
A three-level particle swarm optimization with variable 

neighbourhood search algorithm for the production scheduling 

problem with mould maintenance 

To improve the reliability of production systems in the plastics industry, 

researchers are now taking mould maintenance into consideration, besides machine 

maintenance, in production scheduling problem. Different strategies and 

approaches are proposed to solve the Production Scheduling with Mould 

Maintenance (PS-MM) problem. However, it remains a challenge to provide a 

satisfactory solution. In this research, a new hybrid metaheuristic algorithm 

(TLPSO-VNS algorithm) is proposed, which is a combination of the Three-Level 

Particle Swarm Optimization (TLPSO) algorithm devised in this study and 

Variable Neighbourhood Search (VNS). Differing from the joint scheduling 

strategies used in existing research, this study divides the integrated problem into 

three sub-problems and solves them through three interrelated PSOs named 

TLPSO. Then, the solutions obtained by TLPSO are enhanced by VNS. The key 

characteristics of TLPSO and VNS are employed simultaneously to achieve 

superior solutions in solving the addressed optimization problem. In the proposed 

hybrid algorithm, the TLPSO performs a global search whereas the VNS has a 

local search role. These two techniques complement each other to enhance the 

search diversification and intensification. Numerical experiments on a variety of 

simulated scenarios show the efficiency and effectiveness of the proposed 

algorithm by comparing it with some other algorithms. 
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1. Introduction 

Because of the special merits of plastics such as high strength, low price, light 

weight, and user-friendliness, plastics materials find extensive utilization in many 

industries and daily life (Shameem et al. 2017). Moreover, the plastics industry greatly 

contributes to the economy of many countries such as the United States through providing 

employment to a large number of people, and is regarded as the third largest 

manufacturing industry in the country (Lokensgard 2017). The main process of 

converting plastics into products is by injection moulding, which needs both an injection 

machine and an injection mould. Since consumer demand for plastic products is reflected 

by the overall growth of plastics sales (Lokensgard 2017), more methods are being 

explored to improve the resource efficiency of the production process under new visions 

for the future, for example, the “smart factory” (Dangel 2016). Furthermore, to realize 

production objectives and avoid production bottlenecks, production scheduling is planned 

in advance. A good production scheduling can ensure the efficient use of labour resources 

and guarantee a high machine utilization rate (Christopher 2006). Traditionally, it is 

postulated that machines are always available throughout the whole production planning 

stage in most research studies on production scheduling. While, in actual situations, this 

assumption may not be reasonable, because failure may occur at any time, making some 

machines unavailable for job processing (Rajkumar, Asokan, and Vamsikrishna 2010). 

So, machine maintenance planning is essential, and can enhance the reliability of the 

system. To maximize the system productivity, maintenance planning and production 

http://search.credoreference.com/content/entry/collinsbus/production_benchmarking/0


scheduling must be considered together, and be given the same importance level (Berrichi 

et al. 2010). More and more scholars are paying attention to production scheduling with 

the machine maintenance problem, and different models which integrate the production 

scheduling with machine maintenance planning have been built to optimize productivity 

by harmonizing both activities. However, only the maintenance of machine is considered 

in traditional production scheduling with the resource maintenance problem and research 

on production scheduling with the mould maintenance problem is limited. Since the 

injection mould is also a significant element in the plastics industry, the integrated 

problem with mould maintenance consideration should be given more attention.   

Recently, Wong, Chan, and Chung (2012) built a model to integrate production 

scheduling with mould maintenance. Time-dependent deteriorating maintenance schemes 

for the machine and mould were used and a joint scheduling strategy was proposed, which 

decided production scheduling, machine maintenance, and mould maintenance 

simultaneously to minimize the overall makespan. The genetic algorithm (GA) was used 

to solve this problem. However, the maintenance planning found may not be the most 

suitable one for the production scheduling when production scheduling and resource 

maintenance planning were decided concurrently since the local search ability of genetic 

algorithm is limited. The mismatch between production scheduling and resource 

maintenance is underestimated, which may result in the low production efficiency. In 

addition, more efficient algorithms need to be explored to improve the quality of the 

solutions.  



To overcome the shortcoming of previous research and improve the overall 

production efficiency, this research proposes a problem decomposition mechanism to 

deal with Production Scheduling with the Mould Maintenance (PS-MM) problem, and 

presents an effective and efficient hybrid metaheuristic algorithm: the TLPSO-VNS 

algorithm which innovatively combines Three-Level Particle Swarm Optimization 

(TLPSO) and Variable Neighbourhood Search (VNS). Firstly, this integrated problem is 

divided into a basic production scheduling problem, a machine maintenance problem and 

a mould maintenance problem. To minimize the overall makespan, the production 

scheduling problem is considered at first. The corresponding machine maintenance 

planning is decided after the production scheduling is determined. Once the production 

scheduling and machine maintenance are confirmed, the corresponding mould 

maintenance is determined. Every sub-problem is solved by one single particle swarm 

optimization (PSO) algorithm and these three PSOs are interrelated. Once good solutions 

are obtained by the Three-Level PSO (TLPSO), variable neighbourhood search (VNS) is 

applied to these solutions to conduct the local search. Seven types of neighbourhoods are 

designed, and they are changed systematically. The best solution is chosen as the final 

solution when all the processes finish. The proposed TLPSO-VNS algorithm is robust 

and can find high-quality solutions by effectively exchanging search intensification and 

diversification. To our knowledge, this algorithm is the first algorithm to hybridize 

TLPSO with VNS to solve the integrated problem, building on the advantages of these 

two individual metaheuristic components and overcoming the inherent limitations.  



The reminder of this paper is organized as follows: Section 2 is a review of the 

literature on this topic, which provides an understanding of the previous research in this 

area, as well as providing a rationale for the choice of the topic in the present study. 

Section 3 restates the production scheduling with mould maintenance (PS-MM) problem. 

Section 4 proposes the TLPSO-VNS algorithm. Section 5 presents the computational 

results acquired and shows the superiority of the TLPSO-VNS algorithm. Section 6 

provides the conclusions and suggestions for further research.    

2. Literature review 

Manufacturers are forced to improve their efficiency because of the growing 

expectation of customers and fierce competition. As one of the most vital elements in 

many industries, maintenance planning has an explicit effect on the improvement of the 

overall production performance (Guner, Chinnam, and Murat 2016). Traditionally, 

production scheduling and preventive maintenance planning decisions are made 

independently although they are interdependent. Nowadays, more and more researchers 

try to consider the interdependency and explore more efficient methods to optimize 

different production targets. To minimize the total weighted tardiness, Cassady and 

Kutanoglu (2003) proposed an integrated model which determines production scheduling 

and preventive maintenance planning decisions simultaneously, and numerical 

experiments showed the effectiveness of this integration. In addition, they (Cassady and 

Kutanoglu 2005) proposed an integrated model which harmonizes single-machine 

scheduling decisions and preventive maintenance planning decisions aiming at 



minimizing the total expected weighted completion time of the job, and they pointed out 

that integrated production scheduling with the preventive maintenance planning problem 

is a meaningful research area. Furthermore, Seidgar et al. (2016) investigated the two-

stage assembly flow shop problem with preventive maintenance activities and machine 

breakdowns to minimize the makespan, and two meta-heuristic algorithms were proposed. 

Moreover, El Khoukhi, Boukachour, and Alaoui (2017) proposed two new models to 

formulate the Flexible Job Shop Scheduling Problem (FJSSP) with machine 

unavailability constraints due to Preventive Maintenance (PM), and a new efficient hybrid 

algorithm named "Dual-Ants Colony" (DAC) was developed to minimize the makespan. 

All these studies show that it is worthwhile to conduct research on the problem of 

integrating production scheduling and maintenance planning.  

Different maintenance strategies on machines and the effects on production 

scheduling are also explored by scholars. Ruiz, Garcia-Diaz, and Maroto (2007) studied 

different machine preventive maintenance policies regarding flowshop problems aiming 

at maximizing the availability of machines. They proposed a simple criterion to schedule 

different maintenance operations with the production sequence and showed the 

importance of the integration. Furthermore, Aghezzaf and Najid (2008) examined 

integrating the production and preventive maintenance problem in a system which was 

made up of parallel failure-prone production lines. They assumed that minimal repair is 

conducted when a production line breaks down and perfect preventive maintenance is 

conducted periodically, and the period is decided by the decision maker. Then, different 



models were built depending on different maintenance policies. To minimize the overall 

makespan, Chung et al. (2009) proposed a double tier genetic algorithm approach for 

multi-factory production networks, which schedules perfect and imperfect maintenance 

on machines at the same time in order to keep the system reliability at an acceptable level. 

