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Abstract: Deep learning rapidly promotes many fields with successful stories in natural

language processing. An architecture of deep neural network (DNN) combining

tree-structured long short-term memory (Tree-LSTM) network and back-propagation neural

network (BPNN) is developed for predicting physical properties. Inspired by the natural

language processing in artificial intelligence, we firstly developed a strategy for data

preparation including encoding molecules with canonical molecular signatures and

vectorizing bond-substrings by an embedding algorithm. Then, the dynamic neural network

named Tree-LSTM is employed to depict molecular tree data-structures while the BPNN is

used to correlate properties. To evaluate the performance of proposed DNN, the critical

properties of nearly 1800 compounds are employed for training and testing the DNN models.

As compared with classical group contribution methods, it can be demonstrated that the

learned DNN models are able to provide more accurate prediction and cover more diverse

molecular structures without considering frequencies of substructures.
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Introduction

The chemical process and product design rely heavily on physical properties (e.g.,

critical properties) and prediction models.1,2 To investigate relationships between molecular

structures and properties, plenty of mathematical models have been developed.3 Most

prediction models are based on semi-empirical quantitative structure property relationships

(QSPRs) including group contribution (GC) methods and topological indices (TIs).

In GC methods, any compound can be divided into fragments (e.g., atom, bond, group

containing atoms and bonds). Each fragment has a partial value called a contribution, and the

final property value is given by summing the fragmental contributions. A large variety of

these models has been designed differing in the field of their applicability and in the set of

experimental data. For example, GC methods reported by Lydersen,4 Klincewicz and Reid,5

Joback and Reid,6 Constantinou and Gani,7 and Marrero and Gani8 are generally suitable to

obtain values of physical properties, because these methods provide the advantage of quick

estimation without substantial computational work. As alternative approaches, TIs, were used

to estimate properties similar to the way of GC methods. In topological index (TI) methods,

molecular topology is characterized depending on standard molecular graph properties such

as vertex degrees, connectivity, atomic types, etc. Additionally, one of the main advantages is

that TI methods can make a distinction between two similar structures from a more holistic

perspective than GC methods.9

Another method named signature molecular descriptor that combining the advantages of



GC and TI methods was developed by Faulon et al.10,11 Similar to TI methods, chemical

structures is conceived of as chemical graphs. The signature descriptor retains all the

structural and connectivity information of every atom in a molecule, rather than ascribe

various numerical values to a complete molecular graph.9 Meanwhile, the signature descriptor

has ability to represent molecular substructures similar to GC methods. Faulon et al.12 also

introduced a canonical form of molecular signatures to solve molecular graph isomorphism

which provides a holistic picture depicting molecular graphs and also holds the sub-structural

information of a molecule. Nevertheless, we found the previous researches have few attempts

to use the canonical molecular signature for QSPR modeling. To the best of our knowledge,

the main reason is that the canonical molecular signature is not represented in a numeric form

and it cannot be employed within the common-used mathematical models for QSPRs.

For the property estimation, most above-mentioned QSPR models, based on the specific

rules such as a certain set of molecular substructures or an array of molecular graph-theoretic

properties, are often formulated by multiple linear regressions (MLRs). Facts proved the MLR

techniques have strong ability to correlate QSPRs, however, their encoding rules and mapping

functions are defined a priori (i.e., mathematical formulations are not adaptive to the different

regression tasks). Moreover, the MLRs cannot be applied with the canonical molecular

signatures for QSPR modeling. On the other hand, an alternative technique, the neural

network, has been used to learn molecular structures and correlate physical properties or

activities.13 A variety of molecular descriptors (e.g., topological characteristics, frequency of

molecule substructures, and microscopic data of molecules) are fed to artificial neural

networks. With the limitation of the computing capability and development platform at that



period, most researchers adopted feedforward neural networks with static computing graphs

in their studies.14-32

Although these methods are well-used or precise in properties prediction, the molecular

features are chosen manually as the input for above-mentioned models. For example, the

splitting rules of molecular groups are pre-determined manually in the GC methods, or the

well-chosen descriptors are input to the artificial neural networks (ANNs). With the number

of various properties and product designs has been increasing, some properties/activities may

need to be correlated with more molecular features or calculated by more complex

mathematical models. It is therefore a challenge to pick out relevant features of molecules

from massive data in the classical QSPR modeling.

