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Abstract: This paper presents investigations into classification and analysis of constraint singularities for parallel mechanisms. 

Parallel mechanisms (also called parallel manipulators or parallel robots) have wide applications in industry. The singularities 

tremendously affect their applications. Existing research works show that constraint singularity causes a mechanism to have 

instantaneous DoFs or bifurcated finite motions. However, the intrinsic differences among the conditions under which the specific 

constraint singularities happen have not been discussed. This paper is focused on these topics by using differential manifolds as 

mathematical tool. Firstly, the general mathematical models of parallel mechanisms are formulated by respectively describing their 

finite motions and instantaneous motions in forms of differential manifolds and their tangent spaces. Then, parallel mechanisms 

having bifurcated finite motions and instantaneous DoFs are modelled accordingly, and the constraint singularities are thus classified 

into two kinds by considering their influences on motions of mechanisms in both finite and instantaneous motion levels. Finally, two 

examples are given to further illustrate the theoretical analysis. This paper lays foundations for mathematical modelling and 

applications of parallel mechanisms with constraint singularities. 
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1. Introduction

Parallel mechanism [1,2] is also known as parallel manipulator [3-5] or parallel robot [6,7]. It is composed by several

serial mechanisms that share the same moving platform, and these serial mechanisms are called its limbs [8]. The 

research on parallel mechanisms is a hot topic in the area of mechanisms and robotics. Many parallel mechanisms 

having different types of degree-of-freedoms (DoFs) have been invented. Due to their outstanding kinematic and 

dynamic performances, parallel mechanisms are widely used in machining and manufacturing industries. 

In the research of mechanisms, singularity is one of the most important issues. As discussed by Müller and Zlatanov 

[9], singularity is the phenomenon occurring at some specific poses of a mechanism and leads to that the mechanism 

will gain or lose its DoFs, and the singularities of any mechanisms are classified into six types: redundant input, 

redundant output, redundant passive motion and impossible output, impossible input, and increased instantaneous 

mobility. For parallel mechanisms, singularities contain actuation singularity and constraint singularity. Actuation 

singularity is defined as the phenomenon when velocities of the actuation joints in a parallel mechanism are linearly 

dependent. It will cause that the rank of the twist Jacobian matrix degenerates, and that the mechanism loses one or 

more DoFs. Actuation singularity happens in any parallel mechanisms including the six-DoF ones. The discussions on 

actuation singularity can be traced back to the early works on Jacobian modelling of parallel mechanisms that were 

carried out by Hunt [10]. As the counterpart of actuation singularity, constraint singularity is discovered in the 

phenomenon when constraint forces provided by different limbs in a parallel mechanism are linearly dependent [9]. The 

correlation among the constraint wrenches results in that the limbs’ constraints imposing on the moving platform will no 

longer enough to restrict the mechanism’s motions, so that the mechanism will gain one or more DoFs at its 

constraint-singular pose. Unlike actuation singularity, constraint singularity only occurs in lower-mobility parallel 

mechanisms with less than six DoFs. In recent years, constraint singularity attracts much attention from academia 

because of the wide application of lower-mobility parallel mechanisms in industry. 

The concept of constraint singularity was introduced by Zlatanov, Bonev, and Gosselin [11,12], and intensity 

investigations on constraint singularity have been conducted since then. Through formulating singularity equation in 

explicit form, the constraint singularity analysis of a 3-UPU parallel mechanism was given by Gregorio [13]. In our 

paper, R, P, H, U, and S denote a rotational, a prismatic, a helical, a universal, and a spherical joint, respectively. Similar 

work was done by Lee and Hervé [14], and they found that the 3-UPU parallel mechanism generates 3-DoF finite 

translations and 2-DoF instantaneous rotations with respect to the constraint-singular pose. Through using the forward 

kinematic univariate, Srivatsan and Bandyopadhyay [15] proposed a new method for deriving the geometric condition 

of constraint singularities of parallel mechanisms, and they took a 3-RPS mechanism for example. Li and Hervé [16] 

synthesized some four-DoF parallel mechanisms with bifurcation of Schoenflies motion. These mechanisms generate 

bifurcated motions moving from the constraint-singular pose. Chablat, Kong, and Zhang [17] found a parallel 

mechanism with five bifurcated operation mode, and carried out its singularity analysis. Gogu [18] studied the 

singularities of two-translational and one-rotational parallel mechanisms with bifurcated spatial motions. In the 

meantime, some methods were put forward to reveal the intrinsic properties and to explain physical meanings of 

singularities. Liu, Lou, and Li [19] provided a geometric study on the singularities of parallel mechanisms by using 

differential forms of the constraint functions that associate with the mechanisms. Singularity analysis is one of the most 

important issues in the field of parallel manipulators. By taking into account motion/force transmissibility, Liu, Wu, and, 

