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in the highly volatile and competitive market. Therefore, in this paper, we apply the mean-variance 
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equilibrium prices for two competing risk-averse air cargo carriers under demand and cost 

uncertainties. We then uncover how the crucial factors like risk sensitivity coefficients, market 
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impacts of these factors on the equilibrium prices. Our analytical results demonstrate the symmetry in 

the optimal prices and critical thresholds for the two carriers. Besides, we reveal the importance to 

consider both carrier’s own and the competitor’s risk attitudes and operating characteristics in decision 

making when market competition exists. Moreover, we find the direct and indirect impacts of risk 

attitudes on the optimal prices, thus highlighting the importance to integrate risk considerations into 

the optimal pricing decision framework. Finally, we show that market situations play a critical role in 

characterizing the effects of diverse parameters on the equilibrium prices, which should be carefully 

evaluated by decision makers.   
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I. INTRODUCTION 

A. Background and Motivation 

Air-cargo carrier systems are an important part of transportation logistics systems. Due to the increased 

global trades, higher demand for fast shipment, and companies’ efforts in keeping low inventory level 

through quick and frequent replenishments [1, 2], the air freight transportation industry is growing 

rapidly in recent years, with the industry-wide revenue reaching 95.9 billion US dollars in 2017 [3, 4]. 

As reported by IATA [5], 35% of the global trade value of goods are transported by air in 2015. 

Besides, Airbus [6] and Boeing [7] have forecasted that the international air freight volume will double 

in the next two decades. Currently, air cargo has become a crucial component of revenue not only for 

dedicated cargo air carriers (e.g., Cargolux), but also for combinatorial air carriers (e.g., Cathay 

Pacific) [8]. Moreover, it is reported that cargo transportation produces more than twice revenue than 

the first-class cabin passenger transport, and the throughput of air cargo grows 50% faster than that of 

air passenger [3, 9].  

Despite the fast growth and increasing importance, the air cargo transportation industry is facing 

with diverse challenges. First of all, the industry is characterized by fierce and intensive market 

competition. As predicted, approximate 350 new-built air cargo carriers in North America and 200 in 

Asia-Pacific will appear in the next twenty years [6, 7]. Second, the market is highly volatile and 

uncertain, with remarkable variations in consumer demand [4, 10]. For example, IATA [5] reports that 

the monthly industry-wide freight traffic kept varying throughout the year of 2017, and the difference 

between the highest (in November) with the lowest (in February) volumes reaches around 5 billion 

FTKs. Third, as the fuel consumption comprises the largest part of an airline’s operating costs, the 

fluctuation in crude oil price creates significant challenges for the profitability and development of air 

freight companies [11, 12]. As reported by Airbus [6], the international jet-fuel price kept fluctuating 

since 2000, which climbed by more than 200% from 2000 to 2008, followed by a sharp reduction by 

50% in 2009. After that, the oil price grew rapidly to the 2008-level in 2010. Airbus [6] has also 

predicted a great fluctuation in fuel price in the next two decades. Although some airlines adopt 

financial instruments like fuel hedging to alleviate the impact of oil price fluctuation, cost uncertainty 

still exists. For instance, Cathay Pacific is reported to lose 6.45 billion HK dollars in fuel hedging in 

20175, causing great financial burden for the corporate. Therefore, the significant uncertainties in 

operating costs should be carefully considered during decision making for cargo airlines. 

Consequently, it is seen that air freight carriers are challenged by uncertainties from both demand 

and cost perspectives, together with intensive market competition. Therefore, it is reasonable that some 

freight airlines hold a risk-averse attitude against profit losses to maintain profitability in the highly 

volatile and competitive environment. As a result, enhancing the strategic decision making, especially 

with risk considerations, becomes crucial for air cargo carriers. As pointed out by Azadian and Murat 

                                                 
5 https://hongkongbusiness.hk/aviation/news/cathay-pacific-hit-massive-645b-fuel-hedging-loss-in-2017.  

https://hongkongbusiness.hk/aviation/news/cathay-pacific-hit-massive-645b-fuel-hedging-loss-in-2017
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[12], among the air freight operations management issues, the pricing problem is the most important 

but challenging one. It is reported that modern companies are keen to identify the optimal pricing 

decisions that enable them to adapt to the increasingly competitive market [13, 14]. Although it has 

been identified that the objectives and equilibrium decisions 6  of loss-averse entities are totally 

different from those of risk-neutral ones [15], the optimal pricing decisions for competing risk-averse 

cargo airlines in the presence of demand and cost uncertainties are under-explored.  

In this paper, we focus on examining the performance of two competing carriers. It is standard 

practice to consider two players in the operations management science literature, as the two-player 

case is fundamental when examining multi-player games and could show the impact of competition. 

This is similar to the exploration of duopoly scenarios in supply chain systems because having two 

players under duopoly can uncover the impacts of competition [51]. In academia, there are a substantial 

number of references to support this assumption (e.g. [49-51], etc.). In real practices, it is also practical 

to consider two-player situations in terms of the air cargo carriers. For instance, Shenzhen Bao'an 

International Airport, which focuses on expanding the domestic and international cargo transportation, 

is now cooperating with 4 air freight carriers (SF Express, UPS, DHL and YTO Express). However, 

in most cases, only two cargo carriers compete for the majority of the market in the same route (for 

example, only UPS and DHL operate the cargo flights between SZX and ANC).7. 

Therefore, it is important and meaningful to explore such a problem and derive insightful 

managerial implications for both practitioners and academics on how to enhance the competitiveness 

of freight airlines through investigating the impacts of risk aversion and market uncertainties on the 

equilibrium pricing decisions. 

 

B. Research Questions and Major Findings 

Motivated by the importance of the air freight transportation industry and the various challenges faced 

by freight airlines, in this work, we analytically study the pricing decisions of cargo airlines with the 

consideration of risk-averse behaviors. Specifically, we consider a system consisting of two competing 

carriers who are risk-averse to profit losses. First in the basic model, we explore the optimal prices for 

the carriers under market demand uncertainty, and investigate the impacts of diverse parameters on the 

equilibrium prices to generate respective managerial insights. Then, we extend the analyses to integrate 

cost uncertainty into consideration, and highlight the importance of considering this crucial factor for 

decision making. 

To be specific, we aim to address the following research questions: 1. What are the optimal pricing 

decisions for the two risk-averse air cargo carriers when they compete under stochastic demands? 

2.How do the crucial factors (e.g., market competition, risk sensitivity coefficients, demand 

uncertainty, market share) affect the optimal prices? 3. What are the optimal prices if the two carriers 

face uncertain costs (e.g., related to the volatile oil prices)? How does cost uncertainty influence the 

decision making of the two carriers? 

As we will show later on in this paper, by addressing the above research questions, we find a 

number of major important insights. First, the equilibrium prices for the two competing risk-averse 

cargo airlines are perfectly symmetric, determined by various critical parameters. Second, we show 

                                                 
6 In this paper, the terms “optimal” decision and “equilibrium” decision are used interchangeably. 

7 The specific details can be found on the official website of Shenzhen Bao'an International Airport 

(http://www.szairport.com/szairport/hyhzhb/tthkhy.shtml). 

http://www.szairport.com/szairport/hyhzhb/tthkhy.shtml


4 

 

that carriers should consider not only its own risk attitudes and costs, but also the competitor’s risk 

preferences and operating characteristics during decision making when market competition exists. 

Third, we find that the impacts of risk attitudes of decision makers on the optimal prices are twofold 

as follows: (i) A carrier’s risk attitude could directly increase the optimal prices for both carriers if its 

operating cost is sufficiently large in a duopoly market with competition; and (ii) risk behaviors could 

affect the optimal prices indirectly by characterizing the effects of other crucial parameters (e.g., 

demand and cost uncertainties, market competition). For instance, it is identified that a carrier is prone 

to charge a higher price when the market demand is becoming more volatile if its operating cost is 

sufficiently high and it is very risk-averse relative to its competitor in a duopoly market with 

competition. On the other hand, if the operating cost becomes increasingly stochastic, a carrier will 

not increase its price unless the fixed part of its cost is sufficiently low and its relative risk-averse 

attitude is very high compared to its competitor. Besides, we find that carriers are inclined to raise their 

prices when the market competition becomes intensified due to the aversion to profits losses. Fourth, 

it is shown that market situations affect the impacts of diverse critical factors on the optimal prices 

significantly. For example, results indicate if a carrier dominates the market, the risk attitude of the 

other carrier then becomes nonsignificant. Moreover, market share is demonstrated to influence the 

optimal prices differently when demand is deterministic or uncertain and when market competition 

does or does not exist. 

 

C. Contribution Statements and Paper’s Structure 

To the best of our knowledge, this paper is the first analytical study that comprehensively explores 

how risk-aversion, market competition, demand uncertainty and cost uncertainty affect the optimal 

pricing decisions for air-cargo carrier operations. The incorporation of risk sensitivity in decision 

making derives novel insights and implications regarding the impact of risk considerations on the 

pricing mechanisms for air cargo carriers. The mean-variance theory is applied to model the risk-averse 

behaviors of decision makers. Besides, cost uncertainty is considered, which provides useful 

information for practitioners to deal with the volatility arising from the crude oil market. All results 

are derived in closed-form and proven mathematically. Considering the importance of optimal price 

decisions for cargo airlines and the increasing attention from both academia and industry, our study 

provides crucial managerial implications to advance the understanding on the optimal pricing decisions 

for the air freight transportation industry, and helps enhance the competitiveness of air cargo carriers 

in the highly uncertain market. 

This paper is organized as below. First, Section II reviews the related literature. Then, we build a 

basic model and construct the mean-variance objectives for two competing risk-averse air cargo 

carriers under demand uncertainty in Section III. Next, Section IV derives the equilibrium solutions 

and managerial insights based on the basic model. In Section V, we extend the analyses to integrate 

the factor of cost uncertainties. Finally, Section VI concludes for this work and proposes several future 

research directions. 

 

 

II. RELATED LITERATURE 
First, this study belongs to the stream of operations management in the air cargo transportation industry. 

Second, as we consider the risk behaviors of decision makers, it also relates to the stream of decisions 
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with risk considerations. Last, we review the application of the mean-variance theory which we will 

utilize to model the risk-averse attitudes of the air cargo carriers in this work. 

 

A. Operations in Air Cargo Logistics Systems 

In the literature, the majority of airline-related analytical operations research concentrates on passenger 

transport [16-20], while much less explores air cargo transportation [21]. Most of the existing literature 

on air freight operations investigates the topics like revenue management, capacity management, entry 

decisions, and booking control. For instance, Barz and Gartner [22] construct heuristics for network 

air freight revenue management based on linear programming, decomposition and approximate 

dynamic programming, while Wada et al. [23] investigate the capacity allocation problem for risk-

averse cargo airlines. From the perspective of market entry decisions, Wang et al. [21] study an air 

freight service supply chain with promised delivery time competition. The authors identify the win-

win and lose-lose situations are identified for both mainline carriers and regional carriers if the 

mainline carriers enter the upstream regional market. They also find that the multi-dimensional 

competition could reduce the negative impact of the upstream entry on the incumbent regional carriers. 

On the other hand, Hellermann et al. [24] propose an option contract to derive the optimal booking 

policy for a system consisting of a freight forwarder and a cargo airline. They analyze the impact of 

overbooking on cargo airline’s profitability, and demonstrate the advantageous performance of the 

proposed contractual agreement over the existing one by applying industrial real data. Other analytical 

research topics related to air cargo management include shipment integration and consolidation [25], 

network planning [26], and loading planning [27]. 

Regarding the pricing problem, although the significance and challenges of this crucial decision 

for air freight carriers have been realized, only a few pieces of studies have explored this critical issue. 

