
1

Machine learning assisted design of FeCoNiCrMn high-

entropy alloys with ultra-low hydrogen diffusion coefficients

Xiao-Ye Zhoua, Ji-Hua Zhua, *, Yuan Wub, *, Xu-Sheng Yangc, Turab Lookmand, Hong-

Hui Wue,f*

a Guangdong Province Key Laboratory of Durability for Marine Civil Engineering,

School of Civil Engineering, Shenzhen University, Shenzhen, Guangdong, 518060,

PR China

b State Key Laboratory for Advanced Metals and Materials, University of Science and

Technology Beijing, Beijing, 100083, China

c Department of Industrial and Systems Engineering, The Hong Kong Polytechnic

University, Hung Hom, Kowloon, Hong Kong, China

d AiMaterials Research LLC, Santa Fe, New Mexico 87501, United States

e School of Materials Science and Engineering, University of Science and Technology

Beijing, Beijing, 100083, China

f Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA

* Corresponding authors: zhujh@szu.edu.cn (J.H. Zhu), wuyuan@ustb.edu.cn (Y.

Wu), hhwuaa@connect.ust.hk (H.H. Wu)

https://doi.org/10.1016/j.actamat.2021.117535 This is the Pre-Published Version.

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:zhujh@szu.edu.cn
mailto:wuyuan@ustb.edu.cn

2

Abstract

The broad compositional space of high entropy alloys (HEA) is conducive to the

design of HEAs with targeted performance. Herein, a data-driven and machine

learning (ML) assisted prediction and optimization strategy is proposed to explore the

prototype FeCoNiCrMn HEAs with low hydrogen diffusion coefficients. The model

for predicting hydrogen solution energies from local HEA chemical environments was

constructed via ML algorithms. Based on the inferred correlation between atomic

structures and diffusion coefficients of HEAs built using ML models and kinetic

Monte Carlo simulations, we employed the whale optimization algorithm to explore

HEA atomic structures with low hydrogen diffusion coefficients. HEAs with low H

diffusion coefficients were found to have high Co and Mn content. Finally, a

quantitative relationship between the diffusion coefficient and chemical composition

is proposed to guide the design of HEAs with low H diffusion coefficients and thus

strong resistance to hydrogen embrittlement.

Keywords: machine learning; high entropy alloy; hydrogen embrittlement; material

design;

3

1. Introduction

The demand for hydrogen (H) energy is rapidly growing in the current society[1-

3]. However, the wide application of H energy faces great challenges in the storage

and transportation of H gas for that the presence of mobile H atoms in metals could

render serious deterioration in the mechanical properties of metals, especially ductility

and durability, inducing the so-call hydrogen embrittlement (HE). The mobile H

atoms are prone to accumulate at crystal defects i.e., grain boundaries [4, 5],

interfaces [6-8], and micro voids [9, 10], inducing decohesion or stress concentration,

and consequently crack initiation and propagation. One common strategy to increase

the HE resistance of metals is to suppress severe H accumulation at defects by

slowing down H diffusion through the dispersion of irreversible traps like

precipitates[11] or reversible traps like grain boundaries [12] and dislocation walls

[13]. However, to trap enough diffusive H, the defects should have sufficient density

and proper dispersion in the matrix. Otherwise, H atoms would accumulate at the

defects and cause embrittlement. Therefore, novel effective methodologies for

trapping diffusive H are in demand.

High entropy alloys (HEAs) have attracted intensive interest due to their unique

properties such as good ductility[14], high thermal stability[15, 16], corrosion

resistance[17, 18], and excellent low-temperature mechanical properties[19].

Particularly, certain HEAs, such as the prototype Cantor alloy (FeCoNiCrMn) [20-

24], have been found to be much less susceptible to HE than commercially used Ni-

based alloys and stainless steel, even at a higher level of H charging. The multiple

principal components in HEAs lead to a vast compositional space for designing alloys

with strong HE resistance. However, an effective way for designing HE resistant

HEAs still requires an in-depth understanding of the underlying mechanisms of HE

resistance in HEAs. It has been proposed that the highly fluctuated local chemical

environment and the distorted lattice of HEAs result in a wide distribution of H

diffusion energy barriers. The peaks/valleys in the potential energy landscape create

4

numerous H traps [25] in the HEA lattice. To develop an effective design strategy for

HE resistant HEAs, it is necessary to identify how the local chemical environment is

correlated with the local H trapping energy and clarify how the chemical composition

influences the diffusion coefficient.

Data-driven material design is an emerging field of research that can search for

the optimal material with great efficiency by avoiding the traditional trial-error

material development process [26-29]. Here we propose a data-driven and machine

learning (ML) assisted strategy to design HE resistant non-equimolar FeCoNiCrMn

HEAs. Our approach is to calculate the H solution energies using density functional

theory (DFT) at critical sites of the HEA lattice, followed by ML algorithms to

correlate the local chemical environment with H solution energies. H diffusion

coefficients are subsequently calculated from H diffusion barriers by kinetic Monte

Carlo (kMC) simulations [10, 30]. Whale optimization algorithms (WOA) [31] then

allow us to explore HEA atomic structures with low H diffusion coefficients. Finally,

using a polynomial model, we construct a mapping between the H diffusion

coefficient and the chemical composition of the HEA. The model suggests that we can

regulate the H diffusion coefficient of the HEA by tuning its chemical composition. In

particular, HEAs with low H diffusion coefficients are predicted to have high Co and

Mn content, while those with high H diffusion coefficients have high Fe and Ni

content. The quantitative model linking the H diffusion coefficient with the chemical

composition of HEA is expected to guide the design of high-performance HEAs with

low H diffusion coefficients and strong resistance to HE.

2. Theoretical Methods

2.1. DFT calculations of the H solution energies

In face-centered cubic (FCC) crystals, H atoms preferentially occupy the

octahedral interstitial (OI) sites (Fig. 1a). H atoms at the tetrahedral interstitials (TIs,

see Fig. 1a) are at relatively higher energy states. The diffusion pathway of an H atom

5

in a perfect FCC crystal starts from one OI, climbs across a saddle point, passes

through a neighboring TI, then diffuses across another saddle point, and finally arrives

at its neighboring OI [32], as shown in Figs. 1b and 1c viewed along the <100> and

<110> directions, respectively. The saddle point positions and energies were

calculated with the climbing image nudged elastic band method (CINEB) [33]. The

TIs and OIs of a perfect FCC lattice can be obtained from the geometric

characteristics of the FCC lattice. After several CINEB calculations, we find that the

saddle points can be easily located at the centers of the triangles formed by the three

nearest atoms in the FCC lattice. This allows us to identify the location of saddle

points based on geometry rather than performing DFT calculations. The OIs, TIs and

saddle points are the critical sites that determine the diffusion path and barriers of a H

atom in an FCC crystal. The H solution energies at the critical sites in FCC crystals

are calculated using

𝐸𝐻−𝑠𝑜𝑙𝑢 = 𝐸𝐻+𝑏𝑢𝑙𝑘 − 𝐸𝑏𝑢𝑙𝑘 − 𝐸𝐻 , (1)

where 𝐸𝐻+𝑏𝑢𝑙𝑘 is the total energy with zero-point energy (ZPE) correction of the

relaxed lattice when the H atom is embedded in the interstitial or saddle point, 𝐸𝑏𝑢𝑙𝑘

is the energy of the relaxed bulk lattice, 𝐸𝐻 is the energy of an H atom in a vacuum.

Fig. 1. Critical sites in an FCC crystal (a) The positions of an OI, TI, and saddle point

in FCC crystal. (b-c) The trajectory between TIs and OIs viewed along the (b) <100>

and (c) <110> directions.