Recently, many researchers were encouraged to study deep learning in artificial

intelligence with improvements of computing performance. The deep learning is a much more

intelligent technique that can capture the valuable features automatically. This advantage

enables deep neural networks (DNNs) to formulate models from a great variety of big data.

As such, some new information carriers (e.g., graphs, images, texts, and 3D models) could be

used to represent molecular structures in the QSPR modeling with DNNs. Lusci et al.33

utilized the recurrent neural networks (RNNs) to present a molecular graph by considering

molecules as undirected graphs and proposed an approach for mapping aqueous solubility to

molecular structures. Goh et al.34 developed a deep RNN “SMILES2vec” that automatically

learns features from simplified molecular-input line-entry system35 (SMILES) to correlate

properties without the aid of additional explicit feature engineering. Goh et al.36 also

developed a deep convolutional neural network for the prediction of chemical properties,



using just the images of 2D drawings of molecules without providing any additional explicit

chemistry knowledge such as periodicity, molecular descriptors, and fingerprints. These

creative works34,36 demonstrate the plausibility of using DNNs to assist in computational

chemistry researches. The neural networks based on the long short-term memory (LSTM)

units suggested by Hochreiter et al.37 also have been adopted in the quantitative

structure-activity relationship (QSAR) researches. Altae-Tran et al.38 proposed a new deep

learning architecture based on the iterative refinement LSTM to improve learning of

meaningful distance metrics over small-molecules. The Tree-structure LSTM (Tree-LSTM)

introduced by Tai et al.39 is able to capture the syntactic properties of natural languages and

two natural extensions were proposed depending on the basic LSTM architecture, which

outperform other RNNs in their experiments. We noticed that the new neural network

Tree-LSTM might be possible to depict the canonical molecular signature.

Motivated by the preceding researches, in this contribution, we focus on developing a

deep learning approach that can learn QSPRs automatically and cover a wider range of

substances for better predictive capabilities. A Python-based implementation with Faulon’s

algorithm12 is achieved to convert molecules into canonical signatures for depicting molecular

graphs and an in-house encoding approach is developed to parse the signatures into tree

data-structures conveniently. The Tree-LSTM network and back-propagation neural network

(BPNN) are incorporated into the DNN for modeling QSPR, among which, the Tree-LSTM

mimics the tree structures of canonical signatures and outputs a feature vector that is used to

correlate properties within a BPNN. As such, there is no need to convert molecules to bitmap

images for training convolutional neural networks and to treat molecules as linear languages



for training RNNs. Then, the novelty of the proposed approach is that the canonical molecular

signatures are used as templates to generate the topological structures of Tree-LSTM

networks. In this sense, the contribution of this study is to propose an intelligent strategy of

QSPR modeling based on deep learning that can extract the valuable features from molecular

structures automatically. An important type of properties in process and product designs,

critical properties, is used as case studies to clarify the main details of the deep learning

architecture, which highlights the outperformance of the implemented QSPR modeling

strategies within the proposed DNN.

