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When should Fuzzy Analytic Hierarchy Process be used instead of Analytic Hierarchy Process? 

Abstract 

The analytic hierarchy process (AHP) has been widely applied in the last four decades, and a fuzzy 

logic version, the fuzzy AHP (FAHP), has also been employed in many studies since its formulation. 

However, it is not clear whether the FAHP is better than the AHP in terms of quality of the solution. 

First, the study demonstrates that the FAHP can provide a different solution than the AHP, regardless of 

which solution is better. However, it is also shown that such a difference does not provide an additional 

advantage over the AHP when a decision is proposed. Although the FAHP is a well-proven method, this 

study provides an insight on its practical applicability. 

Keywords: Multiple criteria analysis; fuzzy sets; analytic hierarchy process; fuzzy AHP. 

1. Introduction

Decision-making is an inevitable process in human life; therefore, there is a pressing need to

develop tools or methods to aid decision-makers in making good decisions. Nevertheless, this is not an 

easy task. First, a multi-criteria decision analysis (MCDA) is needed as it is very likely that more than 

one objective is involved [13]. Second, in many real-life situations there are problems that are 

unstructured and involve qualitative factors [17]. This makes it difficult, if not impossible, to apply the 

traditional approaches in operations research. In this connection, Professor Thomas Saaty engineered a 

major breakthrough in the 1970s by formulating the analytic hierarchy process (AHP) [24]. The AHP 

can utilize both qualitative and quantitative factors to form a hierarchical structure in the decision-

making process, which can then help decision-makers to select the best option based on the selection 

criteria presented in the model [9]. As this is a well-established approach, its operations and mechanisms 

are not discussed here. Interested readers can refer to the works of Saaty (e.g., [22,25]). 

Later, Van Laarhoven and Pedrycz in [30] extended the AHP approach by adding fuzzy logic to 

establish the fuzzy AHP (FAHP). In their approach, they used fuzzy triangular membership functions 

and demonstrated how decisions can be made in the presence of uncertainty during the pairwise 

comparison process (i.e., to determine the corresponding weights). Buckley [1] further refined this 

approach by introducing the geometric mean method to calculate the weights after the fuzzy numbers 
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were assigned by the decision makers (i.e., the defuzzification process). These two papers laid the 

foundation for subsequent FAHP applications. The main rationale, or argument, for using fuzzy 

numbers to represent the ratios in the pairwise comparison is the fact that the assignment itself is 

imprecise. Therefore, the advocates of the FAHP aim to tackle this imprecision with the advantage of 

fuzzy logic. 

 Since then, the rate of adoption of the FAHP soared at an extremely high rate. Numerous studies 

applied the FAHP in different areas, such as supplier or partner selection, process selection, green 

supplier evaluation, construction, general operations management, quality management, supply chain 

design, corporate environmental evaluation, and patient prioritization [2,4, 6-8,10,11,16,19,21,29,32-

35]. For instance, Dincer et al. in [4] proposed a triangular FAHP-based hybrid analytical multi-criterion 

decision making model to solve the ranking problem of industry alternatives for portfolio investment to 

address the financial risks in the capital market. Kilic et al. in [11] developed a hybrid methodology 

based on the triangular FAHP to solve the supplier selection problem, which was further applied to 

address a real selection problem in an enterprise resource planning (ERP) system for airlines. Readers 

can also refer to the comprehensive survey conducted by Kubler et al. [15], which provides a 

comprehensive review of different application areas of the FAHP. Furthermore, a simple search of the 

term “fuzzy AHP” in different scholarly databases can support this assertion. Table 1 presents the 

number of publications between 2006 and 2018 in four common scholarly databases. Only IEEE 

Explore shows a different trend. The search itself is not very systematic, and no screening was 

conducted; however, the values in Table 1 are very clear.  

 

Table 1  

Number of publications with the term “fuzzy AHP” 

Year of Publication 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Google Scholar 815 1020 1160 1470 1780 2300 2750 2960 3470 3320 3530 4080 4600 

IEEE Xplore 35 47 106 166 258 159 96 62 72 78 78 81 73 

Science Direct 127 150 190 254 260 437 440 419 484 601 663 715 843 

Taylor & Francis 36 52 68 76 88 95 120 141 159 148 200 207 219 

 

Despite the vast collection of applications, the use of the FAHP has caused some controversy. 
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Raharjo et al. in [20] argued that the tradeoff between the solution quality and the complexity of the 

FAHP may not be favorable for its selection. The developer of the AHP [26] commented that there is 

no real need to include fuzzy logic because making decisions via the AHP is already sufficiently fuzzy. 

He actually referred to the nine-point scale for a pairwise comparison, which can resemble the linguistic 

variables used in many fuzzy logic applications. Therefore, imprecise information during the decision-

making process has already been taken into account in that sense. Then, Saaty and Tran [27] explained 

that “using fuzzy numbers in decision making is inadvisable until precise conditions are given for when 

the process works well and when it does not.” Saaty and Tran [28] further theorized their earlier 

proposition. These three studies concluded that the AHP solution is insensitive to perturbations if the 

problem size is small and if the true values of the pairwise comparisons are known by other means. 

Saaty and Tran [28] employed simulations and examples to illustrate their ideas.  

Nevertheless, the existence of such conditions is still a mystery mathematically. More recently, Zhü 

in [36] adopted a relatively more ambitious approach in an attempt to refute the FAHP method and tried 

to claim that it was invalid and violated the principles of the AHP. Although his attempt is welcome, 

especially as it draws attention to the applicability of the FAHP, his arguments are not perfect and suffer 

from some shortcomings. Fedrizzi and Krejčí in [5] have elucidated it convincingly so we will not repeat 

the counter arguments here. In other words, the aforementioned mystery is still an interesting debate in 

the FAHP literature.  

Some clues are actually present in other studies. Nevertheless, they do not exist in an organized 

manner as an investigation of the validity of the FAHP is normally not the main objective in those 

studies. For example, Chan et al. [3] applied a mixed-method approach to quantify social media data 

for later MCDA applications. It was not their intention to compare the AHP and FAHP, but the numerical 

results indicate that the outputs of the two methods are similar, and both methods are indifferent in terms 

of ranking alternatives. In a spatial MCDA application, Kordi and Brandt [12] discovered that the 

difference between the AHP and FAHP is a function of the level of fuzziness (i.e., uncertainty) in the 

FAHP. Increasing the fuzziness leads to a more significant difference. In a similar spatial application 

(although in a different location), Mosadeghi et al. [18], based on a sensitivity analysis, made the similar 

observation that the FAHP is more stable when subjected to changes in weight criteria. Krejčí et al. [14] 

considered that the FAHP is still necessary when the pairwise comparisons are vague; otherwise, the 

traditional AHP will lead to mistakes. The main implication of these studies is that if a simpler method 
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is acceptable in the analysis process, there is no need to apply a more sophisticated method (e.g., the 

AHP compared with the FAHP). This makes perfect sense, but leaves a query: how to determine the 

level of fuzziness that makes the FAHP superior to the AHP in the analysis? 

It is clear from the above review that the usefulness of the FAHP is still debatable, simply because 

it is unable to reach a conclusion analytically. Therefore, the research motivation of this study is to 

provide insights on this problem by investigating the difference between the AHP and FAHP. It is not 

our intention to prove which method is better, or to challenge the operations of the FAHP. However, if 

we can prove that the two methods are not different, there is definitely no need to select a complex 

method over a simpler one. If there is any difference between the AHP and FAHP, it is worth finding 

out the conditions where this occurs. Obviously, this will provide insight on when the FAHP should be 

employed. This study makes a significant contribution on when to (or not to, of course) use the FAHP 

over the AHP. Experimental results can help explain some of the observations discussed earlier in this 

section. The rest of the paper is organized as follows: In Section 2, the difference between the AHP and 

triangular FAHP is formulated from a quantitative perspective, as discussed above. The main reason for 

doing so is to enable the subsequent experiments to be undertaken. Section 3 describes the experimental 

results when the matrix size of the problem ranges from 2 to 9, and the qualitative difference induced 

by the application of triangular fuzzy numbers is further explored and analyzed. A real-world case 

proposed in the previous study [11] is applied here for detailed illustration. In Section 4, we further 

consider the trapezoidal FAHP and show the robustness of the results derived with the triangular FAHP 

cases in Section 3. Section 5 concludes the paper. 

 

2. Difference between the triangular FAHP and classical AHP 

In this section, a function representing the differences between the classical AHP and triangular 

FAHP subjected to the same set of pairwise comparisons and the corresponding fuzzy counterpart is 

established. The function basically sums up the differences of the weights of all criteria between the 

two methods, based on which, experiments can be then conducted. The details are discussed below. 

