
1

A network representation method based on edge information
extraction

Wei Fan1 · Hui Min Wang1 · Yan Xing1 · Rui Huang1 · W. H. Ip2,3 · Kai Leung Yung4

This is the Pre-Published Version.
This is an Accepted Manuscript of an article published by © Springer-Verlag GmbH Germany, part of Springer Nature 2019, available online
https://doi.org/10.1007/s00500-019-04451-z

1 Department of Computer Science and Technology, Civil Aviation University of China, Tianjin, China

2 Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Kowloon, China

3 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada

4 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Abstract

In recent years, network representation learning has attracted extensive attention in the academic field due to its significant

application potential. However, most of the methods cannot explore edge information in the network deeply, resulting in poor

performance at downstream tasks such as classification, clustering and link prediction. In order to solve this problem, we

propose a novel way to extract network information. First, the original network is transformed into an edge network with

structure and edge information. Then, edge representation vectors can be obtained directly by using an existing network

representation model with edge network as its input. Node representation vectors can also be obtained by utilizing the

relationships between edges and nodes. Compared with the structure of original network, the edge network is denser, which

can help solving the problems caused by sparseness. Extensive experiments on several real-world networks demonstrate that

edge network outperforms original network in various graph mining tasks, i.e., node classification and node clustering.

Keywords Network representation learning · Edge network · Node representation vectors · Edge representation vectors

1 Introduction

With the development of Internet, information networks have become one of the most common data forms to preserve

information. Analysis and research on networks have great academic value and high potential application value (Hoang et al.

2018). For example, user recommendation system is designed to explore potential relationships between users in social

networks (Wang et al. 2017c; Zedan and Miller 2017; Hu et al. 2015; Wang et al. 2017a), and some online advertisement

delivery systems also deliver similar advertisements to people in similar groups. An important issue in the network research

is how to represent network information properly.

Network representation learning, or network embedding, is a promising way to explore information. It has been applied in

many fields such as sociology and computer science. Network representation learning methods first identify and preserve

valuable information in the original network automatically. Then, encode them into a low-dimension, dense and

continuous vector space, so that the noise or redundant information can be reduced and the intrinsic structure information

can be preserved. Node representation vectors obtained by the representation vector space can be applied to many

downstream tasks, such as node classification (Perozzi et al. 2014), node clustering (Wang et al. 2017b), link prediction (Ou

et al. 2016), visualization (Wang et al. 2016) and so on. Early network representation learning methods obtain node

representation vectors by constructing a feature matrix. However, these methods usually have high computational

complexity and poor performance when the scale of network is very large. With the development of deep learning, many

representation learning methods based on neural networks have been proposed.

However, they do not make full use of edge information and ignore edge representation, which causes (1) information in

the original network is not utilized sufficiently, (2) edge representation vectors are too dependent on node representation

vectors. In order to preserve both network structure and edge information better, in this paper, we transform an original

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of
use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00500-019-04451-z.

This is the Pre-Published Version.

https://doi.org/10.1007/s00500-019-04451-z

network into an edge network. During this process, first-order and second-order similarities between nodes and edge

information in original network are preserved. Because of more nodes and edges, edge network will alleviate sparseness greatly.

As shown in Fig. 1, edge network preserves the structure of original network well and becomes denser than that. Based on

edge network, we input edge network into an existing network representation model to get edge representation vectors

directly. Then, edge representation vectors are transformed into node representation vectors by using relationships between

nodes and edges. In order to verify the effectiveness of the proposed method, we use the net- work representation learned by

LINE on Polbooks dataset as the input to the visualization tool t-SNE (Van Der Maaten 2014) to compare the visualization

effect. In Fig. 1, the left two graphs are the structure of the original network and the transformed edge network, respectively.

The right two are the corresponding visualization results. Different clusters are represented by different colors. We can see that

in the visualization result of original network, the nodes are uniformly distributed in whole space, which cannot reflect the

cluster relationship of nodes. While in the edge network, nodes in the same cluster are located more closely to each other. It can

be found that the network representation of edge network is better than that of original network. More downstream tasks of

node classification and node clustering are conducted on several real-world networks. The results show that edge net- work

outperforms original network in most cases.

