

A secure hash function based on feedback iterative
structure
Abstract The increasing growth of internet data has created enormous security challenges on

authenticity, availability and integrity protection of these data. Hash function is one of main solutions to

overcome the challenges. However, it suffers from modular differential attack, privacy and security

are vulnerable which need to be improved substantially. This paper proposesa feedback iterative

structure of hash functionwhich utilizes the variable feedback to resist attacks. Furthermore, to

accelerate message diffusion, in this paper, two novel modules are designed, one for iteration and the

other for truncation. They can increase uncertainty of output and thus has better resistance to potential

threats. Theoretical analysis and experimental results show that the proposed hash function can

effectively resist attacks such as second collision attack andmessage expansion attack. Moreover,

comparing with existing hash functions, it displays better statistical performance, collision resistance

and avalanche.

Keywords:hash function, feedback iterative structure, compression function, collision resistance,

avalanche

1 Introduction

Today cloud computing has been applied in various fields, massive data storage and processing are

poised to become a dominant area of cloud utilization.For example, the amount of data handled (either

stored or processed) by clouds is expected to grow from 880 exabytes in 2013 to 17600 exabytes by

2020. Data authentication can pose special problems for network communication, such as vulnerability

to man-in-the-middle attacks, whereby a third party taps into the communication stream.The accurate

analysis on massive data provides an array of benefits to both the society and individuals. However, for

the massive data, data authentication must take into account several issues, including efficiency, data

integrity and privacy.

Hash function plays an important role in data integrityauthentication.It is a mathematical algorithm

that maps message Yof arbitrary size to a bit string of a fixed size, which is a unique “fingerprint”

𝐻𝐻(𝑌𝑌)for each message. An ideal hash function, in the original sense of the term, is always required to

possess properties as follows [1]:

(1) Mapping: it can map any input message Y of arbitrary length to a fixed-size hash value h.

This is an Accepted Manuscript of an article published by Taylor & Francis in Enterprise Information Systems on 08 Jan 2019 (published
online), available at: http://www.tandfonline.com/10.1080/17517575.2018.1564942.

This is the Pre-Published Version.

The following publication Yijun Yang, Fei Chen, Jianyong Chen, Yong Zhang & Kai Leung Yung (2019) A secure hash function based on
feedback iterative structure, Enterprise Information Systems, 13:3, 281-302 is available at https://doi.org/10.1080/17517575.2018.1564942.

(2) Positive computability: it should be easy to calculate the hash value hof any input messageY.

(3) Irreversibility: it should be computationally infeasible to calculate the input messageY from its

hash value h.

(4) Weak collision resistance: for a randomly selected message Y, it should be computationally

infeasible to calculate a message 𝑌𝑌′ ≠ 𝑌𝑌 that satisfies𝐻𝐻(𝑌𝑌′) ≠ 𝐻𝐻(𝑌𝑌).

(5) Strong collision resistance: it should be computationally infeasible to calculate two different

messages 𝑌𝑌 ≠ 𝑌𝑌′ that satisfy𝐻𝐻(𝑌𝑌′) ≠ 𝐻𝐻(𝑌𝑌).

Hash functions have been wildly applied in integrity verification, cryptographic primitive

construction andpseudorandom number generation.The most common application of hash function is

the integrity verification, which is applied in various fields.For cloud computing, cloud audit uses hash

function as one of its essential component which can generate hash digest from cloud data and provide

data authentication [30-32].In addition, hash function is sometimes posted along with files on websites

or forums to allow verification of integrity [23]. This practice establishes a chain of trust so long as the

hash values are posted on a site authenticated by HTTPS. And several source code management systems,

including Git, Mercurial and Monotone, use hash value of various types of content (file content,

directory trees, ancestry information, etc.) to uniquely identify them. Hash functions are also used to

identify files on peer-to-peer file sharingnetworks.For example, in an ed2k link, an MD4-variant hash is

combined with the file size, providing sufficient information for locating file sources, downloading the

file and verifying its contents.As primitives of cryptographic algorithms, message authentication codes

(MAC) are treated as keyed hash function [24]. Some block ciphers [25], such as Davies-Meyer [26],

also involve the hash functions. Moreover, some hash functions can be used as stream cipher, such as

SHA3 [28] and Skein [29]. Hash function can also be used to generate pseudorandom number [27],

such as consistent hash applied in distributed search engine to improve efficiency of data storage. In

financial technology fields, block chain technology is initially introduced in Bitcoin for transaction

verification.It is a continuously growing list of records, called blocks, which are linked and secured

using hash function.Once recorded, the data in any given block cannot be altered retroactively without

the alteration of all subsequent blocks, which requires high security of hash function.

A lot of researchhas focus on secure and efficient verification of hash functions. Based on specific

requirements from different application scenarios, different research approaches are studied, such as

parallel hash functions [19-22], serial iterative hash functions [12-18] and chaotic hash functions

[33-42]. However, most of existing hash functions are insecure due to simplistic iterative

structure.Security weaknesses of existing hash functions, as well as the general need for variety are the

motivation for continued research in this field, including the related work as follows.

https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-6

A. Related Work

There are two commonapproaches to construct hash function. One is parallel [19-22] and the other is

serial [12-18]. The parallel hash functions can process all compression functions simultaneously.

Theoretically speaking, they have strong real-time authentication property.All parallel hash functions

have many similarities in message processing. They exhibit only slight difference in details. Aparallel

hash function whichcanmix the hash value by all the output of round function for just one mixing

operationis proposed [20]. Experiments show that this scheme reduces the number of iterative

compression functions. But meanwhile it also compromises security. To overcome this flaw, a parallel

hash function based on shuffle-exchange network can compress three message blockssimultaneously

during parallel iterative processing to improve bothefficiency and security [19]. A parallel one-way hash

function based on Chebyshev-Halley methods has also been proposed to improve the parallel

processing mode, and its parallel iterative structure contains different parameters automatically acquired

from position index of corresponding message blocks [21]. Another parallel hash function construction

with changeable parameters is also proposed [22]. Generally speaking, all these parallel hash

schemeshave ability to process many message blocks simultaneously to improve efficiency. However,

the outputs of every compression function in these three parallel schemes are independent, which

enormously decrease avalanche performance and collision resistance. According to security analysis,

the security of all these parallel hash schemes were decreased.