In addition, Li et al. (2017) explored a parallel-machine scheduling problem where 

periodic maintenance cycles of the machines are machine-dependent but not the same. 

Recently, uncertainty was also considered in the integrated problem. Wang and Liu 

(2016) studied an optimisation problem which integrated production scheduling and 

preventive maintenance (PM) in a two-machine flow shop aiming to minimize the 

makespan. Time to failure of each machine was assumed to be subjected to a Weibull 

probability distribution and four heuristics based on genetic algorithm (GA) were 

proposed. Furthermore, Abdelrahim and Vizvari (2017) considered the case in which 

random failures occurred on a single machine in the integrated problem. It is assumed 

that the probability of machine failure is an increasing function of the age and the length 

of the time interval, and they only considered perfect maintenance. The consideration of 

different maintenance strategies and uncertainty makes the integrated model more 

complicated but more in line with the actual situation.  

However, in the plastics industry, the mould is also an important element that 

guarantees the normal production and needs to be considered. Wong, Chan, and Chung 

(2012) built a model to integrate production scheduling with mould maintenance and 

proposed a joint scheduling strategy to minimize the overall makespan under the 



assumption that the maintenance schemes are time-dependent. Besides, Wong, Chan, and 

Chung (2013) considered the more complicated case in which there are multiple resources 

and maintenance tasks in the integrated problem and proved that the proposed jointly 

scheduling method can reduce the makespan significantly. Furthermore, Wong, Chan, 

and Chung (2014) studied a new integrated problem that each job contains multiple 

operations with multiple moulds. In addition, Wang and Liu (2015) investigated a multi-

objective parallel machine scheduling problem with flexible preventive maintenance on 

the machine and mould，and aimed to minimize the makespan and unavailability of 

machine and mould, and a multi-objective integrated optimization method with NSGA-

II adaption was presented. Also, to show the influence of the mould on production 

scheduling, Shen et al. (2016) built an optimization model, considering setup and mould 

maintenance, with the objective of minimizing the total weighted tardiness and earliness. 

Different maintenance strategies were taken into account and a genetic algorithm was 

used to find the optimal solution. Integrating production scheduling with mould 

maintenance is still a key issue for some industries, but research on this topic is still 

limited and more efficient algorithms for solving such an integrated problem need to be 

developed.  

As an intelligent optimization algorithm inspired by the social behaviour of 

animals, Particle Swarm Optimization (PSO) was firstly proposed by Kennedy and 

Eberhart (Kennedy and Eberhart 1995). Because of attractive features, such as easy 

execution, few parameters, and fast convergence, PSO has been applied in a wide variety 



of optimization problems, including the job shop scheduling problem. Recently, more and 

more researchers have modified PSO to improve its performance such as the Similar 

Particle Swarm Optimization Algorithm (SPSOA) (Lian, Gu, and Jiao 2006), the Novel 

Particle Swarm Optimization (NPSO) algorithm (Lian, Gu, and Jiao 2008), and the 

Improved Particle Swarm Optimization (IPSO) algorithm (Tang and Wang 2010). 

Furthermore, the Variable Neighbourhood Search (VNS) algorithm was proposed by 

Mladenović and Hansen (Mladenović and Hansen 1997), which was an effective and 

simple metaheuristic algorithm based on the systematic change of neighbourhoods. It can 

be used for many production scheduling problems, such as the identical parallel machine 

scheduling problem with two conflicting objectives (Liang and Tien 2011), the flexible 

job-shop scheduling problem (FJSP) (Bagheri and Zandieh 2011), and the identical 

parallel machine scheduling problems (Bathrinath et al. 2015). Moreover, some new 

algorithms based on VNS were also developed, such as the Population-based Variable 

Neighbourhood Search (PVNS) algorithm (Mokhtari, Mozdgir, and Abadi 2012), the 

Improved Variable Neighbourhood Search (IVNS) algorithm (Lan et al. 2016), and the 

General Variable Neighbourhood Search (GVNS) (Komaki and Malakooti 2017). So far, 

PSO and VNS are very popular and efficient algorithms in dealing with production 

scheduling problems.  

Hybrid metaheuristics, which combine the advantages of separate components, 

have attracted the attention of more and more scholars. Many investigations in using 

hybrid algorithms in production scheduling problems have been carried out in the last 



decade. Different hybrid algorithms were proposed, and some examples are summarized 

in Table 1. 

Table 1: Examples of hybrid algorithms 

Hybrid algorithm Source 

A hybrid of the Particle Swarm Optimization (PSO) 

with the Nawaz-Enscore-Ham (NEH) heuristic, as well 

as the Simulated Annealing (SA) 

Liu, Wang, and Jin (2007) 

A combination of the Tabu Search and the Variable 

Neighbourhood Search (VNS/TS) 

Liao and Cheng (2007) 

A mixture of the differential evolution-based algorithm, 

the Variable Neighbourhood Search (VNS) method and 

the Genetic Algorithm (GA) 

Zobolas, Tarantilis, and 

Ioannou (2009) 

Collaboration in the Genetic Algorithm (GA) and the 

Variable Neighbourhood Search (VNS) 

Behnamian and Ghomi 

(2011) 

A hybrid of the Particle Swarm Optimization (PSO) and 

the Simulated Annealing (SA) algorithm with the 

Variable Neighbourhood Search (VNS) 

Huang, Tian, and Ji (2016) 

A combination of the Discrete Particle Swarm 

Optimization (DPSO) and the Stochastic Variable 

Neighbourhood Search (SVNS) 

Wang and Tang (2012) 

A mixture of the Permutation-based Harmony Search 

(PHS) with the Enhanced Basic Variable 

Neighbourhood Search (EBVNS) 

Liu and Zhou (2013) 

A cooperation of the enhanced Variable Neighbourhood 

Search (VNS) and the Artificial Neural Network (ANN) 

Mokhtari (2014) 

The hybrid Particle Swarm Optimization algorithm 

(PSO) based on the Variable Neighbourhood Search 

(VNS) 

Gao et al. (2015) 

A hybrid Genetic Algorithm with the Variable 

Neighbourhood Search (GAVNS) 

Xia, Li, and Gao (2016) 

Since these hybrid metaheuristic algorithms employ the key characteristics of 

individual algorithms, they are more efficient compared with a single algorithm. Thus, 

more and more researchers are using hybrid metaheuristic algorithms to address different 

scheduling problems.   



3. Problem description 

3.1 Problem description 

The production scheduling with mould maintenance (PS-MM) problem can be 

described as follows: P  jobs are distributed on Q  injection machines and R  

injection moulds. Each problem is denoted as P Q R  . All jobs, machines and moulds 

are available for processing at time zero. A job can only be allocated to a specific mould 

and a specific mould can be allocated to many different machines but not all the machines. 

A specific mould can perform different jobs. Each job can only be performed on one 

machine with one mould at a time slot. Each machine can only conduct one job with one 

machine at a time slot. Each mould can only carry out one job on one machine at a time 

slot. The unit operation time of a job is decided by the specific mould being used but not 

the machine. Each job has its batch size and the total operation time of a job is the product 

of batch size and the unit operation time. Each job is operated according to its order 

quantity (batch), which cannot be split, and once a job begins, it should be finished 

without interruption. The cumulated operating time of a resource is defined as the 

resource age (not including idle time). In the practical situation, the earlier the 

maintenance is conducted, the less maintenance time is needed, so the relationship 

between maintenance time and resource (machine or mould) age can be fitted by a 

piecewise linear function. Because the possibility of mould breakdown is higher than 

machine breakdown, the maximum age of the mould (NA) is shorter than the maximum 

age of the machine (MA). Once a resource reaches its maximum age, maintenance should 



be conducted after the completion of the current job. This model only considers perfect 

maintenance, which means that after the maintenance, the resource age is reset to zero 

and the condition of the resource is as good as new. We assume that the preventive 

maintenance can prevent all the random breakdowns of the resources. Furthermore, we 

assume that set-up times are sequence-independent and included in processing period, 

and the quality issue is not considered.  