First, Azadian and Murat [12] study a group pricing problem for an air cargo company. The authors 

state that it is a common practice for the transportation industry to group several locations and price 

these services on a group basis. Therefore, they formulate an integrated model to simultaneously decide 

the optimal group service locations and the corresponding prices. Besides, the authors construct a 

mixed-integer nonlinear programming model for the integrated problem which is solved by algorithms 

based on decomposition approaches. Second, considering a service supply chain consisting of an air 

freight airline and freight forwarders who compete for uncertain demand, Tao et al. [4] explore the 

option contracts between the agents, and derive the optimal prices for the airline and the optimal 

reservation strategies for freight forwarders to maximize their expected profits. A Stackelberg game is 

established to model the behaviors of the supply chain members, while numerical experiments and 

sensitivity analyses are conducted to generate managerial insights in Tao et al. [4]. Similar to the above 

two studies, we also explore the pricing problems for air cargo carriers. However, different from them, 

our study simultaneously incorporates the uncertainties from both demand and operating costs, and 

market competition into the decision framework. Accordingly, we are able to investigate the impacts 

of these crucial factors on the equilibrium prices, thus generating useful insights and implications. 

More importantly, our work considers the carriers’ risk attitudes towards profit losses, which is novel 

in the air cargo pricing literature.  

 

B. Decisions with Risk Considerations 
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Risk analysis is one of the most crucial topics in systems engineering over the past decade [28-30]. 

For example, Shen et al. [31] study the performance of markdown money policy in a fashion supply 

chain composed of a loss-averse manufacturer and a risk-neutral retailer. Besides, Choi [32] examines 

the supply chain coordination issues with risk-sensitive retail buyers under both symmetric and 

asymmetric information settings. The author illustrates that the risk attitudes of decision makers 

significantly influence the achievability of prefer coordination for a supply chain. Similarly, Xie et al. 

[33] explore the conditions to achieve supply chain coordination with the consideration of retailers’ 

risk behaviours. In the model setting of Xie et al. [33], retailers could be risk-neutral, risk-averse, or 

risk-take in a unified framework. Therefore, the significant impact of risk attitudes on decision making 

is demonstrated through comparing the various settings [33]. Furthermore, Zhang et al. [34] investigate 

the effects of loss-averse behaviour and capital constraint on the optimal price and ordering quantity 

decisions for a newsvendor supply chain. In addition, risk analysis has been widely applied in the areas 

like personnel assignment [35], cybersecurity protection [36], Bayesian network modelling [37], and 

contamination of food production facilities [38].  

In the air cargo industry, if uncertainties (like uncertain demand and cost) exist, the performance 

of airlines will be affected and their profitability thus becomes volatile [39]. Therefore, how to improve 

decision making under an uncertain environment to alleviate profit risks becomes a critical problem 

for freight airlines. For instance, Wada et al. [23] enhance the capacity allocation strategy for risk-

averse freight airlines, and the results obtained from risk-averse and risk-neutral models are compared 

to demonstrate the great impact of risk attitudes on the optimal solutions. Besides, Sample Average 

Approximation approach is applied to test the models using real data in Wada et al. [23].  

Some research has integrated risk considerations into the pricing decision framework. For 

example, Zheng et al. [40] study the optimal pricing decisions for liner shipping companies who 

compete for uncertain demand, and the risk-averse behaviour of one participant is modelled by the 

conditional value at risk approach. Conditions when the equilibrium prices will increase or decrease 

along with competition level are analysed in Zheng et al. [40]. Besides, Agrawal and Seshadri [41] 

explore the pricing and ordering decisions for a risk-averse newsvendor facing with uncertain demand. 

They show that the loss-averse attitude could either raise and lower the retail price in different model 

settings. Besides, Li et al. [42] study the impact of risk preference of a retailer on the optimal pricing 

decisions for a dual-channel supply chain. They show that when the retailer becomes more risk-averse, 

the equilibrium retail price will decline if the uncertain demand follows a uniform distribution. A 

similar study could be found in Liu et al. [43], which concentrates on the pricing and coordination 

decisions under a dual-channel supply chain. They employ the standard deviation of payoff as a 

measure of risk and find that the optimal prices under a risk-averse case are lower than those in a risk-

neutral case. Furthermore, Li et al. [44] analytically explore how the risk attitudes of a retailer could 

affect the optimal price and promised delivery time decisions.  

From the above discussion, it is clear that relatively limited research has studied the pricing 

decisions for air cargo carriers. Besides, none of the current studies has investigated the integrated 

impact of market competition, demand uncertainty and cost uncertainty on the optimal prices. More 

importantly, to be best of our knowledge, no previous research has explored how risk behaviours of 

decision makers affect the equilibrium pricing decisions for the air freight industry. This work hence 

aims to bridge these significant literature gaps. Table 1 indicates the positioning of this work in the 

literature. As could be seen from the table, this work differs from other studies and becomes the first 
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research that use the mean-variance theory to explores the pricing problem for competing risk-averse 

air cargo carriers facing uncertain demand and costs. 

 

C. Mean-Variance Theory 

Regarding risk analysis, one of the most commonly applied analytical approaches is the mean-variance 

(MV) theory. Although there exist different types of measures capturing risk behaviour, such like the 

von Neumann–Morgen-stern utility (VNMU) approach, and Black-Scholes Formula, their real world 

applications are limited [48]. The superiority of the MV approach is that it can provide a practical and 

implementable solution when considering risk hedging, which means that it is more understandable 

and extensively applied by industrialists. 

The MV theory was firstly introduced for portfolio optimization in financial engineering, and then 

is widely used in supply chain and logistics operations problems [45-48]. For instance, Chiu et al. [47] 

solve the supply chain coordination problem with several loss-averse retailers and a risk-neutral 

manufacturer based on the framework of the MV theory. The authors find that the risk parameters play 

a crucial role in determining the efficiency of coordination contracts. They also show that the 

manufacturer could manage the retailer profit variance through adjusting the risk indicators. Similarly, 

building an analytical MV optimization model, Li et al. [48] examine a fast fashion supply chain with 

returns policy. They find that a simple returns policy could coordinate a fast fashion supply chain even 

when multiple retailers exist. In our work, we follow this research stream to apply the MV theory to 

measure the loss aversion behaviours of air cargo carriers. 

 

Table 1. Literature positioning of this paper. 

Literature 
Air 

cargo 

Pricing 

decisions 

Market 

competition 

Demand 

uncertainty 

Cost 

uncertainty 

Risk 

considerations 

Barz and Gartner [22] √   √   

Wada et al. [23] √   √  √ 

Wang et al. [21] √  √    

Hellermann et al. [24] √   √  √ 

Leung et al. [25] √      

Derigs et al. [26] √      

Li et al. [27] √      

Azadian and Murat [12] √ √     

Tao et al. [4] √ √ √ √   

Shen et al. [31]    √  √ 

Choi [32]    √  √ 

Xie et al. [33]    √  √ 

Zhang et al. [34]    √  √ 

Lazzerini and Pistolesi [35]      √ 

Qin et al. [36]      √ 

Yang et al. [37]      √ 

Chang et al. [38]      √ 

Zheng et al. [40]  √ √ √  √ 

Agrawal and Seshadri [41]  √  √  √ 

Li et al. [42]  √  √  √ 

Liu et al. [43]  √ √ √  √ 
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Li et al. [44]  √ √   √ 

This paper √ √ √ √ √ √ 

 

 

III. BASIC MODEL 
In the basic model, we consider an air transport system consisting of two competing risk-averse freight 

carriers who need to determine their optimal pricing decisions with volatile market demand. The two 

carriers are denoted by r=1 or 2. Here, the unit operating cost for each carrier is fixed as 𝑐𝑟 , while 

the competition level between the two players is denoted by 𝜆. The uncertain market demand 𝑎̃ (𝑎̃ =

𝑎0 + ε) consists of a fixed part 𝑎0 and an uncertain part 𝜀 which follows a normal distribution8 with 

the mean of zero and the standard deviation of 𝜎  (i.e., 𝜀~𝑁(0, 𝜎2) ). We use 𝜃  to represent the 

market share of Carrier 2 which is determined by various factors like reputation, service quality and 

company size. Accordingly, 1 − 𝜃  stands for the market share of Carrier 1. Besides, note that 𝜃 

could also be treated as consumer preference or loyalty. Therefore, it is sensible that 𝜃 is usually not 

affected by prices. The unit price for each carrier is represented by 𝑃𝑟 (𝑟 = 1 or 2). Following the 

literature in supply chain and logistics management [21, 40, 43], we model the demand functions for 

the two carriers (𝐷1, 𝐷2) as in Eq. (1) and Eq. (2), where the demand uncertainty and the product 

competition in air cargo carriers can be reflected.  

Eq. (1)  𝐷1 = (1 − 𝜃)𝑎̃ − 𝑃1 + 𝜆𝑃2, 

Eq. (2)  𝐷2 = 𝜃𝑎̃ − 𝑃2 + 𝜆𝑃1. 

Then, the profits for the two carriers could be expressed in Eq. (3) and Eq. (4). To be specific, the 

demand for one carrier is dependent on both its own and competitor’s prices. 

Eq. (3)  𝜋1 = (𝑃1 − 𝑐1)[(1 − 𝜃)𝑎̃ − 𝑃1 + 𝜆𝑃2], 

Eq. (4)  𝜋2 = (𝑃2 − 𝑐2)(𝜃𝑎̃ − 𝑃2 + 𝜆𝑃1). 

The competition parameter 𝜆 actually indicates the impact of the price adjustment of one carrier 

on its competitor’s demand. For example, when the price of Carrier 2 (𝑃2) increases by one unit, the 

demand for its competitor (𝐷1) would increase by 𝜆. Note that we only consider the situation when 

the unit price is no smaller than the unit cost, and the demand for each carrier is non-negative (i.e., 

𝑃𝑟 ≥ 𝑐𝑟 and 𝐷𝑟 ≥ 0) to assure no lose for the carriers. With Eq. (3) and Eq. (4), the expected profit 

functions for the two carriers could be obtained in Eq. (5) and Eq. (6). 

Eq. (5)  𝐸(𝜋1) = (𝑃1 − 𝑐1)[(1 − 𝜃) 𝑎0 − 𝑃1 + 𝜆𝑃2], 

Eq. (6)  𝐸(𝜋2) = (𝑃2 − 𝑐2)(𝜃𝑎0 − 𝑃2 + 𝜆𝑃1). 

Considering that both carriers are risk-averse to profit losses, we adopt the mean-variance (MV) 

theory to model the risk-averse preference of the decision makers. The objective function for the MV 

theory is shown in Eq. (7), which equals the expected profit minus the variance of profit multiplying 

the risk sensitivity coefficient (k).  

Eq. (7)  Maximize: 𝑂 = 𝐸(𝜋) − 𝑘𝑉(𝜋). 

Therefore, the respective MV objectives for the two carriers are formulated in Eq. (8) and Eq. (9), 

where the demand uncertainty and risk attitudes are taken into consideration. We can observe that, the 

first parts in Eq. (8) and Eq. (9) are the expected profits for Carrier r and the second parts are the 

                                                 
8 Actually, our results will hold for the case when the randomness follows any bounded symmetric distribution with a 

zero mean. 
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variance of profit multiplying the risk sensitivity coefficient (𝑘𝑟 ). Specifically, the risk sensitivity 

coefficient for Carrier r (𝑘𝑟) is a risk aversion indicator for Carrier r. An increase in 𝑘𝑟 represents 

the increasing risk aversion against profit volatility for the decision maker. When 𝑘𝑟 = 0, the freight 

airline is risk-neutral. In addition, recall that 𝜎 is the standard deviation of the market demand, which 

refers to the demand uncertainty.  