Methodology

In this section, the technical details with respected to the deep learning architecture for

modeling QSPR will be introduced. The proposed deep learning architecture incorporates

multiple techniques that including canonical molecular signatures, word embedding,

Tree-LSTM network, BPNN, etc. The proposed architecture consisting of eight steps is

illustrated in Figure 1. Step 1 mainly involves the data acquisition of molecular structures,

where the SMILES expressions are captured from open access databases. The second step is

the embedding stage, where the vectors representing the substrings of chemical bonds are

generated and collected into a dictionary with a widely used word-embedding algorithm. The

third step is focused on the canonization of a molecule, where the molecular structures are

transformed into the canonical molecular signatures as the templates for formulating the

Tree-LSTM network. Step 4 refers to the mapping stage, where the adaptive structure of the

Tree-LSTM network is obtained by the recursive algorithm from the canonical signature. In

other words, the Tree-LSTM network is self-adaptive to a molecule. Step 5 involves the



inputting vectors of each substrings corresponding to each node. The Tree-LSTM network

will be calculated from the lowest leaf node to the root node in this step. Finally, a vector

representing a molecule is given from the root node. Step 6 is focused on the correlation stage

of a property, where the vector representing a molecule is input into a BPNN to compute a

scalar output for the property prediction. Step 7 is the comparison stage, where the tolerance

between the predicted value and the experimental value is calculated. Step 8 is the feedback

stage, where the adjustable parameters in the Tree-LSTM network and the BPNN are

corrected for reducing the tolerance in step 7. The training process of the proposed DNN is

the iterative loop within steps 5, 6, 7 and 8.

The Signature Molecular Descriptor

The canonical molecular signature is employed to depict molecules in this work. One

reason is that a computer program can generate signatures automatically. Another important

reason is that the canonical molecular signature provides a method to distinguish molecular

structures for isomorphism. This also transforms the molecules with a uniform form for

mapping to the neural network model.

To introduce canonical molecular signatures, atomic and molecular signatures have to be

defined. An atomic signature is a subgraph originated at a specific root atom, and includes all

atoms/bonds extending out to the predefined distance, without backtracking. The predefined

distance is a user-specified parameter called the signature height h, and it determines the size

of the local neighborhood of atoms in a molecule. It means that specified a certain root atom

in a chemical graph, its atomic signature represents all of the atoms that are within a certain

distance h, from the root. The atomic signature of atom x in height h given as G(x)
h σ , is a



representation of the subgraph of the 2D graph G = (V, E) containing all atoms that are at

distance h from x. It is noted that V and E correspond to the vertex (atom) set and edge (bond)

set, respectively. Acetaldoxime (CAS No. 107-29-9) is taken as an example to provide atomic

signatures shown in Figure S1 of Supporting Information. The carbon atom numbered by 0

(C0) is given as the root atom, and it is single-bonded to three hydrogen atoms and another

carbon atom numbered by 1 (C1). Thus, the atomic signature for this root atom at height 1 is

[C]([C][H][H][H]), the other atomic signatures are shown in Figure S1b.

In Faulon’s theory,8 the molecular signature shown in Figure S1c is a linear combination

of all the atomic signatures, and is defined as Eq. 1.
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In a given compound, any atomic signature can appear more than once. For example, the

atomic signature [H]([C]) occurs four times in acetaldoxime. When the height of atomic

signatures reaches the maximum value, the molecular graph can be reconstructed from any of

the atomic signatures. Consequently, as long as graph canonization is concerned, there is no

need to record all atomic signatures. The lexicographically largest atomic signature suffices to

represent the graph in a unique manner.10 For example, acetaldoxime has nine atomic

signatures at the maximum height as shown in Figure S1d, and each of them is able to

describe the complete molecular structure. If these nine signatures are sorted in decreasing

lexicographic order (a canonical order), the lexicographically largest one can be defined as the

canonical molecular signature that could be encoded and then mapped to the Tree-LSTM

network.



Data Preparation: Molecules Encoding and Canonizing

In this work, SMILES expressions that used for depicting molecular structures are

gathered from PubChem database.40 We developed a program based on RDKit41 for parsing

and preserving the canonical molecular signature. The program implements Faulon’s

algorithm to generate and canonize atomic signatures, which can translate SMILES

expressions to molecular graphs before canonizing molecular structures. There exist two rules

for coding molecular structures in this program, one is the canonical string encoding a

canonical molecular signature, and the other is the developed in-house coding method. The

canonical molecular signature is used to determine the root atom in different molecules.