The main contributions of this paper are summarized as follows:

1. We present a novel way to extract network information, which not only preserves network information better, but also

alleviates sparseness greatly.

2. Edge representation vectors use original network information sufficiently and are not dependent on node representation

vectors.

3. We conduct comprehensive node classification and node clustering experiments on several real-world networks to

demonstrate the effectiveness of the proposed method.

2 Related work

Network representation learning, also known as network embedding, aims to find the low-dimensional vector space to better

capture the information in the network. It has shown superior performance in various tasks, such as node classification, node

clustering, link prediction. As a result, network representation learning has attracted more and more attention in recent years.

Although network representation learning has achieved good results, it still faces many challenges. (1) Network structure is

highly nonlinear, which means it is very difficult to capture structural features completely (Luo et al. 2011); (2) most of the

real-world networks are sparse, in other words, there are little edges can be observed. So, results will not be good if only the

observed edges are used (Tang et al. 2015);

(3) there is a lot of edge information in network, so how to make full use of it is also a key problem to be solved (Perozzi et

al. 2014).

Traditional network representation learning methods usually use spectrum properties, such as eigenvalues and eigen-

vectors, also known as singular values and singular vectors. The input matrix, adjacency matrix or Laplacian matrix in most

cases, is designed by a specific method. For example, locally linear embedding (LLE) (Roweis and Saul 2000) considers that

each node can be constructed through a linear weighted combination of its neighbor nodes. Laplacian Eigenmaps (LE)

(Belkin and Niyogi 2002) can reflect the intrinsic manifold structure of the data with an adjacency matrix as input. Unlike

LLE, the feature vectors corresponding to the minimum K nonzero feature values of Laplacian matrix are used as network

representation learning vectors. The network representation learning methods based on spectrum properties only consider

network structure, and their computational complexity is high O(n2), so they are difficult to be applied to large scale

networks.

With the development of deep learning, a large number of representation learning methods based on neural networks have

emerged. Mikolov et al. propose an effective neural network framework to learn the distributed representation of words in

natural language (Mikolov et al. 2013a, b). Inspired by this, Deepwalk (Perozzi et al. 2014) first obtains a series of node

sequences by using random walk approach to generate network neighborhoods for nodes, which is analogical to a depth-

first search. It treats each node sequence as a sentence, then inputs node sequences into the Skip-gram model and finally

obtains a low-dimensional representation vector for each node. Based on Deepwalk, LINE (Tang et al. 2015) uses a breath-

first search strategy to preserve first-order and second-order similarities in the network. However, both of them fail to offer

any flexibility in node sampling from networks. Node2vec (Grover and Leskovec 2016) improves random walk approach

with a more flexible approach, so that sampled paths can preserve the local and global properties of the network to a greater

extent. Different from these shallow neural networks-based methods, SDNE (Wang et al. 2016) uses deep neural networks to

capture highly nonlinear relationships between nodes.

However, a major limitation in all of the above works is that they only use the network structure for network

representation. But for most of the real-world networks, other information such as node features, the supervised label

information and heterogeneous information is also important. Matrix factorization-based network representation techniques

can fuse structure and other information well. TADW (Yang et al. 2015) introduces the text features of nodes into network

representation learning under a matrix decomposition framework. BANE (Yang et al. 2018) formulates a new Weisfeiler

Lehman matrix factorization learning function under the binary node representation constraint. Based on BANE, LQANR

(Yang et al. 2019) compacts node representations with low bit width values and achieves high representation accuracy.

However, these methods suffer high time complexity when network scale is large. Since deep neural networks can integrate

different kinds of information, MMDW (Tu et al. 2016), which is based on Deepwalk, incorporates label information into the

network representation learning process. CANE (Tu et al. 2017a) encodes text information by using CNN and obtains

context-aware network representation. SNE (Liao et al. 2018) learns node representation vectors in the attribute network by

using neural networks. DANE (Hong et al. 2019) applies GCN to learn transferable node representation of attributed

networks.