The objective is to find a good production scheduling and machine maintenance 

planning, as well as mould maintenance planning aiming at minimizing the makespan.  

3.2 Mathematical model of the problem 

This problem is described as an integer programming model (Wong, Chan, and 

Chung 2012) to find optimal solutions. Based on the model of Wong, Chan, and Chun

（2012），a new model is built and used as the further step to understand the problem. 

Table 2 lists all the notations used in this paper.    

Table 2: Notations list 

Index Descriptions 

P : Number of jobs. 

Q : Number of machines. 

R : Number of moulds 

p : Index for job, Pp ,1 , where P is the number of jobs. 

pq :  Index for machine, Qq p ,1 , where Q  is the number of machines. 

pq  is the machine used by job p . )( pS  is a set that contains all the 

available machines for job p , then )( pSq p  . 



pr : Index for mould, Rrp ,1 , where R  is the number of moulds. pr is 

the specific mould for job p . 

t : Index for time slot, Tt ,1 , where T is the maximum time horizon. 

pprpqT : Operating time of job p on machine pq with mould pr . 

MA : Maximum machine age. 

NA: Maximum mould age. 

PS : Starting time of job p . 

PC :  Completion time of job p . 

maxC : Makespan of jobs. 

pprpqX : =1, if job p is allocated on machine pq with mould pr . 

=0, otherwise. 

trpq pp
Y : =1, if job p occupies time slot t , on machine pq with mould pr . 

=0, otherwise. 

1

pkp qkrprZ : =1, if job p (with its specific mould pr ) is sequenced after job k (with its 

specific mould kr ) on machine pq . 

=0, otherwise. 

2

psp rsqpqZ : =1, if job p (with its machine pq )is sequenced after job s (with its 

machine sq ) on mould pr . 

=0, otherwise. 

1

trkq kp
M : =1, if machine pq  is maintained after job k ( with mould kr ) and the 

maintenance occupies time slot t. 

=0, otherwise. 

2

trsq ps
M : =1, if mould pr  is maintained after job s ( with machine sq ) and the 

maintenance occupies time slot t. 

=0, otherwise. 

In this problem, the number of jobs ( P ), the number of machines ( Q ), the number 

of moulds ( R ) and the operating time of job p  on machine pq  with mould pr  (
pprpqT

) are known in advance. 
pprpqX , trpq pp

Y , 1

pkp qkrprZ , 2

psp rsqpqZ , 1

trkq kp
M and 2

trsq ps
M are 



decision variables. Once they are decided, PS and PC  can be calculated and then we 

can obtain the maxC . The objective is to minimise the makespan of jobs and the objective 

function is as follows: 

                              )min( maxCf                            (1) 

The problem is subjected to the following constraints: 

Processing time constraints: 

           ),,2,1( PpTXSC
pp

pppp

rq

rpqrpqpp               (2) 

              ),,2,1( PpTXY
pp

pppp

pp

pp

rq

rpqrpq

trq

trpq                    (3) 

Job constraints: 

                     ),,2,1(1 PpX
pp

pp

rq

rpq 
 

                     (4) 

Processing job constraints:  

                   ),2,1;,2,1(1 TtPpY
pp

pp

rq

trpq                  (5) 

Job sequence constraints: 

1 1
p k p p p p kpr kr q pq r kq rZ X X   ( 1, 2, ; 1, 2, , , 1, 2, )pp P k P k p q Q          (6) 

2 1
p s p p p s ppq sq r pq r sq rZ X X   ( 1, 2, ; 1, 2, , , 1, 2, )pp P k P s p r R          (7) 

Machine maintenance constraints: 



        ),2,1;,2,1(11 TtQqMY p

pr kr

trkqtrpq

p k

kppp
             (8)             

Mould maintenance constraints: 

         ),2,1;,2,1(12 TtRrMY p

pq sq

trsqtrpq

p s

pspp
              (9)                

In this model, Constraint (2) ensures that there is no interruption in the production 

processing of a job. Constraint (3) ensures that the allocation of the time slot equals the 

required operation time. Constraint (4) ensures that only one job can be carried out on 

one machine with one mould. Constraint (5) ensures that one job can only be carried out 

by on one machine with one mould. Constraint (6) ensures the job sequence on the same 

machine. Constraint (7) ensures the job sequence on the same mould. Constraint (8) 

ensures that the maintenance and the job processing on the same machine cannot happen 

in the same time slot. Constraint (9) ensures that the maintenance and the job processing 

on the same mould cannot happen at the same time slot.    

4. Optimization methodology 

The optimization algorithm, named the TLPSO-VNS algorithm, is introduced in 

this part. The overall algorithm structure is introduced firstly. The overall algorithm 

includes two stages: the stage of swarm initialization and swarm improvement by TLPSO 

and stage of swarm intensification via VNS. Since encoding and decoding of the particles 



are critical for the successful application of TLPSO, encoding and decoding of the 

particles are introduced before the details of the algorithm.    

4.1 Overall algorithm description 

For this integrated scheduling problem, we divide it into three subproblems: 

production scheduling problem, machine maintenance problem and mould maintenance 

problem. There are many potential production scheduling solutions and for every specific 

production scheduling solution, there are many potential machine maintenance solutions 

and mould maintenance solutions. The First-level PSO contributes to finding some good 

production scheduling solutions. Then the Second-level PSO can help every specific 

production scheduling solution to find a good machine maintenance solution. Once the 

production scheduling and machine maintenance solutions are confirmed, the Third-level 

PSO helps to find a good mould maintenance solution for every specific production 

scheduling solution with specific machine maintenance. Compared with the joint 

scheduling strategy, this decomposition mechanism improves the precision of the search. 

Once some good scheduling solutions are obtained from TLPSO, VNS is used to enhance 

these solutions. For these solutions, seven kinds of neighbours are designed to conduct 

the local search. The best solution is reserved when the VNS ends. Figure 1. shows the 

process of the problem analysis and the design of the overall algorithm.      
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Figure 1． Framework of the overall algorithm 

4.2 Encoding and decoding of the particles in the Three-Level PSO (TLPSO) 

In the Three-Level PSO (TLPSO), the first level PSO only considers the problem 

of production scheduling. So, the particle in the first level PSO only includes information 

on the job sequence (J) and the corresponding machine sequence (M). The particle in the 

first level PSO is named as the JM- Particle, whose dimension is P*2  ( P  is the number 

of jobs). The second level PSO focuses on the problem of machine maintenance (AM), 

so the particle in the second level PSO also contains information on machine maintenance 

(AM) apart from information on the job sequence (J) and corresponding machine 

sequence (M). The particle in the second level PSO is named as the JMAM-Particle, 



whose dimension is P*3 . The third level PSO focuses on the problem of mould 

maintenance (OM), so the particle in the third level PSO also includes information on the 

mould maintenance (OM) besides information on the job sequence (J), the corresponding 

machine sequence (M) and machine maintenance (AM). The particle in the third level 

PSO is named as the JMAMOM-Particle, whose dimension is P*4 . In the evolution 

process of TLPSO, the values of these particles’ positions vary in the real number space. 

To decode the particles’ position into a suitable scheduling solution for this problem, 

random key representation (Bean 1994) and the smallest position value (SPV) rule 

(Tasgetiren et al. 2007) are used. After decoding, the values of the J parameters are 

integers between 1 and P ( P  is the number of jobs); values of M parameters are integers 

between 1 and Q ( Q is the number of machines); The AM parameter is the maintenance 

decision on the machine, with value 0 or 1; The OM parameter is the maintenance 

decision on the mould, with value 0 or 1; The corresponding resource is maintained after 

finishing the job if the relevant AM or OM is denoted as 1, otherwise they are denoted as 

0.  