6

The DFT calculations were performed using the Vienna ab initio Simulation

Package (VASP) [34, 35]. Perdew, Burke, and Ernzerhof (PBE) [36] functional of

generalized gradient approximation with projector augmented wave (PAW) [37] was

adopted to describe the electronic structures of HEAs. The plane-wave basis kinetic

energy cut-off was set to 400 eV. All calculations were carried out with spin-

polarization switched on. During the geometrical optimizations, all atoms and the

simulation cells were allowed to relax, so that the lattice distortion was taken into

consideration when calculating the H solution energies. The total energy was

converged to less than 10−6 eV for the electronic structure optimization. The

convergence criterion for geometric optimization for calculating H solution energy

was set to 0.1 eV, and the criterion for optimizing the atomic structure of the lattice

was set to 0.001 eV. The atomic structure of the lattice was relaxed firstly, and then

the H atoms were placed at the TIs, and OIs in the lattice. As the original structure

was close to the final structure, the optimization usually finishes within 4 steps.

As one of the limitations of DFT calculations is that the simulation system is

finite, it is difficult to directly simulate a real HEA system by DFT. In a real HEA

lattice, even though the overall chemical composition is equimolar, the local structure

might have elemental segregation that makes the composition deviate from equimolar

[38-40]. Therefore, it is inadequate to simulate only five-component equimolar

FeCoNiCrMn HEAs within DFT calculations. Hence, we build atomic structures with

the number of components ranging from one to five, covering different combinations

of the five alloying elements, as shown in Table 1. The H solution energies at all the

critical sites in these structures are then calculated by DFT.

7

Table 1. Structures for DFT calculations of the H solution energies

Pure Binary Ternary Quaternary
Quinary (equimolar

FeCoNiCrMn)

Fe
Fe-Co Fe-Co-Ni

Fe-Co-Ni-Cr equi-HEA-1
Fe-Ni Fe-Ni-Cr

Co
Fe-Cr Fe-Ni-Mn

Fe-Ni-Cr-Mn equi-HEA-2
Fe-Mn Co-Ni-Cr

Ni
Co-Ni Co-Ni-Mn

Fe-Co-Ni-Mn equi-HEA-3
Co-Cr Ni-Cr-Mn

Cr
Co-Mn Fe-Co-Mn

Co-Ni-Cr-Mn equi-HEA-4
Ni-Cr Fe-Cr-Mn

Mn
Ni-Mn Fe-Co-Cr

Fe-Co-Cr-Mn equi-HEA-5
Cr-Mn Co-Cr-Mn

2.2. kMC simulations

 The kMC simulations are used for calculating H diffusion coefficients. Here we

only consider the low H-concentration scenario. One H atom was firstly placed in a

randomly selected OI site. Due to the complicated local chemical environment of

HEA, each OI has 8 different neighboring TIs, so there are 8 different barriers for

hopping from OI to TI. The hopping rate to the ith neighboring TI is calculated by

𝑘𝑖 = 𝑣0 exp (−
∆𝐸𝑖

𝑘𝐵𝑇
) (2)

For the H atom at this OI, the total hopping rate is

𝑘𝑡𝑜𝑡 = ∑ 𝑘𝑖𝑖 (3)

The probability of this H hopping to the ith TI is 𝑘𝑖/𝑘𝑡𝑜𝑡. The selection of the TI

for hopping is then based on the probability of each hopping event. The hopping from

TI to OI is determined by the same method.

The time interval for each hopping event is calculated by,

 ∆t = −
1

𝑘𝑡𝑜𝑡
ln⁡(𝑟2) (4)

where 𝑟2 is a random number between 0 and 1. The hopping continues until the preset

number of steps has been reached. The H diffusion coefficient is then calculated by

8

𝐷 =
1

6𝑡
𝑀𝑆𝐷 (5)

where MSD is the mean squared displacement of the H atom, t is the total time of the

kMC simulation.

 The attempt frequency 𝑣0 used here is 10-14 m2 s-1, which is calibrated to match

the H diffusion coefficient in coarse-grained Ni[41]. The python code for the kMC

simulation is presented in the Supplementary Materials.

2.3. WOA

 The WOA method, which is a meta-heuristic optimization algorithm [31], was

applied to explore the HEA structure with low H diffusion coefficients. WOA mimics

the hunting strategy of humpback whales, which starts from encircling the prey with

multiple whales, followed by the bubble-net attacking phase, and then the prey

searching phase. WOA is an efficient algorithm for structural optimization and

displays an excellent balance between exploration and exploitation, enabling

searching across a broad space for the optimal solution. However, the WOA method

needs modification to search the structural and compositional space of the HEA

structure. To be consistent with the structures for the DFT calculation of the H

solution energies in quinary HEA, we use the 2×2×5 FCC supercell with a total of 80

atoms as the optimization object. To search the structural and compositional space

simultaneously, each atom of the supercell is allowed to choose from the five

elements, Fe, Co, Ni, Cr, and Mn. Hence, the atomic structure of the HEA supercell

has 580 permutations. By using integers ranging from 1 to 5 to represent the element

type and an 80-component vector to represent the permutation of the atoms, we can

then iteratively optimize the atomic structure of the HEA supercell to gradually lower

the H diffusion coefficient using WOA. We use a vector, X, to represent the atomic

structures of HEA. X has two key characteristics: all the elements are integer, and the

elemental index should be in the range of 1-5. In addition, we expect the optimized

structure to contain all the five elements of HEA, so the structures with less than five

9

elements are excluded. During the optimization, the components of X can easily

exceed the range of 1-5. The X will be initiated with random integers in the range of

1-5 if any components of X are lower than 1 or higher than 5. We used 5 whales for

hunting within one WOA iteration and performed 300 iterations. The python codes for

WOA are presented in the Supplementary Materials.

3. Results

The H solution energy distributions in pure Ni and HEA structures are plotted in

Fig. 2a and Fig. 2b, respectively. It is clear that 𝐸𝐻−𝑠𝑜𝑙𝑢 in HEAs have wider

distributions than that in Ni, and the 𝐸𝐻−𝑠𝑜𝑙𝑢 in HEAs are highly inhomogeneous. The

H diffusion barriers in certain areas are significantly higher than others, implying the

H diffusion pathway may be more rugged and the H atoms are highly dragged in

HEAs. These results are consistent with the findings of Ren et al. [42] and Zhou et al.

[25] that the lattices of HEAs can effectively trap H atoms. However, how the

chemical composition of the HEA and the local chemical environment affect the H

diffusion behavior, and to what extent the H diffusion coefficient can be reduced by

the inhomogeneous distribution of 𝐸𝐻−𝑠𝑜𝑙𝑢 in HEA, remain to be resolved.

Fig. 2. The H solution energy distributions in pure (a) Ni and (b) HEA structures.

The overall flow chart for designing FeCoNiCrMn HEA with low H diffusion

coefficients is presented in Fig. 3. After obtaining the H solution energy through DFT

calculations, we adopt the Smooth Overlap of Atomic Positions (SOAP) descriptor

10

[43-46] to represent the chemical environment of a given H atom embedded in a metal

lattice and then explore an ML model to correlate its SOAP descriptor to its solution

energy. Using the ML model, H solution energies in new HEA structures that are not

in the dataset can be evaluated. The prediction of H solution energies in new HEA

structures is important because we need to find the optimal HEA structures from a

broad compositional and structural space. The H diffusion coefficient of the new

structure can be consequently calculated by kMC simulations. It is WOA that allows

us to search the compositional and structural space of HEAs for structures with low

diffusion coefficients. These structures generated by WOA serve as input to the ML

model mentioned earlier to predict the H solution energy distribution. The H diffusion

coefficient is then calculated from the H solution energy distribution. Using the large

dataset containing HEA structures and H diffusion coefficients, the relationship

between the H diffusion coefficient with the chemical composition of the HEA can

then be accurately described by a 2-degree polynomial model. The details of each part

in Fig. 3 are elaborated hereafter.

Fig. 3. Graphic representation of the design strategy. Data preparation, model training,

prediction, and optimization process for designing FeCoNiCrMn HEA with low H

diffusion coefficients.