However, it is difficult to reproduce the molecule structures and feed into the neural network

from a molecular signature represented by a canonical string. When training the neural

networks, one needs a more straightforward and simpler expression for parsing a molecule as

a tree data-structure. As such, we developed a specified in-house coding method detailed in

Supporting Information.

Data Preparation: Atom Embedding from Chemical Bonds

As the inputs of Tree-LSTM networks, atoms and bonds need to be translated and

represented in form of vectors. Word embedding has been widely applied in natural language

processing, several known program in the field has been developed, such as “Word2vec”.42

Inspired by this method, we proposed a simple approach to generate vector representations of

atoms (see Figure 2) by breaking a chemical bond string into two smaller particles.

As we all know, chemical bonds are frequently represented in form of “A-B”, “A” and

“B” represent atoms, and “-” represents chemical bond types between two atoms. The string



as “A-B” is extracted from a data set of molecular structures, and then it is split into two part,

“A” and “-B”, as the samples to train the embedding neural network. For this application, the

skip-gram algorithm42 is employed. As such, the substrings “A” and “-B” can be mapped into

vectors for expressing each node in the Tree-LSTM network. In other words, a molecule is

considered as a sentence in the embedding algorithm, and “A” or “-B” is equivalent to a word.

Here, the methane molecule including five atoms is taken as an example shown in Figure

2. Every atom is considered as the starting point to record its connected bonds and atoms. A

dictionary is extracted from the samples of chemical bonds. The substrings “A” and “-B” are

represented by some initial vectors, for example, one-hot codes. Each initial vector is

employed to train the embedding neural network. Based on these training samples, the neural

network will output probabilities representing that each substring of the dictionary is the next

substring. After training completed, the weights of neurons in the embedding network are

formed into target vectors.

Deep Neural Network

A DNN combining Tree-LSTM and BPNN is developed in this work. The Tree-LSTM

neural network is employed for depicting molecular tree data-structures with the canonical

molecular signatures while the BPNN is used to correlate properties.

The Child-sum Tree-LSTM can be used to the dependency tree while the N-ary

Tree-LSTM is applied to the constituency tree,39 and the mathematical models of these two

Tree-LSTM models are listed in Table 1. The gating vectors and memory cell updates of the

Tree-LSTM are dependent on the states of child units, which is different from the standard

LSTM. Additionally, instead of a single forget gate, the Tree-LSTM unit contains one forget



gate fjk for each child k. This allows the Tree-LSTM to incorporate information selectively

from each child. Since the components of the Child-Sum Tree-LSTM unit are calculated from

the sum of child hidden states hk, the Child-Sum Tree-LSTM is well suited for trees with high

branching factor or whose children are unordered. The vector jh
~ is the sum of the hidden

states of all sub nodes under the current node j in the Child-sum Tree-LSTM model. The

N-ary Tree-LSTM model can be utilized in the tree structure where the branching factor is at

most N and where children are ordered from 1 to N. For any node j, the hidden state and

memory cell of its kth child are written as hjk and cjk, respectively. The introduction of separate

parameter matrices for each child k allows the N-ary Tree-LSTM model to learn more

fine-grained conditioning on the states of a unit’s children than those of Child-Sum

Tree-LSTM.

The performance evaluation of two Tree-LSTM models on semantic classification

indicated that both Tree-LSTM models are superior to the sequential LSTM model and is able

to provide better classification capability.39 Therefore, the N-ary Tree-LSTM network is

employed in this work to depict molecules, and the input variables are vectors converted by

the embedding algorithm. In the QSPR model, the variable xj is the input vector representing a

substring of a bond (“A” or “-B”), and the vector hj is the output vector representing a

molecular structure. The vector hj is finally associated with the properties by the BPNN. The