 

2.1 Weights estimated by the classical AHP 

The pairwise comparison matrix A was first defined by Saaty in [22] as a method to estimate ratio 

scales. The scale of measurement is based on the fundamental 9-point scale defined in [25]. 
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A= 

[
 
 
 
 

1
𝛼21

𝛼31

⋮
𝛼𝑛1

𝛼12

1
𝛼32

⋮
𝛼𝑛2

𝛼13

𝛼23

1
⋮

𝛼𝑛3

…
…
…

…

𝛼1𝑛

𝛼2𝑛

𝛼3𝑛

⋮
1 ]

 
 
 
 

  = 
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1
1 𝛼12⁄

1 𝛼13⁄

⋮
1 𝛼1𝑛⁄

𝛼12

1
1 𝛼23⁄

⋮
1 𝛼2𝑛⁄

𝛼13

𝛼23

1
⋮

1 𝛼3𝑛⁄

…
…
…

…

𝛼1𝑛

𝛼2𝑛

𝛼3𝑛

⋮
1 ]

 
 
 
 

 

The matrix A = (𝛼𝑖𝑗), where 𝛼𝑖𝑗 =
𝑤𝑖

𝑤𝑗
, 𝑖, 𝑗 = 1,2,… 𝑛. n is the matrix size, which indicates the 

number of criteria or alternatives to be considered. The estimated ratio scale w = [𝑤1 𝑤2 …𝑤𝑛]𝑇 is 

the solution of the eigenvalue problem Aw = 𝜆𝑚𝑎𝑥𝑤. 𝜆𝑚𝑎𝑥 is the principal eigenvalue of A. The final 

weights of the criteria (alternatives) 𝑤N are obtained by normalizing w. 

 

2.2 Weights estimated by the triangular FAHP 

In 1985, Buckley proposed the fuzzy hierarchical analysis, who introduced a triangular 

membership function for fuzzification. Later, various fuzzy numbers, such as the trapezoidal, interval, 

and type-2 fuzzy numbers, have been proposed and used for different decision methods. Among these, 

the triangular fuzzy numbers are among the most widely used in decision making as they are suitable 

for association with linguistic terms and can be utilized to judge different certainty levels [31,37]. 

According to the original matrix A, its corresponding symmetric triangular fuzzy version 𝐴̅ =

(𝑙𝑖𝑗 , 𝑚𝑖𝑗, 𝑢𝑖𝑗) is 

[
 
 
 
 

(1,1,1)
(1 𝛼12+𝛽⁄ , 1 𝛼12⁄ , 1 𝛼12−𝛽⁄ )
(1 𝛼13+𝛽⁄ , 1 𝛼13⁄ , 1 𝛼13−𝛽⁄ )

⋮
(1 𝛼1𝑛+𝛽⁄ , 1 𝛼1𝑛⁄ , 1 𝛼1𝑛−𝛽⁄ )

(𝛼12 − 𝛽, 𝛼12, 𝛼12 + 𝛽)
(1,1,1)

(1 𝛼23+𝛽⁄ , 1 𝛼23⁄ , 1 𝛼23−𝛽⁄ )
⋮

(1 𝛼2𝑛+𝛽⁄ , 1 𝛼2𝑛⁄ , 1 𝛼2𝑛−𝛽⁄ )

(𝛼13 − 𝛽, 𝛼13, 𝛼13 + 𝛽)
(𝛼23 − 𝛽, 𝛼23, 𝛼23 + 𝛽)

(1,1,1)
⋮

(1 𝛼3𝑛+𝛽⁄ , 1 𝛼3𝑛⁄ , 1 𝛼3𝑛−𝛽⁄ )

…
…
…

…

(𝛼1𝑛 − 𝛽, 𝛼1𝑛, 𝛼1𝑛 + 𝛽)
(𝛼2𝑛 − 𝛽, 𝛼2𝑛, 𝛼2𝑛 + 𝛽)
(𝛼3𝑛 − 𝛽, 𝛼3𝑛, 𝛼3𝑛 + 𝛽)

⋮
(1,1,1) ]

 
 
 
 

 

The geometric mean method is used to calculate the fuzzy weights 𝑤̅ = [𝑤̅1 𝑤̅2 … 𝑤̅𝑛]𝑇 for the fuzzy 

matrix. The weight 𝑤̅𝑖 = (
𝑙𝑖

𝑢
,
𝑚𝑖

𝑚
,
𝑢𝑖

𝑙
)(i=1,2,…,n), where 𝑙𝑖 = (∏ 𝑙𝑖𝑗

𝑛
𝑗=1 )

1

𝑛 , 𝑚𝑖 = (∏ 𝑚𝑖𝑗
𝑛
𝑗=1 )

1

𝑛 , 𝑢𝑖 =

(∏ 𝑢𝑖𝑗
𝑛
𝑗=1 )

1

𝑛  , 𝑙 = ∑ 𝑙𝑖
𝑛
𝑖=1  , 𝑚 = ∑ 𝑚𝑖

𝑛
𝑖=1   , and 𝑢 = ∑ 𝑢𝑖

𝑛
𝑖=1 .  The details of the triangular fuzzy 

numbers are as follows. In the matrix, 𝛽  represents the one-side width of the fuzzy triangular 

membership functions. When 𝛽 = 0, 𝑤̅ degenerates into the weights determined by the logarithmic 

least squares method. 

𝑙𝑖 = (∏ 𝑙𝑖𝑗
𝑛
𝑗=1 )

1

𝑛 = (∏ 𝑙𝑖𝑗𝑗<𝑖 ∏ 𝑙𝑖𝑗𝑗>𝑖 )
1

𝑛 = (∏
1

𝛼𝑗𝑖+𝛽𝑗<𝑖 ∏ (𝛼𝑖𝑗 − 𝛽)𝑗>𝑖 )

1

𝑛
  

𝑢𝑖 = (∏ 𝑢𝑖𝑗
𝑛
𝑗=1 )

1

𝑛 = (∏ 𝑢𝑖𝑗𝑗<𝑖 ∏ 𝑢𝑖𝑗𝑗>𝑖 )
1

𝑛 = (∏
1

𝛼𝑗𝑖−𝛽𝑗<𝑖 ∏ (𝛼𝑖𝑗 + 𝛽)𝑗>𝑖 )

1

𝑛
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𝑚𝑖 = (∏ 𝑚𝑖𝑗
𝑛
𝑗=1 )

1

𝑛 = (∏ 𝑚𝑖𝑗𝑗<𝑖 ∏ 𝑚𝑖𝑗𝑗>𝑖 )
1

𝑛 = (∏
1

𝛼𝑗𝑖
𝑗<𝑖 ∏ 𝛼𝑖𝑗𝑗>𝑖 )

1

𝑛
  

𝑙 = ∑ 𝑙𝑖
𝑛
𝑖=1 = ∑ (∏

1

𝛼𝑗𝑖+𝛽𝑗<𝑖 ∏ (𝛼𝑖𝑗 − 𝛽)𝑗>𝑖 )

1

𝑛𝑛
𝑖=1   

𝑢 = ∑ 𝑢𝑖
𝑛
𝑖=1 = ∑ (∏

1

𝛼𝑗𝑖−𝛽𝑗<𝑖 ∏ (𝛼𝑖𝑗 + 𝛽)𝑗>𝑖 )

1

𝑛𝑛
𝑖=1   

𝑚 = ∑ 𝑚𝑖
𝑛
𝑖=1 = ∑ (∏

1

𝛼𝑗𝑖
𝑗<𝑖 ∏ 𝛼𝑖𝑗𝑗>𝑖 )

1

𝑛𝑛
𝑖=1   

 

2.3 Quantitative differences between the classical AHP and triangular FAHP 

The defuzzified weights are set as w̃ = [𝑤̃1 𝑤̃2 …  𝑤̃𝑛]𝑇, where each element 𝑤̃i is the center of 

area of 𝑤̅𝑖, namely 𝑤̃𝑖 = 

𝑙𝑖
𝑢
+

𝑚𝑖
𝑚

+
𝑢𝑖
𝑙

3
. Therefore, the normalized defuzzified weight 𝑤̃𝑖

𝑁 =
𝑙𝑖
𝑢
+

𝑚𝑖
𝑚

+
𝑢𝑖
𝑙

𝑙

𝑢
+1+

𝑢

𝑙

. First, 

to measure the quantitative difference between the weights generated by the classical AHP and the 

triangular fuzzy AHP, we have the following definition: 

Definition 1(Quantitative Difference1): the application of the triangular fuzzy numbers makes a 

quantitative difference d if and only if 𝐝 = ∑ 𝑑𝑖
𝑛
𝑖=1 > 0, where 𝑑𝑖 = |𝑤̃𝑖

𝑁 − 𝑤𝑖
𝑁|(1 ≤ 𝑖 ≤ n). 

d is in fact the sum of the absolute difference between the corresponding weights of the criteria 

obtained by the classical AHP and the triangular fuzzy AHP, respectively. Given the positive reciprocal 

matrix A = (𝛼𝑖𝑗),  𝑖, 𝑗 = 1,2,… 𝑛, it is verified that 𝐝 is a function of 𝛽 (0 < 𝛽 < 1), namely, 𝐝 =

F(β). Here, we set β within the range of (0, 1) to make sure the feasibility of the fuzziness of the 

positive reciprocal matrix A as the smallest element in A is “1.” The closed forms of d for the cases of 

matrix size equal to 2 and 3, respectively, are as follows. 