Wang [20] proposed several performance indices for singularity analysis that can be used to measure the closeness to 
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singularities. These indices are suitable for both actuation and constraint singularities. 

The above analysis shows that many effectors have been carried out on the research of constraint singularity. 

However, it should be pointed out that there are some questions that are worthy of further investigations: 

(1) Some constraint singularities (such as that of 3-UPU parallel mechanism) lead to instantaneous DoFs, while others 

(such as that of the parallel mechanism with bifurcated Schoenflies motion) lead to bifurcated finite motions. What are 

the differences between their constraint singularities in both finite and instantaneous motion levels? 

(2) The singularities are classified into actuation singularity and constraint singularity by whether the instantaneous 

DoFs of the mechanism decreases or increases. Referring to this, how should the different kinds of constraint 

singularities be classified in finite and instantaneous motion levels? 

These questions can be answered by studying the classification of constraint singularities. And the influences of 

different constraint singularities on both finite and instantaneous motions of parallel mechanisms can help to understand 

the motion characteristics of the mechanisms and to extend its applications. 

As differential manifold theory together with screw theory has been successfully used in type synthesis [21,22], 

kinematic and dynamic [23,24] analysis of parallel mechanisms, we will use these mathematical tools for finite and 

instantaneous motion modelling and singularity analysis of parallel mechanisms in this paper. 

The outline of the paper is listed as follows. The importance of singularity in the research and application of parallel 

mechanisms is addressed, and a brief review of the-state-of-art of constraint singularities is given in Section 1. In 

Section 2, through using differential manifolds and their tangent spaces, the general mathematical models of finite and 

instantaneous motions of parallel mechanisms are formulated in matrix form and in screw form, respectively. 

Considering the influences of constraint singularities on motions of mechanisms as well as the relationships between the 

twist and wrench spaces of mechanisms and their limbs, the constraint singularities are classified into two kinds in 

Section 3, and the mathematical nature of the classification is given in detail. In Section 4, two examples are given to 

verify the theoretical analysis. The conclusions are drawn in Section 5. 

2. Mathematical modelling of parallel mechanisms’ motions

Similar with the existing works [25,26], we use the sub-sets in the matrix representation of the Special Euclidean

group SE(3) which acts on the six-dimensional real vector space ( 6 ) to describe finite motions of parallel mechanisms. 

Meanwhile, the tangent spaces of these sub-sets are used to describe the mechanisms’ instantaneous motions. 

The motions of a parallel mechanism are determined by the motions of all the joints in it. The finite motions 

generated by one-DoF joints are described by one-parameter Lie groups, as listed in Table 1, where s  and r  with 

specific subscripts denote the unit direction vectors ( R 1=s , P 1=s , H 1=s ) and their perpendicular position 

vectors ( T

R R 0=r s , T

H H 0=r s ) of the corresponding joints,   or t  with specific subscripts are the rotational angles or 

translational distance of the corresponding joints from their initial poses, h  is the pitch of the H joint; matrix 

( )R R,R s r denotes the rotation generated by the R joint with parameter 
R , and the set ( ) R R,R s r (one-parameter 

matrix Lie group) denotes all the joint’s rotations with parameter range as  R 0,2   ; ( )PT s  denotes the translation 

generated by the P joint with parameter 
Pt , and ( ) PT s  denotes all its translations with

Pt  ; ( )H H, ,hH s r

denotes the helical motion (combined by rotation and translation) generated by the H joint with parameter 
H , and

( ) H H, ,hH s r denotes all its motions with 
H  . In the expressions of the matrices, a vector followed by the cross

product “ ” in the brackets “   ” denotes the skew-symmetric matrix of the vector, such as  R s ; 
3 30 is the 3 3  

null matrix, and 
3E  is the three-order unit matrix. 