On the other hand, serial hash functions shouldcompress all message blocks one by one. The

relationship among outputs of every compression functions is hereditary, which is beneficial to message

diffusion effect.Themost popular hash types currently in use are message digest algorithms (such as

MD4, MD5) and secure hash algorithms (such as SHA1, SHA2). It is well-known that MD4, MD5,

SHA1 and SHA2 (including SHA224, SHA256, SHA384, SHA512) suffer from some commonattacks

because their similar iterative structure [2-10]. SHA3 (Keccak) uses sponge iterative structure and is the

latest hash function announced by NIST [11]. Although SHA3 can resistthe above attacks, its

vulnerability has been found by the third party cryptanalysis [11].

The research of serialhash function mainly focuses on hash iterative structure and hash compression

function. Based on traditional serial hash functions, we proposes a series of improvements on both

serial iterative structure and compression functions. Besides the well-known Merkle-Damgard

construction [12-13], the most frequently used iterative structures are HAIFI [14], Wide-Pipe [15], 3C

[16], and Zipper [17].These iterative structures can be regarded as the extended work on the basis of

Merkle-Damgard construction. HAIFI uses salt value to increase the difficulty of off-line calculation

and fixed point attack. Wide-Pipe can increase the length of chaining variables during iterative

processing which can efficiently diffuse message. 3C uses two different ways to measure different

chaining variables and finally combines these chaining variables through a new function. Zipper uses

functions f and f ’to compress message during iteration. Althoughsubstantial improvements have been

achieved based onthese iterative structures, the corresponding hash functions still suffer security flaws

[18].Differentfrom these constructions above, Sponge utilizes absorb and squeeze to compress message

[11]. However, it is poor in bit balance. A double-serial iterative structure is also proposed to overcome

weakness of Merkle-Damgard construction. However, experimental results show that its security is not

strong enough and its efficiency is relative low[18] because it simply increases number of iterations,

security parameters, or iterative bandwidth.

Besides parallel and serial hash functions, chaos theory is another approach to construct hash

functions for stronger security[33-41].Based on Baptista’s method [33], Wong developed a hash

function [34], whichis built on the number of iterations of one-dimensional logistic map needed toreach

the region corresponding to the character, along with a look-up tableupdated dynamically.Based on the

simplest one-dimensional chaotic tent maps, Yi [35] proposeda hash function, which operates on a

message with arbitrary length to produce2l-bit hash value and can be easily implemented in both

hardware and software.However, security flaws have been found in some of the existing chaos-based

hashing schemes [42].

B. Paper Organization

The rest of this paper is organized as follows. Preliminaries are presentedin Section 2. Section3

presentsthe proposedfeedbackiterative structure. In Section 4, simulations are shown and the property of

hash function with feedback structureis discussed. Finally, conclusions are presented inSection 5.

2 Merkle-Damgard construction

Hash function aims to map arbitrary-sized input message Y to a fixed-length hash value𝐻𝐻(𝑌𝑌). Since it

is difficult to construct such a function, it is usually generated by iterative processing of a fixed-length

compression function.

In Cryptography, the Merkle-Damgard construction is a method of building collision-resistant hash

functions from collision-resistant one-way compression function. This construction is used in the design

of many popular hash functions such as MD5, SHA1 and SHA2. Merkle-Damgard construction is

shown in Fig.1.The input message Y is padded and divided into L b-bit message blocks{𝑌𝑌𝑖𝑖}, 𝑖𝑖 =

0,1,⋯ , 𝐿𝐿 − 1, f is the compression function which can be regarded as a black box, {𝐶𝐶𝐶𝐶𝑖𝑖}, 𝑖𝑖 = 1,⋯ , 𝐿𝐿 −

1 are the n-bit intermediate chaining variables, 𝐶𝐶𝐶𝐶0 is the n-bit initial variable, and 𝐶𝐶𝐶𝐶𝐿𝐿 is the n-bit

output hash value.

0Y 1Y

0IV CV= n f

 b

n f

 b

n
1CV

1LY −

f

 b

n
n

LCV

1LCV −

•••

Fig.1 Merkle-Damgardconstruction

The process in Fig.1 can be described as follows:

(1) {𝑌𝑌𝑖𝑖}
𝑏𝑏
← 𝑌𝑌, 𝑖𝑖 = 0,1,⋯ , 𝐿𝐿 − 1

(2) 𝐶𝐶𝐶𝐶0 ← 𝐼𝐼𝐼𝐼

(3) for 𝑖𝑖 = 1 to 𝐿𝐿 do

𝐶𝐶𝐶𝐶𝑖𝑖 ← 𝑓𝑓(𝐶𝐶𝐶𝐶𝑖𝑖−1,𝑌𝑌𝑖𝑖−1)

(4) return 𝐶𝐶𝐶𝐶𝐿𝐿

3 The Proposed Feedback Iterative Structure of Hash Function

In this section, a feedback iterative structure of hash function (short for FISH) isillustrated in Fig.2.

FISH takes 𝐶𝐶𝐶𝐶0 as the initial value and then repeatedly compresses the input message blocks and

output from previous step until that all message blocks have been compressed.

0Y 1Y

0IV CV=
f

b

f
1CV

•••
2CV

+ +

b

f
b

2Y

Iteration

+

Iteration

3CV

Iteration

n
Truncation0Y b

n
Truncation

b
1Y

n
Truncation

b
2Y

•••

1LY −

LCV
•••

f
+ +

b

f
b2LY −

Iteration

+

Iteration

Output
1LCV −

2LCV −

n
Truncation

b
2LY −

n
Truncation

b
1LY −

•••

0
lenS

1
lenS

2
lenS

2L
lenS −

1L
lenS −

Fig.2. Feedback iterative structure

FISH includes three major modules: Truncation operation, Iteration operation and compression

function f.Different from other existing hash functions, FISH uses cross modular addition to diffuse

input messages. Itcan accelerate hash irregular process and greatly increase the difficulty of collision

attacks such as differential attack. From its iteration framework, it is obvious that FISH can resist

second collision attack:Given 𝐶𝐶𝐶𝐶0 and 𝑌𝑌0, find Y and Y’ such that 𝑌𝑌 ≠ 𝑌𝑌′but𝐻𝐻(𝑌𝑌||𝑃𝑃𝑃𝑃𝑃𝑃(𝑌𝑌)||𝑌𝑌0) =

𝐻𝐻(𝑌𝑌′||𝑃𝑃𝑃𝑃𝑃𝑃(𝑌𝑌′)||𝑌𝑌0) , which can generate the same hash value through inputs with different

length.When two different inputs are hashed, the longer one has to compress more message blocks

using the three major modules of FISH.This will greatly change the intermediate chaining variables and

thus make their hash values very different.