Despite node features and label information, deep neural networks can also fuse heterogeneous information into network

representation process. MVE (Qu et al. 2017) pro- poses a multi-view representation learning approach, which promotes the

collaboration of different views and lets them vote for the robust representations by using attention mechanism. Different

from the voting process in MVE, MEGAN (Sun et al. 2019) employs a generator to integrate information about pair-wise

links between nodes across all of the views.

All the above methods focus on the node representation, but ignore the edge representation. There are a few exiting

methods which can obtain edge representation. Node2vec (Grover and Leskovec 2016) obtains edge representation vectors

by using vector operations between the node representation vectors. TransNet (Tu et al. 2017b) uses translation mechanism

to get edge representation vectors. HEER (Shi et al. 2018) obtains node representation vectors and edge representation

vectors simultaneously by extracting the relationships in the heterogeneous network. However, they all obtain the node

representation vectors first and then obtain the edge representation vectors through their relationships, which causes edge

information in the original networks utilized insufficiently, and edge representation is deeply dependent on the node

representation.

In order to solve these problems, we propose an information extraction method that transforms an original network into

an edge network. By inputting the edge network into an existing network representation model, edge representation vectors

can be obtained directly. Node representation can be further obtained by the edge representation vectors.

3 Network representation learning based on edge information extraction

In this section, we formally define the related problem of network representation learning and introduce our method.

Figure 2 illustrates the framework of our method.

3.1 Problem definition

In this section, we will introduce notions and define the problems formally.

Definition 1 Network representation learning. Given net- work G = (V , E), where V = {v1, v 2 , . . . , vn} represents the set

of nodes, E e1, e 2 , . . . , em represents the set of edges. n and m are the number of nodes and edges in the net- work,

respectively. A represents the adjacency matrix. If vi and v j are connected, aij 1. Otherwise, aij 0. The purpose of network

representation is to learn a mapping function f : vi → yi ∈ Rd , where d is the dimension of the vector and d « |V |. The

relationship between node representation vectors yi and y j can reflect the relationship between nodes vi and v j in G.

Definition 2 First-order similarity. Given a graph G = (V , E), for any two nodes vi and v j , if they are connected

directly(aij 1), nodes vi and v j have first-order similarity (Grover and Leskovec 2016).

First-order similarity intuitively reflects the relationship between nodes in the network. If there is a connection between

two nodes, these two nodes are more similar. For example, if a paper cites another one, then these two papers are more

similar than others. However, a large number of node pairs do not have first-order similarity because of the sparseness in

the real-world networks. Therefore, it is difficult to save the network structure well by relying only on the

first-order similarity. Second-order similarity is used to solve this problem.

Definition 3 Second-order similarity. Given a graph G = (V, E), for any two nodes vi and v j, if there is a common between

them, that is, aik = 1, a j k = 1, vi and v j have second-order similarity (Grover and Leskovec 2016).

Second-order similarity assumes that the more common neighbors between two nodes, the higher similarity between them.

For example, in the sentences I like eating apple and I like eating meat, the words apple and meat should have higher

similarity because of the similar context. By the way, the problem of sparseness can be alleviated greatly by using second-

order similarity.

Local and global information can be preserved finally in the network by using first-order and second-order similarities.

3.2 Edge information extraction

Different from the existing network representation learning methods, we focus on how to extract network information

better. In order to solve this problem, an original network G is transformed into an edge network G1. In other words, the

edges in G will become the nodes in G1. As shown in Fig. 2, G has 7 edges and G1 has 7 nodes. The similarity between

nodes in G1 will be constructed by the first-order and the second-order similarities of the original network G. The

similarity between nodes in G1 can be calculated by Cosine similarity (Salton 1970), also called Salton index, as shown in

Eq. 1.

Where N (v) represents the neighborhoods of node v. Node pair (vi, vk) is connected by edge ep, and (v j, vk) is connected by eq in

original network G. For example, in Fig. 2, the way to calculate similarity between e6 and e7 is s67 = se6,e7 =

 The detailed construct algorithm of edge network can be seen in Algorithm 1.