11

3.1. Data preparation

In total, we built 35 atomic structures (Table1) for DFT calculations and

calculated the H solution energies at the critical sites in the structures. The

corresponding atomic structure files can be found in the Supplementary Data. The

number of critical sites in each calculated structure ranges from 392 (in binary alloys)

to 880 (in quinary alloys). The complete size of the dataset, which contains the atomic

positions of critical sites and their corresponding H solution energies in the 35

structures, is 24566. The atomic positions of the critical sites and the corresponding H

solutions of each atomic structure can also be found in the Supplementary Data. The

calculated H solution energy distributions in several representative binary, ternary,

quaternary, and quinary alloys are shown in Fig. 4. The rest of the H solution energy

distributions are shown in Fig. S1-4 in the Supplementary Materials. We see that in

certain structures, such as FeMn and FeCoMn, the H solution energy distributions are

‘narrower’, and the energy distributions at saddle and TI sites overlap less. In

structures such as CoCr and FeCoNiCrMn, the H solution energy distributions are

‘wider’ with partially overlapping distributions at saddle and TI points. In addition,

the average solution energies at the critical sites of different structures are quite

different. For example, the energies at OI sites of the FeNiCrCo structure are centered

around -3.1 eV, whereas the energies at OI sites of the FeCoMn structure are centered

around -2.95 eV, indicating that the OIs in FeNiCrCo are deeper H traps than those in

FeCoMn. The differences in H solution energy distributions will cause large

deviations in the lattice-trapping ability, hence we further investigated the influence of

HEA structure and composition on the H diffusion coefficient.

12

Fig. 4. H solution energy distributions at the critical sites, i.e., the saddle points, TIs

and OIs in typical binary (a) FeMn alloy, (b) CoCr alloy, ternary (c) CoNiMn alloy,

(d) FeCoMn alloy, (e) quaternary FeNiCrCo alloy, and quinary (f) FeCoNiCrMn

HEA.

3.2. Model training

To define features for each H atom embedded in the 35 structures, we adopt

SOAP descriptors [43] as they accurately describe the local chemical environment

surrounding the target H atom within a certain cutoff. There are three important

hyperparameters to be optimized when constructing a SOAP descriptor, namely, the

radial cutoff (𝑟𝑐𝑢𝑡), the maximum number of radial basis functions (𝑛𝑚𝑎𝑥), and

angular degree of the spherical harmonics (𝑙𝑚𝑎𝑥). To evaluate the influence of these

hyperparameters on the model accuracy, we use the mean square error (MSE) as a

performance measure and use linear regression as the ML model. The whole data set

was split into a training set (85 %), validation set (5 %), and test set (10 %). We used

the validation set for selecting hyperparameters of the SOAP descriptors, while the

test set was used for evaluating the performances of the ML models. The whole data

set can be found in Supplementary Data (see the ‘x_arr.npy’ and ‘y_arr.npy’ files for

13

the SOAP descriptors and the H solution energies)

 The variation of MSE with increasing 𝑟𝑐𝑢𝑡, 𝑛𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 is depicted in Figs. 5a-

c, which indicates that for 𝑟𝑐𝑢𝑡 = 7, 𝑛𝑚𝑎𝑥 = 4 and 𝑙𝑚𝑎𝑥 = 4 , the MSE is near-

optimal for predicting H solution energies in the validation set. The generated SOAP

descriptor is a vector with 1500 components. However, many components of the

SOAP descriptor are close to zero, contributing little to the learning target. Therefore,

we used principal component analysis (PCA) to reduce the dimension of the features.

As shown in Fig. 5d, MSE reaches a steady-state value provided the feature number is

no less than 600. Therefore, we use 600 as the feature number of the original SOAP

descriptors for further analysis.

Fig. 5. Hyperparameter analysis for SOAP descriptors. Variation of MSE with

increasing (a) 𝑟𝑐𝑢𝑡, (b) 𝑛𝑚𝑎𝑥 and (c) 𝑙𝑚𝑎𝑥, and the (d) number of features after PCA.

14

After constructing the SOAP descriptors for the critical sites and calculating the

corresponding H solution energies, we built the ML model to correlate the local

chemical environment of an H atom at a critical site with its solution energy. As

presented in Fig. 6, an ML model as simple as ridge regression with built-in cross-

validation[47] (referred to as RidgeCV hereafter) can give satisfactory results.

RidgeCV outperformed random forest but was slightly inferior to the neural network.

Based on the performance of the three ML models, the neural network was selected as

the ML model for further prediction of the H solution energy distribution based on the

atomic structure of a given HEA.

Fig. 6. Performance of the ML models on the training set and the test set, respectively.

(a, b) random forest model, (c, d) ridge regression model, (e, f) neural network model.

3.3. Prediction and Optimization

With the trained ML model, we can now predict the complete H solution energies

at the critical sites of the HEA atomic structures generated during WOA. The H

diffusion coefficient of the structure is calculated through kMC. The H diffusion

coefficients at 300 K of the 35 structures are listed in Table S1 in Supplementary

15

Material. At this point, we have established the correlation between the atomic

structure of the alloy and its H diffusion coefficient.

The WOA optimizations are then performed to explore HEA structures with low

H diffusion coefficients. Despite the broad search space of the WOA optimization, the

H diffusion coefficient can be effectively reduced by 2 orders of magnitude after

merely 300 WOA steps with five whales for hunting, wherein the optimized structures

are non-equimolar. Because the local chemical environments and the corresponding H

solution energies in the training set are all calculated from either pure-metal structures

or equimolar-alloy structures, the ML model displays relatively low accuracy in the

prediction of H diffusion coefficients of non-equimolar HEA. To address this issue,

we performed additional DFT calculations on the optimized non-equimolar structures

to obtain H solution energies at the critical sites, and then iteratively added these DFT

calculation results along with their corresponding SOAP descriptors to the training set

to enhance the accuracy of the ML model predictions (see Fig. 7a). The iteration stops

when the convergence criterion between the predicted and DFT calculated H diffusion

coefficients is reached.

Fig. 7. The iteration process and the results of the iteration loops. (a) The iteration

16

process to expand the training set and increase the accuracy of ML model prediction

on non-equimolar HEA structures. (b) The evolution of the diffusion coefficient (300

K) during the iteration process. (c) The Arrhenius relations of the diffusion coefficient

of the equimolar HEA and the optimized non-equimolar structures. The diffusion

activation energies, Q, are calculated through the slopes of the curves.

The iteration process in Fig. 7a was performed five times to guarantee the

accuracy of the ML model. Fig. 7b shows the evolution of the logarithm of the

diffusion coefficient during the iteration process. After five iteration loops, the

predicted and the DFT calculated H diffusion coefficients reached the convergence

criterion. Five optimized structures generated in the iteration process are labeled non-

equi-HEA-1 to non-equi-HEA-5. (See Fig. S5 in Supplementary Materials for the

atomic structures.) The H diffusion coefficient of the non-equimolar HEAs that were

evaluated by kMC using the DFT calculated H solution energies are listed in Table S1

in Supplementary Materials.

The optimized non-equimolar HEA structures have H diffusion coefficients in

the order of 10-16, which is two orders of magnitude smaller than those of the

equimolar HEAs. To evaluate the ability of the non-equimolar HEA structures to trap

H atoms, we calculated the activation energy of H diffusion in a typical equimolar

HEA and the optimized non-equimolar HEA. The Arrhenius equation of the diffusion

coefficient as a function of temperature is given by Eq. 2.

𝐷(𝑇) = 𝐷0 exp (
𝑄

𝑅𝑇
) (6)

A linear fitting of the logarithm of the diffusion coefficient as a function of 1/T

can be described as in Eq. 3,

ln[𝐷(𝑇)] = ln𝐷0 +
𝑄

𝑅

1

𝑇
 (7)

from which the activation energy of H diffusion in the structures can be obtained. Fig.