For the process of FISH, input message is firstly padded and then divided into L blocks with equal

length b.Since most frequently used hash functions (such as MD5, SHA1, SHA2)only handle 32 bits in

one iterative step, it is reasonable to set𝑏𝑏 = 512. After the input is preprocessed into Lb-bit message

blocks{𝑌𝑌𝑖𝑖}𝑖𝑖=0𝐿𝐿−1, each block is divided into 32-bit message words�𝑀𝑀𝑀𝑀𝑖𝑖
𝑗𝑗�𝑗𝑗=0
15

 and then truncated with

Truncation operation which is defined as: To each{𝑌𝑌𝑖𝑖}𝑖𝑖=0𝐿𝐿−1 ,𝑇𝑇𝑖𝑖 = ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗�𝑀𝑀𝑀𝑀𝑖𝑖
𝑗𝑗�15

𝑗𝑗=0 ,where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗

means cyclic left shift operation with jbits.Here, 𝑇𝑇𝑖𝑖 is both the output of Truncation operation module

and the input of the next Iteration operation.

Iteration operations in different hash functions have similar but not identical structures.One Iteration

operation ofSHA1-FISH is shown in Fig.3.A, B, C, D, E are 32-bit words of the state. 𝐾𝐾𝑡𝑡isthe round

constant of round t. MW is the expanded message word.Comparing to SHA1, it has different additional

cyclic left shift operations which increase the difficulty of differential attack.FISH-based hash function

updates all chaining variables usingmessage words𝑇𝑇𝑖𝑖, security parameter{𝑆𝑆𝑖𝑖}𝑖𝑖=0𝐿𝐿−1.Its output participates

in the next compression function f. The values of{𝑆𝑆𝑖𝑖}𝑖𝑖=0𝐿𝐿−1are the amount of compressed blocks, which

are put into all Iteration operations.The advantage of Iteration operation is that security

parameter{𝑆𝑆𝑖𝑖}𝑖𝑖=0𝐿𝐿−1can resist message expansion attack: Given 𝐶𝐶𝐶𝐶0 and Y, calculate𝐻𝐻(𝑌𝑌||𝑃𝑃𝑃𝑃𝑃𝑃(𝑌𝑌)||𝑌𝑌′),

which essentially uses intermediate chaining variables and compression function to generate hash

value.Since the number of compressed blocks is missing, this attack method is not feasible.

ROTL5

XOR

MW

Kt

ROTL3

A B C D E

A B C DE

+

+

+

Fig.3 Iteration operation in SHA1-FISH

For different length of hash value, the compression function fhas different iterative structures which

are shown in Fig.4-6. The logic functionsF in compression function fare defined as: 𝐹𝐹𝑖𝑖(𝑚𝑚) =

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑚𝑚)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖+1(𝑚𝑚)⨁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖+2(𝑚𝑚).There are also several additional cyclic right shift operations.

In order to improve efficiency, compression function of FISH processes two adjacent chaining variables

simultaneously.The process of them is irrelevant to other arbitrary chaining variables, which increases

the difficulty of differential analysis technique [10] because thedifference of two adjacent chaining

variables will be diffused much more quickly (which will be discussed in Section 4.5)

F1

F7

F2

F8

F4 F5

KtW[t]

T2T2

T1 T1

ROTL29

A B

+

+

C

+

D

+

++

A B CD

F1

F7

F2

F8

F3

F4 F5 F6

KtW[t]

T2

T2

T1

T1

ROTL29

A B

+

+

C

+

D E

+

+

++

A B C DE
Fig.4 Compression function of MD5-FISH Fig.5 Compression function of SHA1-FISH

F1

F9

F2

F10

F3

F11

F4

F12

F5 F6 F7 F8

KtW[t]

T2T2

T1 T1

ROTL29

A B

+

+

C

+

D E F G H

+++

++

+++ +

A B C D E F GH
Fig.6 Compression function of SHA256-FISH

Since the design of logic functions F has similar expressions which can transmit similar difference

into the next step, an additional cyclic right shift operation must be added in the last step of

compression function. We choose a 29-bit cyclic right shift operation which can effectively increase the

difficulty of difference attack.

4 Experiments and Analysis

A secure hash function should be collisionresisted, uniformly distributed, sensitive to the slightest

changes of input [19]. This section will discuss the property of PLHF in six aspects: message test,

distribution of hash values, statistical attack resistance, collision resistance, avalanche effectand

efficiency.

4.1 Message test

Firstly, in order to test susceptibility of FISH, this paper will randomly choose a text and then

generates its hash value in 7 different conditions.

Original text: Secure hash function based on feedback iterative structure

Condition 1:1Secure hash function based on feedback iterative structure

Condition 2: Secure hash function,based on feedback iterative structure

Condition 3: Secure hash function based On feedback iterative structure

Condition 4: Secure hush function based on feedback iterative structure

Condition 5: Secure hash function based-on feedback iterative structure

Condition 6:secure hash function based on feedback iterative structure

Hash values of these 7 different conditions and hamming distances are shown in Table 1.Their square

wave pattern presentation of different hash outputs are described in Fig. 7.

Table 1 hash values and hamming distances in 6 different conditions

condition Hash value
Hamming distance

(𝐻𝐻𝐻𝐻𝐻𝐻(ℎ0,ℎ𝑖𝑖))

original ℎ0: ED2213F74271537500206FBE1520FE0751F0B3E4 N/A

1 ℎ1: D5CDF8C8AC8A9A612606D2D63C1A73780A8BF2F0 89

2 ℎ2: 36F71B856C818C88C37AE6B718D3D3F6FB5A9829 86

3 ℎ3: 78935464A38181910BFB970559E24DC68EF908F2 84

4 ℎ4: 050FCDA0B290626556FB3045106983CB6957449F 90

5 ℎ5: D391D05DE4D9992E72BCCC9C91AA316096DFF5B1 81

6 ℎ6: 19886B1C69DA3A79333564391F902C2F448DB53A 76

Fig. 7 square wave pattern presentation of hash values in different conditions

It can be seen that even if the original message is slightly modified, all these hash outputs in different

conditions are totally changed. The hamming distances in Table 1 satisfy the required property.This

0 20 40 60 80 100 120 140 160

condition6

condition5

condition4

condition3

condition2

condition1

original

Bit

A
m

pl
itu

de

means nearly 50% of bits will be flipped if arbitrary small change of original message occurs. Message

test experiments have been extended into 10000 similar input messages. The result shows thatthe same

hash value is not found among the input messages.