Figure 2- Figure 4 show examples of JM- Particle, JMAM-Particle, JMAMOM- 

Particle before and after decoding. There are 5 jobs, 3 machines and 2 moulds in this 

example. Mould 1 can be used to produce Job 1, 3, 5 and Mould 2 can be used to produce 

Job 2, 4. From Figure 4, we can see that the value of the job sequence (J) in the original 

position of the JMAM-particle is (1.2 0.25 0.1 0.8 1.8), and it is transferred into (3 2 4 1 

5) by random key representation (Bean 1994) and the smallest position value (SPV) rule 



(Tasgetiren et al. 2007). We rank the sequence (1.2 0.25 0.1 0.8 1.8) according to the 

ascending order and obtain (0.1 0.25 0.8 1.2 1.8). Since the number 0.1 is in the third 

position of the original sequence, we decode it into 3. Since the number 0.25 is in the 

second position of the original sequence, we decode it into 2. By this rule, the original 

position can be decoded into a suitable scheduling solution (3 2 4 1 5). The value of the 

corresponding machine sequence (M) in the original position of the JMAM-particle is 

(0.3 1.2 0.8 1.5 0.5) and we divide the interval [0.3 1.5] (0.3 is the minimum and 1.5 is 

the maximum among all the numbers) into 3 intervals, [0.3 0.7), [0.7 1.1) and [1.1 1.5] 

(there are 3 machines in this example). Since 0.3 and 0.5 are in the first interval, after 

decoding, the value in the relevant position is 1. Since 0.8 is in the second interval after 

decoding, the value in the relevant position is 2. Since 1.2 and 1.5 are in the third interval 

after decoding, the value in the relevant position is 3. So, corresponding machine 

sequence (M) can be transferred into (1 3 2 3 1). The value of the corresponding machine 

maintenance sequence (AM) in the original position of the JMAM-particle is (0.8 0.2 0.4 

1 0.5) and we divide the interval [0.2 1] (0.2 is the minimum and 1 is the maximum among 

all the numbers) into 2 intervals, [0.2 0.6) and [0.6 1]. Since 0.8 and 1 are in the interval 

[0.6 1], after decoding, the value in the relevant position is 1. Since 0.2, 0.4 and 0.5 are 

in the interval [0.2 0.6), after decoding, the value in the relevant position is 0. So, 

corresponding machine maintenance sequence (AM) can be transferred into (1 0 0 1 0). 

A similar transfer method can be applied to mould maintenance (OM). After decoding, 

we know that job 3 is distributed on machine 1 and machine 1 will be maintained after 



job 3 is finished, and the injection mould on machine 1 will also be maintained. Job 2 is 

allocated to machine 3, but machine 3 will not be maintained since the corresponding AM 

parameter is 0 and the injection mould on machine 3 will not be maintained because the 

corresponding OM parameter is 0.  

To illustrate the influence of the preventive maintenance on the value of the 

objective function, the Gant charts of the example in Figure 2 (without resource 

maintenance consideration) and the Gant charts of the example in Figure 4 (with resource 

maintenance consideration) are shown in Figure 5 and Figure 6. In the Gant charts, MT 

means maintenance. The numbers in the brackets are the processing time that each job 

needs and the maintenance time that the resource needs. Since the beginning time of a job 

is decided by the available time of the machine and the mould that the job use, we can see 

that the job 1 is delayed because of the maintenance on mould 1, and the job 5 is delayed 

because of the maintenance on machine 1. But the maintenance on machine 3 after job 1, 

the maintenance on mould 1 after job 5 and the maintenance on mould 2 after job 4 have 

no influence on the objective because all the jobs are finished. Also, we can know that 

the makespan is changed from 125 units of time to 180 units of time because of the 

influence of maintenance on both machine and mould.      

 

Figure 2. Encoding and decoding of JM- particle 



 

Figure 3. Encoding and decoding of JMAM-particle 

 

Figure 4. Encoding and decoding of JMAMOM-particle 

 

 

Figure 5. Gant charts of the example without maintenance 

 

 



 

 

Figure 6. Gant charts of the example with maintenance 

4.3 Swarm initialization and swarm improvement through Three-Level PSO 

The TLPSO algorithm consists of three levels, hereafter called the first level PSO, 

the second level PSO and the third level PSO. The first level PSO solves the production 

scheduling problem, which is the master problem. The JM-particle in the first level PSO 

stores the information on the job sequence and corresponding machine sequence. Firstly, 

the JM-particle, acting as input data, will be passed to the second level PSO individually. 

In the second level PSO, each JM-particle will get a series of JMAM-particles which have 

the same information on job sequence and corresponding machine sequence but different 

information on machine maintenance. Secondly, each JMAM-particle will be passed into 

the third level PSO to obtain a series of JMAMOM-particles which contain the same 

 

 



information on job sequence, corresponding machine sequence, and machine 

maintenance, but different information on mould maintenance. Thirdly, the best 

JMAMOM-particle for each JMAM-particle obtained from the third level PSO will be 

sent back to the second level PSO. After the evolution process of the second level PSO, 

the best JMAM-particle corresponding to the best JMAMOM-particle obtained from the 

third level PSO will be delivered back to the first level PSO. The best JMAM-particle 

from the second level PSO with its corresponding best JMAMOM-particle from the third 

level PSO for each JM-particle will be recorded at each iteration of the first level PSO. 

When the iteration process of the first level PSO finishes, all the JM-particles positions, 

and the scheduling solution of corresponding best JMAMOM-particles are recorded. The 

TLPSO algorithm ends. The details can be described as follows:   

Start: the batch size of each job, the corresponding mould of each job, the available 

machines for each job and the unit operation time of each job are the input data for 

TLPSO.   

1st level PSO 

Step 1: Initialization. Initialize a population of JM-Particles with random positions and 

velocities in [0,1] and the dimension is P*2 ( P  is the number of jobs).  

Step 2: Pass each JM-Particle one by one to the second level PSO. In the second level 

PSO, Step 2a-2g will be conducted until the stopping condition is reached, and 

the best JMAM- Particle with its corresponding best JMAMOM-Particle will be 

recorded. 



2nd level PSO 

Step2a: Initialization. For every JM- Particle, initialize a population of JMAM-

Particles with P*3 dimensions. The first P*2 dimensions of JMAM-

Particles are all the same as its related JM- particle. The last P  

dimensions of the JMAM-Particles are produced randomly in [0,1]. A 

population of velocities are produced randomly, and the first P*2  

dimensions of these velocities are zero, and the last P dimensions of the 

velocities are produced randomly in [0,1].   

Step2b: Pass every JMAM-Particle one by one to the third level PSO. In the third 

level PSO, Step 2b(i)-Step2b(v) will be conducted until the stopping 

condition is reached, and the best JMAMOM-Particle will be recorded.                  

3rd level PSO 

Step2b(i): Initialization. For each JMAM-Particle, initialize a population 

of JMAMOM-Particles with P*4 dimensions. The first P*3

dimensions of the JMAMOM-Particles are all the same as its 

related JMAM-Particle. The last P dimensions of the JMAM-

Particles are produced randomly in [0,1]. A population of 

velocities are produced, and the first P*3 dimensions of these 

velocities are zero, and the last P dimensions of velocities are 

produced randomly in [0,1].  



Step2b(ii): Fitness. Use random key representation and the smallest 

position value (SPV) rule to transfer the continuous position vector 

of the JMAMOM-Particle into a suitable scheduling solution, and 

then measure the fitness (makespan) of each JMAMOM-Particle 

in the population and find the local best solution for all JMAMOM-

Particles and the global best solution.   

Step2b(iii): Update the velocity and position of each JMAMOM-particle. 

The velocity is updated according to Equation. 10 and then the 

position is updated according to Equation. 11 based on the velocity 

from Equation 10. Finally, inertia factor W is updated according 

to Equation. 12. where, )( 3rX ij , )1( 3 rX ij and )( 3rVij , )1( 3 rVij are 

the positions and velocities of the
th

j dimension of the particle i at 

the 
th

r3
and thr )1( 3  iteration. )( 3rPij is the best position of the

th
j  

dimension of the particle i at 
th

r3
iteration. )( 3rPgj  is the best 

position of the
th

j dimension of all the particles at the
th

r3
 iteration, 

and W is the inertia weight. maxW is the maximum inertia weight 

and minW is the minimum inertia weight. 1C  is the particle 

acceleration coefficient and 2C is the population acceleration coefficient. 

1R  and 2R  are random numbers between 0 and 1.  
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Step2b(iv): Fitness. Again, use random key representation and the smallest 

position value (SPV) rule to transfer the continuous position vector 

of the particles into a suitable scheduling solution and measure the 

fitness (makespan) of each JMAMOM-Particle and update the 

optimal value of each JMAMOM-particle. ibestP1  is the best value 

for the JMAMOM-particle i  during the iteration process, and 

31
r

iP is the current fitness of particle i . If ibest

r

i PP 11 3  , then set 

311
r

iibest PP  , update )( 3rPij ; otherwise, retain ibestP1 and )( 3rPij . 