Table 1 The finite motions generated by one-DoF joints. 

Joint Finite motions Parameter 

R ( ) 
 ( )  ( )( )  ( )

 ( )

R R R R R R R R

R R

3 3 R R

exp exp exp
,

exp

  



    −      =  
    

0

s r s r s
R s r

s
  R 0,2    

P ( )  3 P P

P

3 3 3

t



   
=   
   0

E s
T s

E
 Pt 

H ( ) 
 ( )  ( )( )  ( )( )

 ( )

H H H H H H H H H H

H H

3 3 H H

exp exp exp exp
, ,

exp

h
h

   



    −  +     =  
    

0

s r s r s s
H s r

s
 H   
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Suppose that a parallel mechanism is composed by l limbs, and the No. i limb ( 1,2, ,i l= ) (the limbs are numbered 

arbitrarily) consists of ni one-DoF joints, as shown in Fig. 1. Because each limb motion is composited by the motions of 

joints contained in it, and the mechanism motion is the intersection of all the limb motions, the finite motion of the 

parallel mechanism is modelled as 

 
PM 1 2 l=M M M M , (1) 

while each limb motion is modelled as 

 , ,2 ,1ii i n i i=M M M M , 1,2, ,i l= , (2) 

where 
PMM , 

iM , and ,i kM  denote the sets of finite motions of the parallel mechanism, its No. i limb, and the No. k 

joint ( 1,2, , ik n= ) (the joints in a limb are numbered from the one connected to the fixed base to the one connected to 

the moving platform in ascending order) in that limb; for each joint motion, ,i kM  is in form of a one-parameter matrix 

Lie group in Table 1. The product “ ” of two matrix Lie groups results in the set that contains the multiplications of any 

two matrices, in which the first matrix is in the first Lie group and the second matrix is in the second Lie group. 

 

 

Fig. 1 Parallel mechanism composed by l limbs. 

 

Since the direction vector, the position vector, and the motion parameter of each joint are measured at the parallel 

mechanism’s initial pose, 
PMM  describes all the finite motions that can be realized by the parallel mechanism from its 

initial pose. As each ,i kM  is a Lie group, 
iM  is a Lie group or a general differential manifold of matrices. In this way, 

it is easy to know that 
PMM  has the algebraic structure of Lie group, or general differential manifold, or the union of 

differential manifolds. 

At any pose of the parallel mechanism, the instantaneous motions of the mechanism, each of its limbs and joints are 

described by the tangent spaces of 
PMM , 

iM , and ,i kM  at the pose, which means that 

 paramters values of all the jointsPM PM
in the mechanism at the pose

=T M , (3) 

 paramters values of the  joints
in the No.  limb at the pose

ini i
i

=T M , (4) 

 paramters value of the No.  joint, ,
in the No.  limb at the pose

ki k i k
i

=T M , 1,2, ,i l= , 1,2, , ik n= , (5) 

where 
PMT , 

iT , and ,i kT  are the twist spaces of the parallel mechanism, its No. i limb, and the No. k joint in the No. i 

limb at that pose of the mechanism. It should be noted that the twist spaces in matrix form can be directly rewritten into 

its isomorphic spaces in screw form [25]. 

3. Classification of constraint singularities for parallel mechanisms 

Constraint singularity is a phenomenon occurring in a parallel mechanism when the wrench space spanned by the 

constraint wrenches of all limbs loses rank. In other words, the constraint wrenches provided by all limbs are not 

enough to constrain the mechanism motions. According to the reciprocal relationship between twist space and constraint 

wrench space, at the constraint singularity pose of a parallel mechanism, the intersection of the twist spaces of all limbs 

The No. k joint 

The No. i limb 

The fixed base 

The moving platform 

The No. ni joint 

The No. 1 joint 
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has more DoFs than its actual DoFs. 

The existing works about constraint singularity focus on the degeneration of wrench space and the increment of twist 

space at the singularity pose, only the influences on instantaneous motions are taken into account. However, these 

works have not revealed the reason why singularity pose occurs and the influences that constraint singularity brings to 

the parallel mechanism on its finite motions. In this section, these topics will be investigated through discussing the 

classification of constraint singularities. 