4.2 Distribution of hash values

In order to test the randomness of hash function based on FISH, this section investigates the

distribution of output hash values. Randomly chosen 100 different messages, their hash values are

subdivided into four-bit message blocks, which is equivalent to a hexadecimal representation. Fig. 8 is

the frequency distribution of these 100 hexadecimal hash values using different hash functions.

Fig. 8 Frequency distribution of 100 different hexadecimal hash values

Theoretically, a hash function is good if its output values are uniformly distributed. In Fig. 8,

occurrence frequency of each hexadecimal number has approximately uniform distribution, which

means any information of input is hard to be leaked.

4.3Statistical attack resistance

One of effective attacks to hash function is statistical attack, which is a kind of chosen-plaintext

attack.Attackers can use the known occurrence frequency of each hexadecimal number and the changed

bit number𝐵𝐵𝑐𝑐to break hash function [2]. That is to say, a good hash function should generate irregular

and unpredictable hash values and hide message redundancy. Since each bit of binary hash value can

only be ‘0’ or ‘1’, ideally, the number of bit ‘0’ and bit ‘1’ should be approximately equal and anysingle

bit change in an input message willlead to 50% probability of difference in each bit of output hash

value.

Following is the statistical resistance performance of hash function based on FISH. Take SHA1-FISH

0 1 2 3 4 5 6 7 8 9 A B C D E F
200

210

220

230

240

250

260

270

280

290

300

Hexadecimal character

O
cc

ur
re

nc
e

fre
qu

en
cy

SHA1-FISH

and SHA256-FISH for examples, we randomly choosea message for test, and then change one bit of

this message. After that we generate and compare hash values from these two different messages and

record the number ofdifferent bits.

The results of 2000 experiments are shown in Fig.9-10.

(a) (b)

Fig.9Distribution of the changed bit number using SHA1-FISH and SHA256-FISH

Fig.10Statistical histogramofFig.9

As shown in Fig. 9-10, the changed bitnumberswithSHA1-FISHand SHA256-FISH fluctuate slightly

up and down near the ideal value 80 and 128.Bothof their distributions approximately obey Gauss

distribution. To further analyze stability of the algorithm, more security performance is listed in Table 3.

Here, statistical analysis uses the following qualification:

Average changed bit number:

𝐵𝐵𝑐𝑐 =
1
𝑁𝑁
�𝐻𝐻𝑖𝑖

𝑁𝑁

𝑖𝑖=1

Percentage of changed bit number:

𝑅𝑅𝑐𝑐 =
𝐵𝐵𝑐𝑐
𝑛𝑛

× 100%

Standard deviation of changed bit number:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
65

70

75

80

85

90

95

Test times

C
ha

ng
ed

 b
it

nu
m

be
r

0 200 400 600 800 1000 1200 1400 1600 1800 2000

90

100

110

120

130

140

150

160

170

Test times

C
ha

ng
ed

 b
it

nu
m

be
r

65 70 75 80 85 90 95
0

50

100

150

200

Changed bit number

N
um

be
r o

f h
its

SHA1-FISH

90 100 110 120 130 140 150 160 170
0

10

20

30

40

50

60

70

80

90

100

Changed bit number

N
um

be
r o

f h
its

SHA256-FISH

∆𝐵𝐵𝑐𝑐 = �
1

𝑁𝑁 − 1
�(𝐻𝐻𝑖𝑖 − 𝐵𝐵𝑐𝑐)2
𝑁𝑁

𝑖𝑖=1

Standard deviation of 𝑅𝑅𝑐𝑐:

∆𝑅𝑅𝑐𝑐 = �
1

𝑁𝑁 − 1
��

𝐻𝐻𝑖𝑖
𝑛𝑛
− 𝑅𝑅𝑐𝑐�

2𝑁𝑁

𝑖𝑖=1

× 100%

Messages for the test are with the length of 512 bits. The results are shown in Table 3.

Table 3Comparison with other hash functions

Parameters 𝐵𝐵𝑐𝑐 𝑃𝑃𝑐𝑐 The average of changed bits 𝐴𝐴𝑐𝑐 𝑅𝑅𝑐𝑐(%) ∆𝐵𝐵𝑐𝑐 ∆𝑅𝑅𝑐𝑐 (%)

SHA1-FISH 72-90 0.496-0.503 80.01 50.00 4.94 3.09

SHA256-FISH 91-168 0.493-0.506 128.01 50.00 8.17 3.19

SHA1-MD 49-113 0.477-0.521 80.15 50.1 6.29 3.93

SHA256-MD 70-189 0.475-0.520 128.6 50.21 10.70 4.18

Keccak-256 82-204 0.487-0.506 129.54 50.45 10.19 4.00

Ref. [16] 45-86 0.492-0.511 63.99 49.99 5.646 4.38

Ref. [17] 43.5-82 0.479-0.541 63.88 49.90 5.82 4.55

Ref. [18] 69-92 0.489-0.511 80.05 50.02 5.68 3.55

Ref. [19] 46.25-79.75 0.482-0.517 63.91 49.93 5.32 4.16

Ref. [20] N/A N/A 64.01 50.01 5.56 4.35

Ref. [21] 47-83 0.481-0.512 63.99 50.85 5.57 4.36

Ref. [22] N/A N/A 64.04 50.03 5.80 4.56

Security

criteria

128bit:32-96

160bit:40-120

256bit:64-192

0.500

128bit:64

160bit:80

256bit:128

50.00
The smaller,

the better

The smaller,

the better

In Table 3,𝑃𝑃𝑐𝑐 denotes probability of bit change for every bit when 1-bit change has occurred in input

message.𝐴𝐴𝑐𝑐 denotes the average number of changed bit in hash value when 1-bit change has occurred

in input message. Wechoose 2000 different input messages, modify 1-bit and compare all of the

corresponding two hash values. For SHA1-FISH and SHA256-FISH,both average number and

percentage of bit changeare much closer to ideal values. Meanwhile, their standard deviations

(𝑅𝑅𝑐𝑐)aresmaller than others, which illustrates that FISH-based hash functions can generate more

unpredictable and random hash value. It’s more difficult for attackers to carry out statistical attack

through exploring the statistical relationship of two hash values.With the aid of FISH iterative structure,

even the primitive hash functions can have smaller range of fluctuation of∆𝐵𝐵𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 ∆𝑅𝑅𝑐𝑐, which is much

more stable and is better to hide redundant information in the message.

