coordinated evolution 
covering products, processes and production systems 
[4546].  

(4) Value creation and efficiency adding of data by its 
utilization. It takes copious and diverse data to produce 
information and knowledge, as well as add its value from 
which knowledge is derived to make robust decisions. In 
view of integration, adaptation and replacement, it could 
scale up or down the production capacity and efficiency to 
satisfy uncertain demands or to respond flexibly to 
unpredictable disruptions and failures. 

After the comparison between the aims of smart 

manufacturing in factories and their current digital 
situation, some main features of the gap in view of big 
manufacturing data between these two are pointed out as 
indicated in Table 1, i.e., (1) fully-interconnected physical 
elements integration, (2) faithful-mirrored virtual models 
integration, (3) all of elements, flows and businesses-
covered data fusion, and (4) data-driven services 
integration and application. All of these features and 
problems issues of the gap are summarized as physical-
cyber-physical integration. 

4. How to bridge the gap of cyber-physical integration? 

For the sake of transition from traditional information 
integration to cyber-physical integration in factories, so as 
to provide theoretical and technical supports for improving 
the intelligence/ or smartness, efficiency and precision of 
their production operation and management, a systematic 
framework based on digital twin data [3738] and 
manufacturing service is proposed in this section. 

4.1 Framework of cyber-physical integration in factories 

In view of the gap features indicated in Table 1, a 
framework of cyber-physical integration in factories for the 
aims of smart manufacturing is composited of the 
corresponding four layers of integration as well. As shown 
in Figure 1, the four layers and their relationships in the 
proposed framework are illustrated respectively as follows. 

(1) Fully-interconnected physical elements integration 
Fully-interconnected physical elements integration, 

means to realize the connection and even interconnection, 
and then to carry out the comprehensive integration, thus to 
support self-control with context-awareness, for all of 
heterogeneous production-related elements existing at the 
manufacturing sites or in the production processes, i.e., 
machines, robots, materials, parts/semi-products/final 
products, participators, etc. It is in order to provide the 
real-time relevant data from multiple dynamic sources of 
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the physical manufacturing sites as much as possible for 
the subsequent virtual models integration and the overall 
data fusion. Mainly based on the architecture of CPS, new 
intelligent perception technologies and devices, 
heterogeneous networks convergence technologies and 
others, it aims to carry out the significant vision of 
heterogeneous production-related elements which are 
separate in physical but aggregate in logical. To this end, 
some key points are listed in detail as follows: systematic 
interconnection solutions among all of heterogeneous 
elements, uniform description models of real-time data 
perceived from various elements, dynamic interaction rules 
of the perceived data, corresponding devices supporting 
multi-port interconnection of different elements as well as 
multi-source aggregation of their perceived data, and 
specific data processing technologies for unified 
transmission and distributed storage of the processed data, 
etc. 

(2) Faithful-mirrored virtual models integration 
Faithful-mirrored virtual models integration, is to come 

up to the integration of all of models related to factories 
and therein production systems and processes, 
simultaneously considering the real-time perceived data by 
physical interconnection, so as to provide both enough 
models and reliable data for the simulation, analysis, and 
visualization required in production management. Due to 
ensure the virtual models be as the mirrors of physical 
factories as well as their production operation processes, 
those integrated virtual models are classified into different 
categories, i.e., geometrical models and physical properties 
models of production-related elements, response models of 
production-related behaviors, and logical models of 
production-related rules. They finally form the faithful-
mirrored virtual factory models corresponding to the 
physical one, which is the digital counterpart after coupling 
such complicated virtual models in multiple dimensions. 
Furthermore, looking forward to the virtual-real interaction 
more than only mirroring in their co-simulation and 
synchronous operation processes, how to make sure of the 
real-time interaction and control between the digital 
counterpart and the physical world attracts much more 
attention. 

(3) All of elements/flows/businesses-covered data fusion 
All of elements/flows/businesses-covered data fusion, 

refers to such big manufacturing data both perceived from 
physical world and existed in cyber space, as well as 
generated iteratively in their co-evolution processes, which 
is derived after the multi-layer integrations and co-
evolution based on the multi-source data generated by both 
fully-interconnected physical elements and faith-mirrored 
virtual models. As a result, the indicated big manufacturing 
data covers and fuses all of production-related elements, 

flows, and businesses. In detail, it consists of the real-time 
data perceived from the physical production field, the 
simulated data generated from the virtual mirrored models, 
the prescriptive and descriptive data existing in the 
deployed information systems, etc. Along with the 
continuous processes of integration, interaction, iteration, 
and evolution of the big manufacturing data, the result of 
this dynamic evolutionary reaction is called as digital twin 
data [41], after introducing the concept of digital twin. 
Actually, the co-evolution process after multi-layer 
integrations of both fully-interconnected physical elements 
and faith-mirrored virtual models, dose make a big 
difference to the traditional industrial information 
integration and data fusion. Inevitably, there derives a 
series of laws and a systematical theory need to be 
explored on the dynamic generation and evolution 
phenomenon of digital twin data in the operation process of 
factories. 