Update the optimal value of the population. Define bestg1  as the 

best value of the particle population, and 

)1,2,1(),1min(1 3enumibestbest PiPg  (enum3 is the number of 

the popular size in the third level PSO). If best

r

best gg 11 3  , set 

311
r

bestbest gg  , update )( 3rPgj ; otherwise, bestg1 and )( 3rPgj retain. 

Step2b(v): Termination. Set 133  rr , and check the condition that if 

max33 rr  , then go to Step2b(iii), start a new iteration; otherwise, 

terminate the third level PSO and calculate the minimum fitness 

for the JMAMOM-particles. The minimum fitness, corresponding 

to the best JMAMOM-particle and corresponding best scheduling 

solution are recorded.  



Step 2c: The best JMAMOM-particle and minimum fitness for each JMAM-

particle obtained from the third level PSO are delivered to the second level 

PSO.  

Step 2d: Fitness. The fitness of each JMAM-particle is the fitness of the 

corresponding best JMAMOM-particle. Then, find the local best solution 

for all JMAM- particles and the global best solution. 

Step 2e: Update the velocity and position of each JMAM-particle. The velocity is 

updated according to Equation. 10 and then the position is updated 

according to Equation. 11 based on the velocity obtained from Equation 

10. Finally, inertia factor W is updated according to Equation. 12. The 

parameters have the same meaning and only need to change 3r  into 
2r  to 

represent the second level iteration. 

Step 2f: Fitness. To get the fitness of each new JMAM-particle, again pass every 

JMAM-Particle one by one to the third level PSO, repeat the process from 

Step2b-Step2c. Then, update the optimal value of each JMAM-particle. 

ibestP2  is the best value for JMAM-particle i  during the iteration 

process and 22
r

iP is the current fitness of particle i . If ibest

r

i PP 22 2  , 

then set 222
r

iibest PP  , update )( 2rPij ; otherwise, ibsetP2  and )( 2rPij

retain. Update the optimal value of the population. Define bestg2  as the 

best value of the particle population, and 

)2,2,1(),2min(2 2enumibestbest PiPg  (enum2 is the number of the 



popular size in the second level PSO). If best

r

best gg 22 2  , set 

222
r

bestbest gg  , update )( 2rPgj ; otherwise, retain bestg2  and )( 2rPgj . 

Step 2g: Termination. Set 122  rr , and check the condition that if max22 rr 

, then go to Step 2e, start a new iteration.; otherwise, terminate the second 

level PSO and calculate minimum fitness for the JMAM-particles, which 

is the fitness of each JM-particle. 

Step 3: The best JMAM-particle (with its corresponding best JMAMOM-particle 

obtained from the third level PSO ) and the minimum fitness for each JM-particle 

obtained from the second level PSO are delivered to the first level PSO.  

Step 4: Fitness. Measure the fitness of each JM-particle in the population and find the 

local best solution for all JM-particles and the global best solution. 

Step 5: Update the velocity and position of each JM-particle. The velocity is updated 

according to Equation. 10 and then the position is updated according to Equation. 

11, Finally inertia factor W  is updated according to Equation. 12. The 

parameters have the same meanings and only need to change 3r  into  
1r  to 

represent the first level iteration.  

Step 6: Fitness. To get the fitness of each new JM-particle, again pass each JM-Particle 

one by one to the second level PSO, repeat the process from Step2 -Step3. Then, 

update the optimal value of each JM-particle. ibestP  is the best value for JM-

particle i  during the iteration process and 1r

iP is the current fitness of JM-particle 

i . If ibest

r

i PP 1 , then set 1r

iibest PP  , update )( 1rPij ; otherwise, retain ibsetP and 

)( 1rPij . Update the optimal value of the population. Define bestg  as the best value 



of the particle population, and ),2,1(),min( 1enumibestbest PiPg  (enum1 is the 

number of the popular size in the first level PSO). If best

r

best gg 1 , set 1r

bestbest gg 

, update )( 1rPgj ; otherwise, retain bestg and )( 1rPgj . 

Step 7: Termination. Set 111  rr  and check the condition that if max11 rr  , then go 

to Step 5, and start a new iteration.; otherwise, terminate the first level PSO and 

calculate the best value for each JM-particle i  and the best scheduling solution 

of JMAMOM- particle for each JM-particle i  is recorded.   

End: the best scheduling solution (JMAMOM-particle) for each JM-Particle is recorded. 

Figure 7 shows the flowchart of TLPSO. In this flowchart, an example of 5 jobs 

and 3 machines is given to illustrate the process of TLPSO. The swarm size is assumed 

to be 3 for all these three level PSOs. Firstly, in the first level PSO, positions of 3 JM-

particles are randomly generated, such as (0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6); (0.25 

0.3 0.6 0.8 0.7 0.5 0.9 0.1 0.4 0.5); (0.9 0.54 0.1 0.4 0.6 0.8 0.1 0.5 0.7 0.1) and the 

velocities are also produced randomly. The dimension of these positions and velocities is 

10. Then, each of these JM-particles will be passed to the second level PSO to determine 

the machine maintenance. The first JM-particle is taken as an example. Positions of 3 

JMAM-particles with dimensions of 15 are randomly generated, such as (0.1 0.8 0.17 0.2 

0.4 0.3 0.8 0.9 0.3 0.6 0.5 0.3 0.35 0.6 0.8); (0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.4 

0.6 0.1 0.2 0.9); (0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.6 0.7 0.2 0.7 0.1). The first 10 

dimensions of these three JMAM-particles are the same with its related JM-particle. Three 

velocities are generated. Since in the second level PSO, we only focus on the machine 

maintenance and the production scheduling is not changed, the first 10 dimensions of 

these velocities are zero. The remaining 5 dimensions of velocities are generated 

randomly. These JMAM-particles are passed into the third level PSO one by one. The 



first JMAM-particle is taken as an example. In the third level PSO, positions of three 

JMAMOM-particles are generated randomly, such as (0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 

0.6 0.5 0.3 0.35 0.6 0.8 0.4 0.3 0.6 0.1 0.9); (0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.5 

0.3 0.35 0.6 0.8 0.7 0.2 0.4 0.6 0.5); (0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.5 0.3 0.35 

0.6 0.8 0.5 0.6 0.2 0.1 0.8). The first 15 dimensions of these three JMAMOM-particles 

are the same with its related JMAM- particle. Three velocities are produced randomly. 

The first 15 dimensions of these velocities are zero and the remaining 5 dimensions of 

velocities are generated randomly. With random key representation (Bean 1994) and the 

smallest position value (SPV) rule (Tasgetiren et al. 2007) described in Section 4.2. The 

positions of JMAMOM-particles are decoded into suitable scheduling solutions. The 

fitness value (makespan) of each JMAMOM-particle can be calculated. The progress of 

simple PSO is conducted until the stopping condition is met and the best JMAMOM-

particle (0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.5 0.3 0.35 0.6 0.8 0.4 0.2 0.5 0.7 0.1) 

for the first JMAM-particle can be found. Then, the second and the third JMAM-particles 

will be passed into the third level PSO, and the simple PSO will be carried out again. 

Through the third level PSO, the best JMAMOM-particle and the fitness value 

(makespan) for each JMAM-particle are obtained and returned to the second level PSO. 

The second level PSO is then conducted until the best JMAM-particle (0.1 0.8 0.17 0.2 

0.4 0.3 0.8 0.9 0.3 0.6 0.7 0.3 0.9 0.6 0.2) and the related best JMAMOM-particle (0.1 

0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.7 0.3 0.9 0.6 0.2 0.4 0.6 0.7 0.3 0.1) are found for 

the first JM-particle. Using the same process, we can find the best JMAM-particle and 

the best JMAMOM-particle for the other two JM-particles. Then the basic progress of the 

first level PSO is conducted until the stopping condition is met. Finally, three best 

scheduling solutions for the JM-particles are recorded, namely, (5 2 3 1 4 3 1 3 1 2 1 1 0 



1 0 0 1 0 1 1); (3 4 5 2 1 3 2 1 3 1 1 0 1 0 0 1 0 1 0 0); (4 1 3 2 5 2 3 1 3 1 1 0 1 0 1 1 0 1 

10).             