BPNN involves an input layer, a hidden layer and an output layer. For other variables and

functions in Table 1, W(i,o,u,f), U(i,o,u,f), b(i,o,u,f) are parameters that need to be learned, and σ

represents the activation function sigmoid. For example, the model can learn parameters W(i)

such that the components of the input gate ij have values close to 1 (i.e., “open”) when an



important atom is given as input, and values close to 0 (i.e., “closed”) when the input is a less

important atom. Taking acetaldoxime as an example again, the computing graph of the neural

network is presented in Figure S3 of Supporting Information. It can be observed that the

Tree-LSTM network mimics the topological structure of the acetaldoxime molecule. That is,

if other molecular structures are learned, the Tree-LSTM network can vary the computing

graph automatically. The BPNN accepts the output vectors from the Tree-LSTM network and

correlates them with the property values. In this way, a DNN is built based on the Tree-LSTM

network and BPNN.

Moreover, in this study, the aim of the DNN is to predict a numeric value instead of

classification. Hereby, there is no need to employ the activation function “softmax”.43 The

regularization technique “dropout”44 is introduced to the BPNN for reducing overfitting.

Huber loss45 is adopted as the loss function in the training process, which is different from the

frequently used classification scheme of Tree-LSTM network. More information about the

DNN is disclosed in the section S4 of Supporting Information.

Model Training and Evaluation

The Tree-LSTM network has a dynamic computational graph that is a mutable directed

graph with operations as vertices and data as edges. Hence, this neural network is

implemented and trained in the deep learning framework PyTorch.46 The Adam algorithm47 is

employed to train the DNN with a learning rate of 0.02 for the first 200 epochs, and

subsequent epochs with 0.0001 in learning rate. Early stopping and batch normalization are

utilized to decrease overfitting. The training process proceeded by monitoring the loss of test

set and it will not finish until there is no improvement in the testing loss within continuous 50



epochs. Finally, the model with the lowest testing loss will be saved as the final model. To

evaluate the correlative and predictive capacities of proposed deep learning architecture, the

critical properties of pure compounds are adopted as case studies. It is acceptable that critical

properties play vital roles in predicting phase behavior; however, the experimental

measurements of critical properties are time-consuming, costly, and tough especially for large

molecules that are easily decomposed. Moreover, several frequently used methods for the

estimation of critical properties can be employed to compare with the learned DNN model.

The values of critical properties are sourced from the Yaws’ handbook48 and the molecular

structures of the relevant substances are gathered from PubChem database.40 Several

statistical metrics described in Supporting Information are used to evaluate the results of

correlation and prediction for the DNN model.

Results and Discussion

The embedding vectors representing the bond-substrings are presented at first. The

DNN’s capability of correlation and prediction on the data set of critical properties is

evaluated in the section, and it is compared with two classical GC methods (i.e., Joback and

Reid (JR) method, and Constantinou and Gani (CG) method).

Embedding of Bond Substrings

The input vectors of the Tree-LSTM network are translated from the substrings of the

chemical bonds by the embedding neural network. After training, 106 substrings are extracted

from the chemical bonds of 11052 molecules, and then they are converted to 50-dimensional

real-valued vectors as the input data representing substring of every node in the Tree-LSTM

network. This is contrasted to the more dimensions required for sparse word representations,



such as a one-hot encoding. These 50-dimensional vectors have been reduced to two

dimensions by t-SNE algorithm49 (see Figure S5 of Supporting Information) for

understanding easily. More information about the embedding vectors is disclosed in the

section S6 of Supporting Information.

The DNN Performance

The key idea behind the new deep learning architecture is to distinguish molecular

structures by signature descriptors and to simulate molecule structures by a Tree-LSTM

network. The QSPR models are obtained by training the DNN. The substances in the training

and test sets are not screened carefully, which contains several small molecules and inorganic

acids. Actually, these substances should be excluded from the modeling of the group

contribution method, because they may cause deviation in the prediction. Finally, they are

kept as some noise to the DNN. The predicting capabilities of the learned models are

validated by a test set including independent compounds never used in training. The results of

training and testing demonstrate that the Tree-LSTM network is capable of correlating

physical properties and molecular structures (see Table 2).