(4) Data-driven & application-oriented services 
integration 

The dynamic fusion process of digital twin data, not 
only reflects the running conditions of physical elements 
and virtual models, but also keeps driving and affecting the 
iterative running processes of both physical production and 
virtual simulation respectively as well as the co-evolution 
between these two parts. The dynamic generation and 
evolution phenomenon of digital twin data covering all of 
elements, flows and businesses in factories, is also a 
process along with value creation and efficiency adding of 
those data, which also could be presented in the form of 
manufacturing services. Considering the valuable data 
mined from digital twin data to manufacturing services, an 
innovative method for production operation and 
management in factories is brought out. That is data-driven 
& application-oriented services integration and application, 
which is divided into two stages of integration for 
operation optimizations in factories: the underlying digital 
twin data-driven services integration, and the subsequent 
integrated services-driven applications integration. In one 
hand, digital twin data-driven services integration is 
resulted from the integration in a certain extend of 
software/hardware and the deployed information systems 
in factories, which is based on physical elements 
integration, virtual models integration, and the dynamic 
fused digital twin data in their co-evolution processes. In 
another hand, the integrated services-driven applications 
integration is the supply-demand matching issues of 
manufacturing services [4647] after demand decomposition 
and applications analysis. Parts of operation optimizations 
with the aims of smart manufacturing in factories are 
pointed out in Table 2. 
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Perceived data integration
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Fully-interconnected

physical elements integration

The digital counterpart 
of factories

Interaction/control of models

Virtual models integration

Multi-dimension modellingMulti dimension modelling

Faithful-mirrored
virtual models integration

Data-driven service integration
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Service generation/modelling

Supply-demand matching 
of manufacturing service

Demand analysis

Demand and application 
analysis

Demand decomposition

Service platform building

Iteration &
evolution

Fig. 1 Framework of cyber-physical integration in factories

4.2 Operational mechanisms based on cyber-physical
integration

Respectively and complementally, Figure 2 depicts the 
derived closed-loop operational mechanisms based on the 
proposed layered framework of physical-cyber-physical 
integration in factories. It includes the following ten 
mechanisms which are collectively supporting the circular 
stream of all of the production-related data.

Mechanism : Tasks decomposition by analysis on real 
demands and production applications, provides factories 
the input of decomposed tasks which could be matched and 
executed by the primitive manufacturing services.

Mechanism : Operation of the fully-interconnected 
physical factories driven by uncertain demands and 
dynamic tasks, gives rise to generation of the perceived 
data from physical factories.

Mechanism : Co-simulation of the faithful-mirrored 
virtual models accompany with the operation in physical 
factories, leads to generation of the simulated data from
virtual models based on the virtual-reality interaction.

Mechanisms & : Transmission of both the 
perceived data from physical factories and the simulated 
data from virtual models, offers enough constituent data of 
digital twin data.

Mechanism : Dynamic generation of digital twin data, 
is derived by continuous interaction, iteration, fusion and 
evolution among the perceived data from physical 
factories, the simulated data from virtual models, and the 
descriptive and prescriptive data existing in the deployed 
information systems, etc.

Mechanism : Integration of manufacturing services, is 
facilitated along with dynamic evolutionary digital twin 
data, so as to result in a different mode of services 
application in the production operation and management 
processes.

Mechanism : Correlation mining of manufacturing 
services, is caused by data mining based value creation and 
adding of digital twin data.

Mechanism : Supply-demand matching of the 
integrated and correlated manufacturing services, improves 
the efficiency of services application in production with 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



consideration of digital twin data covering all of physical 
elements, flows and businesses. 

Mechanism : Digital twin data-driven services 
application through supply-demand matching, makes a big 
difference to achieve operation optimizations in the whole 
production lifecycle of factories. 
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Fig. 2 Closed-loop operational mechanisms based on 

physical-cyber-physical integration 

In summary, the above closed-loop operational 
mechanisms collectively portray and discuss both the bi-
directional interconnection between physical layer and 
cyber layer of factories, as well as the digital twin based 
co-existence and co-evolution between the real factories 
and the corresponding digital counterparts.  