Algorithm 1 Transform original network to edge network.

Input: Original network G;

Output: Edge network G1;

1: Generate an empty network G1; 2: for e in G.edges() do

3: G1.add_nodes(e); 4: end for

5: for ep in G1.nodes() do

6: for eq in G1.nodes() do
7: get node pair (vi , vk) connected by edge ep in G (first-order similarity);

8: get node pair (v j , vk) connected by edge eq in G (first-order similarity);

9: calculate similarity between ep and eq by Equation 1 (second- order similarity)

10: G1.add_edges(ep, eq , spq);

11: end for

12: end for

3.3 Network representation learning

Edge network can not only preserve network structure and edge information, but also alleviate the sparseness in the original

network greatly. As shown in Fig. 2, an original network G is transformed into an denser edge network G1. Then, edge

network is input into the existing network representation models. Finally, edge representation vectors can be obtained

directly.

=

In order to evaluate our method on downstream tasks, we transform edge representation vectors into node representation

vectors according to their relationships. As shown in

Fig. 2, v1 is connected to only one edge e1 in G, so v1’s representation vector can be expressed as y(v1) = y(e1). Node v4 is

connected to the edges e3, e4, e6, e7; then, v4’s representation vector can be expressed as y(v4)
y(e3)+y(e4)+

4
y(e6)+y(e7) .

3.4 Complexity analysis

In transform process, we need to calculate the similarities between nodes in the edge network. As seen in Algorithm 1, the

time complexity is O(m2), where m is the number of nodes in the edge network. However, since a large number of node pairs

have no connection, so in fact, the time complexity is much smaller than O(m2).

In addition, in order to evaluate our method on down- stream tasks, edge representation vectors are transformed into node

representation vectors. Therefore, we need to calculate the relationship between edges and nodes in G, so the time

complexity is O(n). In summary, the time complexity of our method is much smaller than O(m2).

4 Experiments

4.1 Experiment settings

Our experiments focus on two common tasks: node classification and node clustering. We evaluate our method on five

different networks under different inputs (original network and edge network). Node classification is also conducted on

different network representation models. In order to verify the dimensional sensitivity of edge network, we cluster node

representation vectors with different dimensions and com- pare their node clustering performance. Lastly, we classify five

different edge networks, which are constructed by using different similarity measuring methods, to verity the effect of

similarity measuring methods.

4.1.1 Datasets

In the experiments, we use five different real-world net- works, which are processed into connected networks during

preprocessing process. The detailed information has been summarized as follows:

- Polbooks
1 is a co-sold relationship network of American political books, consisting of 105 nodes and 441 edges.

Nodes represent books. If two books were bought by one person, they are connected. The nodes are divided into three

categories: liberal, conservative and central.

- Football
2 is a complex social network consisting of 115 nodes and 613 edges. Nodes represent football teams, and

edges represent the two teams had a match. The nodes are divided into 12 categories.

- WebKB
3 consists of four independent subnetworks— Cornell, Texas, Wisconsin and Washington. The number of

nodes and edges for each of these subnetworks are listed in Table 1. Nodes represent the site ID, and edges represent

reference relationship between the sites. The nodes are divided into five categories: course, faculty, student, project

and staff.

- ColiInter
4 is a transcription network consisting of 328 nodes and 497 edges. The edges are divided into three

categories.

- Protein
5 is a network of protein interactions in yeast. It consists of 1458 nodes and 1993 edges. Nodes represent

protein, and edges represent metabolic interaction between two proteins.

1 http://www.orgnet.com/.
2 http://www-personal.umich.edu/~mejn/netdata/.
3 http://linqs.cs.umd.edu/projects/projects/lbc.
4 http://www.weizmann.ac.il/mcb/UriAlon/e-coli-transcription- network.
5 http://moreno.ss.uci.edu/data.html#Pro-pro.

http://www.orgnet.com/
http://www-personal.umich.edu/~mejn/netdata/
http://linqs.cs.umd.edu/projects/projects/lbc
http://www.weizmann.ac.il/mcb/UriAlon/e-coli-transcription-network
http://www.weizmann.ac.il/mcb/UriAlon/e-coli-transcription-network
http://moreno.ss.uci.edu/data.html#Pro-pro

4.1.2 Adopted methods and experiment setup

In order to evaluate the effect of the proposed method, we use five state-of-the-art network representation models as

intermediate algorithms. The details of these methods are as follows:

– Deepwalk (Perozzi et al. 2014) is the first method to intro- duce deep learning into network representation learning. It

obtains sequences of nodes by applying random walks first and then inputs the sequences into the skip-gram model to

learn a low-dimensional vector representation for each node.