For a common pose at which constraint singularity does not occur, the tangent space of the mechanism manifold 

equals to the intersection of tangent spaces of the limb manifolds, which means that the mechanism’s twist space equals 

to the interaction of all its limbs’ twist spaces, as 

 
PM 1 2

1,2, ,

l

i
i l=

=

=

T T T T

T
. (6) 

It also means that the mechanism’s constraint wrench space is spanned by the constraint wrenches of all the limbs, as 

 

 

 
PM 1 2

1,2, ,

span

span

l

i
i l=

=

=

W W W W

W
, (7) 

where 
PMW  and 

iW  ( 1,2, ,i l= ) are the constraint wrench spaces of the parallel mechanism and its limbs at the 

pose. 
iW  of each limb is the reciprocal space (null space) of the corresponding 

iT , as 

 i i

⊥ =W T , 1,2, ,i l= . (8) 

Eqs. (6) and (7) are the regular way in which 
PMT  and 

PMW  are computed by the spaces of its limbs, and the 

obtained spaces are reciprocal to each other, i.e., T

PM PM=W T . Both of these two equations are true at the common poses. 

However, for a constraint-singular pose, Eq. (6) will not hold; Eq. (7) will hold or not, and the constraint singularities 

for parallel mechanisms can thus be classified into two kinds accordingly. 

3.1 Constraint singularity causing the bifurcation of finite motions 

The first kind of constraint singularities causes the bifurcation of finite motions. When a parallel mechanism is at this 

kind of singular poses, Eq. (6) will not be true but Eq. (7) will still hold. The detailed explanation is given as follows. 

If the singular pose is selected as the initial pose of the mechanism, its finite motions with bifurcation will be 

modelled as the union of two differential manifolds, as 

 
PM A B=M M M , (9) 

which is continuous but not smooth at the initial pose. Hence, it is no longer a differential manifold and has no tangent 

space. In this situation, Eq. (3) does not hold. According to the relation between finite motions and instantaneous 

motions of a parallel mechanism, 
PMT  is the union of the tangent spaces of the two differential manifolds contained in 

PMM , as 

 
all the joints paramters all the joints paramtersPM
are zero are zero

A B

A B

=

=

T M M

T T

. (10) 

At the bifurcation pose, 
A BT T  contains all the common twists in all the limbs’ twist spaces. Thus, 

1,2, ,
i

i l=

T  is 

computed as 

  
1,2, ,

spani A B
i l=

=T T T . (11) 

It is easy to see that A BT T  is not a linear space, it does not equal to  span A BT T . Hence, comparing the above 

two equations, it can be obtained that Eq. (7) turns to be wrong. 

When the first kind of constraint singularities occurs, as 
PMT  is not a linear space and has no reciprocal space, 

PMT  

and 
PMW  are no longer reciprocal to each other, i.e., 

T

PM PMW T . However, 
PMW  still contains the wrenches that are 

reciprocal to all the twists in 
PMT , so that it is computed as 
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 ( )

PM

span

A B

A B

⊥ ⊥

⊥

=

=

W T T

T T
. (12) 

Because constraint singularities only involve the relationship among motions and constraints of different limbs, they do 

not change the reciprocal relationship between twist and wrench spaces of each limb. Based upon Eq. (8), 
1,2, ,

i
i l=

W  is 

spanned to be 

 
   

1,2, , 1,2, ,

1,2, ,

span spani i
i l i l

i
i l

⊥

= =

⊥

=

=

 =  
 

W T

T

, (13) 

According to Eq. (11), Eqs. (13) and (14) show that Eq. (8) still holds at the bifurcation pose. 

3.2 Constraint singularity causing no influence to finite motions but instantaneous DoFs 

The second kind of constraint singularities causes no influence to finite motions but causes limbs’ instantaneous 

DoFs. At this kind of singular poses, the twists and wrenches of a parallel mechanism will change without changing its 

finite motion characteristics. Both Eqs. (6) and (7) will not hold. The detailed explanation is given as follows. 

Select any pose as the initial pose of the mechanism, its finite motions will be modelled as a differential manifold 

PMM  in the usual way by solving the intersection of all its limb motions as shown in Eq. (1). And 
PMT  at the singular 

pose is obtained through computing the differentiation of 
PMM  at that pose by following Eq. (3). It is obvious that 

PMT  has the same dimension with 
PMM , which is coincident with the number of mechanism’s DoFs. However, 

because of the constraint singularity, the dimension of 
1,2, ,

i
i l=

T  increases. It means that 
1,2, ,

i
i l=

T  has more base twists 

than 
PMT , as 

  PM
1,2, ,

spani
i l=

=T T T , (14) 

where T  is a twist space spanned by the additional base twists caused by the constraint singularity. Thus, Eq. (6) does 

not hold. 