Eq. (8)  𝑀𝑎𝑥: 𝑂1 = (𝑃1 − 𝑐1)[(1 − 𝜃) 𝑎0 − 𝑃1 + 𝜆𝑃2] − 𝑘1[(𝑃1 − 𝑐1)2(1 − 𝜃)2𝜎2], 

Eq. (9)  𝑀𝑎𝑥: 𝑂2= (𝑃2 − 𝑐2)(𝜃𝑎0 − 𝑃2 + 𝜆𝑃1) − 𝑘2(𝑃2 − 𝑐2)2𝜃2𝜎2. 

 

Besides, it is pointed out that in our problem setting, consumers could place an order to the carriers 

long before the event date, which enables the carriers to suitably manage the utilization of aircrafts. 

Therefore, the capacity limitation is not considered in this work. This is commonly observed in the 

practice. For instance, the Switzerland-based freight forwarder Panalpina is reported to encourage 

shippers to book their air cargo shipment orders as early as possible before the start of peak seasons to 

avoid capacity shortages9. Besides, many air cargo carriers allow customers to make ordering one 

month or even months in advance (like UPS and Emirates SkyCargo). On the other hand, in the 

literature, Wada et al. [23] consider long-term agreement orders where capacity is allocated in advance. 

Therefore, our model setting is reasonable in both practice and academics. 

 

IV. OPTIMAL DECISIONS: AN EQUILIBRIUM ANALYSIS 
To focus on exploring the impact of the risk-averse behaviours of carriers, in the following analyses, 

we limit our attention to the cases when both carriers are risk averse (i.e., 𝑘𝑟 > 0)10. The optimal 

pricing decisions for the two competitors in the basic model (𝑃1
∗, 𝑃2

∗) could be obtained by solving Eq. 

(8) and Eq. (9), which are summarized in Lemma 1. Note that the list of notation used in the analyses 

is summarized in Table 3 (Appendix A1). Besides, in the analyses, some important relative risk-averse 

attitude thresholds and cost thresholds are identified, which are listed in Table 4 (Appendix A1) and 

Table 5 (Appendix A1), respectively. Furthermore, all mathematical proofs are relegated to Appendix 

(A2).  

Lemma 1. In the basic model with uncertain demand and fixed costs, the MV objective functions for 

the two competing risk-averse carriers are strictly concave, and the respective optimal prices are given 

as follows: 

* 2 2 0 1 1 1 0 2 2 2
1 2

1 1 2 2

2(1 )[(1 ) (1 2 )] [ (1 2 )]

4(1 )(1 )

S k a c S k a c S k
P

S k S k

  



      


  
, 

* 1 1 0 2 2 2 0 1 1 1
2 2

1 1 2 2

2(1 )[ (1 2 )] [(1 ) (1 2 )]

4(1 )(1 )

S k a c S k a c S k
P

S k S k

  



      


  
.  

Using the notation summarized in Table 3, *

1P and *

2P can be represented as * 2 3 4
1 2

1 2

A A A
P

A A









and 

* 1 4 3
2 2

1 2

A A A
P

A A









, respectively. Lemma 1 shows that when a risk-averse freight airline facing market 

competition tries to maximize its own MV objective under demand uncertainty, an optimal pricing 

                                                 
9 https://www.aircargonews.net/news/freight-forwarder/single-view/news/shippers-warned-to-book-now-or-face-rate-

spikes-and-delays-in-busy-peak-for-air-cargo.html  
10 The case when the carriers are risk neutral can be explored by setting the risk coefficient kr to be 0. 

https://www.aircargonews.net/news/freight-forwarder/single-view/news/shippers-warned-to-book-now-or-face-rate-spikes-and-delays-in-busy-peak-for-air-cargo.html
https://www.aircargonews.net/news/freight-forwarder/single-view/news/shippers-warned-to-book-now-or-face-rate-spikes-and-delays-in-busy-peak-for-air-cargo.html


10 

 

decision exists. Besides, the equilibrium prices for the two carriers are perfectly symmetric. The major 

parameters, like market share (𝜃), competitional level (𝜆) and demand uncertainty (σ), all impose great 

effects on the optimal solutions for the two players involved. More importantly, it is interesting to note 

that the risk attitudes of both carriers impose critical influences on the equilibrium prices for each 

individual participant (that is, 𝑃𝑟
∗ is determined by both 𝑘1 and 𝑘2). Therefore, the importance of 

considering not only the carrier’s own risk attitude, but also the risk behavior of its competitor in the 

decision process is highlighted. Next, we will investigate the impacts of the diverse crucial factors on 

the equilibrium prices sequentially. Since the competition level (𝜆) and operating cost (𝑐𝑟) influence 

the optimal prices most directly, we first evaluate the implications of them in Proposition 1 as follows. 

 

Proposition 1. In the basic model where two risk-averse carriers compete for uncertain demand with 

fixed costs, we have: 

(i) The optimal prices for the two carriers increase with market competition (i.e.,
𝜕𝑃1

∗

𝜕𝜆
≥ 0,

𝜕𝑃2
∗

𝜕𝜆
≥ 0); 

(ii) With market competition (𝜆 > 0 ), a carrier’s optimal price increases with both its own and 

competitor’s operating costs, while the increase is faster with its’ own cost than with the 

competitor’s;  

(iii) Without market competition ( 0  ), a carrier’s optimal price increases with its own operating 

cost, but is unrelated to its competitor’s operating cost. 

Proposition 1 summarizes the important insights regarding the impacts of market competition and 

operating costs on the optimal pricing decisions for the risk-averse carriers. From Proposition 1(i), we 

could see that under demand uncertainty, both two participants intend to increase their prices when 

market competition becomes more furious. The intuition is explained as follows. Considering that the 

two carriers are risk-averse to profit losses, when the two companies compete against each other more 

fiercely, the threats of demand shrinkage drive them to raise their prices, with the aim of maintaining 

profitability in the uncertain market. Therefore, it is implied that the risk attitudes of decision makers 

are crucial in characterizing the impact of market competition on the equilibrium prices.  

From Proposition 1(ii), it is reasonable that the carrier will charge a higher price if its own operating 

cost increases. On the other hand, due to the competition between the two participants, it is interesting 

to note that the rise in competitor’s cost could also drive a carrier to raise its price. This is mainly 

because the competitor is prone to increase its price according to the growth of its cost to hedge against 

profit risks, which leaves a room for the carrier to charge a higher price. Consequently, it is identified 

that the operating costs of both entities are important determinants for loss-averse carriers when they 

engage in a competition. However, the influencing power of competitor’s cost growth on a carrier’s 

price is smaller than that of the company’s own cost growth. Naturally, the driving force of 

competitor’s cost growth vanishes if the two players terminate competition, as shown in Proposition 

1(iii).   

Based on the above analysis, we can easily derive that both the competition level and operating 

cost will influence the pricing decisions significantly. To further explore the joint effect of the 

competition level and operating cost on the optimal pricing decisions, we conduct the numerical study 

and depict the Figure 1. Notice that, we denote ∆𝑐 = 𝑐1 − 𝑐2 as the operating cost difference, thus a 

higher ∆𝑐 means a higher operating cost for the Carrier 1 relative to its rival. 
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Figure 1. The comparison between optimal pricing decisions with respect to the competition level λ and cost 

difference Δc (We set 𝑎0 = 100, 𝜃 = 0.4, 𝜎 = 5, 𝑘1 = 80, 𝑘2 = 100 and varied 𝜆 from 0 to 8011.) 
 

From Figure 1 we can observe that, the competition level and operating cost can jointly influence 

the pricing decisions. Specifically, when the operating cost is relatively low, setting a lower price 

than rival’s is more advisable when market competition is more keen. This result is reasonable and 

intuitive, because when confronted with a fierce business competition, a lower price can grab more 

market share and then boost profit. While when the operating cost is relatively high, the decision 

maker always tends to set a higher price than its rival, irrespective of the competition level. Thus, it 

is suggested that when the decision makers want to make pricing decisions, they should pay attention 

to the operating cost first and then market competition level. 

Next, in order to figure out the influences of the risk attitude (𝑘𝑟), which is the indispensable factor 

in terms of the risk-averse carriers, we proceed to analyze the relationships between the risk attitudes 

and optimal prices in Proposition 2. 

 

Proposition 2. In the basic model where two risk-averse carriers compete for uncertain demand 

with fixed costs, the impacts of risk sensitivity coefficients of carriers (i.e., 
1 2,k k ) on the optimal prices 

are diverse as follows: 

(i) With deterministic demand ( =0), the risk attitudes of the two carriers impose no impact on *

1P

and *

2P . 

(ii) With uncertain demand ( 0  ),  

a) Under a duopoly12 market with carrier competition (0 < 𝜃 < 1, 0  ): 
*

1P and *

2P  are increasing with the risk sensitivity coefficient of Carrier r ( rk ), if rc is 

sufficiently large (i.e., r rc CT ), or decreasing with rk  if rc  is sufficiently small (i.e., 

r rc CT ). The threshold rCT  is increasing in 3 rc  .  

b) When there is no competition in the market ( 0  ): 

Carrier r’s risk attitude (𝑘𝑟) would not affect the optimal price of Carrier (3-r). Besides, rCT

                                                 
11 All the data we set in the numerical studies (Figures 1-3) follow the model assumptions (e.g. 0 < 𝜃 < 1, 𝜆 ≥ 0, 𝜎 ≥
0, etc.) and can help show the effects (which have been analytically proven) intuitively. 
12 In the analyses, the market is named as “duopoly” market if 0 < 𝜃 < 1, or “monopoly” market if 𝜃 = 0 or 1. 

When  𝜃 = 0 , Carrier 1 is called “dominator”, while Carrier 2 becomes “dominator” if 𝜃 = 1.   
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is unrelated with 3 rc  . 

c) Under a monopoly market (𝜃 = 0 𝑜𝑟 1): 

If Carrier r occupies all the market, the other carrier’s risk attitude ( 3 rk  ) would not affect the 

optimal prices of both carriers.  

 

Proposition 2 indicates that the impacts of risk attitudes of decision makers on the equilibrium 

prices depend on market situations. To be specific, whether the market demand is fixed or uncertain, 

whether market competition exists, and whether the market is monopoly or duopoly, are crucial in 

determining the role of risk behaviors in decision making.  

First of all, as all risks are derived from uncertainties, Proposition 2(i) shows that the risk-averse 

attitudes of the carriers are irrelevant to the optimal pricing decisions when the market demand is 

deterministic without any uncertainty.  

On the other hand, with volatile market demand, risk attitudes impact decision making 

significantly, which is further affected by market segmentation and market competition. Firstly, under 

a duopoly market (0 < 𝜃 < 1), if the two carriers compete for uncertain market ( 0  ), there exists 

a critical cost threshold ( rCT  ) to determine the influence of risk attitudes, which is illustrated in 

Proposition 2(ii)a). Specifically, if the operating cost of a carrier is very high ( r rc CT  ), when it 

becomes more loss-averse, both two carriers will raise their equilibrium prices. However, due to the 

competition in the market and uncertainties in demand, a carrier would not increase its price along 

with risk aversion unless its operating cost is sufficiently high, which creates great challenges for the 

company to maintain profitability. Observing the growth in the competitor’s price, the other carrier in 

the market will thus follow. On the opposite, if a carrier’s cost is very low ( r rc CT  ), the two 

participants will increase their prices if it becomes less risk-averse. The latent reason is because when 

the operating cost is low enough, the difficulty in achieving a target profit is low. Therefore, a carrier 

could be more ambitious to make higher profits by increasing its price, especially when it is less loss-

averse. After that, the other carrier in the market will react to follow. Regarding the cost threshold rCT  

for a carrier, an increase in the competitor’s cost will lead to a higher rCT . That is, with competition, 

the increase in the competitor’s operating cost would make it more difficult for the two carriers to raise 

their optimal prices when a carrier becomes more risk-averse. It implies that the competitor’s cost 

imposes a moderating effect on the impact of the risk behavior of a carrier on the optimal prices for 

the two carriers under the influence of market competition.  