The distributions of the standard deviation, average absolute error and average relative

error are presented in Table 2 for three critical properties of training and test sets respectively.

The number of data points for the average relative error that is less than 5% and greater than

10% are also presented. The residuals (xexp − xpred) of data points are plotted in the form of

residual distribution plots in Figure 3. Also, the predicted values of these compounds by the

proposed DNN in comparison with the experimental data are shown in Figure 4.



Comparisons with Existing Methods

Taken as examples, two existing GC methods for the estimation of critical properties are

compared with the proposed DNN method, which involves JR method and CG method. The

available performance data is provided by Poling et al.50 We have to admit that the completely

equitable comparison with other existing methods of property predictions is difficult since

every method might be regressed from different data sources.

For the critical temperature (see Table 3), the JR method based on the experimental

boiling points exhibits more accuracy than other GC methods, however, the accuracy of the

JR method based on the estimated boiling points shows a marked decline.50 To make the

comparison as fair as possible, the substances from the same list provided by Poling et al.50

are chosen to predict the critical temperature (Tc) using the proposed DNN. It can be seen

from Table 3 that the DNN shows better performance than JR method (Est. Tb). It is noticed

that the CG method involves groups in two orders, and the second order partially overcomes

the limitation of the single order that cannot distinguish special molecular structures. Hereby,

the number of substances estimated by the CG (2nd) method shown in Table 3 is actually a

part from the substances estimated by the CG (1st) method. Although the list of 335

compounds within the CG method is not ascertained, it can be concluded that the accuracy of

the learned DNN model is close to the CG method. When the learned DNN model is

evaluated with all substances in the list provided by Poling et al.,50 a decline in precision can

be observed but the resulting ARE is still close to the others. Hereby, the DNN method can

predict some substances that these GC methods cannot estimate, and the accuracy is close to

the CG method for the critical temperature when the amount of substances engaged in the



comparison is approximate. Moreover, the DNN method also provides better precision when

only predicting molecules with more than three carbon atoms.

For critical pressure (Pc), the estimations with the learned DNN model are more accurate

than all other methods (see Table 4). It also proves that the method can correlate properties

with more substances and has better accuracy for predicting the critical pressure. Furthermore,

for the estimation of the critical volume (Vc), as indicated in Table 5, the estimation of the

critical volume with the DNN method reaches precision close to other methods.

Actually, in total 468 substances are provided by Poling et al.50 It can be observed that

the number of substances estimated by the CG method and JR method is less than the learned

DNN model. In other words, the critical properties of some substances cannot be predicted

using these two existing GC methods. The reason is that the GC methods are limited by the

types and segmentation rules of groups while the DNN method is not subject to them. Hereby,

the DNN can predict more compounds and achieve a decent precision while it performs the

acceptable precision on the substances provided by Poling et al.50

Another important fact has also to be considered is the compounds exemplified in Tables

3-5 have been involved more or less in the regression samples of the JR method, the CG

method and the DNN. Although the above-mentioned comparison can evaluate the predictive

capability of the DNN differed from those two existing GC methods, the extrapolation ability

is also necessary to be evaluated. There is no program available for us to estimate properties

by the CG method, Figure 5 only shows the comparison of extrapolation abilities between the

JR method and the DNN according to the substances of test sets shown in Table 3. More

details are described in the section S7 of Supporting Information, and the comparison between



a reported neural network-based method and the learned DNN model is exhibited.

Distinction of isomers

Signature descriptors have the ability to distinguish isomers. Table 6 exhibits the

estimations through the DNN method as opposed to experimental values and other GC

methods. Apparently, the JR method cannot recognize isomers, although it is able to predict

more accurate according to the experimental boiling point. The CG method with the second

order of groups can obtain decent prediction for isomers, and the DNN method can achieve

similar results.