Unlike the first kind of constraint singularities, at the second kind of constraint-singular poses, 
PMT  is a linear space 

as usual, and the reciprocal relationship between 
PMT  and 

PMW  holds. 
PMW  is obtained as 

 T

PM PM=W T . (15) 

Meanwhile, using Eqs. (13) and (14),  
1,2, ,

span i
i l=

W  is computed as 

 
 

 ( )

1,2, , 1,2, ,

PM

span

span

i i
i l i l

⊥

= =

⊥

 =  
 

=

W T

T T

, (16) 

whose dimension is bigger than that of 
PMW , so that Eq. (7) turns to be wrong. 

As a summary, the differences between the two kinds of constraint singularities for parallel mechanisms are listed in 

Table 2. It can be easily seen that the constraint singularity of 3-UPU parallel mechanism belongs to the first kind, while 

the singularity of parallel mechanism having bifurcated Schoenflies motion belongs to the second. 

 
Table 2 Comparison between two kinds of constraint singularities. 

Constraint 

singularity 

Influences on 

finite motions 

Influences on 

instantaneous motions 

Influences on 

constraint forces 

Relationship between 

twist and wrench spaces 

The first kind Bifurcation PM
1,2, ,

i
i l=

T T   PM
1,2, ,

span i
i l=

=W W  T

PM PMW T  

The second kind None PM
1,2, ,

i
i l=

T T   PM
1,2, ,

span i
i l=

W W  T

PM PM=W T  

None N/A PM
1,2, ,

i
i l=

=T T   PM
1,2, ,

span i
i l=

=W W  T

PM PM=W T  
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4. Examples 

In this Section, two parallel mechanisms are given as examples to show the correctness of the theoretical results 

derived in Section 3. The first mechanism in Example A has the first kind constraint singularity; the second mechanism 

in Example B has the second kind constraint singularity. 

4.1 Example A 

Figure 2 shows a four-DoF parallel mechanism, which has been reported in [16]. Its moving platform has bifurcated 

Schoenflies motion with three translational DoFs and one bifurcated rotational DoF. It has two pairs of opposite limbs. 

Each limb in one pair is denoted as PaPbPcRaRb, and each limb in the other pair is denoted as PbPaPcRbRa. Thus, the 

mechanism can be denoted as 2-PaPbPcRaRb-2-PbPaPcRbRa. The directions of Pa, Pb, Pc, Ra, and Rb joints are 
as , 

bs , 

cs , 
as , and 

bs , respectively. The different unit direction vectors are drawn in different color in Fig. 2. The 

relationships between them are 
b a c =s s s . Observing from the top of the mechanism, the four limbs are numbered in 

counter-clockwise order. The three P joints with different directions in three limbs and an R joint in the fourth limb can 

be selected as actuation joints. 

 

 

Fig. 2 A 2-PaPbPcRaRb-2-PbPaPcRbRa parallel mechanism. 

 

Select the symmetric pose of this parallel mechanism as its initial pose, as shown in Fig. 2. According to Eq. (2), the 

finite motion models of the four limbs are formulated as 

 ( )  ( )  ( )  ( )  ( ) , ,, ,i b i b a i a c b a=M R s r R s r T s T s T s , 1,3i = , (17) 

and 

 ( )  ( )  ( )  ( )  ( ) , ,, ,i a i a b i b c a b=M R s r R s r T s T s T s , 2,4i = , (18) 

where ,i ar  (
T

, 0i a a =r s ) and ,i br  (
T

, 0i b b =r s ) are the position vectors of the Ra and Rb joints in the No. i limb, 

respectively. 

Through algebraic derivations, the finite motions of the parallel mechanism are computed by solving the intersection 

of limb motions, which results in bifurcated motions as 

 
( )  ( )  ( )  ( )  ( )  ( )  ( )  ( ) 

PM 1 2 3 4

, ,a a c b a b b c b a

=

=

M M M M M

R s r T s T s T s R s r T s T s T s
, (19) 

where 
ar  and 

br  respectively denote arbitrary position vectors. They can be any two three-dimensional vectors under 

conditions 
T 0a a =r s  and 

T 0b b =r s . 