– LINE (Tang et al. 2015) preserves the first-order and second-order similarities between node pairs and minimizes the

KL distance between the probability distribu- tion and the empirical distribution.

– SDNE (Wang et al. 2016) is different from the previous shallow neural networks, and it uses deep neural networks to

capture the high nonlinearity between nodes and uses intermediate layer in the deep self-encoder as node

representation.

– Node2vec (Grover and Leskovec 2016) is an improved version of Deepwalk. It controls how to choose neighbors of a

node by using two parameters.

– GraRep (Cao et al. 2015) extends to high-order proximity and uses SVD to train the model. It also directly concatenates

the representations of first-order and high- order similarity.

We set the dimension size d = 128 for all the models, and other parameters are set to the default values presented in the

publicly available implementations.

4.2 Comparison between original network and edge network

In this section, we will compare network information between original and edge networks. Average degree is used to measure

the network density. The detailed information can be seen in Table 1.

As we can see, the density changes of edge network on Pol- books and Football increase less (2.6 and 1.83, respectively),

which may because the original network is relatively dense, so the changes are not obvious compared to other networks. In

Cornell, Texas, Wisconsin and Washington, the original networks are very sparse, and the density changes are more obvious

(11.84, 13.00, 10.53 and 11.24, respectively). Both ColiInter and Protein are sparse networks with a large number of nodes.

After transformation, they become denser (7.31 and 4.46, respectively).

In summary, our method can be applied to sparse networks with different node numbers and different densities, which

alleviates the sparseness greatly.

4.3 Node classification

Node classification is a common task for measuring performance of node features. In order to minimize the impact of

different classifiers and indicators, we use LR as classifier and accuracy as indicator. Specifically, TP, FP, TN and FN are

the number of true positives, false positives, true negatives and false negatives, respectively. Then, the accuracy is defined as

Eq. 2.

We randomly select 90% nodes as the training set and rest as the testing set. Since ColiInter has edge labels instead of

node labels, we transform node representation vectors into the edge representation vectors. In addition, there is no label in

Protein, so we do not make experiments on it. Figure 3 shows the classification performance of different datasets between

original and edge network under the LINE model.

As we can see in Fig. 3, the accuracy of edge network on Polbooks, Football, Cornell and Washington is certainly better

than the original network. But, the accuracy of edge network on Texas, Wisconsin and ColiInter is not so good. Maybe

because edge network only preserves the first-order and second-order similarities in the original network instead of higher

order similarity.

Table 2 shows accuracy on Polbooks with different models. As we can see, accuracy of the edge network on Deepwalk and

GraRep is the same as original network (100% both). Accuracy of LINE model in edge network is better than original

network (100% and 64%, respectively). Accuracy of edge network under Node2vec is the same as original network

91%), maybe because random walk sequences in Node2vec do not capture the structure of edge network well. In the

SDNE model, the accuracy of the original network is better than edge network. This maybe because SDNE is a deep-

learning model, which can better preserve the high- order nonlinear relationship between nodes.

4.4 Node clustering

Node clustering is also one of the important issues in network analysis. It divides the nodes into several clusters, so that nodes

in the same cluster are similar and nodes in different clusters are different. We use K -means, a classical clustering method, to

perform results and Silhouette Coefficient is used as evaluation indicator. Silhouette Coefficient ranges from -1 to 1, and a

larger value indicates better clustering result. We also set different cluster numbers among different datasets. Experimental

settings are seen in Table 3.