While without the driving force of competition ( 0  ), it is natural that the other carrier’s 

operating cost has no influence on a carrier’s own cost threshold, while the optimal price of a carrier 

is independent from the other carrier’s risk behaviors (see Proposition 2(ii)b)). In addition, when one 

carrier dominates the whole market (𝜃 = 0 𝑜𝑟 1), it is reasonable to observe that the impact of the 

other carrier’s risk attitude becomes nonsignificant on the equilibrium decisions for both two 

participants (as shown in Proposition 2(ii)c)).  

In conclusion, Proposition 2 underlines the importance of considering the risk attitudes of 

decision makers in the optimal pricing decisions when market demand is volatile. Besides, the 

significant impacts of market competition in determining the role of competitor’s risk behaviors and 

operating costs in the optimal prices of a carrier are highlighted.  

Since we have proved that the risk behavior plays a vital role in pricing decisions, we would like 
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to further explore the relationships between the optimal pricing decisions of two carriers with respect 

to their risk attitudes in Figure 2. 

  
Figure 2. The comparison between optimal pricing decisions with respect to the degree of risk aversion 𝑘1 

and 𝑘2 (We set 𝑎0 = 100, 𝜃 = 0.4, 𝜎 = 5, 𝑐1 = 500, 𝑐2 = 400 and 𝜆 = 40.) 
 

As shown in Figure 2, the degree of risk aversion of the competing carriers will jointly influence 

their pricing decisions. For a carrier, when it competes with a low risk-averse rival, a lower price 

(compared with its competitor) would be charged if its own risk-averse level is relatively high. 

Whereas if the competitor is very risk-averse, its optimal price would always be higher than the rival’s. 

Particularly, if a carrier is totally risk-neutral (𝑘𝑟 = 0), a definitely higher price will be set relative to 

its rival, while when its competitor is totally risk-neutral, it is more advisable for the carrier to charge 

a lower price. By following these results, the risk-averse air cargo carriers can make more scientific 

and reasonable decisions as well as know their opponents better under demand uncertainty.  

Furthermore, market segmentation is shown to be crucial in the impacts of risk attitudes on 

decision making. Thus, we conduct the analysis about the impact of market share on carriers’ optimal 

pricing decisions in Proposition 3. 

 

Proposition 3. In the basic model where two risk-averse carriers compete for uncertain demand 

with fixed costs, the impacts of market share on the optimal prices are shown as follows: 

(i) With deterministic demand ( 0  ): Carrier r increases its optimal price according to the 

expansion of its own market share.  

(ii) With uncertain demand ( 0  ), for Carrier r: 

a) With market competition ( 0  ), its optimal price increases (or decreases) along with its own 

market share if r rc DT  (or r rc DT ). Besides, rDT  is positively related to 3 rc  . 

b) With market competition ( 0   ), its optimal price increases (or decreases) along with its 

competitor’s market share if 3 3r rc ET   (or 3 3r rc ET  ). Besides, 3 rET   is positively related 

to rc .  

c) Without market competition (𝜆 = 0), its optimal price increases along with its own market share. 

 

Proposition 3 demonstrates the various influences of market share on carriers’ optimal pricing 

decisions. First, as shown in Proposition 3(i), when there is no uncertainty in the market threatening 
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decision makers, carriers will increase their prices to improve profitability according to the expansion 

of its own market share.  

However, Proposition 3(ii) indicates that the impacts of market share under demand uncertainty 

are much different, which is further affected by market competition. Specifically, under competition, 

a carrier is prone to charge a higher (or lower) price along with the increase of its own market share if 

its own cost is high (or low) enough (see Proposition 3(ii)a)). The principle behind is that, the risk of 

profit losses (due to the competition and demand uncertainty in the market) would prevent a carrier 

from increasing its price when it occupies a larger market unless its operating cost is too high to achieve 

a targeted profitability level. Since the threshold rDT  is positively related to the competitor’s cost, we 

could expect that when a carrier’s own cost is becoming increasingly high while the competitor’s cost 

is becoming increasingly low, the carrier will be easier to raise its price along with the expansion of its 

market size. On the other hand, when the operating cost is sufficiently low, in order to compete with 

its competitor for uncertain demand, it is optimal for a carrier to decline its price to attract more 

consumers when its market share is expanded. In this case, the carrier could maintain a certain 

profitability level owing to the low cost and expanded market share. Interestingly, this strategy is easier 

to operate when the competitor’s cost becomes higher (which means rDT   becomes higher, and 

r rc DT  becomes easier).  

Regarding the impact of competitor’s market share, critical thresholds for competitor’s operating 

cost (i.e., 3 rET  ) also exist, as indicated in Proposition 3(ii)b). To be specific, Carrier r intends to raise 

(or reduce) its price when its competitor’s market share increases, with the condition that the 

competitor’s operating cost is higher (or lower) than 3 rET  . As threshold 3 rET   is positively related to 

the carrier’s own cost ( rc ), we could expect that when rc  is sufficiently low (that is, 3 3r rc ET  is 

easier to be satisfied), the risk-averse carrier has to rise its price to keep profitability if the competitor 

seizes more and more market share. On the other hand, if there is no competition, carriers could always 

promote their profits in the volatile market by increasing prices along with the expansion of market 

share (as shown in Proposition 3(ii)c)). 

As a remark, Proposition 3 highlights the significant effects of demand uncertainty and risk 

attitudes of decision makers on the impacts of market share on the optimal prices. Besides, the critical 

role of market competition in loss-averse decision making is further demonstrated.  

Next, we explore how demand uncertainty affects loss-averse decision making. Denote 𝜏𝑟 as the 

relative risk-averse attitude of Carrier r over its competitor, which is equal to 
𝑘𝑟

𝑘3−𝑟
. Then, we have 

Proposition 4 as follows. 

 

Proposition 4. In the basic model where two risk-averse carriers compete for uncertain demand 

with fixed costs, the impacts of demand uncertainty on the optimal prices are derived as follows: 

(i) Under a duopoly market (0 < 𝜃 < 1) with competition (𝜆 > 0), for Carrier r:  

a) If 𝜏𝑟 > 𝛬𝑟, its optimal price increases with demand uncertainty if 𝑐𝑟 > 𝑌𝑇𝑟.  

b) If 3 3r r    , its optimal price increases with demand uncertainty if 𝑐3−𝑟 > 𝑃𝑇3−𝑟. 

(ii) Under a duopoly market (0 < 𝜃 < 1) without competition ( 0  ), for Carrier 1, its optimal 

price increases with demand uncertainty if  1 0 1c a   , while for Carrier 2, its optimal price 

increases with demand uncertainty if 2 0c a  . 
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(iii) Under a monopoly market (𝜃 = 0 𝑜𝑟 1):  

a) With market competition ( 0  ), when the market is dominated Carrier r, 
*

1P






and 

*

2P






 

are positive if r rc OT .  

b) Without market competition ( 0  ), when the market is dominated by Carrier r, we have 
*

3 0rP






. Besides, we have 

*

0rP







 if 0rc a . 

 

Proposition 4 shows that the relative risk-averse attitudes and market situations (i.e., market 

segmentation and competition) play critical roles in determining the impacts of demand uncertainty on 

the optimal prices. Proposition 4(i) considers a duopoly market shared by two competing carriers (0 <

𝜃 < 1, 𝜆 > 0). Specifically, Proposition 4(i)a) indicates that if the operating cost is very large, a carrier 

with sufficiently higher relative risk-averse attitude would charge a higher price when the market 

becomes more volatile. A higher relative risk-averse attitude actually implies that a carrier is becoming 

more risk-averse to profit losses relative to its competitor. Therefore, when a carrier with high relative 

risk-averse attitude is facing with increasing demand uncertainty, due to the fear of demand losses, it 

will not raise its price unless it is challenged by a high operating cost. Interestingly, a carrier will also 

increase its price according to demand uncertainty if both the relative risk-averse attitude and the 

operating cost of its competitor are sufficiently large (see Proposition 4(i)b)). This is essentially 

motivated by the competitor’s intension to raise price to deal with profit losses in a more volatile 

environment.  

On the other hand, if there is no competition in the duopoly market, each carrier will increase its 

price to hedge against the increasing demand volatility if its own operating cost is high enough, while 

the other carrier’s risk attitudes and costs are irrelevant, as shown in Proposition 4(ii).  

Moreover, Proposition 4(iii) considers a monopoly market where the market is dominated by one 

player (𝜃 = 0 𝑜𝑟 1). First, if competition exists, both two carriers will choose a higher price with the 

increase of demand uncertainty if the dominator’s operating cost is sufficiently large (as shown in 

Proposition 4(iii)a)). It is intuitive that the dominator will increase its price to withstand the profit risks 

brought by the increased demand volatility when its operating cost is very high. Second, as shown in 

Proposition 4(iii)b), if there is no market competition, the rise in demand uncertainty will lead the 

dominator to increase its price if its cost is sufficiently high, which is similar to the situation with 

market competition. However, the other carrier in the market will keep its price no matter when 

demand becomes increasingly or decreasingly uncertain, which is different from the situation with 

market competition. 

In short, Proposition 4 indicates that in addition to market competition and market segmentation, 

the relative risk-averse attitude of the two carriers also plays a pivotal role in characterizing the impacts 

of demand uncertainty on the optimal prices. Therefore, it is suggested for an air cargo carrier that it 

is essential to consider not only its own risk behaviors and operating characteristics, but also its 

competitor’s decisions and features for strategic decision making in the uncertain and competitive 

environment. 

Finally, we summarize some important relationships between the optimal price (𝑃𝑟
∗) with major 

coefficients and corresponding conditions identified in the basic model in Table 2. With this table, we 

aim to provide a quick look about the impacts of the diverse crucial parameters on the optimal prices 
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for risk-averse air cargo carriers. Specifically, the first three lines in Table 2 provide the summaries for 

Proposition 1, which show the impacts of market competition level and operating costs on the optimal 

pricing decisions. Then, the results in the fourth and fifth lines summarize the important insights of 

Proposition 2. The results not only underline the importance of considering the risk attitudes of air 

cargo carriers in the optimal pricing decisions, but also highlight the impacts of market competition in 

determining the role of competitor’s risk behaviors and operating costs in the optimal prices. In the 

sixth line, we give a quick view for Proposition 3, in which the relationships between the optimal prices 

and market share are evaluated. Finally, Proposition 4 is summarized in the last line, where we can 

observe that the market competition level, market segmentation, relative risk-averse attitude and 

operating cost all play the vital role in characterizing the impacts of demand uncertainty on the optimal 

prices. Notice that, all the specific details can be found in the previous propositions. 

 

Table 2. Important relationships between 𝑃𝑟
∗with major parameters. 