According to the analysis in Section 3.1, the twist and wrench spaces of the four limbs and the parallel mechanism 

are obtained as follows, 

 span , , , ,
a b

i

a a b b a b c

           
=           

            

0 0 0s s
T

r s r s s s s
, 1,2,3,4i = , (20) 

as

bs

cs

The No. 1 limb 
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 span
c

i

   
=   

   0

s
W , 1,2,3,4i = , (21) 

and 

 
PM span , , , span , , ,

a b

a a a b c b b a b c

                     
=                   

                      

0 0 0 0 0 0s s
T

r s s s s r s s s s
, (22) 

 
PM span

c   
=   

   0

s
W . (23) 

The relationships among these twist and wrench spaces can be obtained as 

 
PM

1,2, ,

span , , , ,
a b

i
i l

a a b b a b c
=

           
 =           

            

0 0 0s s
T T

r s r s s s s
, (24) 

and 

  PM
1,2, ,

span span
c

i
i l=

   
= =   

   0

s
W W . (25) 

It is easy to see that the common wrench space of the parallel mechanism at other poses is 

 
PM span ,

a c     
=     

     0 0

s s
W  or 

PM span ,
b c     

=     
     0 0

s s
W . (26) 

Comparing Eq. (26) with Eq. (24), it can be concluded that when the parallel mechanism is at the pose in Fig. 2, the 

dimension of its wrench space will decrease. This means that constraint singularity occurs at this pose. According to 

Eqs. (24) and (25), the union of the limbs’ wrench spaces can still be spanned into the mechanism’s wrench space, 

however, the intersection of the limbs’ twist spaces does not equal to the mechanism’s twist space. These conclusions 

are coincident with the theoretical results obtained in Section 3.1 and the first line in Table 2. Thus, the constraint 

singularity of the mechanism in Example A belongs to the first kind, which causes the bifurcation of the mechanism’s 

finite motions as shown in Eq. (19). 

4.2 Example B 

Figure 3 shows a four-DoF parallel mechanism having Schoenflies motion. It is denoted as 

2-PaPbPcRdRb-2-PbPaPcRdRa, which has been reported in [27]. Different with the mechanism in Fig. 2, its moving 

platform has three translational DoFs and one rotational DoF with fixed direction. It also has two pairs of opposite 

limbs. The directions of Pa, Pb, Pc, Ra, Rb, and Rd joints are 
as , 

bs , 
cs , 

as , 
bs , and 

ds , respectively, whose 

relationships are 
a d c =s s s  and 

b d c =s s s . The four limbs are numbered in counter-clockwise order, when they are 

observed from the top of the mechanism. Similar with the mechanism in Fig. 2, the three P joints with different 

directions in three limbs and an R joint in the fourth limb can be selected as actuation joints. 

 

 

Fig. 3 A 2-PaPbPcRdRb-2-PbPaPcRdRa parallel mechanism. 

 

as

bs

cs

The No. 1 limb 

ds
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As shown in Fig. 3, the symmetric pose of the parallel mechanism is selected as its initial pose. The finite motion 

models of its four limbs are formulated by utilizing Eq. (2), as 

 ( )  ( )  ( )  ( )  ( ) , ,, ,i b i b d i d c b a=M R s r R s r T s T s T s , 1,3i = , (27) 

and 

 ( )  ( )  ( )  ( )  ( ) , ,, ,i a i a d i d c a b=M R s r R s r T s T s T s , 2,4i = , (28) 

where ,i ar  ( T

, 0i a a =r s ), ,i br  ( T

, 0i b b =r s ), and ,i dr  ( T

, 0i d d =r s ) are the position vectors of the Ra, Rb, and Rd joints in 

the No. i limb, respectively. 

Computing the intersection of limb motions by algebraic derivations, the finite motions of the parallel mechanism are 

obtained as 

 ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( ) 

( )  ( )  ( )  ( ) 

PM 1 2 3 4

, , , ,

,

b b d d c b a a a d d c b a

d d c b a

=

=

=

M M M M M

R s r R s r T s T s T s R s r R s r T s T s T s

R s r T s T s T s

, (29) 

where 
ar , 

br , and 
dr  are position vectors chosen arbitrarily, which can be any three three-dimensional vectors under 

conditions T 0a a =r s , T 0b b =r s , and T 0d d =r s . 