Another important property of hash function is bit balance. Assumingn-bit hash value𝐻𝐻(𝑌𝑌) can be

presented by two𝑛𝑛
2
-bit part ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙||ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡, the numbers of ‘1’ in ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡are denoted by𝑁𝑁1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

and 𝑁𝑁1𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡.During the round iteration function, since the asymmetric iteration of chaining variables,

bit inclining may occur, and attackers can generate a sequence of chaining variables to break hash

function. If 𝑁𝑁1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≈ 𝑁𝑁1𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡, the potential risk of statistical attack will be eliminated. Table 4 shows

hash functions based on FISH which have symmetrical distribution of 𝑁𝑁1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙and 𝑁𝑁1𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡. Comparing

with SHA1-MD and SHA256-MD, bit balance of SHA1-FISH and SHA256-FISH is closer to the

optimal value.
Table 4 Experiments of bit inclining

Hash functions SHA1-MD SHA1-FISH Optimal value SHA256-MD SHA256-FISH Optimal value
Bit number
with“1“(left/right) 42/39 39/40 40/40 67/64 63/64 64/64

4.4Test of avalanche performance

In cryptography, avalanche performance is the essential property of cryptographic algorithms.For

hash functions, if input is changed slightly, output hash value will be significantlychanged. If the hash

function doesn’t exhibit avalanche performance to a significant degree, it has poor randomization and

thus attackers can make predictions about input message through the sole hash value, which is sufficient

to partially or completely break hash function [2]. Therefore, avalanche performance is an indispensable

part. Generally speaking, there are four common performance criteria to evaluate avalanche

performance of hash function: completeness, avalanche effect, strict avalanche criterion and avalanche

factor, which will be introduced as follows:

Completenessis the property to be evaluated if every bit of hash value depends on any bit of input. It

can be defined as:

𝐷𝐷𝐼𝐼 = 1 − #�(𝑖𝑖, 𝑗𝑗) | 𝑏𝑏𝑖𝑖𝑖𝑖 = 0�/(𝑚𝑚𝑚𝑚)

Avalanche effectisanother important characteristic of avalanche performance which can evaluate the

avalanche degree of chaining variables. It can be defined as:

𝐷𝐷𝐸𝐸 = 1 −�� �2𝑗𝑗𝑎𝑎𝑖𝑖𝑖𝑖/#𝑋𝑋 −𝑚𝑚
𝑚𝑚

𝑗𝑗=1

�
𝑛𝑛

𝑖𝑖=1

/(𝑚𝑚𝑚𝑚)

Strict avalanche criterion is a formalization of avalanche effect. It is satisfied if, whenever input bit is

complemented, each bit of the hash value changes with a 50% probability. It is built on the concepts of

completeness and avalanche effect, as can be defined as:

𝐷𝐷𝑆𝑆 = 1 −���2𝑏𝑏𝑖𝑖𝑖𝑖/#𝑋𝑋 − 1�
𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

/(𝑚𝑚𝑚𝑚)

Avalanche factorstates that hash value bits j and k should change independently when arbitrary input

bit is inverted. To arbitrary function𝑓𝑓: 𝑀𝑀 → 𝑀𝑀, it can be defined as:

𝐷𝐷𝐹𝐹 =
∑ 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ[𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)]𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ(𝑥𝑥,𝑦𝑦)=1

#{(𝑥𝑥, 𝑦𝑦) | 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ(𝑥𝑥,𝑦𝑦) = 1} ×
#𝑀𝑀2

∑ 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ(𝑥𝑥,𝑦𝑦)𝑥𝑥,𝑦𝑦

is the total number of samples, 𝑎𝑎𝑖𝑖𝑖𝑖is the element of 𝑛𝑛 × (𝑚𝑚 + 1) distance matrix which indicates

the number of vector change in j-th bit output when the i-th bit input changes,𝑏𝑏𝑖𝑖𝑖𝑖is the element of

𝑛𝑛 × 𝑚𝑚matrix which also indicates the number of vector change in j-th bit output when the i-th bit input

changes, and 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎwill bedefined in Section 4.5.

Avalanche performance is analyzed based on these four security parameters in Table 5. Experimental

results show that all hash functions can reach theoretical optimality after a certain number of iterations.

According to Fig. 11, after Merkle-Damgardis replaced by FISH, hash functions such as MD5, SHA1,

and SHA2 are faster to achieve the desired avalanche performance, which are also superior to other

hash functions proposed in Ref. [18-20, 22].
Table 5Avalanche performance test

Hash functions Step of𝐷𝐷𝐼𝐼 = 1 Step of𝐷𝐷𝐸𝐸 ≥ 0.999 Step of𝐷𝐷𝑆𝑆 ≥ 0.99 Step of𝐷𝐷𝐹𝐹 = 1

MD5-MD(64 steps) 31 31 34 12

MD5-FISH 15 14 18 9

SHA1-MD(80 steps) 23 27 25 10

SHA1-FISH 7 7 9 9

SHA256-MD(64 steps) 24 24 23 10

SHA256-FISH 3 3 7 6

SHA512-MD(80 steps) 20 18 20 14

SHA512-FISH 6 6 10 10

Ref. [18] 8 11 10 8

Ref. [19] 12 17 13 11

Ref. [20] 21 23 24 9

Ref. [22] 16 14 12 12

Fig.11 The comparison among FISH-based hash functions and other similar hash functions incompleteness, avalanche

effect, strict avalanche criterion and avalanche factor

Avalanche performance and collision resistance are closely related each other. The essence of

collision attack is to explore the relevance between two different hash values.The faster to achieve

avalanche performance, the more difficult to construct a successful collision attack from irregular

random hash values since attackers have to eliminate difference in shorter iterative steps. Existing

differential attacks can generate local collision in 23 steps [10].Therefore, FISH-based hash functions

also have better performance on collision resistance. Following is the collision test for it.

4.5Collision resistance

Collision means two different input messages have the same hash value. In a secure cryptosystem,

collision should be extremely difficult to be found.Otherwise attackers can forge a substitute message.