 A Conditions B Conditions C Conditions D Conditions Remarks 

𝜆 ↑         

𝑐𝑟 ↑         

𝑐3−𝑟  ↑ 𝜆 > 0        

𝑘𝑟 → 𝜎 = 0 ↑ 0  ,0 < 𝜃 < 1, 

0  , r rc CT  

→ 0  , the market is 

dominated by Carrier (3-r) 

    

𝑘3−𝑟 → 𝜎 = 0 ↑ 0  ,0 < 𝜃 < 1, 

0  ,𝑐3−𝑟 >

𝐶𝑇3−𝑟 

→ 0  , the market is 

dominated by Carrier r 

→ 0  ,

0   

 

 (1-

 ) 

↑ 0   ↑ 0  , 0  ,

r rc DT  

↑ 0  , 0  ,

3 3r rc ET   

↑ 0  ,

0   

For Carrier 2 

(Carrier 1) 

  ↑ 0 < 𝜃 < 1, 𝜆 > 0, 

𝜏𝑟 > 𝛬𝑟, 𝑐𝑟 > 𝑌𝑇𝑟  

↑ 0 < 𝜃 < 1, 𝜆 > 0, 

3 3r r    , 𝑐3−𝑟 >

𝑃𝑇3−𝑟 

↑ 0  , r rc OT , the 

market is dominated by 

Carrier r 

   

 

 

V. EXTENDED ANALYSES – UNCERTAIN COSTS 
As discussed in the introduction, cost uncertainty is a crucial and challenging problem which 

significantly affects the profitability and development of air cargo carriers. Therefore, after evaluating 

the pricing decisions under uncertain demand, in this section, we extend the basic model to the case 

when the operating cost is stochastic, to study the impact of cost uncertainty on the optimal pricing 

decisions. Here, the air freight carriers are facing with uncertain unit costs, 𝑐𝑟̃  (𝑐𝑟̃ = 𝑐𝑟0 + 𝜑). 𝑐𝑟̃ 

consists of a fixed part 𝑐𝑟0 and an uncertain part 𝜑 which follows a normal distribution with the mean 

of zero and standard deviation of 𝛿 (𝜑~𝑁(0, 𝛿2)). Besides, we denote the unit price for the carriers 

in the extended model as 𝑃𝑟
𝑒. Therefore, we could obtain the updated profit functions for the two 

players as in Eq. (10) and Eq. (11). The updated expected profits are then shown in Eq. (12) and Eq. 

(13), while the corresponding variances of profits are illustrated in Eq. (14) and Eq. (15). 

Eq. (10)  𝜋1
𝑒 = (𝑃1

𝑒 − 𝑐1̃)[(1 − 𝜃)𝑎̃ − 𝑃1
𝑒 + 𝜆𝑃2

𝑒], 

Eq. (11)  𝜋2
𝑒 = (𝑃2

𝑒 − 𝑐2̃)(𝜃𝑎̃ − 𝑃2
𝑒 + 𝜆𝑃1

𝑒). 

Eq. (12)  𝐸(𝜋1
𝑒) = (𝑃1

𝑒 − 𝑐10)[(1 − 𝜃) 𝑎0 − 𝑃1
𝑒 + 𝜆𝑃2

𝑒], 
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Eq. (13)  𝐸(𝜋2
𝑒) = (𝑃2

𝑒 − 𝑐20)(𝜃𝑎0 − 𝑃2
𝑒 + 𝜆𝑃1

𝑒). 

Eq. (14)  𝑉(𝜋1
𝑒) = (1 − 𝜃)2𝜎2[𝛿2 + (𝑃1

𝑒 − 𝑐10)2] + 𝛿2[(1 − 𝜃) 𝑎0 − 𝑃1
𝑒 +

𝜆𝑃2
𝑒]2, 

Eq. (15)  𝑉(𝜋2
𝑒) = 𝜃2𝜎2[𝛿2 + (𝑃2

𝑒 − 𝑐20)2] + 𝛿2(𝜃𝑎0 − 𝑃2
𝑒 + 𝜆𝑃1

𝑒)2. 

Similarly, the MV theory is applied to measure the impact of loss-averse attitudes on pricing 

decisions with the influence of cost uncertainty. The MV objective function for the extended model is 

constructed in Eq. (16). 

Eq. (16)  Maximize: 𝑂𝑟
𝑒 = 𝐸(𝜋𝑟

𝑒) − 𝑘𝑟𝑉(𝜋𝑟
𝑒). (r=1,2) 

Solving Eq. (16), we could obtain the optimal pricing decisions for the two risk-averse competing 

carriers under demand and cost uncertainties (i.e., *

1

eP and *

2

eP ), which are summarized in Lemma 2. 

Lemma 2. In the extended model with uncertain demand and uncertain costs, the MV objective 

functions for the two competing risk-averse carriers are strictly concave, and the respective optimal 

prices are given as follows: 
2 2 2 2

* 2 2 2 0 1 10 1 1 1 0 2 20 2 2
1 2 2 2 2 2

1 1 1 2 2 2 1 2

2(1 )[(1 ) (1 2 ) (1 2 )] (1 2 )[ (1 2 ) (1 2 )]

4(1 )(1 ) (1 2 )(1 2 )

e S k k a k c S k k a k c S k
P

S k k S k k k k

      

    

          


      

,

2 2 2 2
* 1 1 1 0 2 20 2 2 2 0 1 10 1 1

2 2 2 2 2 2

1 1 1 2 2 2 1 2

2(1 )[ (1 2 ) (1 2 )] (1 2 )[(1 ) (1 2 ) (1 2 )]

4(1 )(1 ) (1 2 )(1 2 )

e S k k a k c S k k a k c S k
P

S k k S k k k k

      

    

          


      
. 

 

Similar to the basic model, Lemma 2 shows that optimal pricing decisions exist for air cargo 

carriers to maximize the MV objectives when they face stochastic costs. Besides, the equilibrium prices 

for the two risk-averse carriers are perfectly symmetric in the extended model. In addition to the major 

parameters like market share (𝜃), market competition (𝜆), market uncertainty (σ), and risk attitudes of 

the two players ( rk ), it is important to note that cost uncertainty ( ) also plays an important role in 

determining the optimal prices. In the expressions, 21 2r rk    is defined as the cost uncertainty 

risk coefficient, which reflects the integrated impact of cost uncertainty and loss aversion on the 

optimal decision making. Applying the notation listed in Table 3 (Appendix A1), *

1

eP and *

2

eP could 

be represented as * 2 3 1 4
1 2

1 2 1 2

e B B B
P

B B



 





and * 1 4 2 3

2 2

1 2 1 2

e B B B
P

B B



 





, respectively. Obviously, *e

rP and *

rP have 

similar forms expect that *e

rP  is featured with the cost uncertainty risk coefficient r  . Next, 

Proposition 5 demonstrates the specific impacts of cost uncertainty on the equilibrium prices under 

different scenarios. 

 

Proposition 5. In the extended model where two risk-averse carriers facing stochastic costs compete 

for uncertain demand, the impacts of cost uncertainty on the optimal prices are diverse as follows: 

(i) With market competition (𝜆 > 0), for Carrier r: 

a) If r r  , its optimal price increases with cost uncertainty if 0r rc WT . 

b) If 3 3r r   , its optimal price increases with cost uncertainty if 3- 0 3r rc UT （ ） . 

(ii) Without market competition ( 0  ): 

a) Under a duopoly market (0 < 𝜃 < 1 ), for Carrier 1, its optimal price increases with cost 

uncertainty if 10 0(1 )c a   , while for Carrier 2, its optimal price increases with cost 
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uncertainty if 20 0c a . 

b) Under a monopoly market (𝜃 = 0 𝑜𝑟 1), when the market is dominated by Carrier r, we have 
*

3 0
e

rP


 




. Besides, we have 

*

0
e

rP







 if 𝑐𝑟0 < 𝑎0. 

 

From Proposition 5, we could see that the role of cost uncertainty not only depends on market 

conditions such as market competition and segmentation, but also hinges on the relative risk-averse 

attitude ( r ), which is similar to the effect of demand uncertainty as discussed in Proposition 4.  

First of all, with market competition, Proposition 5(i)a) shows that an increase in cost uncertainty 

would lead to a growth in the optimal price if the fixed part of a carrier’s cost ( 0rc ) is low enough 

( 0r rc WT ) and its relative risk-averse attitude over its competitor is high enough. Intuitively, a carrier 

will charge a higher price to hedge against the increased uncertainty in its operating cost. However, 

due to demand uncertainty and market competition, a rise in price may result in a reduction in consumer 

demand. Thus, a carrier with sufficiently higher relative risk-averse attitude will not rise its price when 

its cost is becoming increasingly stochastic unless the fixed part of its cost could be controlled in a low 

level (i.e., 0r rc WT ). Besides, a carrier would also increase its price along with cost uncertainty if its 

competitor’s relative risk-averse attitude is very high and the competitor’s cost (fixed part) is very low 

(see Proposition 5(i)b)). The motivation is the competitor’s proneness to deal with the profit risks 

caused by the increased cost uncertainty through raising price.  

On the other hand, if the two participants do not compete ( 0  ), the influence of cost uncertainty 

on a carrier’s optimal prices further depends on market segmentation, while the operating 

characteristics of the other carrier in the market becomes irrelevant. Specifically, in a duopoly market 

(see Proposition 5(ii)a)), the optimal price of a carrier would be positively related to cost uncertainty 

if the fixed part of its cost is low enough. The intuition is that only when the fixed component of cost 

is sufficiently low, it will be possible for the carrier to maintain profitability after increasing price 

(demand decreases accordingly) to deal with the increased cost uncertainty. Similarly, Carrier r will 

raise its price along with cost uncertainty if 𝑐𝑟0 < 𝑎0 when the market is dominated by Carrier r (in 

Proposition 5(ii)b)). However, in the monopoly market, the other carrier has to decrease its price when 

the operating cost becomes more stochastic to keep profitability.  

In short, Proposition 5 derives insights regarding the impacts of cost uncertainty on the optimal 

pricing decisions for risk-averse air cargo carriers under a competitive and uncertain market 

environment.  

Then, aiming at comparing the optimal pricing decisions between two participants with volatile 

operating cost, we proceed to illustrate the difference of optimal prices with respect to the cost 

uncertainty in Figure 3. 
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(a) When 𝑐10 < 𝑊𝑇1 

 
(b) When 𝑐10 ≥ 𝑊𝑇1 

Figure 3. The comparison between optimal pricing decisions with respect to the cost uncertainty 𝛿 (We set 

𝑎0 = 100, 𝜃 = 0.4, 𝜎 = 5, 𝜆 = 0.7, 𝑐20 = 200, 𝑘1 = 80, 𝑘2 = 100 and 𝑐10 = 100 in (a), 𝑐10 = 300 in (b)) 

 

Figure 3 uncovers the relationships between the optimal prices of two participants. To be 

specific, Figure 3 (a) reveals that, with the growth of cost uncertainty, the Carrier 1’s optimal price 

may surpass its rival’s when the fixed part of its cost is relatively low (𝑐10 < 𝑊𝑇1). While from Figure 

3 (b) we can observe that, when the fixed part of Carrier 1’s cost is controlled in a relatively high 

level (𝑐10 ≥ 𝑊𝑇1), the carrier’s optimal price is always higher than its competitor’s, regardless of the 

cost uncertainty. It is understandable that there is no need for the carrier to charge a higher price if 

the cost uncertainty is relatively low. However, if the fixed part of the operating cost is extremely 

high, it is unadvisable for the carrier to charge a lower price, which may hurt its profit. Moreover, the 

numerical analysis in Figure 3 could attest and verify the analytical results in Proposition 5(i) in a 

visualized way. 

Considering the highly volatile crude oil market and the significant fuel price fluctuation in the 

modern world, the analytical challenging analysis with cost uncertainty is important. Thus, we 

believe that the extended analyses in this section is definitely imperative and critical. It could provide 

useful implications and guidelines for both practitioners and academics on the strategies to deal with 

the challenges arising from air freight operating costs. 

 

VI. CONCLUSION 

A. Concluding Remarks, Insights and Implications 

Nowadays, air freight transportation is becoming increasingly important for global logistics systems 

to facilitate quick and reliable logistics services. However, despite the fast growth, the industry is 

challenged by intensive market competition and highly volatile consumer demand. Besides, airlines 

are also facing with significant operating cost uncertainty caused by jet-fuel price fluctuation. As a 

result, in order to enhance their survivability and profitability in the highly competitive and stochastic 

market environment, many air cargo carriers become conservative and behave as risk-averse in 

decision making. Among the strategic decisions of cargo airlines, the optimal pricing problem is the 

most crucial but challenging one, which significantly impacts the development of air cargo carriers. 

However, although the importance of pricing decisions with risk considerations has been realized, the 

optimal pricing decisions for loss-averse air cargo carriers in the presence of cost and demand 

uncertainties are still under-investigated. This paper thus aims to examine the impacts of risk attitudes 

of decision makers, market competition, demand uncertainty and cost uncertainty on the optimal 
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pricing decisions for air cargo carriers by applying the MV theory. 