7c shows the Arrhenius plots of the diffusion coefficient of an equimolar HEA and an

optimized non-equimolar HEA at 300 K. The activation energy of H diffusion in the

17

optimized non-equimolar HEA is 0.191 eV higher than that in the equimolar HEA.

The increase of H diffusion activation energy by structural optimization indicates that

the optimized non-equimolar HEA has higher trapping ability and may serve as

reversible H trapping sites with comparable trapping energies as typical reversible H

traps, such as dislocations (0.11 eV for screw dislocation and 0.18 for edge dislocation

in aluminum, as calculated by DFT[48]) and low-angle grain boundaries which are

often considered to be composed of multiple edge dislocations[49].

Fig. 8. (a) The evolution of the diffusion coefficient during WOA. (b) Chemical

compositions of the optimized structures after WOA.

With the expanded training set after the iterative process, the ML model can

accurately predict the H solution energies in non-equimolar HEAs. We then

performed another four WOAs to obtain four optimized HEA structures with the

improved ML model. The evolution of the diffusion coefficient during WOA and the

chemical compositions of the optimized structures after WOA are shown in Fig. 8a

18

and 8b, respectively. Fig. 8a shows that the H diffusion coefficient can be rapidly

reduced, indicating that WOA is efficient in exploring the broad and high-dimensional

searching space of the current optimization problem. We can see that owing to the

broad composition and structure space of the HEA atomic structure, the WOA

exploration arrives at different local optimal points each time, and it is not easy to

locate the global minimum. However, all the optimized structures have H diffusion

coefficients considerably lower than those of the unoptimized ones. The optimized

structures are labeled WOA-1 to WOA-4 and their atomic structures are plotted in

Fig. S5 in the Supplementary Materials. The charge density distributions of the four

optimized structures are representatively shown in Fig. S6 in the Supplementary

Materials. It can be seen that the charge density distribution is highly inhomogeneous,

which would result in the highly varied H solution energies, and then the formation of

various H traps in the HEA lattices. All of the optimized structures are non-equimolar,

and typically have high Co content and low Ni content. This suggests that there might

be certain relationships between the chemical composition and the H diffusion

coefficient of the structure, which make it possible to achieve a low H diffusion

coefficient by tuning the chemical composition.

4. Discussion

We have shown that the optimized structures generated by WOA can act as

reversible H trapping sites, with trapping ability comparable to that of dislocation

cores and low-angle grain boundaries. As the optimization target, the H diffusion

coefficient has multiple local minima, thus this kind of lattice trap can be abundant in

HEAs. Unlike H traps such as grain boundaries and dislocations, lattice traps result

from the heterogeneity of the local chemical environment of the HEA lattice, which

will not cause severe segregation of H atoms and can thus avoid the risk of H-induced

interface decohesion, stress concentration, and crack initiation. This quality of lattice

traps might explain the high HE resistance observed in many HEAs[17, 20, 22-24, 50,

19

51].

The WOA not only finds the HEA structures with low H diffusion coefficients

but also generates massive data containing the HEA chemical compositions and their

corresponding H diffusion coefficients during the optimization process, which makes

it possible to further uncover the characteristics of HEA structures with low H

diffusion coefficients, and the relationship between the chemical composition of the

HEA structure and its H diffusion coefficient.

Fig. 9a and Fig. 9b present the chemical composition distributions of the HEAs,

which were generated from WOA, with H diffusion coefficients lower than 10-16 m2 s-

1 (Fig. 9a), or higher than 10-14 m2 s-1 (Fig. 9b). The HEAs with low H diffusion

coefficients have high Co and Mn content, while those with high H diffusion

coefficients have high Fe and Ni content. The influence of Cr is not as obvious, but

still has a positive effect on reducing the H diffusion coefficient.

Fig. 9. The chemical composition distributions of the HEAs with (a) low (< 10-16 m2

s-1) or (b) high (> 10-14 m2 s-1) H diffusion coefficients.

20

We further carried out linear regression with the composition of Fe, Co, Ni, Cr,

Mn as features and the logarithmic H diffusion coefficient as the learning target. The

dataset was split into the training set and the test set with a split ratio of 4:1. The

performance of linear regression is shown in Fig. 10a and Fig. 10b. Linear regression

gives an R2 value of 0.75 on the test set, indicating that although the variance is large,

there does exist a certain relationship between the H diffusion coefficient and the

chemical composition. The large variance may come from the nonlinear dependency

of the H diffusion coefficient on the chemical composition. It also indicates that as the

H diffusion coefficient decreases, the linear prediction becomes less accurate, as

shown by the lower-left region of Fig. 10a and 10b, suggesting that the lack of model

complexity manifests itself when predicting low H diffusion coefficients. The linear

model gives an explicit expression of the logarithm of H diffusion coefficient as a

function of chemical components, i.e.,

log(𝐷) = 0.096𝐹𝑒 − 0.47𝐶𝑜 + 3.05𝑁𝑖 − 1.01𝐶𝑟 − 1.66𝑀𝑛 − 15.05 (8)

where Fe, Co, Ni, Cr, Mn represent the atomic ratio of the elements. Eq. 8 suggests

that the increased Co, Cr, and Mn ratio can reduce the H diffusion coefficient whereas

an increase of Fe and Ni might result in the opposite effect. Note that the linear model

fails to make accurate predictions for structures with H diffusion coefficients lower

than 10-16 m2 s-1.

21

Fig. 10. The performance of the linear model on the training set (a) and the test set (b)

and the performance of the 2-degree polynomial model on the training set (c) and the

test set (d).

 To predict the H diffusion coefficients with higher accuracy, we adopted 2-degree

polynomial regression and obtained a higher R2 value of 0.86 on the test set (Fig.

10d). The coefficients and intercept of the 2-degree polynomial regression are listed in

Table 2. The polynomial model can predict H diffusion coefficients lower than 10-16

m2 s-1 with improved accuracy, which could be a better choice when quantitative

prediction is necessary. Although the linear model is less accurate, it gives a more

intuitive understanding of the influence of each element on the H diffusion

coefficient, which can serve as a general estimation for designing HEAs with low

diffusion coefficients.

22

Table 2. The coefficients and intercept of the 2-degree polynomial regression

Intercept FeFe FeCo FeNi FeCr FeMn CoCo CoNi

-15.3483 -1.4491 0.2543 2.5556 -0.4160 -0.9448 3.4148 4.3146

CoCr CoMn NiNi NiCr NiMn CrCr CrMn MnMn

0.2795 6.0980 1.6180 -1.1773 -5.8116 -2.0221 -0.3837 2.8789

5. Conclusion

In summary, we have proposed a data-driven and ML-assisted prediction and

optimization strategy to assist the design of FeCoNiCrMn HEAs with low H diffusion

coefficients. The neural network was used to bridge the relationship between the

SOAP descriptors and the H solution energies. With the help of kMC, the H diffusion

coefficients based on the H solution energies can be accurately evaluated, and the

relationship between the atomic structure of HEA to its H diffusion coefficient can be

built. From the data collected from the WOA processes, we found that HEAs with low

H diffusion coefficients typically have high Co and Mn content, while those with high

H diffusion coefficients have high Fe and Ni content. We then developed linear and

polynomial models between the chemical composition and the H diffusion coefficient

to guide the design of HEAs with low H diffusion coefficient and high HE resistance.

23

Acknowledgments

This research was supported by the National Key Research and Development

Program of China (2018YFE0124900), the National Natural Science Foundation of

China (51778370, 51901013, 52071023, 51921001, 51871016, 51861165204, and

52061135207) and the Fundamental Research Funds for the Central Universities

(University of Science and Technology Beijing) (No. 06500135).

Competing interests

The authors declare no competing interests.

References

[1] N. Mahmood, Y. Yao, J.-W. Zhang, L. Pan, X. Zhang, J.-J. Zou, Electrocatalysts

for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and

Prospective Solutions, Adv. Sci. 5(2) (2018) 1700464.