We perform the following test to evaluate collision resistance of FISH-based hash functions: Firstly we

randomly choose a message, and then we randomly flip one bit of this message and generate two

different hash values from these two different messages. These two hexadecimal hash values are

compared with two-hexadecimal character by character at the same location: a counter variable 𝑁𝑁ℎ is

used to count the number of the same hexadecimal character at the same location.For example, if two

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step

C
om

pl
et

en
es

s

MD5-MD
SHA1-MD
SHA256-MD
MD5-FISH
SHA1-FISH
SHA256-FISH
Ref. [18]
Ref. [19]
Ref. [20]
Ref. [22]

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step

Th
e

va
lu

e
of

 a
va

la
nc

he
 e

ffe
ct

MD5-MD
SHA1-MD
SHA256-MD
MD5-FISH
SHA1-FISH
SHA256-FISH
Ref. [18]
Ref. [19]
Ref. [20]
Ref. [22]

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

StepTh
e

va
lu

e
of

 s
tri

ct
 a

va
la

nc
he

 c
rit

er
io

n

Optimum
MD5-MD
SHA1-MD
SHA256-MD
MD5-FISH
SHA1-FISH
SHA256-FISH
Ref. [18]
Ref. [19]
Ref. [20]
Ref. [22]

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step

Th
e

va
lu

e
of

 a
va

la
nc

he
 fa

ct
or

MD5-MD
SHA1-MD
SHA256-MD
MD5-FISH
SHA1-FISH
SHA256-FISH
Ref. [18]
Ref. [19]
Ref. [20]
Ref. [22]

hash values are “9E 7C 76 9D A0 DE 4C F8 91 92 5D 7A D7 0B DB 65 75 61 86 72” and “25 7C A4

4C 09 F3 E3 7B C7 3A 8C 39 97 C2 D6 FF 60 AE B8 B1”, there is one equal pair “7C”.Then𝑁𝑁ℎ =

 𝑁𝑁ℎ + 1.If two hash values are “0F F2 25 7F DD 46 D1 48 8F 64 D0 788A 8E C2 79 FA 62 50 E0” and

“3E 6F B3 8C C8 A1 3F 13 59 64 73 788A 33 0D 4A 3D C2 B6 B8”, there are three equal pairs “64”,

“78”, “8A”.Then𝑁𝑁ℎ = 𝑁𝑁ℎ + 3. In Table 6, werandomlychoose 2x different input messages, collision

experiments of SHA1-FISHare repeatedx times and 2x different n-bit hash values are generated.If these

hash values are theoretically random, the value of 𝑁𝑁ℎshould be approximately equal to 𝑁𝑁ℎ ≈ 𝑥𝑥 × 1
256

×
𝑛𝑛
8

= 𝑛𝑛𝑛𝑛
2048

.

Table 6 shows the experimental result of equal hexadecimal pairs of n-bit hash values in𝑥𝑥 = 10000

repeated tests using FISH-based hash functions. The test results of 𝑁𝑁ℎ fits well to theoretical

optimalityin different FISH-based hash functions.
Table 6Number of hits in 10000 repeated experiments

Hash function n
Theoretical optimum

of𝑁𝑁ℎ = 𝑛𝑛𝑛𝑛
2048

Number of equal hexadecimal pair𝑁𝑁𝑒𝑒𝑒𝑒

Test results of 𝑁𝑁ℎ
0 1 2 3 4

5 or

more

MD5-FISH 128 625 9395 589 16 0 0 0 621

SHA1-FISH 160 781.25 9255 719 25 1 0 0 772

SHA224-FISH 224 1093.75 8956 990 52 2 0 0 1100

SHA256-FISH 256 1250 8814 1115 68 3 0 0 1260

SHA384-FISH 384 1875 8289 1559 143 9 0 0 1872

SHA512-FISH 512 2500 7796 1946 237 20 1 0 2484

Average distance between two-hexadecimal characterscan also explore performance of collision

resistance. It is presentedby𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
2∑ 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ,𝑗𝑗

𝑥𝑥
𝑗𝑗=1

𝑛𝑛𝑛𝑛
, where 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ = ∑ |𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐1) − 𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐2)|

𝑛𝑛
2
𝑖𝑖=1 . Here,

𝑐𝑐1, 𝑐𝑐2 are two-hexadecimal characters at the same location of two hash values, and𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐1)is decimal

value of the ASCII character𝑐𝑐1.If hash function generates entirely random hash values, c should be

uniformly distributed on its domain [0,255], which means 𝑝𝑝(𝑐𝑐 = 0) = 𝑝𝑝(𝑐𝑐 = 1) = 𝑝𝑝(𝑐𝑐 = 2) = ⋯ =

𝑝𝑝(𝑐𝑐 = 255) = 1
256

, and expectationsof 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ can be estimated as𝐸𝐸�𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� = ∑ 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐1) =255
𝑖𝑖=0

𝑖𝑖)𝐸𝐸(|𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐1) − 𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐2)|) = 256
3
≈ 85.33.

According to Table 7, all FISH-based hash functions with different n are very close to above ideal

expectationof 𝐷𝐷ℎ𝑎𝑎𝑎𝑎ℎ . Comparing with other hash functions, they have better performance on

randomness and collision resistance.

Table 7Distances between two-hexadecimal characters

 Size of output 𝑛𝑛 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

MD5-FISH 128 85.466

SHA1-FISH 160 85.415

SHA224-FISH 224 85.406

SHA256-FISH 256 85.334

SHA384-FISH 384 85.360

SHA512-FISH 512 85.365

Ref. [14] 128 86.188

Ref. [15] 128 85.44

Ref. [16] 128 86.125

Ref. [17] 128 84.141

Ref. [19] 128 86.188

Ref. [20] 128 87.031

Ref. [22] 128 78.516

4.6Efficiency

Efficiency is another important performance of hash function. Comparing with the two classic hash

functions SHA1 and SHA2-256, the hash functions with FISH perform a little lower efficiency because

FISH has additional iterative and truncation modules. Time overhead of SHA1-MD, SHA256-MD,

SHA1-FISH and SHA256-FISH can be evaluated theoretically which is shown in Table 8.
Table 8 Time overhead of different hash schemes

SHA1-MD

(80 rounds)

SHA256-MD

(64 rounds)

SHA1-FISH

(80 rounds)

SHA256-FISH

(64 rounds)

(4 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 6 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
+ 2 𝑇𝑇𝑠𝑠ℎ) × 80

(9𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 12𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
+ 6𝑇𝑇𝑠𝑠ℎ) × 64

(4 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 11𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
+ 6.5𝑇𝑇𝑠𝑠ℎ) × 80

+ 2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

(9𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 17𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
+ 9𝑇𝑇𝑠𝑠ℎ) × 64

+ 2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

In Table 8, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚is time overhead of one multiplication,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎is time overhead of one addition, 𝑇𝑇𝑠𝑠ℎis

time overhead of one shift operation.𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, 𝑇𝑇𝑠𝑠ℎcan be neglected because𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ≫ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎,𝑇𝑇𝑠𝑠ℎ. SHA1 has 80

rounds, and time overheads of SHA1-MD and SHA1-FISH are approximately equal to

320𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚and 322𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. SHA256 has 64 rounds, and time overheads of SHA256-MD and SHA256-FISH

are approximately equal to 576𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚and 578𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. It means that both constructions of Merkle-Damgard

and FISH have almost the same efficiency. In order to test their efficiency, different sized files are used

and experimental results are shown in Fig. 12 which present their similar efficiency.