Through analytically exploring a basic model where two risk-averse air cargo carriers with 

deterministic operating costs compete for uncertain demand and an extended model where both 

demand and cost are uncertain, we have studied the equilibrium prices for the two carriers and explored 

the impacts of diverse crucial parameters on the optimal decision making. Our analytical and numerical 

results have generated the following major findings and insights. First, we have identified that the 

optimal prices and important thresholds for the two carriers are perfectly symmetric either in the basic 

or the extended model. Second, we have found that the optimal price of a carrier is affected not only 

by its own risk attitudes and costs, but also by the competitor’s characteristics (e.g., costs, risk 

preferences) if they engage in a competition. Otherwise, without competition, the decisions of the two 

carriers are irrelevant. Third, we have demonstrated that the risk-averse behaviors of carrier managers 

could affect the optimal prices either directly or indirectly. For instance, if a carrier’s cost is high 

enough, its increasing risk-averse attitude could directly lead to a growth in the optimal prices for the 

two participants in a duopoly market with competition. On the other hand, the loss-averse behaviors 

could impose indirect impacts on the optimal prices through affecting the effects of other important 

parameters. More importantly, the relative risk-averse attitudes of the two carriers are demonstrated to 

be crucial in evaluating the impacts of both demand and cost uncertainties on the optimal decision 

making. Fourth, we have revealed that market situations are critical determinants in the risk-averse 

pricing decisions. For example, when the two carriers compete more fiercely, both two players will 

increase their prices. Besides, market segmentation (i.e., whether the market is duopoly or monopoly) 

imposes great impacts on the effects of risk sensitivity coefficients, demand uncertainty and cost 

uncertainty. For instance, if the market is dominated by a carrier without competition, then the risk 

attitude of the other carrier becomes nonsignificant. Besides, the other carrier’s optimal price is 

irrelevant to demand uncertainty (or negatively related to cost uncertainty), while the dominator’s 

optimal price is positively related to demand uncertainty (or cost uncertainty) if the dominator’s cost 

is sufficiently high (or low). 

To conclude, this work contributes to the existing literature of systems engineering and science by 

integrating risk considerations, market competition and market uncertainties (demand and cost) into 

the optimal pricing decisions for air cargo carriers. We have analytically explored the equilibrium 

solutions and investigated how the crucial factors impact the optimal prices. Through comprehensive 

investigation, we have highlighted the importance to enhance pricing decisions for cargo airlines by 

considering these critical factors in the current highly volatile and competitive market. 

 

B. Future Studies 

This paper generates useful insights regarding the optimal pricing decisions for competing air cargo 

carriers who are risk-averse to profit losses caused by uncertain demand and stochastic operating costs. 

For future research, it will be interesting to explore the situation where the decision makers have 

different risk attitudes (e.g., one is risk-neutral and the other is risk-averse). Besides, more risk 

measurements like mean-downside risk (MDR) approach [15] could be applied to characterize the risk 

behaviors of air cargo carriers.  
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APPENDIX (A1) 

Table 3 summarizes the important notation used in the analyses (both in the main context and in the 

online mathematical proofs).  

Table 3. Important notation used in the analyses. 

Notation Remarks Notation Remarks 
2 2

1 (1 )S     𝑆1 ≥ 0 
3 1 11T S k   𝑇3 ≥ 1 

2 2

2S    𝑆2 ≥ 0 
4 2 21T S k   𝑇4 ≥ 1 

1 1 12(1 )A S k   𝐴1 ≥ 2 2

1 11 2k     𝜂1 ≥ 1  

2 2 22(1 )A S k   𝐴2 ≥ 2 2

2 21 2k     𝜂2 ≥ 1 

3 0 1 1 1(1 ) (1 2 )A a c S k     𝐴3 ≥ 0 2

1 1 1 12(1 )B S k k     𝐵1 ≥ 2 

4 0 2 2 2(1 2 )A a c S k    𝐴4 ≥ 0 2

2 2 2 22(1 )B S k k     𝐵2 ≥ 2 

1 1 11 2T S k   𝑇1 ≥ 1 2

3 0 1 10 1 1(1 ) (1 2 ) (1 2 )B a k c S k       𝐵3 ≥ 0 

2 2 21 2T S k   𝑇2 ≥ 1 2

4 0 2 20 2 2(1 2 ) (1 2 )B a k c S k      𝐵4 ≥ 0 

 

The crucial relative risk-averse attitude thresholds identified in the analyses are listed in Table 4. 

We could see that each pair of relative risk-averse attitude thresholds for the two carriers are perfectly 

symmetric (e.g., 𝛬1and𝛬2). 

Table 4. Crucial relative risk-averse attitude thresholds identified in the analyses. 

𝛬1 𝜆2𝜃2𝑇1

(1 − 𝜃)2𝐴2(𝐴2 − 𝜆2)
 
𝜗1 𝜆2𝜂1(𝐵2 − 𝜂2)

𝐵2(𝐵2 − 𝜆2𝜂2)
 

𝛬2 𝜆2(1 − 𝜃)2𝑇2

𝜃2𝐴1(𝐴1 − 𝜆2)
 

𝜗2 𝜆2𝜂2(𝐵1 − 𝜂1)

𝐵1(𝐵1 − 𝜆2𝜂1)
 

𝛺2 (1 − 𝜃)2𝐴2𝑇2

𝜃2(𝐴1 − 𝜆2)
 

𝜍1 𝐵1(𝐵2 − 𝜂2)

𝜂2(𝐵2 − 𝜆2𝜂2)
 

𝛺1 𝜃2𝐴1𝑇1

(1 − 𝜃)2(𝐴2 − 𝜆2)
 

𝜍2 𝐵2(𝐵1 − 𝜂1)

𝜂1(𝐵1 − 𝜆2𝜂1)
 

 

 

Besides, Table 5 concludes the important cost thresholds for the two carriers in determining the 

impacts of diverse parameters on the optimal prices. It is seen that all pairs of cost thresholds are 

perfectly symmetric (e.g., 1CT and 2CT ). 

Table 5. Crucial cost thresholds identified in the analyses. 

1CT    2 2 0 0 2 2 2

2

2 2

2(1 )(1 ) (1 2 )

2(1 )

S k a a c S k

S k

  



    

 
  

2CT    1 1 0 0 1 1 1

2

1 1

2(1 ) (1 ) (1 2 )

2(1 )

S k a a c S k

S k

  



    

 
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1DT  
  

     

   

   

1 2 0 2 2 0 1
2 2

0 2 1 2 2

1 2 2 2 2 1 2

2 2 2

1 2 2 2 1

1 1 - + (1 )
4

[ 1 (1 2 )+ ]

4 1

k A a A k a A
a A A A

k A S k k A c

k A A k T

       
  

   

    

        
    

     

   
 

 

2DT  
  

   

  

   

2 1 0 1 1 0 2
2 2

0 1 1 2 2

2 1 1 1 1 2 1

2 2 2

2 1 1 1 2

[ (1 )] 1 1
4

[ (1 2 ) 1 ]

4 1

k A a A k a A
a A A A

k A S k k A c

k A A k T

       
  

   

    

          
    

      

   
 

 

1ET  
  

     

   

  

2 1 0 1 1 0 2
2 2

0 1 1 2 2 2

2 1 1 1 2 2 2

2 2

2 1 1 1 2

(1 ) 1 1
4

[ 1 (1 2 )]

4 1

k A a A k a A
a A A A

k A A k S k c

k A T k A

       
  

   

     

           
    

      

   
 

 

2ET  
  

   

   

   

1 2 0 2 2 0 1
2 2

0 2 1 2 2 2

1 2 2 2 1 1 1

2 2

1 2 2 2 1

1 1 [ (1 )]
4

[ 1 (1 2 )]

4 1

k A a A k a A
a A A A

k A A k S k c

k A T k A

       
  

   

     

           
    

      

   
 

 

𝑌𝑇1 𝑎0[𝑘1(1 − 𝜃)2𝐴2[(1 − 𝜃)𝐴2 + 𝜆𝜃] + 𝜆𝑘2𝜃2[𝜃𝐴1 + 𝜆(1 − 𝜃)]] − 𝑐2[𝜆𝑘2𝜃2(𝐴1 − 𝜆2) − 𝑘1(1 − 𝜃)2𝐴2𝜆𝑇2]

𝑘1(1 − 𝜃)2𝐴2(𝐴2 − 𝜆2) − 𝜆2𝑘2𝜃2𝑇1
 

𝑌𝑇2 𝑎0[𝑘2𝜃2𝐴1[𝜃𝐴1 + 𝜆(1 − 𝜃)] + 𝜆𝑘1(1 − 𝜃)2[(1 − 𝜃)𝐴2 + 𝜆𝜃]] − 𝑐1[𝜆𝑘1(1 − 𝜃)2(𝐴2 − 𝜆2) − 𝑘2𝜃2𝐴1𝜆𝑇1]

𝑘2𝜃2𝐴1(𝐴1 − 𝜆2) − 𝜆2𝑘1(1 − 𝜃)2𝑇2
 

𝑃𝑇1 𝑎0[𝑘2𝜃2𝐴1[𝜃𝐴1 + 𝜆(1 − 𝜃)] + 𝜆𝑘1(1 − 𝜃)2[(1 − 𝜃)𝐴2 + 𝜆𝜃]] − 𝑐2[𝑘2𝜃2𝐴1(𝐴1 − 𝜆2) − 𝜆2𝑘1(1 − 𝜃)2𝑇2]

𝜆𝑘1(1 − 𝜃)2(𝐴2 − 𝜆2) − 𝑘2𝜃2𝐴1𝜆𝑇1
 

𝑃𝑇2 𝑎0[𝑘1(1 − 𝜃)2𝐴2[(1 − 𝜃)𝐴2 + 𝜆𝜃] + 𝜆𝑘2𝜃2[𝜃𝐴1 + 𝜆(1 − 𝜃)]] − 𝑐1[𝑘1(1 − 𝜃)2𝐴2(𝐴2 − 𝜆2) − 𝜆2𝑘2𝜃2𝑇1]

𝜆𝑘2𝜃2(𝐴1 − 𝜆2) − 𝑘1(1 − 𝜃)2𝐴2𝜆𝑇2
 

𝑊𝑇1 2 2 2

2 1 1 1 1 2 1 1 4 1 2 2 2 2 1 2 2 0 1

2

0 1 2 2 1 0 1 2 1 2

2 2

2 1 2 2 1 2 2 2 1 1

[ ( ) ( )] [ ( ) ( )](1 )

[(1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B

k B k B B S k

           

    

    

       

   

     

𝑊𝑇2 2 2 2

1 2 2 2 2 1 2 2 3 2 1 1 1 1 2 1 1 0 2

2

0 2 1 1 2 0 1 2 1 2

2 2

1 2 1 1 2 1 1 1 2 2

[ ( ) ( )] [ ( ) ( )]

[ (1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B

k B k B B S k

           

     

    

      

   

   
 

𝑈𝑇1 [𝑘2𝐵1(𝐵1 − 𝜆2𝜂1) − 𝑘1𝜆2𝜂2(𝐵1 − 𝜂1)]𝐵4 + [𝑘1𝜆𝜂2(𝐵2 − 𝜆2𝜂2) − 𝑘2𝐵1𝜆(𝐵2 − 𝜂2)](1 − 𝜃)𝑎0𝜂1

−[𝜃𝑎0𝑘2𝐵1 + 𝜆𝑘1𝜂2(1 − 𝜃)𝑎0](𝐵1𝐵2 − 𝜆2𝜂1𝜂2)

[𝑘2𝐵1𝜆(𝐵2 − 𝜂2) + 𝑘1𝜆𝜂2(𝜆2𝜂2 − 𝐵2)](1 + 2𝑆1𝑘1)
 