Conclusions

In this work, a deep learning architecture is developed and the prediction of physical

properties from the holistic molecule structure is achieved in following four steps. Firstly, an

embedding neural network is used to generate the vector representations of bond-substrings.

Then, a canonization algorithm is employed to convert the molecules to uniform

data-structures for providing templates to the Tree-LSTM neural network. Next, the

computational graph of the Tree-LSTM network accepts a vector of bond-string on its each

node, which is self-adaptive to various molecular structures. Finally, a vector outputting from

the root node of the Tree-LSTM network is introduced to a BPNN to generate predictive

property values. The proposed DNN does not rely on the well-chosen descriptors to correlate

properties, it could learn some valuable features of molecule and achieve an acceptable

precision of a specific property for more substances with less human effort.

The proposed approach neither counts the frequencies of molecular substructures nor

calculates any numerical descriptors, instead, provides a way to build the QSPR models from



the text-type descriptor, the canonical signature representing molecular graphs. Hence, the

strategy has a capability to capture the relevant molecular features for QSPR modeling

automatically. Furthermore, those parameters involved in the learned DNN model are not the

contribution value of each group in GC methods but tensors containing potential information.

For validating the effectiveness of the proposed deep learning architecture, critical

properties are taken as case studies to train and test the QSPR models built from the proposed

DNN combining Tree-LSTM and back-propagation neural network (BPNN). It has been

proven that these QSPR models provide more accurate prediction and cover more diverse

molecular structures. Moreover, the DNN behaves a better ability in distinguishing isomers.

We admit that the data used to train the model is still far from enough. This signifies that there

needs to be more data to capture the delicate relationships that may exist between molecule

structures and physical properties.

In a word, the wide applicability of the proposed architecture highlights the significance

of deep learning providing an intelligent tool to predict properties in the design or synthesis of

chemical, pharmaceutical, bio-chemical products and processes. It is worth mentioning that

the proposed strategy could be widely applied for the estimation of other properties of pure

compounds, such as environment-related properties and safety-related properties.
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Table 1. The transition equations of Child-sum Tree-LSTM and N-ary Tree-LSTM39
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~ is not involved in the N-ary Tree-LSTM unit. Notations and

symbols are described in the Supporting Information.



Table 2. Global comparison of critical properties between training and test sets

Properties
Data
points s a AAE b ARE (%) c # Err < 5% # Err >10%

Train Test Train Test Train Test Train Test Train Test Train Test
Tc (K) 1432 360 145.89 166.09 22.48 23.77 4.23 5.29 1104 266 109 36

Pc (×105 Pa) 1380 346 161.80 139.55 1.34 3.18 3.81 8.29 1104 177 98 89
Vc (×10-6 m3/mol) 1440 361 199.18 169.73 7.10 19.92 1.97 6.15 1361 245 19 59

a s is standard deviation; bAAE is average absolute error; c ARE is average relative error.



Table 3. The comparisons among DNN and GC methods in predicting critical temperature

Methods Substances AAE c ARE c # Err<5% d # Err>10% e

JR48 (Exp. Tb) f
352 a

290 b
6.65
6.68

1.15
1.10

345
286

0
0

JR48 (Est. Tb) g
352 a

290 b
25.01
20.19

4.97
3.49

248
229

46
18

DNN h 352 a

290 b
15.39
13.92

2.92
2.31

299
265

15
7

CG (1st)48 335 a

286 b
18.48
13.34

3.74
2.25

273
254

28
4

CG (2nd)48 108 a

104 b
17.69
12.49

13.61
2.12

274
254

29
6

DNN i 452 a

335 b
26.59
15.98

5.87
2.62

343
294

51
11

aThe number of substances in the list provided by Poling et al.50 with data that could be tested

with the method in the current line.

b The number of substances in the list provided by Poling et al.50 having three or more carbon

atoms with data that could be tested with the method in the current line.

c AAE is average absolute error; ARE is average relative error.

d The number of substances for which the ARE was less than 5% (# Err<5%).

e The number of substances for which the ARE was greater than 10% (# Err>10%). The

number of substances with errors between 5% and 10% can be determined from the table

information.

f The values of estimation is based on the experimental values of normal boiling point.

g The values of estimation is based on the estimation values of normal boiling point.

h The number of substances is kept consistent with the JR method.

i The number of all the substances that could be predicted by DNN.