[2] S. Zhao, J. Berry-Gair, W. Li, G. Guan, M. Yang, J. Li, F. Lai, F. Corà, K. Holt,

D.J.L. Brett, G. He, I.P. Parkin, Hydrogen Evolution: The Role of Phosphate

Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen

Evolution Performance (Adv. Sci. 12/2020), Adv. Sci. 7(12) (2020) 2070067.

[3] D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia, R. Mukundan, K.L. More, R.L.

Borup, A.Z. Weber, D.J. Myers, A. Kusoglu, New roads and challenges for fuel

cells in heavy-duty transportation, Nat. Energy 6(5) (2021) 462-474.

[4] S. Huang, D. Chen, J. Song, D.L. McDowell, T. Zhu, Hydrogen embrittlement of

grain boundaries in nickel: an atomistic study, NPJ Comput. Mater. 3(1) (2017)

28.

[5] X. Zhou, D. Marchand, D.L. McDowell, T. Zhu, J. Song, Chemomechanical

Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals, Phys. Rev. Lett.

116(7) (2016) 075502.

[6] Z. Zhang, K.L. Moore, G. McMahon, R. Morana, M. Preuss, On the role of

precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based

superalloy, Corros. Sci. 146 (2019) 58-69.

[7] B. Malard, B. Remy, C. Scott, A. Deschamps, J. Chêne, T. Dieudonné, M.H.

Mathon, Hydrogen trapping by VC precipitates and structural defects in a high

strength Fe–Mn–C steel studied by small-angle neutron scattering, Mater. Sci.

Eng. A 536 (2012) 110-116.

[8] S. Zhang, J. Wan, Q. Zhao, J. Liu, F. Huang, Y. Huang, X. Li, Dual role of

nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath

martensitic steel, Corros. Sci. (2019) 108345.

24

[9] G. Lv, M. Zhang, H. Zhang, Y. Su, Hydrogen diffusion and vacancy clusterization

in iron, Int. J. Hydrogen Energy 43(32) (2018) 15378-15385.

[10] J. Hou, X.-S. Kong, X. Wu, J. Song, C.S. Liu, Predictive model of hydrogen

trapping and bubbling in nanovoids in bcc metals, Nature Materials 18(8) (2019)

833-839.

[11] R. Shi, Y. Ma, Z. Wang, L. Gao, X.-S. Yang, L. Qiao, X. Pang, Atomic-scale

investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces,

Acta Mater. 200 (2020) 686-698.

[12] Y. Bai, Y. Momotani, M.C. Chen, A. Shibata, N. Tsuji, Effect of grain refinement

on hydrogen embrittlement behaviors of high-Mn TWIP steel, Mater. Sci. Eng. A

651 (2016) 935-944.

[13] L. Chen, X. Xiong, X. Tao, Y. Su, L. Qiao, Effect of dislocation cell walls on

hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance,

Corros. Sci. 166 (2020) 108428.

[14] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy

dual-phase alloys overcome the strength–ductility trade-off, Nature 534(7606)

(2016) 227-230.

[15] J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai, S. Lan, H. Hahn, T. Feng,

Ultrahigh hardness with exceptional thermal stability of a nanocrystalline

CoCrFeNiMn high-entropy alloy prepared by inert gas condensation, Scripta

Mater. 187 (2020) 335-339.

[16] P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Thermal

stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high

entropy alloy composite, Mater. Des. 134 (2017) 426-433.

[17] H. Luo, S.S. Sohn, W. Lu, L. Li, X. Li, C.K. Soundararajan, W. Krieger, Z. Li, D.

Raabe, A strong and ductile medium-entropy alloy resists hydrogen embrittlement

and corrosion, Nat. Commun. 11(1) (2020) 3081.

[18] J.R. Scully, S.B. Inman, A.Y. Gerard, C.D. Taylor, W. Windl, D.K. Schreiber, P.

Lu, J.E. Saal, G.S. Frankel, Controlling the corrosion resistance of multi-principal

element alloys, Scripta Mater. 188 (2020) 96-101.

[19] Gludovatz, Bernd, Hohenwarter, Anton, Catoor, Dhiraj, Chang, Edwin, H.,

George, A fracture-resistant high-entropy alloy for cryogenic applications,

Science (2014).

[20] Y. Zhao, D.-H. Lee, W.-J. Kim, M.-Y. Seok, J.-Y. Kim, H.N. Han, J.-Y. Suh, U.

Ramamurty, J.-i. Jang, Influence of pre-strain on the gaseous hydrogen

embrittlement resistance of a high-entropy alloy, Mater. Sci. Eng. A 718 (2018)

43-47.

[21] H. Luo, Z. Li, D. Raabe, Hydrogen enhances strength and ductility of an

equiatomic high-entropy alloy, Sci. Rep. 7(1) (2017) 9892.

[22] Y. Zhao, D.-H. Lee, M.-Y. Seok, J.-A. Lee, M.P. Phaniraj, J.-Y. Suh, H.-Y. Ha, J.-

Y. Kim, U. Ramamurty, J.-i. Jang, Resistance of CoCrFeMnNi high-entropy alloy

to gaseous hydrogen embrittlement, Scripta Mater. 135 (2017) 54-58.

25

[23] H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, D. Raabe, Beating hydrogen with its

own weapon: Nano-twin gradients enhance embrittlement resistance of a high-

entropy alloy, Mater. Today 21(10) (2018) 1003-1009.

[24] Z. Pu, Y. Chen, L.H. Dai, Strong resistance to hydrogen embrittlement of high-

entropy alloy, Mater. Sci. Eng. A 736 (2018) 156-166.

[25] X. Zhou, W.A. Curtin, First principles study of the effect of hydrogen in

austenitic stainless steels and high entropy alloys, Acta Mater. 200 (2020) 932-

942.

[26] J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, G.

Balasubramanian, Materials informatics for the screening of multi-principal

elements and high-entropy alloys, Nat. Commun. 10(1) (2019) 2618.

[27] J. Rickman, G. Balasubramanian, C. Marvel, H. Chan, M.T. Burton, Machine

learning strategies for high-entropy alloys, J. Appl. Phys. 128 (2020) 221101.

[28] D. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D. Xue, T. Lookman,

Accelerated search for materials with targeted properties by adaptive design, Nat.

Commun. 7(1) (2016) 11241.

[29] J. Rickman, T. Lookman, S.V. Kalinin, Materials Informatics: From the Atomic-

Level to the Continuum, Acta Mater. 168 (2019).

[30] Y.A. Du, J. Rogal, R. Drautz, Diffusion of hydrogen within idealized grains of

bcc Fe: A kinetic Monte Carlo study, Phys. Rev. B: Condens. Matter 77(13)

(2008) 134305

[31] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw. 95

(2016) 51-67.

[32] E. Wimmer, W. Wolf, J. Sticht, P. Saxe, C. Geller, R. Najafabadi, G. Young,

Temperature-Dependent Diffusion Coefficients from ab initio Computations:

Hydrogen in Nickel, Phys. Rev. B: Condens. Matter 2008, 77 (13), 134305.

[33] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band

method for finding saddle points and minimum energy paths, J. Chem. Phys.

113(22) (2000) 9901-9904.

[34] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for

metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci.

6(1) (1996) 15-50.

[35] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy

calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter 54(16)

(1996) 11169-11186.

[36] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made

Simple, Phys. Rev. Lett. 77(18) (1996) 3865-3868.

[37] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector

augmented-wave method, Phys. Rev. B: Condens. Matter 59(3) (1999) 1758-

1775.

[38] J.Y. Zhang, Q.F. He, J. Li, Y. Yang, Chemical fluctuation enabling strength-

plasticity synergy in metastable single-phase high entropy alloy film with

26

gigapascal yield strength, Int. J. Plast. 139 (2021) 102951.