𝑈𝑇2 [𝑘1𝐵2(𝐵2 − 𝜆2𝜂2) − 𝑘2𝜆2𝜂1(𝐵2 − 𝜂2)]𝐵3 + [𝑘2𝜆𝜂1(𝐵1 − 𝜆2𝜂1) − 𝑘1𝐵2𝜆(𝐵1 − 𝜂1)]𝜃𝑎0𝜂2

−[(1 − 𝜃)𝑎0𝑘1𝐵2 + 𝜆𝑘2𝜂1𝜃𝑎0](𝐵1𝐵2 − 𝜆2𝜂1𝜂2)

[𝑘1𝐵2𝜆(𝐵1 − 𝜂1) + 𝑘2𝜆𝜂1(𝜆2𝜂1 − 𝐵1)](1 + 2𝑆2𝑘2)
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APPENDIX (A2): ALL PROOFS 

Basic model 

Proof of Lemma 1.  Checking the second-order derivatives of Eq. (8) and Eq. (9), it is found that 
2

1
1 12

1

2 2 0
( )

O
S k

P


   


 and 

2

2
2 22

2

2 2 0
( )

O
S k

P


   


, which shows that both objective functions are 

concave in the respective unit price. Consequently, we could identify the reactive functions for the 

two players through solving the first-order conditions as follows: 

1

1
1

1

arg 0
P

O
P

P

 
  

 
→

0 2 1 1 1
1 2

1 1

(1 ) (1 2 )

2(1 )

a P c S k
P P

S k

    



                                      

2

2
2

2

arg 0
P

O
P

P

 
  

 
→ 0 1 2 2 2

2 1

2 2

(1 2 )

2(1 )

a P c S k
P P

S k

   



                                       

Solving the reactive functions, the optimal prices ( *

1P and *

2P ) for the two carriers could be identified. 

Besides, 2

1 2A A  always holds.  (Q.E.D.)                                                    

 

Proposition 1  

(i) Checking the first-order derivatives of *

1P and *

2P  with respect to 𝜆, we get 

    
*

21
4 1 2 2 3 42

2

1 2

1
2

P
A A A A A A

A A
  

 


   

   

 and 

    
*

22
3 1 2 1 4 32

2

1 2

1
2

P
A A A A A A

A A
  

 


   

   

.   

It is easily seen that 
𝜕𝑃1

∗

𝜕𝜆
≥ 0,

𝜕𝑃2
∗

𝜕𝜆
≥ 0.  (Q.E.D.)                                                  

(ii) When 𝜆 > 0, checking the first-order derivatives of *

1P and *

2P  with respect to 1c and 2c , 

we get 
𝜕𝑃1

∗

𝜕𝑐1
=

2(1+𝑆2𝑘2)(1+2𝑆1𝑘1)

4(1+𝑆1𝑘1)(1+𝑆2𝑘2)−𝜆2 > 0, 
𝜕𝑃2

∗

𝜕𝑐2
=

2(1+𝑆1𝑘1)(1+2𝑆2𝑘2)

4(1+𝑆1𝑘1)(1+𝑆2𝑘2)−𝜆2 > 0,
𝜕𝑃1

∗

𝜕𝑐2
=

𝜆(1+2𝑆2𝑘2)

4(1+𝑆1𝑘1)(1+𝑆2𝑘2)−𝜆2
> 0, and 

𝜕𝑃2
∗

𝜕𝑐1
=

𝜆(1+2𝑆1𝑘1)

4(1+𝑆1𝑘1)(1+𝑆2𝑘2)−𝜆2
> 0.  

Besides, we have 
𝜕𝑃1

∗

𝜕𝑐1
>

𝜕𝑃1
∗

𝜕𝑐2
 and 

𝜕𝑃2
∗

𝜕𝑐2
>

𝜕𝑃2
∗

𝜕𝑐1
. (Q.E.D.)                                                                                      

(iii) When 0  , checking the first-order derivatives of *

1P and *

2P  with respect to 1c and 2c , 

we get 
𝜕𝑃1

∗

𝜕𝑐2
= 0 , 

𝜕𝑃2
∗

𝜕𝑐1
= 0 , 

𝜕𝑃1
∗

𝜕𝑐1
=

2(1+𝑆2𝑘2)(1+2𝑆1𝑘1)

4(1+𝑆1𝑘1)(1+𝑆2𝑘2)−𝜆2
> 0  and 

𝜕𝑃2
∗

𝜕𝑐2
=

2(1+𝑆1𝑘1)(1+2𝑆2𝑘2)

4(1+𝑆1𝑘1)(1+𝑆2𝑘2)−𝜆2
>

0.  

      (Q.E.D.) 

 

Proof of Proposition 2 

Regarding
1k , the first-order derivatives of *

1P and *

2P  are as follows: 

* 2 2
21 2

2 0 4 1 22
2

1
1 2

2 (1 )
(1 ) ( )

P A
A a A c A

k A A

 
  



 
          

, and 
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* 2 2
22

2 0 4 1 22
2

1
1 2

2 (1 )
(1 ) ( )

P
A a A c A

k A A

  
  



 
          

. For
2k , we could obtain the following:

 
* 2 2

21
1 0 3 2 12

2
2

1 2

2P
A a A c A

k A A

 
  




     
    

, and  
* 2 2

22 1
1 0 3 2 12

2
2

1 2

2P A
A a A c A

k A A

 
  




     
    

. 

(i) When  =0, we have 

* * * *

1 2 1 2

1 1 2 2

0
P P P P

k k k k

   
   

   
.  (Q.E.D.)                                    

(ii) When 0  , 

a) When 0 < 𝜃 < 1 and 0  , if 
 2 2 0 0 2 2 2

1 12

2 2

2(1 )(1 ) (1 2 )
( )

2(1 )

S k a a c S k
c CT

S k

  



    
  

 
, 

then, we get 

* *

1 2

1 1

, ( )0
P P

k k

 
 

 
. Besides, if

 1 1 0 0 1 1 1

2 22

1 1

2(1 ) (1 ) (1 2 )
( )

2(1 )

S k a a c S k
c CT

S k

  



    
  

 
, then, we get 

* *

1 2

2 2

, ( )0
P P

k k

 
 

 
. Besides, 

it could be identified that 
3

0r

r

CT

c 





.    (Q.E.D.)                              

b) When 0  , we have 
3

0r

r

CT

c 





, and 

𝜕𝑃2
∗

𝜕𝑘1
=

𝜕𝑃1
∗

𝜕𝑘2
= 0.   (Q.E.D.) 

c) When 𝜃 = 0, we have 

* *

1 2

2 2

0
P P

k k

 
 

 
 ; When 𝜃 = 1, we have 

* *

1 2

1 1

0
P P

k k

 
 

 
.  (Q.E.D.)                

                     

Proof of Proposition 3 

Checking the first order derivatives of *

1P and *

2P  with respect to 𝜃, we get: 

  

        

2
* 0 2 1 2

1

2 2 2 22
1 2 2 0 4 1 2 2 2 1 0 1 31 2

1

4 1 1

a A A A
P

k A A a A c A k c A a A AA A

 

          

  



                  

 and 

  

        

2
* 0 1 1 2

2

2 2 2 22
2 1 1 0 3 2 1 1 1 2 0 2 41 2

1

4 1 1

a A A A
P

k A A a A c A k c A a A AA A

 

          

  



                   

.  

(i) If σ = 0, we get 

*

1 0 
P







 (which equals 

*

1 0
1-

P






（ ）
) and 

*

2 0
P







.    (Q.E.D.)             

(ii) When 0  , 

a) With competition ( 0  ), for carrier 1, we have 
*

1 ( )0
BDP




 


 (which equals 

*

1 ( )0
1-

P




 

（ ）
)  

when 𝑐1 > (<

)
𝑎0(𝜆−𝐴2)(𝐴1𝐴2−𝜆2)+4𝜎2{𝑘1(1−𝜃)𝐴2𝑎0[𝐴2(1−𝜃)+𝜆𝜃]−𝜆𝑘2𝜃𝑎0[𝜃𝐴1+𝜆(1−𝜃)]+[𝑘1(1−𝜃)𝐴2(1+2𝑆2𝑘2)+𝑘2𝜃(𝐴1−𝜆2)]𝜆𝑐2}

4𝜎2[𝑘1(1−𝜃)𝐴2(𝐴2−𝜆2)+𝜆2𝑘2𝜃𝑇1]
=

𝐷𝑇1 is satisfied. For carrier 2, we have 
*

2 ( )0
BDP




 


 when 𝑐2 > (<

)
𝑎0(𝜆−𝐴1)(𝐴1𝐴2−𝜆2)+4𝜎2{𝑘2𝜃𝐴1𝑎0[𝐴1𝜃+𝜆(1−𝜃)]−𝜆𝑘1(1−𝜃)𝑎0[(1−𝜃)𝐴2+𝜆𝜃]+[𝑘2𝜃𝐴1(1+2𝑆1𝑘1)+𝑘1(1−𝜃)(𝐴2−𝜆2)]𝜆𝑐1}

4𝜎2[𝑘2𝜃𝐴1(𝐴1−𝜆2)+𝜆2𝑘1(1−𝜃)𝑇2]
=
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𝐷𝑇2 is satisfied. Besides, we have 
3

0r

r

DT

c 





 (when 0  ).    (Q.E.D.)                           

b) With competition ( 0  ), for carrier 2, we have 
*

2 ( )0
BDP




 


 (which equals 

*

1 ( )0
1-

P




 

（ ）
) 

when 𝑐1 > (<

)
𝑎0(𝐴1−𝜆)(𝐴1𝐴2−𝜆2)+4𝜎2{−𝑘2𝜃𝐴1𝑎0[𝐴1𝜃+(1−𝜃)𝜆]+𝜆𝑘1(1−𝜃)𝑎0[(1−𝜃)𝐴2+𝜆𝜃]+[𝑘2𝜃𝐴1(𝐴1−𝜆2)+𝜆2𝑘1(1−𝜃)(1+2𝑆2𝑘2)]𝑐2}

4𝜎2[𝑘2𝜃𝐴1𝜆𝑇1+𝜆𝑘1(1−𝜃)(𝐴2−𝜆2)]
=

𝐸𝑇1 is satisfied. For carrier 1, we have 
*

1 ( )0
BDP




 


 when 𝑐2 > (<

)
𝑎0(𝐴2−𝜆)(𝐴1𝐴2−𝜆2)+4𝜎2{−𝑘1(1−𝜃)𝐴2𝑎0[𝐴2(1−𝜃)+𝜃𝜆]+𝜆𝑘2𝜃𝑎0[𝜃𝐴1+𝜆(1−𝜃)]+[𝑘1(1−𝜃)𝐴2(𝐴2−𝜆2)+𝜆2𝑘2𝜃(1+2𝑆1𝑘1)]𝑐1}

4𝜎2[𝑘1(1−𝜃)𝐴2𝜆𝑇2+𝜆𝑘2𝜃(𝐴1−𝜆2)]
=

𝐸𝑇2 is satisfied. Besides, we have 
3 0r

r

ET

c





.    (Q.E.D.)                                       

c) Without competition (𝜆 = 0), we have  
*

21
0 1 1 1 12

1

1
[2 ( 1) 4 1 ] 0

P
a k S k c

A
 




    


and 

 
*

22
0 2 2 2 22

2

1
[2 1 4 ] 0

P
a k S k c

A
 




   


.   (Q.E.D.)                                     

 

Proof of Proposition 4 

Checking the first order derivatives of *

1P and *

2P  with respect to σ, we get: 

       

     

2 22 2 2 2 2
* 1 1 2 2 2 1 2 2 1 1 2 2

1

2 22 2
1 2 0 1 2 2 2 1

1 1
4

1 1 (1 )

c k A A k T c k A k A T
P

A A a k A A k A

        


         

          
     

  
                  

 and 

       

     

2 22 2 2 2 2
* 2 2 1 1 1 2 1 1 2 2 1 1

2

2 22 2
1 2 0 2 1 1 1 2

1 1
4

(1 ) 1 1

c k A A k T c k A k A T
P

A A a k A A k A

        


         

          
     

  
                  

.  