Proposition 1. For the cases that matrix size n = 2, for any 𝛼12 ≥ 1, 0 < β < 1. The quantitative 

difference d between the weights under the triangular fuzzy AHP and the classical AHP methods is 

F(β) = 𝑑1 + 𝑑2,  

where, 𝑑1 = |
𝛼12(𝛼12

2 −𝛽2)
1
2[

−𝛽2

𝛼12+1
+2(1+

1

𝛼12+1
)(𝛼12

2 −𝛽2)
1
2+

𝛼12
2 +1

𝛼12+1
+2]

(𝛼12
2 −𝛽2)

1
2[−𝛽2+2(1+𝛼12)(𝛼12

2 −𝛽2)
1
2+𝛼12

2 +4𝛼12+1]+2𝛼12

−
𝛼12

𝛼12+1
|, 

𝑑2 = |1 −
𝛼12(𝛼12

2 −𝛽2)
1
2[

−𝛽2

𝛼12+1
+2(1+

1

𝛼12+1
)(𝛼12

2 −𝛽2)
1
2+

𝛼12
2 +1

𝛼12+1
+2]

(𝛼12
2 −𝛽2)

1
2[−𝛽2+2(1+𝛼12)(𝛼12

2 −𝛽2)
1
2+𝛼12

2 +4𝛼12+1]+2𝛼12

−
1

𝛼12+1
|.  

Proof: see Appendix A. 

 

                                                             
1 Note that the qualitative difference is also defined and further analyzed in the following section. 
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By conversion between the two elements, the cases in which 𝛼12 < 1 are the same as the cases 

in which 𝛼12 ≥ 1. Proposition 1 implies that, for the case of the matrix size or the number of criteria 

to be considered n = 2, the difference between the two methods is always greater than zero. In other 

words, differences can always be found. However, the magnitude of d is examined in Section 3, which 

demonstrates that the quantitative difference d is not significant for most cases. 

 

Proposition 2. For the case where matrix size n = 3 , given the scale value 𝛼12, 𝛼13, 𝛼23 ∈

{1,2,3,4,5,6,7,8,9}, and 0 < β < 1 , the quantitative difference d between the weights generated by 

applying the triangular FAHP and classical AHP is F(β) = 𝑑1 + 𝑑2 + 𝑑3 = |𝑤̃1
𝑁 − 𝑤1

𝑁| + |𝑤̃2
𝑁 −

𝑤2
𝑁| + |𝑤̃3

𝑁 − 𝑤3
𝑁|, where 

𝑤̃1
𝑁 =

(𝛼12+𝛽)
1
3(𝛼13+𝛽)

1
3𝑢+(𝛼12−𝛽)

1
3(𝛼13−𝛽)

1
3𝑙+

(𝛼12𝛼13)
1
3

(𝛼12𝛼13)
1
3+(

𝑎23
𝑎12

)
1
3+(

1
𝑎13𝑎23

)
1
3

𝑙𝑢

𝑙2+𝑢2+𝑙𝑢
, 

𝑤̃2
𝑁 =

(𝛼12+𝛽)
1
3(𝛼23+𝛽)

1
3𝑢+(𝛼12−𝛽)

1
3(𝛼23−𝛽)

1
3𝑙+

(𝛼12
2 −𝛽2)

1
3(

𝑎23
𝑎12

)
1
3

(𝛼12𝛼13)
1
3+(

𝑎23
𝑎12

)
1
3+(

1
𝑎13𝑎23

)
1
3

𝑙𝑢

(𝛼12
2 −𝛽2)

1
3(𝑙2+𝑢2+𝑙𝑢)

, 

𝑤̃3
𝑁 =

(𝛼13+𝛽)
1
3(𝛼23+𝛽)

1
3𝑢+(𝛼13−𝛽)

1
3(𝛼23−𝛽)

1
3𝑙+

(𝛼13
2 −𝛽2)

1
3(𝛼23

2 −𝛽2)

1
3(

1
𝑎13𝑎23

)
1
3

(𝛼12𝛼13)
1
3+(

𝑎23
𝑎12

)
1
3+(

1
𝑎13𝑎23

)
1
3

𝑙𝑢

(𝛼13
2 −𝛽2)

1
3(𝛼23

2 −𝛽2)
1
3(𝑙2+𝑢2+𝑙𝑢)

, 

where 𝑙 = 𝑓(𝛽) = (𝛼12 − 𝛽)
1

3(𝛼13 − 𝛽)
1

3 + (
𝛼23−𝛽

𝛼12+𝛽
)

1

3 +
1

(𝛼13+𝛽)
1
3(𝛼23+𝛽)

1
3

, 𝑢 = 𝑓(−𝛽). 

𝑤1
𝑁 =

𝑎𝛼12𝛼13+𝛼12
2 𝛼23

𝛼12𝑎2+(𝛼12𝛼13+𝛼12𝛼23)𝑎+𝛼12
2 𝛼23+𝛼13−𝛼12

,  

𝑤2
𝑁 =

𝛼13+𝑎𝛼12𝛼23

𝛼12𝑎2+(𝛼12𝛼13+𝛼12𝛼23)𝑎+𝛼12
2 𝛼23+𝛼13−𝛼12

,  

𝑤3
𝑁 =

𝛼12(𝑎2−1)

𝛼12𝑎2+(𝛼12𝛼13+𝛼12𝛼23)𝑎+𝛼12
2 𝛼23+𝛼13−𝛼12

,  

 where, 𝑎 = (
𝛼12𝛼23

𝛼13
)

1

3 + (
𝛼12𝛼23

𝛼13
)−

1

3. 

Proof: see Appendix B. 

 

For the other scenarios, such as 

i) 𝛼12 ∈ {1,2,… ,9}; 𝛼13 ∈ {
1

9
,
1

8
, … ,

1

2
} ; 𝛼23 ∈ {

1

9
,
1

8
, … ,

1

2
}, 

ii) 𝛼12 ∈ {
1

9
,
1

8
, … ,

1

2
} ; 𝛼13 ∈ {1,2,… ,9}; 𝛼23 ∈ {

1

9
,
1

8
, … ,

1

2
},  
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iii) 𝛼12 ∈ {
1

9
,
1

8
, … ,

1

2
}; 𝛼13 ∈ {

1

9
,
1

8
, … ,

1

2
} ; 𝛼23 ∈ {1,2,… ,9},  

and the other 4 scenarios, the results and proofs are similar. Owing to the similarity, no proof is presented 

here for the other 7 cases. For the case when the matrix size or the number of criteria n = 3, Proposition 

2 implies that the quantitative differences in terms of the ranking of criteria by the two methods are 

always greater than zero. However, the magnitude of the quantitative difference d is examined in 

Section 3, which in fact is not sufficiently significant for most randomly generated pairwise comparison 

matrices. Refer to Section 3 for more details. 

 

Proposition 3. A closed-form expression cannot be found for the function of the quantitative difference 

𝐝 when the matrix size 𝑛 ≥ 4. 

Proof: see Appendix C. 

 

3. Numerical Experiments 

Numerical experiments have been carried out under the measurement of consistency to present the 

properties of 𝐹(𝛽) in terms of 𝛽 (0 < 𝛽 < 1), which reflects the level of fuzziness and the size of 

the matrices. We first test the situations when the matrix size is 2, 3, and 4, respectively. The scale take 

the values 
1

9
,
1

8
,
1

7
,
1

6
,
1

5
,
1

4
,
1

3
,
1

2
, 1, 2, 3, 4, 5, 6, 7, 8, 9.  

For the measurement of consistency, we refer to the consistency index ( CI =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
  ) and 

consistency ratio (CR = 
𝐶𝐼

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 (𝑛)
) defined by Saaty [23] (see Table 2). We only consider the 

comparison matrices whose calculated CRs are less than 10%, in which case the consistency of the 

pairwise judgment can be accepted [16]. It is unnecessary to apply the measurement of consistency, CI 

or CR, in the situation when the matrix size is 2. As n = 2, A = [
1 𝛼12

1 𝛼12⁄ 1
], satisfying 𝛼𝑖𝑗𝛼𝑗𝑘 =

𝛼𝑖𝑘 , for i, j, k =1,2; thus, A is consistent for any 𝛼12 when n = 2. 

 

Table 2  

Critical points. 

Matrix size (n) 2 3 4 5 6 7 8 9 

Critical point N/A  0.609 0.961 1.182 1.322 1.394 1.475 1.493 
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3.1 Comparison between the weights by the triangular FAHP and classical AHP 

In this subsection, we first show the results after an exhaustive search of all the consistent cases for 

the matrix sizes from 2 to 4. To make the sensitivity analysis comprehensive while tractable, we further 

present the results for the cases when the matrix size varies from 5 to 9 by randomly selecting 100,000 

to 2,000,000 consistent pairwise comparison matrices.  