Table 3 shows the clustering performance of different inputs in the different networks under LINE model. On Pol- books,

Cornell, Texas, Wisconsin, Washington and ColiInter, compare to original network, the increase in Silhouette Coefficient of the

edge network is approximately 0.05, 0.02, 0.03, 0.06, 0.06 and 0.04, respectively, which indicates that the edge network

preserves the network structure better. Foot- ball’s Silhouette Coefficient of original network is negative, which maybe

because the number of clusters is too large so K -means cannot distinguish the difference between nodes well. However,

Silhouette Coefficient of the edge network (0.1912) is significantly better than the original network (- 0.0016). This maybe

because the edge network preserves rich edge information in the original network, so that K - means can better distinguish

the differences between the nodes. On Protein, Silhouette Coefficient of the edge net- works is greater than original

network (increasing 0.5152). This maybe because the number of nodes is large, so edge network contains richer structure

and edge information.

4.5 Parameter analysis

In order to verify the sensitivity of parameters, edge net- works are input into LINE model with different dimensions. Figure

4 shows the impact of different dimensions on node clustering.

As dimension increases, Protein’s Silhouette Coefficient decreases, which shows that Protein can achieve good results by

using low-dimensional representation vectors. As the dimension increases, Football’s Silhouette Coefficient fluctuates

continuously, but it shows a slow upward trend. Silhouette Coefficient of ColiInter fluctuates greatly with the increase in

the dimension, and gets the best performance when dimension is 130. The trends of Polbooks and four subnetworks of

WebKB (Texas, Cornell, Wisconsin and Washington) are similar. As the dimension increases, Silhouette Coefficient

fluctuates slightly, which indicates that Polbooks and WebKB are less sensitive to the dimensions.

4.6 Different similarity measuring methods analysis

In the process of transforming an original network G into an edge network G1, different similarity measuring methods lead

to different edge networks. In order to verify the effect of similarity measuring methods, five different similarity indices, as

shown in Eqs. 1, 3–6, are compared under LINE model on Polbooks dataset. We use the LR as classifier and accuracy as

indicator. Table 4 shows the classification performance of original network and five different edge net- works constructed by

using five different similarity methods.

Node pair (vi , vk) is connected by edge ep, and (v j , vk) is connected by edge eq . Equation 3 (Salton 1970) is Adamic– Adar

index(AA). Equation 4 (Ravasz et al. 2002) is Hub Promoted Index(HPI). Equation 5 (Leicht et al. 2006) is Hub Depressed

Index(HDI). Equation 6 (Li et al. 2014) is Sorensen index.

As shown in Table 4, the performance of edge network constructed by using Salton, HPI, HDI and Sorenson is great (100%)

with increasing rate of 56.25% compared to original network (64%). While accuracy of edge network constructed by using

AA is 72% with increasing rate of 12.5% compared to original network (64%). This maybe because Salton, HPI, HDI and

Sorensen consider the com- mon neighbors, and AA also considers degree information of common neighbors, while nodes vi

and v j have a few common neighborhoods in the dataset; therefore, AA cannot obtain enough valuable information.

5 Conclusion

We proposed a network representation learning method based on edge information extraction, which not only can pre- serve

the structure and edge information in the original network, but also alleviate the sparseness. First, an original network is

transformed into an edge network, and then, input edge network into an existing network representation model. Finally,

edge representation vectors of original network can be obtained directly. Evaluation on real-world datasets demonstrates

that edge network can achieve better performance than original network in most cases.

In the future, we will explore the following directions:

1. It can be seen in the experimental part that high-order similarity plays an important role in learning representation of sparse

networks, but our method fails to preserve high-order similarity between nodes in the original net-work constructed by using

five different similarity methods.

2. We mainly analyze the undirected and unweighted net- work in this paper, but there are also a large number of directed

and weighted real-world networks. Therefore, the analysis of those networks is necessary to understand complex networks.

3. Heterogeneous networks have more complex structures, and many real-world networks are heterogeneous. These

networks also contain rich information, such as attribute information, tag information, text information and so on.

How to save complex structural information and other information in heterogeneous networks is also an important issue to be

considered.