1.Initialization
1.（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6）

2.（0.25 0.3 0.6 0.8 0.7 0.5 0.9 0.1 0.4 0.5）

3.（0.9 0.54 0.1 0.4 0.6 0.8 0.1 0.5 0.7 0.1）

4.Fitness

1. 80  2. 75 3. 68

7. Stopping 

condition?

Best scheduling solutions
    Original position                 

  （0.7 0.2 0.5 0.9 0.1 0.6 0.3 0.5 0.2 0.4

     0.5 0.8 0.2 0.7 0.1 0.1 0.5 0.4 0.6 0.8 ）

   （0.8 0.6 0.1 0.2 0.4 0.7 0.4 0.2 0.8 0.1

     0.9 0.2 0.6 0.5 0.3 0.7 0.2 0.8 0.1 0.3 ）

    （0.3 0.6 0.4 0.1 0.8 0.5 0.8 0.1 0.8 0.1

     0.9 0.2 0.7 0.2 0.6 0.7 0.1 0.9 0.5 0.3 ）

   Scheduling solution

  (5 2 3 1 4 3 1 3 1 2 1 1 0 1 0 0 1 0 1 1）

 (3 4 5 2 1 3 2 1 3 1 1 0 1 0 0 1 0 1 0 0）

（4 1 3 2 5 2 3 1 3 1 1 0 1 0  1 1 0 1 1 0）

5.Update

6.Fitness 

&Update

2a.Initialization
1.（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6

0.5 0.3 0.35 0.6 0.8）

2.（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6

0.4 0.6 0.1 0.2 0.9）

3.（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6

0.6 0.7 0.2 0.7 0.1）

                     

                            2b(i).Initialization
1.（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.5 0.3 0.35 0.6 0.8 

0.4 0.3 0.6 0.1 0.9 ）

2.（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.5 0.3 0.35 0.6 0.8 

0.7 0.2 0.4 0.6 0.5 ）

3.（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.5 0.3 0.35 0.6 0.8 

0.5 0.6 0.2 0.1 0.8 ）

2d.Fitness

1. 110      2. 90       3. 100

2b(ii).Fitness

        Scheduling solutions         Fitness value
（1 3 4 5 2 1 3 3 1 2 0 0 0 1 1 0 0 1 0 1 ）               120

（1 3 4 5 2 1 3 3 1 2 0 0 0 1 1 1 0 0 1 1 ）               150

（1 3 4 5 2 1 3 3 1 2 0 0 0 1 1 1 1 0 0 1 ）               160

2e.Update
2b(iii).Update

2f.Fitness 

&Update
2b(iv).Fitness 

&Update

2g. Stopping 

condition?
2b(v). Stopping 

condition?
                

                   3.Best JMAM-Particle

Original position                       

（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6

0.7 0.3 0.9 0.6 0.2 ）                        

Scheduling solution

（1 3 4 5 2 1 3 3 1 2 1 0 1 1 0  ）

                 Best JMAMOM-Particle

Original position                        

（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6

0.7 0.3 0.9 0.6 0.2 0.4 0.6 0.7 0.3 0.1）

Scheduling solution

（1 3 4 5 2 1 3 3 1 2 1 0 1 1 0 1 1 1 0 0 ）

 Fitness value

80

               2c.Best JMAMOM-Particle

Original position                             

（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6 0.5 0.3 

0.35 0.6 0.8 0.4 0.2 0.5 0.7 0.1）                    

Scheduling solution

（1 3 4 5 2 1 3 3 1 2 0 0 0 1 1 1 0 1 1 0 ） 

Fitness value

 110               

       Third level PSO

Y

N

                   2.JM-Particle

（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6）

3.JMAM-Particle

JMAMOM-Particle
（0.1 0.8 0.17 0.2 0.4 

0.3 0.8 0.9 0.3 0.6

0.7 0.3 0.9 0.6 0.2 0.4 

0.6 0.7 0.3 0.1）

2.JM-Particle

3.JMAM-Particle

JMAMOM-Particle

2b.JMAM-Particle
（0.1 0.8 0.17 0.2 0.4 0.3 0.8 0.9 0.3 0.6

0.5 0.3 0.35 0.6 0.8）

2c.JMAMOM-

Particle
（0.1 0.8 0.17 0.2 0.4 0.3 

0.8 0.9 0.3 0.6 0.5 0.3 0.35 

0.6 0.8 0.4 0.2 0.5 0.7 

0.1）                110     

2b.JMAM-Particle

2c.JMAMOM-

Particle

Y

Y

Second level PSOFirst level PSO

NN

 



Figure 7. Flowchart of TLPSO 

4.4 Intensification phase via VNS 

For a good algorithm, the balance of the generic search and local search is 

important. This hybrid algorithm adopts variable neighbourhood search (VNS) to 

enhance its local search ability. Through TLPSO, good scheduling solutions can be 

obtained, and VNS is used to enhance these solutions. Seven kinds of neighbourhoods 

are designed to make it more suitable for this integrated problem. Specifically, m , n are 

random integers in [1, P ] ( P is the number of jobs) and m  is smaller than n . U is a 

scheduling solution obtained from TLPSO. The definitions of these neighbourhoods are 

given as follows:  

1. The first neighbourhood search is to change the 
thPm )*3(  dimension of scheduling 

solution from 0 to 1 or from 1 to 0 (change the mould maintenance of job m ), which 

is abbreviated as Change (U , Pm *3 ). 

 

Figure 8. The first neighbourhood 

2. The second neighbourhood search is to insert the 
thPm )*3(  dimension of 

scheduling solution to the 
thPn )*3(  dimension (change the mould maintenance 

from job m  to job n ), which is abbreviated as Insert (U , Pm *3 , Pn *3 ). 



 

   Figure 9. The second neighbourhood 

3. The third neighbourhood search is to change the 
thPm )*2(  dimension of 

scheduling solution from 0 to 1 or from 1 to 0 (change the machine maintenance of 

job m ), which is abbreviated as Change (U , Pm *2 ) 

 

Figure 10. The second neighbourhood 

4. The fourth neighbourhood search is to insert the 
thPm )*2(  dimension of 

scheduling solution to the 
thPn )*2(  dimension (change the machine maintenance 

from job m to job n ), which is abbreviated as Insert (U , Pm *2 , Pn *2 ) 

 

Figure 11 The fourth neighbourhood 

5. The fifth neighbourhood search is to exchange the 
thm dimension of scheduling 

solution with 
thn dimension (change the job sequence of job m and job n ), which is 

abbreviated as Exchange (U , m , n ) 



 

Figure 12 The fifth neighbourhood 

6. The sixth neighbourhood search is to insert the
thm dimension of scheduling solution 

to 
thn dimension (change the job sequence from job m to job n ), which is abbreviated 

as Insert (U , m , n ) 

 

Figure 13. The sixth neighbourhood 

7. The seventh neighbourhood search is to change the 
thPm )(  dimension to an 

available number (change machine of job m to another available machine), which is 

abbreviated as Changemachine (U , m ) 

 

Figure 14. The seventh neighbourhood 

The first scheduling solutions obtained from TLPSO is taken as an example to 

illustrate these neighbourhoods. Assuming 2, 4m n  ， examples of these 

neighbourhoods are shown in Figure 8-Figure 14. The pseudo-code of the local search is 



given in Figure 15. After all the solutions are finished in the processing of VNS, the 

solution with the minimum fitness is chosen as the final solution.  

 

 

Figure 15. pseudo-code of VNS 

5. Numerical experiments 

The main objective of the numerical experiments is to test the optimization 

performance of the proposed TLPSO-VNS algorithm. For a fair comparison, the 

maintenance scheme of resources and three datasets generated by Wong, Chan, and 

Chung (2012) are adopted. The sizes of these three problems are (30*3*5), (40*6*10) 

and (60*9*15). The quality of the solutions produced by the proposed TLPSO-VNS 



algorithm will be verified by comparing the results obtained by GADG (Strategy 4) 

(Wong, Chan, and Chung 2012) and results generated by adapted NSGA-II (Wang and 

Liu 2015). Furthermore, three PSO varients (ABCSPSO, fkPSO, SPSO2011) proposed 

in the CEC’2013 competitions are used as the comparison algorithms to further illustrate 

the performance of the TLPSO-VNS algorithm. Six random instances are used and the 

Wilcoxon test is used to analysis the comparison results.  