First, we analyze the impact of the fuzziness level on the quantitative difference between the 

weights obtained by the classical AHP and triangular AHP. Figs. 1 to 8 show the curves of the 

quantitative difference d in terms of fuzziness level 𝛽 (0 < 𝛽 < 1) for all the arbitrarily generated 

consistent pairwise comparison matrices 𝐴 when the matrix sizes n are 2, 3, 4, …, 9, respectively. For 

any matrix size, the difference between the weights generated by the triangular FAHP and AHP 

increases along with 𝛽. It is verified that the difference between the AHP and the triangular FAHP 

exists, but the differences become notable when 𝛽 is sufficiently large (e.g., 𝛽 ≥ 0.5). 

 

 

 

 

 

Fig. 1. Comparison between the weights 

by FAHP and AHP when n = 2. 

Fig. 2. Comparison between the weights 

by FAHP and AHP when n = 3. 
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Fig. 3. Comparison between weights by FAHP 

and AHP when n = 4. 

Fig. 4. Comparison between the weights by FAHP 

and AHP when n = 5. 

Fig. 5. Comparison between the weights by 

FAHP and AHP when n = 6. 

Fig. 6. Comparison between the weights by 

FAHP and AHP when n = 7. 

Fig. 7. Comparison between the weights by 

FAHP and AHP when n = 8. 

Fig. 8. Comparison between the weights by 

FAHP and AHP when n = 9. 
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Accordingly, we have the following observations: 

Observation 1: The difference between the triangular FAHP and AHP increases with the matrix size. 

Observation 2: The difference between the triangular FAHP and AHP increases with the fuzziness level 

of the membership function, which is measured by β. 

These two observations actually confirm the previous studies outlined in Section 1. However, the 

findings in this study provide quantitative evidence to support the observations. More importantly, 

 

Observation 3: an obvious difference between the triangular FAHP and the AHP (e.g., over 0.05 with 

respect to the 9-point scale) can be achieved only if β is sufficiently large (e.g., the difference reaches 

0.1 when β is larger than 0.7, but not for all cases). 

 

Observation 3 in fact leads to the conclusion that the triangular FAHP is unable to introduce much 

difference, in general. Although the usefulness of the triangular FAHP is quite limited, it is still worth 

understanding the circumstances when the triangular FAHP would be able to lead to different solutions 

compared to the AHP. This is addressed in the next section. 

 

Observation 4: the difference d becomes large with the increase in matrix size, and the difference is 

mainly generated by the difference in terms of the weight calculation methodology between the two 

methods, i.e., the logarithmic least squares method and the eigenvalue method (when β = 0 , 𝐝  is 

much greater than 0, especially for the case of n ≥ 4). 

 

Observation 4 implies that, except for the impact generated by the two different calculation methods 

for the triangular FAHP and AHP, the matrix size in fact has limited impacts on the triangular FAHP 

and AHP difference d. 

 

3.2 When to use the triangular FAHP? 

Effect of matrix size 

In this part, as the characteristics of the cases with larger size matrices (n > 4) are similar to the 

case when the matrix size n = 4, we focus on the discussion of the results when the matrix size n is 2, 

3, and 4, respectively. As presented in Table 3, when the matrix size is 2 and β = 0.5, only in one case, 
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i.e., 𝛼12 = 1 , the difference is greater than 5%. When β  reaches 0.9, the difference between the 

weights greater than 5% is only obtained for the same case, i.e., 𝛼12 = 1. For the case when the matrix 

size is 3 and β = 0.5, a 5% difference can only be obtained in less than 0.2% of all the consistent cases. 

The average standard deviation among the parameters is 0.4330. For the 99.8% consistent cases, the 

difference between the weights by the triangular FAHP and AHP is less than or equal to 5%. The average 

standard deviation among the parameters is 2.2767, much greater than those of matrices whose 

corresponding difference is larger than 5%. For the case when β reaches 0.9, the number of cases in 

which the difference of weights is larger than 5% is increased to 30%. For the cases when the matrix 

size is 4, 1.7% of the consistent matrices can make the weight difference greater than 5% when β = 

0.5, and 43% when β = 0.9. Note that, although the percentage of the existence of difference (i.e., d > 

5%) between the triangular FAHP and AHP increases, the difference is mainly caused by the calculation 

deviation between the logarithmic least squares method and the eigenvalue method for the large-size 

matrix, rather than the increase in matrix size. In addition, the matrix size n has limited correlated effects 

with the fuzziness level 𝛽 on the increase of the quantitative difference d between the triangular FAHP 

and AHP. 

 

Table 3  

Difference between the weights by the classical AHP and triangular FAHP. 

Matrix 

size (n) 
 d 

No. of consistent cases   No. of consistent cases   

β = 0.5 Percentage Ave.Sta. 

β =

 0.9 Percentage Ave.Sta.* 

2 
>5% 1  5.9% 0  1  5.9% 0  

<=5% 16  94.1% 0  16  94.1% 0  

3 
>5% 2  0.2% 0.4330  331  30.0% 2.0644  

<=5% 1103  99.8% 2.2767  774  70.0% 2.2767  

4 
>5% 14616  1.7% 2.3252  376099  43.0% 2.2622  

<=5% 858641  98.3% 2.3840  497158  57.0% 2.4744  

* Average standard deviation among the parameters in the pairwise comparison matrix A 

 

Effect of number of equally important criteria  
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Table 4 presents a more detailed analysis for those 3 × 3 consistent pairwise comparison matrices 

in which the difference between the weights of the triangular FAHP and AHP can be more than 5% 

when 𝛽 = 0.9. It shows that when the difference becomes larger, the average standard deviation among 

the parameters in the pairwise comparison matrix A becomes smaller. At the same time, the number of 

“1” among the parameters increases, which indicates that the more equally important elements we have 

in the matrix, the greater the difference that the triangular FAHP can make. This is also consistent with 

the average standard deviation. Additionally, for the cases when the difference d is less than 5%, the 

number of value “1” among the parameters is 0, which verifies that when the intensity of importance 

among the criteria that is judged by experts is distinct from each other, the significance generated by 

the triangular FAHP becomes smaller. 

Table 4  

Details of the case where the difference is significant for n = 3. 

Matrix size (n)  d No. of consistent cases Percentage No. of "1" Ave.Sta. 

3 

<=5% 774 70.0% 0 2.2767 

5%–15% 145 13.1% >=1 2.2418 

15%–25% 183 16.6% >=1 1.953 

>25% 3 0.3% >=2 0.2887 

 

When matrix size n = 4, all the consistent cases are displayed by Figs. 11–27 in Appendix D, which 

correspond to 17 exclusive cases. Fig. 3 presents one of the 17 exclusive cases where all the other matrix 

elements, given that element 𝛼12 = 1, are exhaustively tested. Table 5 presents the detailed analysis 

corresponding to Fig. 3. From this result, it is found that the number of consistent cases decreases as 

the difference “d” increases. In 56.93% of the cases, the difference of the fuzzy weights and eigenvector 

weights is less than or equal to 5% when β = 0.9. In less than 10% of all the consistent cases, the 

corresponding difference is greater than 0.2. When the difference between the weights obtained by the 

triangular FAHP and AHP is significant, the number of equally important elements increases and the 

average standard deviation decreases, and this is the same for the cases when the matrix size is 3.  

 

Consistency level 

To further verify the conditions where the application of the fuzzy numbers makes a qualitative 
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difference on the ranking of alternatives, we have the following definition. It is easy to understand that 

when the triangular FAHP makes no difference regarding the ranking of alternatives, the sign of (𝑤̃𝑖
𝑁 −

𝑤̃𝑗
𝑁) is the same as that of (𝑤𝑖

𝑁 − 𝑤𝑗
𝑁). Hence, we have 

Definition 2 (Qualitative Difference): The application of fuzzy numbers to the AHP makes a 

qualitative difference 𝑑𝑞𝑢𝑎 = (𝑤̃𝑖
𝑁 − 𝑤̃𝑗

𝑁)(𝑤𝑖
𝑁 − 𝑤𝑗

𝑁) in terms of ranking of alternatives if and only 

if there exist i, j that let 𝑑𝑞𝑢𝑎 < 0 2(i ≠ j, 1 ≤ i, j ≤ n) . In other words, there is no qualitative 

difference if and only if 𝑑𝑞𝑢𝑎 > 0 for any i, j (𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛). 

According to Definition 2, we exhaustively test the cases when the matrix sizes are 3 and 4, 

respectively. Based on the previous results, we find that similar results can be obtained under different 

scenarios. To avoid duplication, in this section we only conduct the computational test under the 

scenario when the elements of the randomly generated consistent pairwise comparison matrix are within 

the scale of {1, 2, 3, … , 9}, i.e., 𝑎𝑖𝑗(𝑖<𝑗) ∈ {1,2,3,… ,9}.  