[39] Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X.

Liu, H. Wang, S. Jiang, Z. Lu, Short-range ordering and its effects on mechanical

properties of high-entropy alloys, J. Mater. Sci. Technol. 62 (2021) 214-220.

[40] Q.-J. Li, H. Sheng, E. Ma, Strengthening in multi-principal element alloys with

local-chemical-order roughened dislocation pathways, Nat. Commun. 10(1)

(2019) 3563.

[41] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X.

Feaugas, Grain size and grain-boundary effects on diffusion and trapping of

hydrogen in pure nickel, Acta Mater. 60(19) (2012) 6814-6828.

[42] X.L. Ren, P.H. Shi, W.W. Zhang, X.Y. Wu, Q. Xu, Y.X. Wang, Swamps of

hydrogen in equiatomic FeCuCrMnMo alloys: First-principles calculations, Acta

Mater. 180 (2019) 189-198.

[43] L. Himanen, M.O.J. Jäger, E.V. Morooka, F. Federici Canova, Y.S. Ranawat, D.Z.

Gao, P. Rinke, A.S. Foster, DScribe: Library of descriptors for machine learning

in materials science, Comput. Phys. Commun. 247 (2020) 106949.

[44] M.O.J. Jäger, E.V. Morooka, F. Federici Canova, L. Himanen, A.S. Foster,

Machine learning hydrogen adsorption on nanoclusters through structural

descriptors, NPJ Comput. Mater. 4(1) (2018) 37.

[45] M. Wagih, P.M. Larsen, C.A. Schuh, Learning grain boundary segregation energy

spectra in polycrystals, Nat. Commun. 11(1) (2020) 6376.

[46] S. Fujii, T. Yokoi, C. Fisher, H. Moriwake, M. Yoshiya, Quantitative prediction of

grain boundary thermal conductivities from local atomic environments, Nat.

Commun. 11 (2020).

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: Machine

Learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[48] M. Yamaguchi, M. Itakura, T. Tsuru, K.-i. Ebihara, Hydrogen-Trapping Energy in

Screw and Edge Dislocations in Aluminum: First-Principles Calculations,

Materials Transactions 62(5) (2021) 582-589.

[49] Q. Zhu, Q. Huang, C. Guang, X. An, S.X. Mao, W. Yang, Z. Zhang, H. Gao, H.

Zhou, J. Wang, Metallic nanocrystals with low angle grain boundary for

controllable plastic reversibility, Nat. Commun. 11(1) (2020) 3100.

[50] H. Luo, Z. Li, W. Lu, D. Ponge, D. Raabe, Hydrogen embrittlement of an

interstitial equimolar high-entropy alloy, Corros. Sci. 136 (2018) 403-408.

[51] C.K. Soundararajan, H. Luo, D. Raabe, Z. Li, Hydrogen resistance of a 1 GPa

strong equiatomic CoCrNi medium entropy alloy, Corros. Sci. 167(2020)

108510.

1

Supplementary Materials for

Machine learning assisted design of FeCoNiCrMn high

entropy alloys with ultra-low hydrogen diffusion coefficients

Xiao-Ye Zhoua, Ji-Hua Zhua, *, Yuan Wub, *, Xu-Sheng Yangc, Turab Lookmand,

Hong-Hui Wue,f*

a Guangdong Province Key Laboratory of Durability for Marine Civil Engineering,

School of Civil Engineering, Shenzhen University, Shenzhen, Guangdong, 518060,

PR China

b State Key Laboratory for Advanced Metals and Materials, University of Science and

Technology Beijing, Beijing, 100083, China

c Department of Industrial and Systems Engineering, The Hong Kong Polytechnic

University, Hung Hom, Kowloon, Hong Kong, China

d AiMaterials Research LLC, Santa Fe, New Mexico 87501, United States

e School of Materials Science and Engineering, University of Science and Technology

Beijing, Beijing, 100083, China
f Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA

2

Fig. S1. H solution energy distributions at saddle points, TIs, and OIs in binary alloys.

3

Fig. S2. H solution energy distributions at saddle points, TIs, and OIs in ternary

alloys.

4

Fig. S3. H solution energy distributions at saddle points, TIs, and OIs in quaternary

alloys.

5

Fig. S4. H solution energy distributions at saddle points, TIs, and OIs in quinary

alloys.

6

Fig. S5. Atomic arrangements of the equimolar HEA1-5, the optimized non-equimolar

HEA1-5, and the structures generated by four WOA processes, WOA1-4.

7

Fig. S6. (a-d) Charge density distributions in the four optimized HEA structures. (e-h)

Cross-section views of the charge density distributions.

8

Table S1. The H diffusion coefficients D (m2 s-1) calculated by kMC in various atomic systems.

Pure Binary Ternary Quaternary Quinary

Fe
1.26E-

16

CoCr
8.41E-

16
FeCoNi

8.29E-

15 CoFeNiCr

4.49E-

15

equi-HEA-1
2.13E

-15

CoNi
1.52E-

14
FeNiCr

2.00E-

15
equi-HEA-2

5.44E

-15

Co
1.18E-

13

FeCo
2.47E-

14
FeNiMn

7.94E-

14
FeCoNiMn

5.38E-

13

equi-HEA-3
1.30E

-15

FeCr
3.17E-

15
NiCoCr

4.35E-

15
equi-HEA-4

4.97E

-15

Ni
2.36E-

14

FeNi
2.46E-

14
NiCrMn

3.08E-

14
FeNiCrCo

1.88E-

14

equi-HEA-5
3.84E

-15

FeMn
3.37E-

15
CoCrMn

1.40E-

16
non-equi-HEA-1

5.72E

-15

Cr
4.00E-

16

NiCr
6.64E-

15
CoNiMn

4.76E-

16
FeNiCrMn

3.46E-

16

non-equi-HEA-2
2.50E

-15

CoMn
1.02E-

16
FeCoCr

1.43E-

16
non-equi-HEA-3

6.97E

-16

Mn
8.21E-

14

CrMn
1.25E-

15
FeCoMn

2.77E-

16
FeCoCrMn

7.99E-

16

non-equi-HEA-4
6.66E

-17

NiMn
1.21E-

15
FeCrMn

9.48E-

16
non-equi-HEA-5

2.57E

-17

9

Description of the Supplementary Data

x_arr.py: The scaled SOAP descriptors constructed using the optimized parameters

(rcut = 7, nmax = l max = 4, after reduced to 600 components after PCA)

y_arr.py: The H solution energies

Note that the x_arr and y_arr represent the whole data set.

compositions.npy: The chemical compositions for the linear and the polynomial

model

diffusion_coefficients.npy: The corresponding diffusion coefficients

The position_energy_converted_X file contains the positions of the H atoms (1-3

columns) in the X model and their corresponding H solution energies (the 4th

column). The last column represents the interstitial type, with 3 representing the

saddle point, 2 representing TI and 1 representing OI.

The POSCAR_X files contain the POSCAR of the X models.

10

The python codes for establishing ML models, kMC simulations and WOA

optimizations

The SOAP descriptors were constructed based on the ideal FCC lattices, meaning that

the lattice distortion induced by different elements is not considered. The positions of

H atoms were also determined from the ideal lattice. We use the ideal lattice instead

of the relaxed lattice and the relaxed H positions to ensure the predictability of the ML

model in predicting the H solution energies in completely new HEA structures. Using

the ideal lattice for constructing SOAP descriptors indicates that only the chemical

environments of the H atoms are considered, excluding the influence of lattice

distortion induced by multiple components and H embedding, which we cannot

predict in new HEA structures. This is important because little variations in the SOAP

descriptor can cause a large difference in the predicted H solution energies.