5.1 Parameters tuning  

Numerical experiments are implemented in the Matlab environment and the 

statistical tests are conducted by the IBM SPSS Software on a personal computer with 

Intel (R) Core (TM) i7-6700 CPU 3.40GHz CPU.  

There are two kinds of parameters. One kind is the key algorithm parameters, 

including the swarm size, maximum number of generation. The other kind is the 

parameters related to simple PSO, including inertia weight W , particle acceleration 

coefficient 1C  and population acceleration coefficient 2C . At first, the parameters related 

to PSO are fixed. We use the parameters combination recommended by Eberhart and Shi 

(2000), which are also the most widely used parameters combination in the literature 

related to PSO. The swarm size and the maximum number of generation are decided. 

Then, the key algorithm parameters are fixed, we try different parameters combinations 

related to PSO and find the best parameters combination.  



Since the production scheduling problem is the master problem and the machine 

maintenance problem, as well as mould maintenance problem, has a similar influence on 

the makespan. Without loss of generality, we set the Max Iteration of the second level 

PSO as equivalent to the Max Iteration of the third level PSO and the Max Iteration of 

the first level PSO is the double value. According to Mladenović and Hansen (1997), the 

Max Iteration of VNS is set as )1(* PP  ( P  is the number of jobs), which is sufficient 

to obtain a steady solution for the largest problem. The swarm size of the three PSOs in 

the different levels are the same. W is initially set as 0.9 and reduced linearly to 0.4. The 

values of 1C and 2C  are equal to 2. This parameters combination is the most often used 

by the literature related to PSO. In the preliminary testing about key algorithm parameters, 

we test different combinations of parameters with swarm size={5,10,15} and Max 

Iteration of first level PSO={500,1000,1500} for medium-sized instance (40*6*10) 

generated by Wong et al. (2012) 10 times. There are 9 combinations in total. Table 3 

shows the different parameters combinations, the corresponding average results and the 

time needed for each run. From Table 3, we can see that the swarm size has great influence 

on the time needed for each run. When the swarm size increases by 2 times (from 5 to 

10), the time needed for each run increase by more than 5 times. When the swarm size 

increases by 3 times (from 5 to 15), the time needed for each run increase by more than 

10 times. The Max Iteration of the first level PSO has little influence on the time and the 

average result. A bigger Max Iteration does not always mean better results. To keep a 



balance between the quality of results and the time needed for each run, we choose the 

parameter combination{10, 1000}. 

 

 

Table 3. Different Key algorithm parameters combinations and its influence on results. 

No Swarm size Max Iteration of 

first level PSO 

Average Result  Time(s) 

1 5 500 2554 345 

2 5 1000 2526 388 

3 5 1500 2515 427 

4 10 500 2546.3 1590 

5 10 1000 2492.6 1704 

6 10 1500 2526.7 2254 

7 15 500 2526 4010 

8 15 1000 2427.8 4988 

9 15 1500 2546.1 5708 

To find a good combination for the parameters related to PSO, we set the swarm 

size as 10, the Max Iteration of the first level PSO as 1000, the Max Iteration of the second 

level PSO as 500 and the Max Iteration of the third level PSO as 500 based on the 

preliminary testing. We compare the most widely used parameters combination (Eberhart 

and Shi 2000 ) with the other four PSO models, namely social only model (there is no 

cognitive component, 1 0C  ) (Kennedy and Eberhart 1995); cognition only model (there 

is no social acceleration, 2 0C  ) (Kennedy and Eberhart 1995); time-varying 

acceleration coefficient model ( 1C starts with a high value than 2C  and decreases while 

the social acceleration starts with a lower value and linearly increases) (Ratnaweera, 



Halgamuge, and Watson 2004); Clerc’s constriction method (Eberhart and Shi 2000). The 

maintenance scheme of resources and the medium-sized instance (40*6*10) generated by 

Wong et al. (2012) is used and we test each parameters combination 10 times. The results 

are shown in table 4. From Table 4, we can see that there is little difference between these 

parameters combinations, which means that the PSO related parameters have little 

influence on the results. Finally, we use the parameters combination recommended by 

Eberhart and Shi (2000) to solve this problem. In our random test, the average value and 

the standard deviation are the minimum compared with other parameters combinations. 

But other parameters combination are also able to produce good results for this problem.   

Table 4. The influence of parameters related to PSO on results. 

No. Parameters in PSO model Swarm 

size 

Max Iteration of 

first level PSO 

average Std 

1 Wmax=0.9, Wmin=0.4, 

C1=2, C2=2 

10 1000 2492.6 58.7 

2 Wmax=0.9, Wmin=0.4, 

C1=0, C2=2 

10 1000 2497.5 64 

3 Wmax=0.9, Wmin=0.4, 

C1=2, C2=0 

10 1000 2583.3 77 

4 Wmax=0.9, Wmin=0.4, 

C1max=2.5, C1min=0.5, 

C2max=2.5, C2min=0.5 

10 1000 2538.6 12 

5 W=0.729, C1=1.49445, 

C2=1.49445 

10 1000 2525.7 39 

5.2 Comparison with results in existing literature 



The maintenance scheme of resources and three datasets with different sizes 

generated by Wong et al. (2012) are adopted. The comparison results are shown in Table 

5.  

 

 

 

Table 5. Comparison with results in the existing literature. 

 30*3*5 40*6*10 60*9*15 

Min Avg SD Min Avg SD Min Avg SD 

Results by  

GADG 
2250 2475 107 2576 2757 144 2417 2721 183 

Results by  

NSGA-II 
2160.7 2255.9     78.6 2490     2591.7    68.6    2508       2586.3 60.1 

Results by  

TLPSO-VNS 
2177.3 2251.6 45.5 2422 2492.6 58.7 2378.5 2431.5 27.3 

Result improvement 

(compared with 

GADG) 

3.2% 9%  6% 9.6%  1.6% 10.6%  

Result improvement 

(compared with 

NSGA-II) 

-0.7% 0.19%  2.7%     3.8%   5.2%      6%  

According to Table 5, the average makespans for the three instances obtained by 

TLPSO-VNS are 2251.6, 2492.6, 2431.5 units of time. Compared with the results 

generated by GADG, the improvement is between 9% and 10.6%. Compared with the 

results by NSGA-II, the improvement is between 0.19% and 6%. Moreover, the 

improvement increases as the problem size increases. It can be concluded that TLPSO-

VNS can provide better solutions than GADG and NSGA-II when the size of the problem 

increases. The minimum solutions of these three instances obtained by the TLPSO-VNS 



algorithm are 2177.3, 2422, 2378.5 units of time. Compared with results by GADG, the 

improvement is between 1.6% and 6%. Compared with results by GADG, the 

improvement is between -0.7% and 5.2%. The TLPSO-VNS can get better minimum 

solutions than GADG and NSGA-II, except for the minimum result for the 30*3*5 

instance. But the gap between the minimum results obtained by TLPSO-VNS and NSGA-

II is really small, only 0.7%. Furthermore, the TLPSO-VNS algorithm is more robust than 

GADG and NSGA-II because that the standard deviations of the TLPSO-VNS algorithm 

are smaller for all these three instances with different sizes. The details of the production 

scheduling for the optimal results of the three instances are shown in Figure 16 and Figure 

17. Specifically, MT means maintenance, the numbers in the box are the sequence of jobs. 

 

 



 

                                             Figure 16 Machine schedule for instance 1 

 



 

Figure 17 Mould schedule for instance 1 



5.3 Comparison with PSO variants in CEC’2013 Competition 

There are three PSO variants in CEC’2013: ABCSPSO (El-Abd 2013), fk-PSO 

(Nepomuceno and Engelbrecht 2013), and SPSO2011 (Zambrano-Bigiarini, Clerc, and 

Rojas 2013). ABCSPSO is also a hybrid algorithm where the PSO algorithm is augmented 

with an ABC component to improve the personal best of the particles. In every iteration, 

a new candidate solution NS is produced for each particle using the ABC update 

equation. The new candidate solution NS replaces the individual best if it has a better 

objective function value. fk-PSO is a self-adaptive heterogeneous PSO, which 

automatically alters its exploration and exploitation balance. The fk-PSO consists of six 

kinds of behaviors: TVAC-PSO for early exploration and later exploitation; TVIW-PSO 

for early exploration and later exploitation; sPSO for its high exploitation ability; cPSO 

for its hill-climbing ability; modBB-PSO with the exploitation probability set to linearly 

increase from 0 to 1; QSO with the cloud radius set to linearly decrease from the search 

bounds to 0 for better initial exploration. The particles in the fk-PSO change behaviors 

when they stagnant, which means that their individual bests do not improve for a number 

of iterations. Each behavior is conducted k iterations. In our experiment, the sequence of 

these behaviors is given instead of using tournament selection to decide the next behavior. 