Table 6 reports the results in a statistical way, which corresponds to the cases when the application 

of fuzzy numbers makes no qualitative difference regarding the ranking of alternatives by the AHP. It 

is presented that in more than 90% of all the consistent cases, the application of fuzzy numbers has no 

influence on the ranking. Even though the fuzziness level β  is extremely large (i.e., β ≥ 0.9 ), the 

application of fuzzy numbers makes no qualitative difference for 72.6% and 65% of all the consistent 

matrices, corresponding to the situations when the matrix sizes are 3 and 4, respectively. In addition, it 

is interesting to note that there exists a positive relationship between the fuzziness level β and the 

consistent ratio (CR) of the group. CR reflects the consistency level of the pairwise comparison matrix 

proposed by the experts. If the transitivity rule 𝑎𝑖𝑘 = 𝑎𝑖𝑗 × 𝑎𝑗𝑘  (∀i, k ∈ {1,2,… , n}, i ≠ k, j ∈

{1,2,… , n}\{i, k}) is perfectly satisfied, then CR equals n. For instance, the perfect CR for the case 

where the matrix size n is 3. The larger the CR is, the fuzzier the pairwise comparisons among the 

different alternatives proposed by the experts are. This indicates that it is unnecessary to apply fuzzy 

numbers into the AHP if the consistency level of the pairwise comparison matrices is not satisfactory. 

In other words, when the judgment made by the experts is already fuzzy, especially when there exist 

pairs of equal importance (i.e., 𝑎𝑖𝑗 = 1, 𝑖 ≠ 𝑗 ), further consideration of fuzzy numbers is useless. 

                                                             
2 Note that the cases where 𝑑𝑞𝑢𝑎 = 0, 𝑖. 𝑒. , 𝑤̃𝑖

𝑁 = 𝑤̃𝑗
𝑁(𝑜𝑟 𝑤𝑖

𝑁 = 𝑤𝑗
𝑁) are exclusive of this study, 

and it is not the common case from the computational perspective. 
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The implications of the above findings actually are in consensus with the results in the previous 

section regarding the discussion of the quantitative difference. It is demonstrated that the AHP is useful 

in assisting the decision-making process, especially when the problem is complex and the judgment on 

the criteria is already a little fuzzy. The larger the matrix size is, the probability to obtain fuzzy 

judgments becomes larger, and in that case, the application of fuzzy numbers to the AHP becomes less 

useful. However, when the judgments on the criteria are highly consistent, to avoid subjectivity from a 

small group of experts, the application of fuzzy numbers suggested by other experts may be necessary 

to obtain different rankings for the references.  

 

Table 5  

Details of the case where the difference is significant for n = 4 

Matrix size (n)  d No. of consistent cases Percentage No. of "1" Ave.Sta. 

4 

<=5% 497158 56.93% <=1 2.474437868 

5%–10% 123988 14.17% >=1(98.8%) 2.2952 

10%–20% 235425 26.90% >=1 2.30785 

20%–40% 16508 9.56% >=2 1.8278 

>40% 178 0.02% >=3 0.8621 

 

Table 6 

Situations when the application of fuzzy numbers makes no qualitative differences 

β n 

No. of 

consistent 

matrices 

Percentage Avg.CR n 

No. of 

consistent 

matrices 

Percentage Avg.CR 

(0,0.1]   0 0% N/A  1 0 4.005935 

(0,0.2]   0 0% N/A  91 0.2% 4.111753 

(0,0.3]   0 0% N/A  293 0.5% 4.117781 

(0,0.4]   7 2.9% 3.001542  1344 2.3% 4.139364 

(0,0.5] 3 7 2.9% 3.002597 4 1864 3.1% 4.144563 

(0,0.6]   11 4.6% 3.013293  2855 4.8% 4.146537 

(0,0.7]   13 5.4% 3.016717  4528 7.6% 4.152964 

(0,0.8]   11 4.6% 3.039688  6668 11.2% 4.169719 

(0,0.9]   175 72.6% 3.044325  38702 65.0% 4.183363 

Overall   224(241) 92.9%   56346(59509) 94.7%  
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According to the comprehensive analysis above, we can summarize the necessary conditions to 

apply triangular fuzzy numbers in the AHP as follows, and they are displayed in Fig. 9. 

1) 𝐶𝑅 ≤ 𝐶𝑅∗(𝑛), where 𝐶𝑅∗(𝑛) is a threshold of the consistency ratio given the matrix size n; 

2) Judgments with dominant preference and equally important elements. 

 

 

Fig. 9. Necessary conditions for the application of triangular fuzzy numbers in AHP. 

 

3.3 Real-world illustrative case 

Here, we apply both the triangular fuzzy AHP and the classical AHP into a real-world case to further 

illustrate the proposed research implication. It is a problem of ERP selection faced by Turkish Airlines 

[11]. The objective is to determine the best ERP system to choose. A series of weights are supposed to 

be determined among different corporate criteria (i.e., references, adequacy, after sales, and know-how). 

Table 7 shows the original pairwise comparison among those four criteria based on the triangular fuzzy 

version proposed in [11]. Accordingly, we have the corresponding CR under the pairwise comparison 

and the weights by applying both the AHP and fuzzy AHP as follows: 

CR = 4.1213, 

(𝑤1
𝑁, 𝑤2

𝑁, 𝑤3
𝑁, 𝑤4

𝑁) = (0.1953,0.2761,0.3905,0.1381), 

(𝑤̃1
𝑁, 𝑤̃2

𝑁, 𝑤̃3
𝑁, 𝑤̃4

𝑁) = (0.2046,0.2744,0.3684,0.1527). 

Obviously, there is no qualitative difference between the rankings under the classical AHP and the 

triangular fuzzy AHP. To demonstrate our proposed research implication, we change the original 𝑎12, 

which is equal to 1/2 in Table 7, into 1, i.e., 𝑎12 = 1. In this way, the consistency level of the revised 

pairwise comparison matrix is improved to 4.0606. We maintain the other numbers the same and 

recalculate the weights by applying the AHP and fuzzy AHP again. We have 

(𝑤1
𝑁, 𝑤2

𝑁, 𝑤3
𝑁, 𝑤4

𝑁) = (0.2322,0.2322,0.3952,0.1404), 
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(𝑤̃1
𝑁, 𝑤̃2

𝑁, 𝑤̃3
𝑁, 𝑤̃4

𝑁) = (0.2146,0.2630,0.3691,0.1529). 

In this case, the ranking of the criteria (i.e., references, adequacy, after sales, and know-how) by the 

classical AHP is 2, 2, 1, 43, and their ranking by applying the triangular fuzzy AHP is 3, 2, 1, 4. The 

result is consistent with our findings and indicates that when the judgment of the criteria by the experts 

is already fuzzy under the AHP, there is no need to apply fuzzy numbers again. However, when the 

judgment on the criteria by the experts is clear and there exist criteria of equal importance, the 

application of fuzzy numbers may induce qualitatively different priorities, which provides the decision 

maker with more references. 

 

Table 7 

Pairwise comparison matrix of the corporate criteria based on the triangular fuzzy version. 

Criteria  References Adequacy After sales Know-how 

References (1,1,1) (1/3,1/2,1) (1/3,1/2.1) (1,2,3) 

Adequacy (1,2,3) (1,1,1) (1/3,1/2,1) (1,2,3) 

After sales (1,2,3) (1,2,3) (1,1,1) (1,2,3) 

Know-how (1/3,1/2,1) (1/3,1/2,1) (1/3,1/2,1) (1,1,1) 

 

4. Extension to trapezoidal fuzzy numbers 

In this section, the general case of fuzzy numbers, i.e., trapezoidal fuzzy numbers, is further 

discussed to show the robustness of our results derived from the case of triangular fuzzy numbers in 

Section 3. As shown in Fig. 10, the mode of a trapezoidal fuzzy number is a flat line instead of a point. 