The construction of SOAP descriptors is achieved through the following Python

codes.

import numpy as np

import ase.io

from dscribe.descriptors import SOAP

Read in the POSCAR file for the metal matrix

fname = ‘POSCAR’

fhand = open(fname)

header = []

atoms = []

for n, line in enumerate(fhand):

 if n <=7:

 header.append(line)

 if n>7:

11

 line = line.rstrip().split()

 if len(line) ==3:

 atom = [float(line[0]), float(line[1]), float(line[2])]

 atoms.append(atom)

header[5] = 'H '+ header[5]

header[6] = str(1)+ ' '+header[6]

Read in the H positions, embed the H atom into the metal matrix, and write it to a

CONTCAR file

for i in range(len(H_positions)):

 fname = 'CONTCAR'

 with open(fname, "w") as fwrite:

 for line in header:

 fwrite.writelines(line)

 atom = H_positions[i]

 line = []

 line.append(str(atom[0]) + '\t')

 line.append(str(atom[1]) + '\t')

 line.append(str(atom[2]) + ' '+ '\n')

 fwrite.writelines(line)

 for atom in atoms:

 line = []

 line.append(str(atom[0]) + '\t')

 line.append(str(atom[1]) + '\t')

 line.append(str(atom[2]) + ' '+'\n')

 fwrite.writelines(line)

Use ase module to read in the CONTCAR file

 model=ase.io.read('CONTCAR',format='vasp')

model.set_pbc([1,1,1])

12

Before constructing the SOAP descriptor, there are several parameters to be

tuned before constructing the SOAP descriptors, namely rcut, nmax and lmax. The

whole data set has 24566 data points. Here we randomly select 1230 (about 5 % of the

whole data set) data points for validation, 20876 (85 %) data points as the training set

and 2461 data points as the test set. The training set and the test set were used for

model selection. The rcut, nmax and lmax were then tuned for better performance on

the validation set.

Parameter setting for the SOAP descriptors

H_soap_desc = []

periodic_desc = SOAP(species=['H','Fe','Co','Ni','Cr','Mn'],rcut=rcut, \

 average = 'off', nmax=nmax,lmax=lmax,periodic=True,sparse=False)

Create SOAP descriptor for the H atoms

H_soap = periodic_desc.create(model,positions =[0],n_jobs=-1)

H_soap_desc.append(H_soap[0])

13

After constructing the descriptors for the H atoms, we then build the ML

models to learn the relation between the SOAP descriptors and the H solution

energies. To further improve the prediction accuracy of the ML models, the calculated

H solution energies of different structures were shifted by their average values so the

H solution energies of each structure are centered around 0 eV. The shift of the H

solution energies of a certain structure as a whole will not affect the H diffusion

barriers and thus will not influence the prediction on the H diffusion coefficient of the

structure.

First, we scale the features

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(H_soap_desc)

H_soap_desc = scaler.transform(H_soap_desc)

y_train = solution_energies

x_train = H_soap_desc

Train the model using RidgeCV

from sklearn.linear_model import RidgeCV

Train model

nn = RidgeCV()

nn.fit(x_train, y_train)

Train the model use Random Forest

from sklearn.ensemble import RandomForestRegressor

nn = RandomForestRegressor(max_depth=25, random_state=0)

nn.fit(x_train, y_train)

14

Train the model use neural network

The hyperparameters (node_num and reg_para) for the neural network have already been

optimized

reg_para=0.005

node_num = 100

nn=tf.keras.Sequential()

nn.add(tf.keras.layers.Dense(2*node_num,input_dim=600,kernel_initializer='normal',\

activation='relu',kernel_regularizer=regularizers.l2(reg_para)))

nn.add(tf.keras.layers.Dense(node_num,kernel_initializer='normal',\

activation='relu',kernel_regularizer=regularizers.l2(reg_para)))

nn.add(tf.keras.layers.Dense(1,kernel_initializer='normal'))

optimizer=tf.optimizers.Adam(learning_rate=0.00001)

model.compile(loss='mse',optimizer= optimizer)

nn.fit(x_train, y_train,verbose=0,epochs=100)

15

The H diffusion coefficients are calculated by the kMC simulation. We define

two functions to complete the simulation. The first one is for identifying the neighbor

list for H jumping, the second one is for the calculation of the diffusion coefficient.

The codes of which are as follows:

def neighborlist(system):

Read in atomic positions of the metal matrix (perfect crystal)

 fname = 'POSCAR'

 fhand = open(fname)

 header = []

 atoms = []

 for n, line in enumerate(fhand):

 if n <=7:

 header.append(line)

 if n>7:

 line = line.rstrip().split()

 if len(line) ==3:

 atom = [float(line[0]), float(line[1]), float(line[2])]

 atoms.append(atom)

 lattice_const = float(header[1].rstrip().split()[0])

 xhi=float(header[2].rstrip().split()[0])

 yhi=float(header[3].rstrip().split()[1])

 zhi=float(header[4].rstrip().split()[2])

 for atom in atoms:

 if atom[0]<0.3:

 atoms.append([atom[0]+1,atom[1],atom[2]])

 if atom[1]<0.3:

 atoms.append([atom[0],atom[1]+1,atom[2]])

 if atom[2]<0.3:

16

 atoms.append([atom[0],atom[1],atom[2]+1])

 for atom in atoms:

 if atom[0]>0.7:

 atoms.append([atom[0]-1,atom[1],atom[2]])

 if atom[1]>0.7:

 atoms.append([atom[0],atom[1]-1,atom[2]])

 if atom[2]>0.7:

 atoms.append([atom[0],atom[1],atom[2]-1])

 atoms = np.array(atoms)

 for atom in atoms:

 atom[0]=round(atom[0]*xhi*lattice_const,3)

 atom[1]=round(atom[1]*yhi*lattice_const,3)

 atom[2]=round(atom[2]*zhi*lattice_const,3)

 atoms = np.unique(atoms,axis=0)

 fname = 'H_positions.dat' #POSCAR file, Direct coordinate, lattice constant on the second

row

 fhand = open(fname)

 H_atoms = []

 for n,line in enumerate(fhand):

 line = line.rstrip().split()

 if len(line) ==3:

 atom = [float(line[0]), float(line[1]), float(line[2]),n]

 H_atoms.append(atom)

 for atom in H_atoms:

 if atom[0]<0.3:

 H_atoms.append([atom[0]+1,atom[1],atom[2],atom[3]])

17

 if atom[1]<0.3:

 H_atoms.append([atom[0],atom[1]+1,atom[2],atom[3]])

 if atom[2]<0.3:

 H_atoms.append([atom[0],atom[1],atom[2]+1,atom[3]])

 for atom in H_atoms:

 if atom[0]>0.7:

 H_atoms.append([atom[0]-1,atom[1],atom[2],atom[3]])

 if atom[1]>0.7:

 H_atoms.append([atom[0],atom[1]-1,atom[2],atom[3]])

 if atom[2]>0.7:

 H_atoms.append([atom[0],atom[1],atom[2]-1,atom[3]])

 H_atoms = np.array(H_atoms)

 for atom in H_atoms:

 atom[0]=round(atom[0]*xhi*lattice_const,3)

 atom[1]=round(atom[1]*yhi*lattice_const,3)

 atom[2]=round(atom[2]*zhi*lattice_const,3)

 H_atoms = np.unique(H_atoms,axis=0)

classify the H positions into saddle points, TIs and OIs based on their numbers of

neighboring metal atoms

 saddles = []

 for H_atom in H_atoms:

 neighbors = []

 for atom in atoms:

 if cal_distance(H_atom,atom)<2:

 neighbors.append(atom)

 if len(neighbors)==3: #if the H atom has 3 nearest neighbors, then it should be at a

saddle point

18

 saddles.append(H_atom)

 TIs=[]

 for H_atom in H_atoms:

 neighbors = []

 for atom in atoms:

 if cal_distance(H_atom,atom)<2:

 neighbors.append(atom)

 if len(neighbors)==4: #if the H atom has 4 nearest neighbors, then it should be at a