SPSO2011 exploits the idea of rotational invariance. For each particle and at each time 

step, a center of gravity ( )iG  is defined by three points: the current position, a point a 

little “beyond” the best previous personal position, and a point a little “beyond” the best 

previous position in the neighourhood. A random point is defined in the hypersphere 



whose center is gravity ( )iG and the radius is the distance between the gravity ( )iG and the 

current position. Furthermore, a new velocity equation is given. 

Six random instances with different sizes are used to test the performance of the 

proposed TLPSOVNS. Based on the recommendation of Wong et al. (2012), the 

parameters of the six random instances are set as follows: the operation time of the moulds 

is produced randomly between 30 and 55 units of time; the batch size of jobs is produced 

randomly between 2 and 6 units. Each algorithm is run 10 times to measure the deviation 

of solutions obtained. The maintenance scheme of resources generated by Wong et al. 

(2012) is adopted. For a fair comparison, algorithm parameters, including the parameters 

related to PSO, the population size, the maximum number of generation of these three 

algorithms are the same as the proposed TLPSOVNS. For the parameters of fk-PSO, the 

parameters turning process similar to the process in section 5.1 is conducted. Finally, the 

iteration parameter k is set as 1000, and stagnant parameter is set as 20. The comparison 

results are listed in Table 6. 

 

 

 

 

 



Table 6. Comparison results with PSO Variants. 

N0 Size Algorithm Min Max Avg SD Time 

(s) 
1 20*2*4 TLPSOVNS 2308 2436 2383.3 32 939 

ABCSPSO 2364 2811 2613.8 133 302 

fk-PSO 2640 2935 2748.6 80 1.6 

SPSO2011 2383 2618 2517.8 74 10.7 

2 35*4*6 TLPSOVNS 2931 3380 3108.7 119 1112 

ABCSPSO 3029 3827 3545 251 350 

fk-PSO 3874 4707 4234.6 316 3 

SPSO2011 3273 4216 3872.6 276 23 

3 50*7*10 TLPSOVNS 2598 2836 2680.9 96 1026 

ABCSPSO 2829 3391 3036.6 169 956 

fk-PSO 3695 4157 3893 138 4 

SPSO2011 3329 3717 3483.4 121 99 

4 70*9*12 TLPSOVNS 3672 3988 3847.6 83 3302 

ABCSPSO 3905 4336 4128 149 1061 

fk-PSO 4422 4423 4892 229 5 

SPSO2011 4615 5073 4830 143 359 

5 80*10*16 TLPSOVNS 3200 3355 3279 46 3728 

ABCSPSO 3634 4028 3866.0 143 1184 

fk-PSO 4563 5351 5048 229 6 

SPSO2011 4617 5022 4787 142 40 

6 100*12*20 TLPSOVNS 3776.3 3997.5 3906.0 60 4626 

ABCSPSO 3942.0 4762.3 4368.0 250 1469 

fk-PSO 5523.7 6101.5 6004.7 269 8 

SPSO2011 5224.8 6433.5 5729.5 264 47.2 

 



The Wilcoxon Signed Rank Test is used to deeply analysis the difference between 

the TLPSO-VNS and the other three PSO variants. The analysis results of these six 

instances are shown in table 7. The significant level is 0.05. Particularly, the Wilcoxon 

Test results for the instance 100*20*12 is given in Table 8-Table 10 as an example. 

Table 7. Wilcoxon Signed Rank Test between TLPSO-VNS and PSO variants 

N0 Size Algorithm Comparison P value 

1 20*2*4 TLPSO-VNS  VS  ABCSPSO 0.007 

TLPSO-VNS  VS  fk-PSO 0.005 

TLPSO-VNS  VS  SPSO2011 0.007 

2 35*4*6 TLPSO-VNS  VS  ABCSPSO 0.005 

TLPSO-VNS  VS  fk-PSO 0.005 

TLPSO-VNS  VS  SPSO2011 0.007 

3 50*7*10 TLPSO-VNS  VS  ABCSPSO 0.005 

TLPSO-VNS  VS  fk-PSO 0.005 

TLPSO-VNS  VS  SPSO2011 0.005 

4 70*9*12 TLPSO-VNS  VS  ABCSPSO 0.005 

TLPSO-VNS  VS  fk-PSO 0.005 

TLPSO-VNS  VS  SPSO2011 0.005 

5 80*10*16 TLPSO-VNS  VS  ABCSPSO 0.005 

TLPSO-VNS  VS  fk-PSO 0.005 

TLPSO-VNS  VS  SPSO2011 0.005 

6 100*12*20 TLPSO-VNS  VS  ABCSPSO 0.005 

TLPSO-VNS  VS  fk-PSO 0.005 

TLPSO-VNS  VS  SPSO2011 0.005 

 

 



Table 8. Wilcoxon Test of instance 100*12*20 between TLPSOVNS and ABCSPSO 

 

Table 9. Wilcoxon Test of instance 100*12*20 between TLPSO-VNS and SPSO2011 

 

Table 10.Wilcoxon test of instance 100*12*20 between TLPSO-VNS and fkPSO  

 

From Table 6, we can know that TLPSO-VNS surpasses ABCSPSO, fk-PSO, and 

SPSO2011 for these six instances in terms of the average value, the minimum value and 

the maximum value. Table 7 shows that there are differences between TLPSO-VNS and 

other PSO variants because all the P values are smaller than the significant level 0.05. 



Since the TLPSO-VNS consists of three interrelated PSO, the local search ability is 

greatly improved but it needs more time to conduct the deep search. VNS, as a good 

search tool, can produce relative good solutions, however, VNS needs more time when 

the size of the problem increases. After hybridizing TLPSO with VNS, VNS enhances 

the local search ability of TLPSO and the solutions produced by TLPSO act as the initial 

solutions of VNS. The search ability of TLPSO-VNS is greatly improved, but the time 

needed is also longer.  

6. Conclusions 

This paper proposes a new hybrid algorithm named the TLPSO-VNS algorithm 

for production scheduling with mould maintenance (PS-MM) problem, which combines 

the three-level particle swarm optimization (TLPSO) algorithm and variable 

neighbourhood search (VNS). Differing from the joint scheduling approach, this 

integrated problem is divided into three sub-problems: production scheduling problem, 

machine maintenance problem and mould maintenance problem. Three interrelated PSOs 

are used in the solution, and is named as three-level particle swarm optimization 

(TLPSO). After obtaining good solutions from TLPSO, VNS is conducted to all these 

solutions to enhance the local search ability. The best solution is chosen from all the 

solutions enhanced by VNS. This is the first algorithm to hybrid TLPSO with VNS to 

solve the production scheduling with mould maintenance (PS-MM) problem, aiming at 

minimizing the overall makespan. The optimization reliability of TLPSO-VNS is tested 

in numerical experiments based on data from the literature and other data generated 



randomly. The results show that the proposed TLPSO-VNS algorithm is effective in 

generating solutions with good quality in acceptable computation time. It is also shown 

that the problem decomposition mechanism employed in TLPSO works well in this 

integrated problem, and VNS is efficient in enhancing the local search ability of this 

hybrid algorithm. Furthermore, the proposed TLPSOVNS is shown to surpass all other 

PSO variants in the CEC’2013 competition. 

More strategies will be added to the algorithm to reduce the search repetition, thus 

improving the efficiency of this hybrid algorithm. In addition, the algorithm will be 

modified to be suitable for production scheduling with mould maintenance problem with 

multi-objectives in the future.   
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