Accordingly, the corresponding symmetric4 trapezoidal fuzzy version 𝐴̂ = (𝑙𝑖𝑗 , 𝑘𝑖𝑗, 𝑜𝑖𝑗 , 𝑢𝑖𝑗) is 

 

[
 
 
 
 

(1,1,1,1)

(1 𝛼12+𝛽⁄ , 1 𝛼12 + 𝛽1⁄ , 1 𝛼12−𝛽1⁄ , 1 𝛼12−𝛽⁄ )

(1 𝛼13+𝛽⁄ , 1 𝛼13 + 𝛽1⁄ , 1 𝛼13−𝛽1⁄ , 1 𝛼13−𝛽⁄ )
⋮

(1 𝛼1𝑛+𝛽⁄ , 1 𝛼1𝑛 + 𝛽1⁄ , 1 𝛼1𝑛−𝛽1⁄ , 1 𝛼1𝑛−𝛽⁄ )

(𝛼12 − 𝛽, 𝛼12 − 𝛽1, 𝛼12 + 𝛽1, 𝛼12 + 𝛽)

(1,1,1,1)

(1 𝛼23+𝛽⁄ , 1 𝛼23 + 𝛽1⁄ , 1 𝛼23−𝛽1⁄ , 1 𝛼23−𝛽⁄ )
⋮

(1 𝛼2𝑛+𝛽⁄ , 1 𝛼2𝑛 + 𝛽1⁄ , 1 𝛼2𝑛−𝛽1⁄ , 1 𝛼2𝑛−𝛽⁄ )

(𝛼13 − 𝛽, 𝛼13 − 𝛽1, 𝛼13 + 𝛽1, 𝛼13 + 𝛽)

(𝛼23 − 𝛽, 𝛼23 − 𝛽1, 𝛼23 + 𝛽1, , 𝛼23 + 𝛽)

(1,1,1,1)
⋮

(1 𝛼3𝑛+𝛽⁄ , 1 𝛼3𝑛 + 𝛽1⁄ , 1 𝛼3𝑛−𝛽1⁄ , 1 𝛼3𝑛−𝛽⁄ )

…
…
…

…

(𝛼1𝑛 − 𝛽, 𝛼1𝑛 − 𝛽1, 𝛼1𝑛 + 𝛽1, 𝛼1𝑛 + 𝛽)

(𝛼2𝑛 − 𝛽, 𝛼2𝑛 − 𝛽1, 𝛼2𝑛 + 𝛽1, 𝛼2𝑛 + 𝛽)

(𝛼3𝑛 − 𝛽, 𝛼3𝑛 − 𝛽1, 𝛼3𝑛 + 𝛽1, 𝛼3𝑛 + 𝛽)
⋮

(1,1,1,1) ]
 
 
 
 

  

 

, where 𝛽1 < 𝛽 . The geometric mean method is used to calculate the fuzzy weights 𝑤̂ =

                                                             
3 Here, the weights of the criteria references and adequacy are the same, and both are ranked as second. 
4 Note that, we continue utilizing the symmetric version of fuzzy numbers to make the content consistent and 

focusing on the study of the impact of the magnitude of fuzziness on the ranking (i.e., weights). 
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[𝑤̂1, 𝑤̂2, … , 𝑤̂𝑛]𝑇 under the trapezoidal fuzzy pairwise comparison matrix. In this case, the fuzzy weight 

𝑤̂𝑖 = (
𝑙𝑖

𝑢
,
𝑘𝑖

𝑜
,
𝑜𝑖

𝑘
,
𝑢𝑖

𝑙
)(𝑖 = 1,2,… , 𝑛) , where 𝑙𝑖 = (∏ 𝑙𝑖𝑗

𝑛
𝑗=1 )

1

𝑛  , 𝑘𝑖 = (∏ 𝑘𝑖𝑗
𝑛
𝑗=1 )

1

𝑛  ,  𝑜𝑖 = (∏ 𝑜𝑖𝑗
𝑛
𝑗=1 )

1

𝑛, 

𝑢𝑖 = (∏ 𝑢𝑖𝑗
𝑛
𝑗=1 )

1

𝑛 , and 𝑙 = ∑ 𝑙𝑖
𝑛
𝑖=1 , 𝑘 = ∑ 𝑘𝑖

𝑛
𝑖=1  , 𝑜 = ∑ 𝑜𝑖

𝑛
𝑖=1  , 𝑢 = ∑ 𝑢𝑖

𝑛
𝑖=1 . 

 

Fig. 10. Trapezoidal membership function. 

 

Accordingly, the normalized defuzzified weight 𝑤̂𝑖
𝑁 =

𝑙𝑖
𝑢
+

𝑘𝑖
𝑜
+

𝑜𝑖
𝑘
+

𝑢𝑖
𝑙

𝑙

𝑢
+

𝑘

𝑜
+

𝑜

𝑘
+

𝑢

𝑙

. To simplify the expression of 

the defuzzified weight, we define 𝑤̂𝑖
𝑁 = 𝐺(𝛽, 𝛽1), where G is a continuous function of 𝛽, 𝛽1. Owing 

to the complexity of the close form of Function f, in the following we will conduct numerical 

experiments to show the impact of the relationship between 𝛽 and 𝛽1 on the magnitude of difference 

d between the triangular FAHP and AHP. 

We let 𝛽1 = 0, 
1

4
β, 

1

3
β, 

1

2
β, 

3

4
β, respectively. 𝛽1 = 0 refers to the triangular FAHP. With the 

increase in 𝛽1, the flat line of the trapezoidal membership function of each fuzzy number in matrix 𝐴̂ 

becomes wider, which implies higher fuzziness in terms of the decision maker’s judgment. As 

demonstrated in Section 3, an obvious difference d between the triangular FAHP and AHP, e.g., d = 5%, 

can only be attained if 𝛽 is sufficiently large. Hence, here we compare the performance in the case of 

𝛽 = 0.9.  

As presented in Table 8, given the matrix size, the percentage of a trapezoidal fuzzy number-based 

pairwise comparison matrices to attain 5% difference (i.e., total deviation from the weights by the non-

fuzzy pairwise comparison matrix) is increased with 𝛽1 . This is reasonable as the fuzziness of the 

judgment becomes significant. However, the percentage to attain 5% difference is no larger than that of 

the triangular fuzzy number-based pairwise comparison matrix. It is demonstrated that the results 

derived in the case of triangular fuzzy numbers is robust to the case of trapezoidal fuzzy numbers. The 
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impact of the fuzziness on the weights under the trapezoidal FAHP might be not significant compared 

to the triangular FAHP unless the level of fuzziness 𝛽1 is close to 𝛽 and 𝛽 is sufficiently large. 

Table 8 

Comparison between triangular and trapezoidal fuzzy numbers 

 
0 

1

4
β 

1

3
β 

1

2
β 

3

4
β 

2 5.9% 5.9% 5.9% 5.9% 5.9% 

3 30.4% 25.5% 29.9% 26.7% 30.4% 

4 43.1% 34.0% 35.7% 37.7% 42.3% 

 

5. Conclusions 

In this study, a comprehensive analysis has been carried out to provide insights on the conditions 

where there is difference between the fuzzy AHP and classical AHP from both the quantitative and 

qualitative perspectives. The closed forms of the difference between the fuzzy AHP and classical AHP 

are proven and presented for small matrix scales. We further verified the conditions where it is necessary 

to apply the fuzzy AHP. 

First, the main theoretical contribution of this study is that, according to the numerical experiments, 

it is verified that a quantitative difference between the triangular fuzzy AHP and classical AHP exists, 

even for small matrix scales, and such difference increases with the matrix size and the level of fuzziness. 

However, a significant difference cannot be observed in most cases, unless the fuzziness level is 

sufficiently large (e.g., a 0.1 difference occurs only when 𝛽 reaches 0.7, where 0 < 𝛽 < 1). It is also 

presented that in more than 65% of all the consistent cases, the application of fuzzy numbers has no 

influence on the ranking of criteria, even though the fuzziness level β is extremely large (i.e., β is 

approaching 1). Thus, in general, the triangular FAHP is unable to introduce much difference from both 

the quantitative and qualitative perspectives. The triangular FAHP may become useful when the 

pairwise comparison matrix is highly consistent. It provides different criteria rankings for references to 

avoid the subjectivity from a small group of experts when the judgment on the criteria made by them is 

highly consistent. The matrix size does not make the influence of the application of triangular fuzzy 

numbers on the AHP more significant. With the increase in matrix size, the quantitative difference 

between the triangular FAHP and classical AHP is mainly generated by the distinction in terms of the 

calculation techniques between the two classical methods, i.e., the logarithmic least squares method and 

the eigenvalue method. In addition, the probability to obtain a high consistency level regarding the 
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pairwise comparison becomes lower with the increase in the number of criteria to be considered. That 

is also one of the reasons why the application of triangular fuzzy numbers in the AHP is unnecessary 

when the problem becomes complex and the judgments are already fuzzy for large size problems. 

The other condition in which the application of the triangular fuzzy numbers in the AHP is useful 

is for the cases when the number of equally important (i.e., 1 or small numbers in the matrix) elements 

is sufficiently high. In other words, the triangular FAHP might work better when the relative importance 

of the multiple criteria is close to each other. In other words, there is one dominating criterion (or a few 

of them) in the group. In such a case, the applicability of the FAHP is in fact weakened because the final 

decision is highly dependent on the dominating criterion (or a few criteria). In the extension analysis, 

we verify the robustness of the results derived from Section 3 for the case of trapezoidal fuzzy numbers, 

and further demonstrates that the difference attained by the trapezoidal FAHP may not be greater than 

that obtained by the triangular FAHP. 

 This study provides insights on the usefulness of FAHP, analytically, and describes the conditions 

when fuzzy AHP can introduce differences over classical AHP. However, by examining the conditions 

when such differences arise, this study infers that FAHP is in fact not a favorable method over classical 

AHP. A sophisticated method is not necessarily better than a simple method! 