Fig. 12 Efficiency of FISH-based hash function

According to Fig. 12, with the increase length of message, time overhead of SHA1-FISH and

SHA256-FISH will increase approximate linearly, and it approximately 2% higher than SHA1-MD and

SHA256-MD because of its feedback structure.

5 Conclusions

This paper improves Merkle-Damgard construction by using structured message preprocessing,

feedback iterative structure framework, truncation module and iteration module, which can accelerate

message diffusion and increase uncertainty of hash value. Based on both theoretical and experimental

analysis, hash function with FISH can resist all the above attacks,which means it canavoid the flaw of

conventional iterative structures. Moreover, the proposed FISH has better performance on avalanche,

compression efficiency and collision resistance, which is reliable and can benefit itsimplementation.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61702341,

61502314, 61672358, 61602316, the Science and Technology Plan Projects of Shenzhen (No.

JCYJ20160307115030281, JCYJ20170302145623566, GJHZ20160226202520268), Guangdong

Natural Science Foundation under Grant 2017A030310134 and Technology Planning Project from

Guangdong Province of China under Grant 2014B010118005.

References
1. Kanso, A.,Ghebleh, M.: A structure-based chaotic hashing scheme. Nonlinear Dynamics, 81, 27-40 (2015)

2. Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: V. Shoup(ed.) Advances in Cryptology-CRYPTO2005, Lecture

Notes in Computer Science, vol. 3621, pp. 17-36. Springer, BerlinHeidelberg(2005).

3. Boer, B. D., Bosselaers, A.: Collisions for the compression function of MD5. Eurocrypt 1993, LNCS 765(1994), pp. 293-304

4. Dobbertin, H.: Cryptanalysis of MD5 compress. Presented at the rump session of Eurocrypt 1996

5. Chabaud, F., Joux, A.: Differential collisions in SHA-0. Crypto 1998, LNCS 1462(1998), pp. 56-71

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Size of the message file(MB)

R
un

ni
ng

 ti
m

e(
m

s)

SHA1-MD
SHA1-FISH

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Size of the message file(MB)

R
un

ni
ng

 ti
m

e(
m

s)

SHA256-MD
SHA256-FISH

6. Liang, J., Lai, X.: Improved collision attack on hash function MD5. In: Tech. rep. (2005)

7. Mendel, F., Nad, T., Schlaffer, M.: Improving local collisions: New attacks on reduced SHA-256. In: T. Johansson, P.

Nguyen(eds.)Advances in Cryptology-EUROCRYPT2013, Lecture Notes in Computer Science, vol. 7881, pp. 262-278. Springer,

BerlinHeidelberg(2013).

8. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved collision attacks on MD4 and MD5. IEICE Trans. 90-A(1), 37-47(2007)

9. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision analysis. In: Advances in Cryptology-Eurocrypt

2013, Lecture Notes in Computer Science, 7881, 245-261 (2013)

10. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint

Archive, Report 2004/199(2004)

11. Bertoni, G., Daeman, J., Peeters, M.: Sponge functions. ECRYPT Hash Workshop 2007.

http://www.csrc.nist.gov/pki/HashWorkshop/PublicComments/2007May.html

12. Merkel, R. C.: One way hash functions and DES. Advances in Cryptology CRYPTO 89. Lecture Notes in Computer Science(1990),

vol. 435, pp. 428-446.

13. Damgard, I. B.: A design principle for hash functions. Advances in Cryptology CRYPTO 89. Lecture Notes in Computer

Sciience(1990), vol. 435, pp. 416-427.

14. Biham, E., Dunkelman, O.: A framework for iterative hash functions –HAIFA. Cryptology ePrint Archive: Report 2007/278(2007)

15. Lucks, S.: A failure-friendly design principle for hash functions. Asiacrypt 2005, LNCS 3788(2005), pp. 474-494

16. Gauravaram, P., Millan, W., Nieto, J. G.: 3C - A Provably Secure Pseudorandom Function and Message Authentication Code. A

New mode of operation for Cryptographic Hash Function. Annals of the New York Academy of Sciences, 2005(1): 491-494.

17. Liskov, M.: Constructing an Ideal Hash Function from Weak Ideal Compression Functions. The Proceedings of the 13th

International Conference on Selected Areas in Cryptography. Montreal, Canada. Springer –Verlag, 2006: 358-375.

18. Yang, Y., Chen, F.: Research on the Hash Function Structures and its Application. Wireless Personal Communications, 94(4),

2969-2985 (2017)

19. Je, S. T.,Azman, S., Amir, A.: Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dynamics, 81,

1067-1079 (2015)

20. Wang, Y., Wong, K. W., Xiao, Di.: Parallel hash function construction based on coupled map lattices. Communications in nonlinear

science and numerical simulation, 16(7), 2810-2821 (2011)

21. Nouri, M., Safarinia, M., Pourmahdi, P.: The Parallel One-way Hash Function Based on Chebyshev-Halley Methods with Variable

Parameter. International Journal of Computers Communications & Control, 9(1), 24-36(2014)

22. Salvatore, P., Pedro, R., Juan, A. M.: Parallel d-Pipeline: A Cuckoo hashing implementation for increased throughput. IEEE

Transactions on Computers, 65(1), 326-331 (2016)

23. Kaitai Liang, Man Ho Au, Joseph K. Liu, Xie Qi, Willy Susilo, Xuan Phoung Tran, Duncan S. Wong, Guomin Yang, “A DFA-based

Functional Proxy Re-Encryption Scheme for Secure Public Cloud Data Sharing,” IEEE Transactions on Information Forensics and

Security 9(10): 1667-1680 (2014).