4.3 Enabling technologies to achieve cyber-physical 
integration 

Aiming at the proposed framework and the 
corresponding operational mechanisms, the following 
technologies effectively enable to bridge the gap of 
physical-cyber-physical integration from current digital 
situation to the aims of smart manufacturing in factories, as 
shown in Figure 3. 

4.3.1 Technologies for fully-interconnected physical 
elements integration 

Interconnection technologies of all of relevant 
heterogeneous elements in physical factories. There are 
three aspects of interconnection technologies need to be 
addressed.:  

(1) Features features extraction methods of all of 
heterogeneous elements and the corresponding 
perceived data. ,  
(2) Multimulti-source sensors based protocol analysis 
technology and collaborative measurement technology. , 
and 
(3) Fusion fusion networking and layout optimization 
methods of multi-site heterogeneous sensors. 

Dynamic convergence and interaction technologies of 
multi-source and multi-mode data perceived from 
heterogeneous elements. Specific to lack of standardized 
uploading and interoperability of the perceived data, there 
are the following two problems need to be addressed.: 

 (1) Grammar grammar and semantic mapping rules of 
multi-mode data for integrating the structured, semi-
structured and unstructured heterogeneous data. ; and  
(2) Devices devices for multi-source and multi-mode 
data collection which could provide interfaces and 
access methods and support a variety of communication 
protocols. 
Integration technologies of multi-source perceived 

heterogeneous data. In production operation processes of 
physical factories, the complexity of production condition 
leads to the perceived data becoming with characteristics 
of multi-dimensionality, coupling, time-variability, 
nonlinearity, etc. Thus, it also brings out some challenges 
on pre-processing, fusion, and storage of the perceived 
data, e.g.,  

efficient methods of data cleaning, integration, 
reduction, and conversion specific for the perceived 
data, ;  
dimension reduction method for the massive data and 
the corresponding clustering and fusion technologies, ; 
and 
distributed storage method oriented to smart 
environment to support information complementation 
and integrated management which are of characteristics 
of cross-layer, cross-time, and cross-space, etc. 

4.3.2 Technologies for faithful-mirrored virtual models 
integration 

Faith-mirrored modelling technologies for multiple 
dimensions of production-related elements, behaviors and 
rules. To ensure the faith-mirrored mapping between 
production-related virtual models and the complex 
activities and behaviors in physical factories, there are 
following three categories of models need to be built:.  

(1) For for the category of elements, both scalable 
geometrical models and physical properties models of 
heterogeneous elements are essential. ;  
(2) Ffor the category of behaviors, behaviors models 
and corresponding response models are complementary 
to depict the functions and influences of some drive and 
disturbance in production processes, as well as the 
ordinal, concurrent, linkage, and other characteristics. ; 
and  
(3) Aas to the category of rules, models of operation 
rules and evolution laws, and the derived logical models 
for those rules and laws related to production activities 
are also necessary to enrich the digital counterpart of a 
factory.   
Integration and verification technologies of multi-

dimension virtual models. Considering various 
granularities and accuracy requirements of above different 
models, how to evaluate the correlation and compatibility 
of different categories of models, how to represent the 
comprehensive digital counterpart of a factory, are the key 
points to couple and integrate those virtual models. In 
addition, application reliability of the integrated virtual 
models should be verified according some indexes, e.g.,  

(1) completeness for elements-related models,  
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(2) accuracy for behaviors-related models, and 
(3) rationality for rules-related models, etc.   
Real-time interaction and collaborative control 

technologies for the running of integrated virtual models. 
Based on the specific perception and interconnection 
devices and the collected data, it aims to achieve both 
reliable and synchronous operations in the co-simulation 
processes of the physical factories and their mirrored 
virtual models. In detail, (1) to ensure the reliability, it 
depends on the dynamic interaction technologies of virtual 
models driven by the real-time production activities in 
factories. (2) As to the other aim of keeping synchronism, 
it is determined by the events-driven consistency 
collaborative control modes and strategies, including: 

 the registration method between the geometrical models 
and physical elements,  
the tracking method between the response models and 
production-related behaviors, and  
the mapping method between the logical models and 
production-related rules, etc.  

4.3.3 Technologies for all of elements/ flows/ businesses-
covered data fusion 

Modelling technologies of digital twin data covering all 
of production-related elements, flows, and businesses. 
Digital twin data is derived and evolved from both physical 
world and cyber space of factories, so that therein data 
covering all of elements, flows and businesses should be 
uniformly classified at first. Then it should turn to the 
feature extraction methods specific to each category of the 
constituents of digital twin data, and finally to establish the 
unified description models. 