 There are still some limitations in this study. The comprehensive experimental analysis is 

conducted for relatively small size problems. To generalize the research findings, big size problems 

need to be tested in a more comprehensive way. Another limitation is that we focus on the discussion 

of the triangular and trapezoidal fuzzy AHP. The other extensions of fuzzy AHP such as Intuitionistic 

Fuzzy AHP and Hesitant Fuzzy AHP methods can be the possible future directions. Their further 

comparisons with the classical AHP and the exploration of corresponding conditions to make 

differences regarding the criteria/alternative rankings are interesting and challenging.  

 

Appendix A 

Proof of Proposition 1: 

Assume A=[
1 𝛼12
1

𝛼12
1

]. To solve |𝐴 − 𝜆𝐼| = |
1 − 𝜆 𝛼12

1

𝛼12
1 − 𝜆

| = 0, equivalently to solve 

(1 − 𝜆)2 − 1 = 0. 𝜆 = 0 𝑜𝑟 𝜆 = 2. Thus 𝜆𝑚𝑎𝑥 = 2.  
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Let (A − 𝜆𝑚𝑎𝑥I)X = [
−1 𝛼12
1

𝛼12
−1

] [
𝑥1

𝑥2
] = 0.  Thus, 𝑥1 = 𝛼12𝑥2 . So, the principle eigenvector is 

k [
𝛼12

1
] (𝑘 ∈ 𝑅). To normalize it, 𝑤𝑁 = [

𝛼12

𝛼12+1

1

𝛼12+1

]. 

As 𝑙1 = (𝛼12 − 𝛽)
1

2, 𝑙2 = (
1

𝛼12+𝛽
)

1

2
, 𝑢1 = (𝛼12 + 𝛽)

1

2, 𝑢2 = (
1

𝛼12−𝛽
)

1

2
, 𝑚1 = 𝛼12

1

2,𝑚2 = (
1

𝛼12
)

1

2. 

 𝑙 = 𝑙1 + 𝑙2, 𝑢 = 𝑢1 + 𝑢2, m = 𝑚1 + 𝑚2.   

𝑤̃1
𝑁 =

𝑙1
𝑢

+
𝑚1
𝑚

+
𝑢1
𝑙

𝑙

𝑢
+1+

𝑢

𝑙

=

(𝛼12−𝛽)
1
2

(𝛼12+𝛽)
1
2+(

1
𝛼12−𝛽

)

1
2

+
(𝛼12+𝛽)

1
2

(𝛼12−𝛽)
1
2+(

1
𝛼12+𝛽

)

1
2

+
𝛼12

1
2

𝛼12

1
2+(

1
𝛼12

)
1
2

(𝛼12−𝛽)
1
2+(

1
𝛼12+𝛽

)

1
2

(𝛼12+𝛽)
1
2+(

1
𝛼12−𝛽

)

1
2

+
(𝛼12+𝛽)

1
2+(

1
𝛼12−𝛽

)

1
2

(𝛼12−𝛽)
1
2+(

1
𝛼12+𝛽

)

1
2

+1

. By multiplying both denominator and 

nominator by (𝛼12 + 𝛽)
1

2 + (
1

𝛼12−𝛽
)

1

2
, (𝛼12 − 𝛽)

1

2 + (
1

𝛼12+𝛽
)

1

2
, 𝛼12 + 𝛽, 𝛼12 − 𝛽 and simplification, 

𝑤̃1
𝑁 =

𝛼12(𝛼12
2 −𝛽2)

1
2[

−𝛽2

𝛼12+1
+2(1+

1

𝛼12+1
)(𝛼12

2 −𝛽2)
1
2+

𝛼12
2 +1

𝛼12+1
+2]

(𝛼12
2 −𝛽2)

1
2[−𝛽2+2(1+𝛼12)(𝛼12

2 −𝛽2)
1
2+𝛼12

2 +4𝛼12+1]+2𝛼12

, 𝑤̃2
𝑁 = 1 − 𝑤̃1

𝑁. 

Therefore,  

𝑑1 = |
𝛼12(𝛼12

2 −𝛽2)
1
2[

−𝛽2

𝛼12+1
+2(1+

1

𝛼12+1
)(𝛼12

2 −𝛽2)
1
2+

𝛼12
2 +1

𝛼12+1
+2]

(𝛼12
2 −𝛽2)

1
2[−𝛽2+2(1+𝛼12)(𝛼12

2 −𝛽2)
1
2+𝛼12

2 +4𝛼12+1]+2𝛼12

−
𝛼12

𝛼12+1
|, 

𝑑2 = |1 −
𝛼12(𝛼12

2 −𝛽2)
1
2[

−𝛽2

𝛼12+1
+2(1+

1

𝛼12+1
)(𝛼12

2 −𝛽2)
1
2+

𝛼12
2 +1

𝛼12+1
+2]

(𝛼12
2 −𝛽2)

1
2[−𝛽2+2(1+𝛼12)(𝛼12

2 −𝛽2)
1
2+𝛼12

2 +4𝛼12+1]+2𝛼12

−
1

𝛼12+1
|.  

∎ 

 

Appendix B 

Proof of Proposition 2: 

Assume A is a 3 × 3  positive reciprocal matrix 

[
 
 
 
1 𝛼12 𝛼13
1

𝛼12
1 𝛼23

1

𝛼13

1

𝛼23
1 ]

 
 
 

,  𝛼12, 𝛼13, 𝛼23 ≥ 1.  Its 

corresponding symmetric triangular fuzzy version 𝐴̅ = (𝑙𝑖𝑗 , 𝑚𝑖𝑗, 𝑢𝑖𝑗)  is 

[
 
 
 

(1,1,1) (𝛼12 − 𝛽, 𝛼12, 𝛼12 + 𝛽) (𝛼13 − 𝛽, 𝛼13, 𝛼13 + 𝛽)

(
1

𝛼12+𝛽
,

1

𝛼12
,

1

𝛼12−𝛽
) (1,1,1) (𝛼23 − 𝛽, 𝛼23, 𝛼23 + 𝛽)

(
1

𝛼13+𝛽
,

1

𝛼13
,

1

𝛼13−𝛽
) (

1

𝛼23+𝛽
,

1

𝛼23
,

1

𝛼23−𝛽
) (1,1,1) ]

 
 
 

 . To solve |𝐴 − 𝜆𝐼| = 0, 
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equivalently to solve the polynomial equation (1 − 𝜆)3 − 3(1 − 𝜆) +
𝛼12𝛼23

𝛼13
+

𝛼13

𝛼12𝛼23
= 0. 

𝜆1 = (
𝛼12𝛼23

𝛼13
)

1

3 + (
𝛼12𝛼23

𝛼13
)−

1

3 + 1, 𝜆2 = −
(1−𝑖√3)

2
(
𝛼12𝛼23

𝛼13
)

1

3
−

(1+𝑖√3)

2
(
𝛼12𝛼23

𝛼13
)
−

1

3
+ 1,  

𝜆3 = −
(1+𝑖√3)

2
(
𝛼12𝛼23

𝛼13
)

1

3
−

(1−𝑖√3)

2
(
𝛼12𝛼23

𝛼13
)
−

1

3
+ 1. Thus 𝜆𝑚𝑎𝑥 = (

𝛼12𝛼23

𝛼13
)

1

3 + (
𝛼12𝛼23

𝛼13
)−

1

3 + 1. 

The normalized weight 𝑤𝑁 satisfies (A − 𝜆𝑚𝑎𝑥I)𝑤
𝑁=0, namely, 

[
 
 
 
 
 −(

𝛼12𝛼23

𝛼13
)

1

3 − (
𝛼12𝛼23

𝛼13
)−

1

3 𝛼12 𝛼13

1

𝛼12
−(

𝛼12𝛼23

𝛼13
)

1

3 − (
𝛼12𝛼23

𝛼13
)−

1

3 𝛼23

1

𝛼13

1

𝛼23
−(

𝛼12𝛼23

𝛼13
)

1

3 − (
𝛼12𝛼23

𝛼13
)−

1

3
]
 
 
 
 
 

[

𝑤1
𝑁

𝑤2
𝑁

𝑤3
𝑁

] = 0.  

Let a = (
𝛼12𝛼23

𝛼13
)

1

3 + (
𝛼12𝛼23

𝛼13
)−

1

3, then 𝑤1
𝑁 =

𝑎𝛼13+𝛼12𝛼23

𝑎2−1
𝑤3

𝑁, 𝑤2
𝑁 =

𝑎𝛼13+𝛼12𝛼23+(𝑎2−1)𝛼12𝛼23

𝛼12𝑎(𝑎2−1)
𝑤3

𝑁. 