24. Yanjiang Yang, Joseph K. Liu, Kaitai Liang, Raymond Choo and Jianying Zhou, “Extended Proxy-Assisted Approach: Achieving

Revocable Fine-Grained Cloud Data Encryption”, European Symposium on Research in Computer Security (ESORICS (2)),

Lecture Notes in Computer Science 9327, pages 146-166, Springer 2015.

25. Wei Wu, Shun Hu, Xu Yang, Joseph K. Liu, Man Ho Au, “Towards secure and cost-effective fuzzy access control in mobile cloud

computing”, Soft Computing, 21(10): 2643-2649 (2017)

26. Tao Jiang, Xiaofeng Chen, Jin Li, Duncan S Wong, Jianfeng Ma, Joseph K. Liu, “Towards secure and reliable cloud storage against

data re-outsourcing”, Future Generation Computer Systems 52:86-94 (2015).

27. Joseph K. Liu, Man Ho Au, Willy Susilo, Kaitai Liang, Rongxing Lu, Bala Srinivasan, “Secure Sharing and Searching for

Real-Time Video Data in Mobile Cloud”, IEEE Network 29(2):46-50 (2015).

28. Shulan Wang, Junwei Zhou, Jianping Yu, Joseph K. Liu, Jianyong Chen, “An Efficient File hierarchy Attribute-Based Encryption

Scheme in Cloud Computing”, IEEE Transactions on Information Forensics and Security 11(6): 1265 - 1277 (2016).

29. Shulan Wang, Kaitai Liang, Joseph K. Liu, Jianyong Chen, Jianping Yu, WeixinXie, “Attribute-Based Data Sharing Scheme

Revisited in Cloud Computing”, IEEE Transactions on Information Forensics and Security 11(8): 1661-1673 (2016).

30. Joseph K. Liu, Man Ho Au, Xinyi Huang, Rongxing Lu, Jin Li, “Fine-grained Two-factor Access Control for Web-based Cloud

Computing Services”, IEEE Transactions on Information Forensics and Security 11(3): 484-497 (2016).

31. Joseph K. Liu, Kaitai Liang, Willy Susilo, Jianghua Liu, Yang Xiang, “Two-Factor Data Security Protection Mechanism for Cloud

Storage System”, Computing”, IEEE Transactions on Computers 65(6): 1992-2004 (2016).

32. JoonsangBaek, QuangHieu Vu, Joseph K. Liu, Xinyi Huang, Yang Xiang, “A secure cloud computing based framework for big data

information management of smart grid”, IEEE Transactions on Cloud Computing 3(2): 233-244 (2015).

33. Kaitai Liang, Joseph K. Liu, Duncan S. Wong, Willy Susilo, “An Efficient Cloud-based Revocable Identity-based Proxy

Re-encryption Scheme for Public Clouds Data Sharing”, European Symposium on Research in Computer Security (ESORICS),

Lecture Notes in Computer Science 8712, pages 257-272, Springer 2014.

34. Li, W., Gao, Z., Gu. D.: Security Analysis of Whirlpool Hash Function in the cloud of Things. KSII Transactions on Internet and

Information Systems. 11(1), 536-551 (2017)

35. Horalek, J., Holik, F., Horak, O.: Analysis of the use of Rainbow Tables to break hash. Journal of Intelligent & Fuzzy Systems. 32(2),

1523-1534 (2017)

36. Lenstra, A.K., Lenstra H.W., Lovasz L.: Factoring polynomial with rational coefficients. MathematischeAnnalen. 261(4), 515-534

(1982)

37. Kahri, F., Mestiri, H., Bouallegue, B.: High Speed FPGA Implementation of Cryptographic KECCAK Hash function

Crypto-Processor. Journal of Circuits System and Computers. 25(4), 1650026 (2015)

38. Wang, Y., Yang, D., Du, M., Yang, H.: One-way hash function construction based on iterating a chaotic map. In: Proceedings—CIS

Workshops 2007, 2007 International Conference on Computational Intelligence and Secutity Workshops, 791-794 (2007)

39. Nouri, M., Khezeli, A., Ramezani, A., Ebrahimi, A.: A dynamic chaotic hash function based upon circle chord methods. In: 2012 6th

International Symposium on Telecommunications, IST 2012, 1044-1049 (2012)

40. Kaitai Liang, Man Ho Au, Joseph K. Liu, Willy Susilo, Duncan S. Wong, Guomin Yang, Yong Yu, Anjia Yang, “A Secure and

Expressive Ciphertext-Policy Attribute-Based Proxy Re-Encryption for Cloud Data Sharing”, Future Generation Computer Systems

52:95-108 (2015).

41. Cheng-Kang Chu, Wen Tao Zhu, Jin Han, Joseph K. Liu, Jia Xu, Jianying Zhou, “Security Concerns in Popular Cloud Storage

Services”, IEEE Pervasive Computing 12(4): 50-57 (2013).

42. Kaitai Liang, Willy Susilo, Joseph K. Liu, “Privacy-Preserving Ciphertext Sharing Mechanism for Big Data Storage”, IEEE

Transactions on Information Forensics and Security 10(8): 1578-1589 (2015).

	1 Introduction
	2 Merkle-Damgard construction
	3 The Proposed Feedback Iterative Structure of Hash Function
	4 Experiments and Analysis
	4.1 Message test
	4.2 Distribution of hash values
	4.3Statistical attack resistance
	One of effective attacks to hash function is statistical attack, which is a kind of chosen-plaintext attack.Attackers can use the known occurrence frequency of each hexadecimal number and the changed bit number,𝐵-𝑐.to break hash function [2]. That i...
	In Table 3,,𝑃-𝑐. denotes probability of bit change for every bit when 1-bit change has occurred in input message.,𝐴-𝑐. denotes the average number of changed bit in hash value when 1-bit change has occurred in input message. Wechoose 2000 different...
	Another important property of hash function is bit balance. Assumingn-bit hash value𝐻,𝑌. can be presented by two,𝑛-2.-bit part, ℎ-𝑙𝑒𝑓𝑡.||,ℎ-𝑟𝑖𝑔ℎ𝑡., the numbers of ‘1’ in ,ℎ-𝑙𝑒𝑓𝑡. and ,ℎ-𝑟𝑖𝑔ℎ𝑡.are denoted by,𝑁1-𝑙𝑒𝑓𝑡. and ,𝑁1-𝑟...
	4.4Test of avalanche performance
	4.5Collision resistance
	4.6Efficiency

	5 Conclusions