Based upon the analysis in Section 3.2, through differentiating the finite motions models, the twist and wrench spaces 

of the four limbs and the parallel mechanism can be computed as the tangent spaces of the corresponding differential 

manifolds in Eqs. (27)-(29), as 

 span , , , ,
b d

i

b b d d a b c

           
=           

            

0 0 0s s
T

r s r s s s s
, 1,3i = , (30) 

 span , , , ,
a d

i

a a d d a b c

           
=           

            

0 0 0s s
T

r s r s s s s
, 2,4i = , (31) 

 span
c

i

   
=   

   0

s
W , 1,2,3,4i = , (32) 

and 

 
PM span , , ,

d

d d a b c

         
=         

         

0 0 0s
T

r s s s s
, (33) 

 
PM span ,

c d c      
=     

     0 0

s s s
W . (34) 

Compare 
PMT  and 

PMW  with 
1,2, ,

i
i l=

T  and  
1,2, ,

span i
i l=

W . The relationships among these twist and wrench 

spaces are 

 
PM

1,2, ,

span , , , ,
a d

i
i l

a a d d a b c
=

           
 =           

            

0 0 0s s
T T

r s r s s s s
, (35) 

and 

  PM
1,2, ,

span span
c

i
i l=

   
 =   

   0

s
W W . (36) 

The twist and wrench spaces of the parallel mechanism at other poses are the same with those at this pose, while the 

intersection of its limbs’ twist spaces at other poses is 
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1,2, ,

span , , ,
d

i
i l

d d a b c
=

         
=         

         

0 0 0s
T

r s s s s
. (37) 

It can be seen from Eqs. (36) and (37) that the dimension of the union of the limbs’ wrench spaces decreases when 

the parallel mechanism is at the pose in Fig. 3. In other words, this pose is a constraint-singular pose of the mechanism. 

Even though Eqs. (35) and (36) show that the intersection of the limbs’ twist spaces does not equal to the mechanism’s 

twist space at the singular pose, and the union of the limbs’ wrench spaces cannot be spanned into the mechanism’s 

wrench space, the twist and wrench spaces of the mechanism remains unchanged at both the singular pose and other 

common poses. The above analyses are coincident with the theoretical results in Section 3.2 and the second line in Table 

2. Hence, the constraint singularity of the mechanism in Example B belongs to the second kind, which brings no 

influence to the mechanism’s finite motions but causes limbs’ instantaneous DoFs as shown in Eqs. (29) and (35). 

It should be pointed out that even though the two parallel mechanisms in Figs. 2 and 3 have the same number and 

types of joints, they are different mechanisms. Through the comparisons between Eqs. (19) and (29), between Eqs. (22) 

and (33), it can be concluded that their finite motions and instantaneous motions are different with each other. After 

comparing the structures of the mechanisms in the two Figures, we can see that the effect after turning the fourth joint in 

each limb to have the same direction changes the mechanism’s motion from bifurcated Schoenflies motion to 

Schoenflies motion. This means that the rotation ability of the mechanism is changed from having two bifurcated 

rotational axes to having one fixed rotational axis. Therefore, the workspace of the mechanism in Fig. 2 with higher 

flexibility is larger than that of the mechanism in Fig. 3. 

5. Conclusions 

Through using differential manifolds and its tangent spaces as mathematical tool, in-depth investigations on 

classifications of constraint singularities for parallel mechanisms are presented. The following conclusions are drawn: 

(1) The intrinsic differences between constraint singularities causing bifurcated motions and those causing 

instantaneous DoFs are revealed in both finite and instantaneous motion levels, leading to the classification of constraint 

singularities based upon relations between manifolds and tangent spaces of mechanisms and their limbs. 

(2) Bifurcated motions and instantaneous DoFs of parallel mechanisms should be avoided in some situations. However, 

they can sometimes be utilized to realize specific tasks. The theoretical results in this paper give clear guidance for 

eliminating shakiness of some parallel mechanisms and designing parallel mechanisms with multi-operation modes. 
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