Because 𝑤1
𝑁 + 𝑤2

𝑁 + 𝑤3
𝑁 = 1, 

(
𝑎𝛼13+𝛼12𝛼23

𝑎2−1
+

𝑎𝛼13+𝛼12𝛼23+(𝑎2−1)𝛼12𝛼23

𝛼12𝑎(𝑎2−1)
+ 1)𝑤3

𝑁 = 1,  

𝑤3
𝑁 =

𝛼12𝑎(𝑎2−1)

𝑎2𝛼12𝛼13+𝑎𝛼12
2 𝛼23+𝑎𝛼13+𝛼12𝛼23+(𝑎2−1)𝛼12𝛼23+𝛼12𝑎(𝑎2−1)

=

𝛼12(𝑎2−1)

𝛼12𝑎2+(𝛼12𝛼13+𝛼12𝛼23)𝑎+𝛼12
2 𝛼23+𝛼13−𝛼12

, thus, 

𝑤1
𝑁 =

𝑎𝛼12𝛼13+𝛼12
2 𝛼23

𝛼12𝑎2+(𝛼12𝛼13+𝛼12𝛼23)𝑎+𝛼12
2 𝛼23+𝛼13−𝛼12

, 

𝑤2
𝑁 =

𝛼13+𝑎𝛼12𝛼23

𝛼12𝑎2+(𝛼12𝛼13+𝛼12𝛼23)𝑎+𝛼12
2 𝛼23+𝛼13−𝛼12

. 

As 𝑙1 = ((𝛼12 − 𝛽)(𝛼13 − 𝛽))
1

3, 𝑙2 = ((
1

𝛼12+𝛽
) (𝛼23 − 𝛽))

1

3

, 𝑙3 = ((
1

𝛼13+𝛽
) (

1

𝛼23+𝛽
))

1

3

,  

𝑢1 = ((𝛼12 + 𝛽)(𝛼13 + 𝛽))
1

3, 𝑢2 = ((
1

𝛼12−𝛽
) (𝛼23 + 𝛽))

1

3

, 𝑢3 = ((
1

𝛼13−𝛽
) (

1

𝛼23−𝛽
))

1

3

, 

𝑚1 = (𝛼12𝛼13)
1

3, 𝑚2 = (
𝛼23

𝛼12
)

1

3
, 𝑚3 = (

1

𝛼13𝛼23
)

1

3
, 

𝑙 = 𝑙1 + 𝑙2 + 𝑙3, 𝑢 = 𝑢1 + 𝑢2 + 𝑢3, 𝑚 = 𝑚1 + 𝑚2 + 𝑚3. 

𝑤̃1
𝑁 =

𝑙1
𝑢

+
𝑚1
𝑚

+
𝑢1
𝑙

𝑙

𝑢
+1+

𝑢

𝑙

=
𝑙1𝑙+𝑢1𝑢+

𝑚1
𝑚

𝑙𝑢

𝑙2+𝑢2+𝑙𝑢
=

(𝛼12−𝛽)
1
3(𝛼13−𝛽)

1
3𝑙+(𝛼12+𝛽)

1
3(𝛼13+𝛽)

1
3𝑢+

(𝛼12𝛼13)
1
3

(𝛼12𝛼13)
1
3+(

𝑎23
𝑎12

)
1
3+(

1
𝑎13𝑎23

)
1
3

𝑙𝑢

𝑙2+𝑢2+𝑙𝑢
,  

𝑤̃2
𝑁 =

𝑙2
𝑢

+
𝑚2
𝑚

+
𝑢2
𝑙

𝑙

𝑢
+1+

𝑢

𝑙

=
𝑙2𝑙+𝑢2𝑢+

𝑚2
𝑚

𝑙𝑢

𝑙2+𝑢2+𝑙𝑢
=

(𝛼12+𝛽)
−

1
3(𝛼23−𝛽)

1
3𝑙+(𝛼12−𝛽)

−
1
3(𝛼23+𝛽)

1
3𝑢+

(
𝑎23
𝑎12

)
1
3

(𝛼12𝛼13)
1
3+(

𝑎23
𝑎12

)
1
3+(

1
𝑎13𝑎23

)
1
3

𝑙𝑢

𝑙2+𝑢2+𝑙𝑢
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Multiplying both denominator and nominator by (𝛼12 + 𝛽)
1

3(𝛼12 − 𝛽)
1

3, 

𝑤̃2
𝑁 =

(𝛼12−𝛽)
1
3(𝛼23−𝛽)

1
3𝑙+(𝛼12+𝛽)

1
3(𝛼23+𝛽)

1
3𝑢+

(𝛼12
2 −𝛽2)

1
3(

𝑎23
𝑎12

)
1
3

(𝛼12𝛼13)
1
3+(

𝑎23
𝑎12

)
1
3+(

1
𝑎13𝑎23

)
1
3

𝑙𝑢

(𝛼12
2 −𝛽2)

1
3(𝑙2+𝑢2+𝑙𝑢)

. 

 Similarly, 

𝑤̃3
𝑁 =

𝑙3
𝑢

+
𝑚3
𝑚

+
𝑢3
𝑙

𝑙

𝑢
+1+

𝑢

𝑙

=
𝑙3𝑙+𝑢3𝑢+

𝑚3
𝑚

𝑙𝑢

𝑙2+𝑢2+𝑙𝑢
=

(𝛼13−𝛽)
1
3(𝛼23−𝛽)

1
3𝑙+(𝛼13+𝛽)

1
3(𝛼23+𝛽)

1
3𝑢+

(𝛼13
2 −𝛽2)

1
3(𝛼23

2 −𝛽2)

1
3(

1
𝑎13𝑎23

)
1
3

(𝛼12𝛼13)
1
3+(

𝑎23
𝑎12

)
1
3+(

1
𝑎13𝑎23

)
1
3

𝑙𝑢

(𝛼13
2 −𝛽2)

1
3(𝛼23

2 −𝛽2)
1
3(𝑙2+𝑢2+𝑙𝑢)

.  

∎ 

Appendix C 

Proof of Proposition 3: 

 

For n=4, assume any 4 × 4  positive reciprocal matrix A=( 𝛼𝑖𝑗 ). Let |𝐴 − 𝜆𝐼| = 0 , a 4 power 

polynomial equation for 𝜆 is obtained: (1 − λ)4 − 4(1 − λ)2 + (
𝛼34𝛼23

𝛼24
+

𝛼24

𝛼34𝛼23
+

𝛼12𝛼23

𝛼13
+

𝛼13

𝛼12𝛼23
+

𝛼13𝛼34

𝛼14
+

𝛼14

𝛼12𝛼24
) (1 − 𝜆) −

𝛼12𝛼23𝛼34

𝛼14
−

𝛼13𝛼34

𝛼12𝛼24
−

𝛼24𝛼13

𝛼23𝛼14
−

𝛼14

𝛼12𝛼23𝛼34
+ 2 = 0. Solved by Mathematica 9, 

we have: 𝜆1,2 = 1 −
1

2
√𝑎 ±

1

2
√8 − 𝑎 −

2𝑏

√𝑎
, 𝜆3,4 = 1 +

1

2
√𝑎 ±

1

2
√8 − 𝑎 +

2𝑏

√𝑎
, where, 

a =
8

3
+

421 3⁄ (4+3𝑐)

3(−128+27𝑏2+288𝑐+3√3√−256𝑏2+27𝑏4−4096𝑐+576𝑏2𝑐+2048𝑐2−256𝑐3)1 3⁄
+

(−128+27𝑏2+288𝑐+3√3√−256𝑏2+27𝑏4−4096𝑐+576𝑏2𝑐+2048𝑐2−256𝑐3)1 3⁄

321 3⁄  ,  

where, b =
𝛼34𝛼23

𝛼24
+

𝛼24

𝛼34𝛼23
+

𝛼12𝛼23

𝛼13
+

𝛼13

𝛼12𝛼23
+

𝛼13𝛼34

𝛼14
+

𝛼14

𝛼12𝛼24
 , c = −

𝛼12𝛼23𝛼34

𝛼14
−

𝛼13𝛼34

𝛼12𝛼24
−

𝛼24𝛼13

𝛼23𝛼14
−

𝛼14

𝛼12𝛼23𝛼34
+ 2.  

Because 𝜆𝑚𝑎𝑥  cannot be decided in this stage. Thus 𝑤𝑁  cannot be expressed in closed-form. 

Therefore, F(β) cannot be expressed in closed form. 

For the cases n ≥ 5 , no closed form can be found for λs  satisfying |A − λI| = 0 , whose highest 

power is greater than equal to 5 (Galois theory). 

∎ 
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Appendix D 

 

Fig. 11. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

9
 

 

Fig. 12. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

8
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Fig. 13. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

7
 

 

Fig. 14. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

6
 

 

Fig. 15. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

5
 

 
Fig. 16. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

4
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Fig. 17. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

3
 

 

Fig. 18. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 =
1

2
 

 
Fig. 19. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 1 
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Fig. 20. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 2 

 
Fig. 21. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 3 

 

 

Fig. 22. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 4 
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Fig. 23. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 5 

 
Fig. 24. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 6 

 

Fig. 25. Comparison between the weights generated the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 7 
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Fig. 26. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 8 

 

 

Fig. 27. Comparison between the weights generated by the FAHP and the AHP when matrix size n = 4 

for the consistent cases where all the parameters are exhaustively tested except 𝛼12 = 9 
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