Acknowledgements This work is partially supported by Grants from the National Natural Science Foundation of China (U1333109),

Fundamental Research Funds for the Central Universities of Civil Aviation University of China (3122018C020, 3122018C021), Sci- entific

Research Foundation of Civil Aviation University of China (600/600001050115, 600/600001050117) and a fund from the Hong Kong

Polytechnic University, Department of Industrial and Systems Engineering (H-ZG3K).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral tech- niques for embedding and clustering. In: Advances in neural information

processing systems (NIPS), pp 585–591

Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural information. In: Proceedings of the 2015 ACM on conference

on information and knowledge management (CIKM), ACM, pp 891–900

Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD interna- tional

conference on knowledge discovery and data mining (KDD), ACM, pp 855–864

Hoang DT, Nguyen NT, Tran VC, Hwang D (2018) Research col- laboration model in academic social networks. Enterp Inf Syst 13(7–8):1023–

1045

Hong R, He Y, Wu L, Ge Y, Wu X (2019) Deep attributed network embedding by preserving structure and attribute information. IEEE Trans Syst

Man Cybern Syst pp 1–12

Hu W, Gong Z, LH U, Guo J (2015) Identifying influential user com- munities on the social network. Enterp Inf Syst 9(7):709–724

Leicht EA, Holme P, Newman ME (2006) Vertex similarity in networks.

Phys Rev E 73(2):026120

Li Y, Luo P, Wu C (2014) Information loss method to measure node similarity in networks. Phys A 410:439–449

Liao L, He X, Zhang H, Chua TS (2018) Attributed social network embedding. IEEE Trans Knowl Data Eng 30(12):2257–2270

Luo D, Nie F, Huang H, Ding CH (2011) Cauchy graph embedding. In: Proceedings of the 28th international conference on machine learning

(ICML), ACM, pp 553–560

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estima- tion of word representations in vector space. arXiv preprint arXiv:1301.3781

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of words and phrases and their compo- sitionality. In:

Advances in neural information processing systems (NIPS), pp 3111–3119

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD

international conference on Knowledge discovery and data mining (KDD), ACM, pp 1105–1114

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining (KDD), ACM, pp 701–710

Qu M, Tang J, Shang J, Ren X, Zhang M, Han J (2017) An attention- based collaboration framework for multi-view network represen- tation

learning. In: Proceedings of the 2017 ACM on conference on information and knowledge management (CIKM), ACM, pp 1767–1776

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science

297(5586):1551–1555

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

Salton G (1970) Automatic text analysis. Science 168(3929):335–343

Shi Y, Zhu Q, Guo F, Zhang C, Han J (2018) Easing embedding learn- ing by comprehensive transcription of heterogeneous information

networks. In: Proceedings of the 24th ACM SIGKDD interna- tional conference on knowledge discovery and data mining (KDD), ACM, pp 2190–

2199

Sun Y, Wang S, Hsieh TY, Tang X, Honavar V (2019) Megan: a gener- ative adversarial network for multi-view network embedding. In:

Proceedings of the 28th international joint conference on artificial intelligence (IJCAI), AAAI Press, pp 3527–3533

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large- scale information network embedding. In: Proceedings of the 24th

international conference on world wide web (WWW), ACM, pp 1067–1077

Tu C, Zhang W, Liu Z, Sun M, et al. (2016) Max-margin deepwalk: discriminative learning of network representation. In: Proceedings of the 25th

international joint conference on artificial intelligence (IJCAI), AAAI Press, pp 3889–3895

Tu C, Liu H, Liu Z, Sun M (2017a) Cane: context-aware network embed- ding for relation modeling. In: Proceedings of the 55th annual meeting of

the association for computational linguistics (ACL), pp 1722–1731

Tu C, Zhang Z, Liu Z, Sun M (2017b) Transnet: translation-based network representation learning for social relation extraction. In: Proceedings

of the 26th international joint conference on artificial intelligence (IJCAI), AAAI Press, pp 2864–2870

Van Der Maaten L (2014) Accelerating t-sne using tree-based algo- rithms. J Mach Learn Res 15(1):3221–3245