(i) When 0 < 𝜃 < 1 and 𝜆 > 0,  

Let 𝛬1 =
𝜆2𝜃2𝑇1

(1−𝜃)2𝐴2(𝐴2−𝜆2)
, 𝛺2 =

(1−𝜃)2𝐴2𝑇2

𝜃2(𝐴1−𝜆2)
, and 𝛬2 =

𝜆2(1−𝜃)2𝑇2

𝜃2𝐴1(𝐴1−𝜆2)
, and 𝛺1 =

𝜃2𝐴1𝑇1

(1−𝜃)2(𝐴2−𝜆2)
. 

a) For carrier 1, when , when 1c  is sufficiently large, that is, 

         

   

2 22 2 2

0 1 2 2 2 1 2 2 1 1 2 2

1 12 2 2 2

1 2 2 2 1

1 1 (1 ) 1

1

a k A A k A c k A k A T
c YT

k A A k T

            

   

                  
 

  

, then we have 
*

1 0
P







. For carrier 2, if , if 2c  is sufficiently large, that is, 𝑐2 >

𝑎0[𝑘2𝜃2𝐴1[𝜃𝐴1+𝜆(1−𝜃)]+𝜆𝑘1(1−𝜃)2[(1−𝜃)𝐴2+𝜆𝜃]]−𝑐1[𝜆𝑘1(1−𝜃)2(𝐴2−𝜆2)−𝑘2𝜃2𝐴1𝜆𝑇1]

𝑘2𝜃2𝐴1(𝐴1−𝜆2)−𝜆2𝑘1(1−𝜃)2𝑇2
= 𝑌𝑇2, then we 

have 
*

2 0
P







.    (Q.E.D.) 

b) For carrier 2, when𝜏1 > 𝛺1, when 1c  is sufficiently large, that is, 𝑐1 >

𝑎0[𝑘2𝜃2𝐴1[𝜃𝐴1+𝜆(1−𝜃)]+𝜆𝑘1(1−𝜃)2[(1−𝜃)𝐴2+𝜆𝜃]]−𝑐2[𝑘2𝜃2𝐴1(𝐴1−𝜆2)−𝜆2𝑘1(1−𝜃)2𝑇2]

𝜆𝑘1(1−𝜃)2(𝐴2−𝜆2)−𝑘2𝜃2𝐴1𝜆𝑇1
= 𝑃𝑇1, then we 

1 1  

2 2  
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have
*

2 0
P







. For carrier 1, when , if 2c  is sufficiently large, that is, 

         

   

2 22 2 2 2

0 1 2 2 2 1 1 1 2 2 2 1

2 222 2

2 1 1 2 2

1 1 (1 ) 1

1

a k A A k A c k A A k T
c PT

k A k A T

           

    

                  
 

  

, then we have 
*

1 0
P







.   (Q.E.D.)                                                      

(ii) When 0 < 𝜃 < 1 and 0  , we get 
 

 
2 2*

1 21
1 02

1 2

4 1
[ 1 ]

( )

k AP
c a

A A

 





  


and

* 2 2

2 2 1
2 02

1 2

4
( )

( )

P k A
c a

A A

 





 


. Therefore, we have 

*

1 0
P







if  1 0 1c a    and 

*

2 0
P







if  2 0c a  .     

(Q.E.D.) 

(iii) When 𝜃 = 0 𝑜𝑟 1, 

a) When 𝜃 = 1 and 0  , we get   
*

2 21
2 1 1 2 1 2 0 2 12

2

1 2

4P
k T c k A c a k A

A A


   

 


    

   

,

  
*

2 22
2 1 1 1 2 1 1 2 0 2 12

2

1 2

4P
k A T c k A A c a k A

A A


 

 


    

   

; Therefore, we have 
*

1 0
P







 and 

*

2 0
P







 if 

 
1 1 0 1

2 22

1

( )T c a A
c OT

A






 


.  

When 𝜃 = 0 and 0  , we get   
*

2 21
1 2 2 1 1 2 2 2 0 1 22

2

1 2

4P
k A A c k A T c a k A

A A


 

 


   

   

, 

  
*

2 22
1 2 1 1 2 2 0 1 22

2

1 2

4P
k A c k T c a k A

A A


   

 


   

   

. Therefore, we have
*

1 0
P







 and 

*

2 0
P







if

 
2 2 0 2

1 12

2

( )T c a A
c OT

A






 


.    (Q.E.D.)                                                      

b) When 𝜃 = 1 and 0  ,we have

*

1 0
P







, and 

*

2 0
P







 if 2 0c a ; When 𝜃 = 0 and 0  , 

we have

*

2 0
P







, and 

*

1 0
P







 if 1 0c a .    (Q.E.D.)                                                

 

 

Extended analyses 

Proof of Lemma 2. Checking the second-order derivatives of Eq. (16), it is found that 
2

21
1 1 12

1

2 2 2 0
( )

e

e

O
S k k

P



    


 and 

2
22

2 2 22

2

2 2 2 0
( )

e

e

O
S k k

P



    


, which proves that both objective 

functions are concave in the respective unit price. Consequently, we could identify the reactive 

functions for the two players through solving the first-order conditions as follows: 

2 2  
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1

1
1

1

arg 0
e

e

e
P

O
P

P

 
  

 
→

2 2

0 1 2 1 10 1 1
1 2 2

1 1 1

(1 ) [1 2 ] [1 2 ] (1 2 )

2(1 )

e
e

e a k P k c S k
P P

S k k

   



     


 
                                      

2

2
2

2

arg 0
e

e

e
P

O
P

P

 
  

 
→

2 2

0 2 1 2 20 2 2
2 1 2

2 2 2

(1 2 ) (1 2 ) (1 2 )

2(1 )

e
e

e a k P k c S k
P P

S k k

   



    


 
                                       

Solving the reactive functions, the optimal prices for the two carriers could be obtained for the 

extended model. Besides, 2

1 2 1 2B B   always holds.     (Q.E.D.) 

 

Proof of Proposition 5 

Checking the first order derivatives of *

1

eP and *

2

eP  with respect to  , we get: 

2 2 2

2 1 2 2 1 2 2 2 1 1 10 1 2 1 1 2 1 1 1 2 2 20
*

2 2 21
2 1 2 2 1 2 2 2 0 1 1 2 1 1 2 1 1 1 0 22

2

1 2 1 2
0 1 2 2 1

[ ( ) ( )](1 2 ) [ ( ) ( )](1 2 )
4

[ ( ) ( )](1 ) [ ( ) ( )]

[(1 )

e
k B k B B S k c k B B k B S k c

P
k B k B B a k B B k B a

B B
a k B k

         


             
  

  

        


         
       2

0 1 2 1 2]( )a B B  

 
 
 
 

 

, and 
2 2 2

1 2 1 1 2 1 1 1 2 2 20 2 1 2 2 1 2 2 2 1 1 10
*

2 2 22
1 2 1 1 2 1 1 1 0 2 2 1 2 2 1 2 2 2 0 12

2

1 2 1 2
0 2 1 1 2

[ ( ) ( )](1 2 ) [ ( ) ( )](1 2 )
4

[ ( ) ( )] [ ( ) ( )](1 )

[ (1

e
k B k B B S k c k B B k B S k c

P
k B k B B a k B B k B a

B B
a k B k

         


             
  

   

        


         
       2

0 1 2 1 2) ]( )a B B  

 
 
 
 

 

. Besides, we have 1 2 1r r r rB S k     and 2 2 2 2( 2) ( 1)2 2 0r r r r rB k S k           . 

 

(i) When 𝜆 > 0, let 

2

1 2 2
1 2

2 2 2

( )

( )

B

B B

  


 





, 

2 1 1
2 2

1 1 1

( )

( )

B B

B




  





, 

2

2 1 1
2 2

1 1 1

( )

( )

B

B B

  


 





, 

1 2 2
1 2

2 2 2

( )

( )

B B

B




  





 

a) For carrier 1, when 1 1  , when 10c  is sufficiently small, that is, 

2 2 2

2 1 1 1 1 2 1 1 4 1 2 2 2 2 1 2 2 0 1

2

0 1 2 2 1 0 1 2 1 2
10 12 2

2 1 2 2 1 2 2 2 1 1

[ ( ) ( )] [ ( ) ( )](1 )

[(1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B
c WT

k B k B B S k

           

    

    

       

   
 

   
, then 

we have 
*

1 0
eP







.                                                            

For carrier 2, if 2 2  , if 20c  is sufficiently small, that is, 

2 2 2

1 2 2 2 2 1 2 2 3 2 1 1 1 1 2 1 1 0 2

2

0 2 1 1 2 0 1 2 1 2
20 22 2

1 2 1 1 2 1 1 1 2 2

[ ( ) ( )] [ ( ) ( )]

[ (1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B
c WT

k B k B B S k

           

     

    

      

   
 

   
, then we 

have 
*

2 0
eP







.     (Q.E.D.)                                                         

b) For carrier 2, when 1 1  , when 10c  is sufficiently small, that is, 

2 2 2

2 1 1 1 1 2 1 1 4 1 2 2 2 2 1 2 2 0 1

2

0 2 1 1 2 0 1 2 1 2
10 12

2 1 2 2 1 2 2 2 1 1

[ ( ) ( )] [ ( ) ( )](1 )

[ (1 ) ]( )

[ ( ) ( )](1 2 )

k B B k B B k B k B B a

a k B k a B B
c UT

k B B k B S k

           

     

    

       

   
 

   
, then we 

have 
*

2 0
eP







.  
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For carrier 1, when 2 2  , if 20c  is sufficiently small, that is, 

2 2 2

1 2 2 2 2 1 2 2 3 2 1 1 1 1 2 1 1 0 2

2

0 1 2 2 1 0 1 2 1 2
20 22

1 2 1 1 2 1 1 1 2 2

[ ( ) ( )] [ ( ) ( )]

[(1 ) ]( )

[ ( ) ( )](1 2 )

k B B k B B k B k B B a

a k B k a B B
c UT

k B B k B S k

           

    

    

      

   
 

   
, then we 

have 
*

1 0
eP







.   (Q.E.D.)                                                            

(ii) When 0  , 

a) When 0 < 𝜃 < 1, we get  
* 2

1 1 2
0 10 1 12

1 2

4
[(1 ) ](1 2 )

( )

eP k B
a c S k

B B







   


.Therefore, we have

*

1 0
eP







if 10 0(1 )c a  . Besides, we get  

* 2

2 2 1
0 20 2 22

2

1 2 1 2

4
( )(1 2 )

eP k B
a c S k

B B




  


  

   

. 

Therefore, we have 
*

2 0
eP







if 20 0c a .   (Q.E.D.)                                      

b) When 𝜃 = 0 𝑜𝑟 1,  

When 1  , we could obtain 

*
21

1 2 1 1 102

1 2

4
[ (1 2 ) ] 0

( )

eP
k B S k c

B B






   


. Besides, we get 

 

* 2

2 2 1
0 20 2 22

1 2

4
( )(1 2 )

eP k B
a c S k

B B






  


. Therefore, we have 

*

2 0
eP







if 20 0c a .  

When 0  , we could obtain 

*
22

2 1 2 2 202

1 2

4
[ (1 2 ) ] 0

( )

eP
k B S k c

B B






   


. Besides, we get 

* 2

1 1 2
0 10 1 12

1 2

4
( )(1 2 )

( )

eP k B
a c S k

B B






  


. Therefore, we have 

*

1 0
eP







if 10 0c a .  (Q.E.D.)          
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