Table 4. The comparisons among DNN and GC methods in predicting critical pressure

Methods Substances AAE c ARE c # Err<5% d # Err>10% e

JR48 328 a

266 b
2.19
1.39

5.94
4.59

196
180

59
30

DNN h 328 a

266 b
1.46
1.21

4.03
3.94

248
206

23
19

CG (1st)48 316 a

263 b
2.88
1.80

7.37
5.50

182
156

52
32

CG (2nd)48 99 a

96 b
2.88
1.80

7.37
5.50

187
160

56
36

DNN i 450 a

335 b
2.66
1.33

5.43
4.40

314
241

58
26

Note: aThe number of substances in the list provided by Poling et al.50 with data that could be

tested with the method in the current line.

b The number of substances in the list provided by Poling et al.50 having 3 or more carbon

atoms with data that could be tested with the method in the current line.

c AAE is average absolute error; ARE is average relative error.

d The number of substances for which the ARE was less than 5% (# Err<5%).

e The number of substances for which the ARE was greater than 10% (# Err>10%). The

number of substances with errors between 5% and 10% can be determined from the table

information.

f The values of estimation is based on the experimental values of normal boiling point.

g The values of estimation is based on the estimation values of normal boiling point.

h The number of substances is kept consistent with the JR method.

i The number of all the substances could be predicted by DNN.



Table 5. The comparisons among DNN and GC methods in predicting critical volume

Methods Substances AAE c ARE c # Err<5% d # Err>10% e

JR48 236 a

185 b
12.53
13.98

3.37
3.11

189
148

13
9

DNN h 236 a

185 b
10.07
11.20

2.99
2.69

197
157

13
10

CG (1st)48 220 a

180 b
15.99
16.68

4.38
4.57

160
159

18
22

CG (2nd)48 76 a

72 b
16.5
17.4

3.49
3.70

136
134

10
15

DNN i 402 a

230 b
15.05
17.38

4.84
4.20

301
236

56
31

Note: aThe number of substances in the list provided by Poling et al.50 with data that could be

tested with the method in the current line.

b The number of substances in the list provided by Poling et al.50 having 3 or more carbon

atoms with data that could be tested with the method in the current line.

c AAE is average absolute error; ARE is average relative error.

d The number of substances for which the ARE was less than 5% (# Err<5%).

e The number of substances for which the ARE was greater than 10% (# Err>10%). The

number of substances with errors between 5% and 10% can be determined from the table

information.

f The values of estimation is based on the experimental values of normal boiling point.

g The values of estimation is based on the estimation values of normal boiling point.

h The number of substances is kept consistent with the JR method.

i The number of all the substances could be predicted by DNN.



Table 6. Experimental and estimated critical temperature values of isomeric trimethylpentane

and methyl propanol

Compounds CAS No.
Exp.
Value
(K)

JR method
(Est. Tb)
Est. Value

(K)

JR method
(Exp. Tb)
Est. Value

(K)

CG
method
Est. Value

(K)

DNN
Est. Value

(K)

2,2,3-Trimethylpentane 564-02-3 563.40 557.09 563.31 562.10 563.42
2,2,4-Trimethylpentane 540-84-1 543.90 557.09 547.71 540.33 544.98
2,3,3-Trimethylpentane 560-21-4 573.50 557.09 570.55 577.45 576.88
2,3,4-Trimethylpentane 560-21-4 566.30 556.23 564.26 581.37 565.84
2-Methyl-1-propanol 78-83-1 547.78 548.34 546.11 543.32 552.96
2-Methyl-2-propanol 75-65-0 506.20 548.34 509.38 497.46 500.57
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