Generation mechanisms of multi-source integrated 
digital twin data. Digital twin data provides sufficient data 
for production operation and management anytime. Thus, 
its generation mechanisms should cover the following two 
stages of both initialization and real-time growth.  

(1) For the initialization stage, the integration 
framework of physical factories, virtual models, and 
information systems is desired to utilize digital twin data 
to improve the production operations in factories.  
(2) For the real-time growth stage, the updated modes 
and dynamic growth rules of digital twin data need to be 
discussed following the operation processes of factories. 
Interaction and iteration-based dynamic evolution 

theory of digital twin data. Different categories of 
constituents of digital twin data in the continuous closed-
loop interaction processes, are of the abilities to absorb 
multi-source data continuously, and to add value through 
updating, expanding and enhancing capacity and quality of 
data. Therefore, the dynamic evolution theory mainly 
includes: 

 (1) the correlation and comparison methods between 
the categories of real-time data and historical data,  
(2) the correlation and mapping methods between the 
categories of the perceived physical data and the 
simulated virtual data, and 
(3) the evolution laws derived by the interaction and 
iteration between each two categories of data, etc. 

4.3.4 Technologies for data-driven & application-oriented 
services  integration 

Generation mechanisms of digital twin data-driven 

services. The previous generation and modelling of 
manufacturing services only consider the data in cyber 
level. After coming up to integrate physical and cyber 
levels of data, there appears some new forms and 
generation mechanisms of services driven by digital twin 
data. Based on as well as driven by the generation 
mechanisms of digital twin data, the generation 
mechanisms of services cover hierarchical expression and 
closed-loop correction correspondingly, i.e.,including 

 (1) various dominant actions and recessive influences 
of digital twin data on services, ; and  
(2) hierarchical models from physical elements, virtual 
models, and digital twin data, to services, etc. 
Integration mode and integrated application 

mechanisms of services based on dynamic digital twin 
data. The hierarchical models of services reveal both 
vertical actions and horizontal correlations. (1) First of all, 
there are coupling and cohesion properties need to be 
analyzed preferentially in the hierarchical models. (2) The 
dynamic evolutionary digital twin data along with the real 
production operation processes of factories, will result in 
the iterative gains of coupling and cohesion properties 
among services. (3) Moreover, the potentiation result of 
coupling and cohesion properties also lead to services 
integration for their applications, and then bring changes 
on the application flow.   

Integrated services-based control strategies for 
operation optimization in factories. In order to reach smart 
manufacturing and production management in factories, 
the typical application demands in operation processes of 
factories are mainly divided into elements allocation, 
planning making, process monitoring, and so on. The result 
of service integration paves a better way to respond to the 
demands. When built the description models of demands, 
the iterative and evolutionary digital twin data and their 
derived integration properties of services both make some 
differences. Thus, the supply-demand matching 
mechanisms between digital twin data-driven integrated 
services and the description models of demands, are the 
core for operation optimizations and control of factories. 

5. Conclusions 

Cyber-physical integration in current DFs is a key 
scientific issue that needs to be solved towards smart 
manufacturing. Some typical problems exist and hinder 
their operational optimizations. Aiming at improving 
production operation and management in factories from 
digital to further smart situation, the main contributions of 
this paper are concluded and highlighted as follows: 

Four findings are summarized after the multi-
dimensional analysis on current situation of DFs. 
A gap of cyber-physical integration in factories is 
brought out by comparing the current digital situation 
with the aims and characteristics of smart 
manufacturing, and is correspondingly divided into four 
sub-aims, i.e., fully-interconnected physical elements 
integration, faithful-mirrored virtual models integration, 
all of elements/ flows/ businesses-covered data fusion, 
and data-driven & application-oriented services 
integration . 
A systematical framework of cyber-physical integration 
and its closed-loop operational mechanisms for moving 
factories forward towards smart manufacturing are 
discussed with consideration of digital twin and 
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manufacturing service, and the enabling technologies to 
implement the indicated four sub-aims step by step are 
pointed out, respectively. 
This work provides a theoretical and technical reference 

for moving current DFs forward towards smart 
manufacturing. Recently, as the example of upgrading of 
current DFs towards smart manufacturing, a concept of 
digital twin shop-floor, especially its cyber-physical 
integration implementation as well as its preliminary 
application are discussed [48, 49]. However, iIt makes 
sense to test these technologies first under near-industrial 
conditions and to develop them further in order to ensure 
their suitability in industrial environments. However, 
Tthere is still a long way to go for transferring the vision of 
smart manufacturing into the reality thoroughly based on 
current situation of DFs. 
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