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on

knowledge discovery and data mining (KDD), ACM, pp 1225– 1234

Wang S, Hu L, Cao L (2017a) Perceiving the next choice with compre- hensive transaction embeddings for online recommendation. In: Joint

European conference on machine learning and knowledge discovery in databases (ECML), Springer, pp 285–302

Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017b) Community preserving network embedding. In: Proceddings of the 31st AAAI conference

on artificial intelligence (AAAI), pp 203–209

Wang Y, Ding M, Chen Z, Luo L (2017c) Caching placement with rec- ommendation systems for cache-enabled mobile social networks. IEEE

Commun Lett 21:2266–2269

Yang C, Liu Z, Zhao D, Sun M, Chang E (2015) Network representation learning with rich text information. In: Proceedings of the 24th

international joint conference on artificial intelligence (IJCAI), AAAI Press, pp 2111–2117

Yang H, Pan S, Zhang P, Chen L, Lian D, Zhang C (2018) Binarized attributed network embedding. In: Proceedings of the 2018 IEEE

international conference on data mining (ICDM), IEEE, pp 1476– 1481

Yang H, Pan S, Chen L, Zhou C, Zhang P (2019) Low-bit quantization for attributed network representation learning. In: Proceedings of the 28th

international joint conference on artificial intelligence (IJCAI), AAAI Press, pp 4047–4053

Zedan S, Miller W (2017) Using social network analysis to identify stakeholders’ influence on energy efficiency of housing. Int J Eng Bus Manag

9:1–2

Publisher’s Note Springer Nature remains neutral with regard to juris- dictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1301.3781

Fig. 1 An example of 2D visualization result of network representation on Polbooks dataset by t-SNE. Please see text for details

Fig. 2 The framework of the proposed method. An original network G with 6 nodes and 7 edges is transformed into an edge network G1, which

has 7 nodes and 13 edges. By inputting G1 into the existing network representation models (such as Deepwalk, LINE.), the node

representation vectors in G1 (also edge representation vectors in G) can be obtained directly

Table 1 Information between original and edge network, where n is the number of nodes, m is the number of edges, C is the number of categories,

D is the average degree, and P is the increasing rate of average degree between edge and original network

Method Original network Edge network

n m C D n m D P

Polbooks 105 441 3 8.40 441 4822 21.87 2.60

Football 115 613 12 10.66 613 5967 19.47 1.83

WebKB-Cornell 183 280 5 3.06 280 5072 36.23 11.84

WebKB-Texas 183 295 5 3.22 295 6184 41.93 13.00

WebKB-Wisconsin 251 466 5 3.71 466 9113 39.11 10.53

WebKB-Washington 215 402 5 3.74 402 8448 42.03 11.24

ColiInter 328 497 3 3.03 497 5504 22.15 7.31

Protein 1458 1993 – 2.73 1993 12152 12.19 4.46

Fig.3. Classification accuracy on different datasets with LINE model

Table 2 Classification accuracy on Polbooks dataset with different network representation models

 Deepwalk LINE SDNE Node2vec GraRep

Original network 100% 64% 100% 91% 100%

Edge network 100% 100% 73% 91% 100%

The best values are presented in bold

Table 3 Node clustering on different datasets with LINE model

Cluster number Original network Edge network Increase

Polbooks 3 0.0084 0.0578 0.0494

Football 12 −0.0016 0.1912 0.1928

Cornell 5 0.0066 0.0233

Texas 5 0.0071 0.0327

0.0167

0.0256

Wisconsin 5 0.0082 0.0681 0.0599

Washington 5 0.0030 0.0605 0.0575

ColiInter 3 0.0087 0.0438 0.0351

Protein 2 0.0096 0.5248 0.5152

The best values are presented in bold

Fig. 4 Node clustering of Polbooks’s edge network with different dimensions under LINE model

Table 4 Comparison among original network and five different edge networks constructed by using five similarity measuring methods

 Original network Edge network

 Salton AA HPI HDI Sorenson

Accuracy 64% 100% 72% 100% 100% 100%

The best values are presented in bold