TI

 TIs.append(H_atom)

 OIs=[]

 for H_atom in H_atoms:

 neighbors = []

 for atom in atoms:

 if cal_distance(H_atom,atom)<2:

 neighbors.append(atom)

 if len(neighbors)==6: #if the H atom has 6 nearest neighbors, then it should be at a

OI

 OIs.append(H_atom)

 H_num=0

 H_atom_inbox=[]

 for H_atom in H_atoms:

 if In_Boundary(H_atom,xhi*lattice_const,yhi*lattice_const,zhi*lattice_const): #

exclude atoms outside the simulation box

 H_num=H_num+1

 H_atom_inbox.append(H_atom)

19

build the neighbor list based on the connectivity of the TIs, OIs and saddle points

 OI_TI_saddle = []

 for OI in OIs:

 if In_Boundary(OI,xhi*lattice_const,yhi*lattice_const,zhi*lattice_const):

 neighbor_OI=[]

 neighbor_saddle=[]

 TI_saddle = []

 for TI in TIs:

 if cal_distance(OI,TI)<1.8:

 neighbor_OI.append(TI)

 for TI in neighbor_OI:

 nearest_saddle = []

 for saddle in saddles:

 if cal_distance(saddle,TI)<0.8:

 nearest_saddle.append(saddle)

 for saddle in nearest_saddle:

 if cal_distance(OI,saddle)<cal_distance(OI,TI):

 neighbor_saddle.append(saddle)

 TI_saddle.append([OI,TI,saddle])

 OI_TI_saddle.append(TI_saddle)

 TI_OI_saddle = []

 for TI in TIs:

 if In_Boundary(TI,xhi*lattice_const,yhi*lattice_const,zhi*lattice_const):

 neighbor_TI=[]

 neighbor_saddle=[]

 OI_saddle = []

 for saddle in saddles:

 if cal_distance(saddle,TI)<0.8:

20

 neighbor_saddle.append(saddle)

 for OI in OIs:

 if cal_distance(OI,TI)<1.8:

 neighbor_TI.append(OI)

 for OI in neighbor_TI:

 for saddle in neighbor_saddle:

 if cal_distance(OI,saddle)<cal_distance(OI,TI):

 OI_saddle.append([TI,OI,saddle])

 TI_OI_saddle.append(OI_saddle)

 neighborlist=[OI_TI_saddle,TI_OI_saddle]

return (neighborlist)

def kMC(neighborlist,sol_energy): #input the neighbor list and the H solution energies

 OI_TI_saddle=neighborlist[0]

 TI_OI_saddle=neighborlist[1]

 #kMC steps start

 kBT = 0.025852

 t = []

 distance = []

 OI_id = random.randint(0,len(OI_TI_saddle)-1)

 positions=[]

 for step in range(100000):

 rates=[]

 ##### OI jump to TI##

 for TI_saddle in OI_TI_saddle[OI_id]:

 OI=TI_saddle[0]

 TI=TI_saddle[1]

 saddle=TI_saddle[2]

21

 barrier = sol_energy[int(saddle[-1])]-sol_energy[int(OI[-1])]

 rate = 10**13*math.exp(-barrier/kBT)

 rates.append(rate)

 sum_rates=sum(rates)

 x=[0]

 accum_rate=0

 for rate in rates:

 accum_rate=accum_rate+rate

 x.append(accum_rate/sum_rates)

 gamma=random.random()

 for i in range(0,len(x)):

 if gamma>x[i] and gamma<x[i+1]:

 next_TI_index=i

 next_TI=OI_TI_saddle[OI_id][next_TI_index][1]

 positions.append(next_TI)

 rho=random.random()

 t.append(-math.log(rho)/sum_rates)

 distance.append(cal_distance(next_TI, OI))

 ##### TI jump to OI##

 for i, OI_saddle in enumerate(TI_OI_saddle):

 TI=OI_saddle[0][0]

 if TI[-1]==next_TI[-1]:

 next_TI_ID=i

 rates=[]

 for OI_saddle in TI_OI_saddle[next_TI_ID]:

 TI=OI_saddle[0]

 OI=OI_saddle[1]

22

 saddle=OI_saddle[2]

 barrier = sol_energy[int(saddle[-1])]-sol_energy[int(TI[-1])]

 rate =10**13*math.exp(-barrier/kBT)

 rates.append(rate)

 sum_rates=sum(rates)

 x=[0]

 accum_rate=0

 for rate in rates:

 accum_rate=accum_rate+rate

 x.append(accum_rate/sum_rates)

 gamma=random.random()

 for i in range(0,len(x)):

 if gamma>x[i] and gamma<x[i+1]:

 next_OI_index=i

 next_OI=TI_OI_saddle[next_TI_ID][next_OI_index][1]

 positions.append(next_OI)

 rho=random.random()

 t.append(-math.log(rho)/sum_rates)

 distance.append(cal_distance(next_OI, TI_OI_saddle[next_TI_ID][0][0]))

 for i, TI_saddle in enumerate(OI_TI_saddle):

 OI=TI_saddle[0][0]

 if OI[-1]==next_OI[-1]:

 next_OI_ID=i

 OI_id = next_OI_ID

 positions=np.array(positions)

 D=0

23

 t_add=0

 add_D=[]

 add_t=[]

 for step in range(len(t)):

 delta_D = distance[step]**2

 D=D+delta_D

 t_add=t_add+t[step]

 add_D.append(D)

 add_t.append(t_add)

 d_D=add_D[-1]-add_D[0]

 d_t=add_t[-1]-add_t[0]

 D_coeff=d_D/(6*d_t)*10e-20 #convert unit to m2/s

 plt.plot(add_t,add_D)

 return D_coeff

Using the two functions, one can calculate the H diffusion coefficient in any HEA

system once the H solution energies are known. With the functions for kMC

simulations, we can then perform the WOA to find the optimized HEA structures

with low H diffusion coefficients.

dim=80

b=1

whale_num=6

max_iter=500

#initialize the locations of whales

X = []

for whale in range(whale_num):

 atom_types=[]

 for i in range(dim):

24

 atom_types.append(random.randint(1,5))

 X.append(atom_types)

X = np.array(X)

gBest_coeff = 1

gBest_X = np.zeros(dim)

gBest_curve = np.zeros(max_iter)

nei_list = neighborlist('equiHEA1')

gBest_solu_ener = []

t = 0

random.seed(19)

while t < max_iter:

 #update best whale and best coefficient

 for i in range(whale_num):

 for ele in range(dim):

 if X[i,ele]> 5 or X[i,ele] <1:

 X[i,ele]=random.randint(1,5)

 x=[0,0,0,0,0]

 for atom_type in X[i,:]:

 x[int(atom_type)-1]+=1

 if x[0]*x[1]*x[2]*x[3]*x[4]==0:

 atom_types = []

 for j in range(dim):

 atom_types.append(random.randint(1,5))

 X[i,:]=np.array(atom_types)

 solu_ener = solution_energy(X[i,:]) #use the trained ML model to predict H

solution energies

 fitness = kMC(nei_list,solu_ener)

25

 if round(np.log(fitness),2) <= round(np.log(gBest_coeff),2): #to avoid falling into

local minimum

 gBest_coeff = fitness

 gBest_X = X[i,:].copy()

 gBest_solu_ener = solu_ener

 a = 2*(max_iter - t)/max_iter

 #update the whales

 for i in range(whale_num):

 p = np.random.uniform()

 R1 = np.random.uniform()

 R2 = np.random.uniform()

 A = 2*a*R1-a

 C = 2*R2

 l = 2*np.random.uniform()-1

 if p >= 0.5:

 D = abs(gBest_X - X[i, :])

 X[i, :] = D*np.exp(b*l)*np.cos(2*np.pi*l)+gBest_X

 else:

 if abs(A) < 1:

 D = abs(C*gBest_X - X[i, :])

 X[i, :] = gBest_X - A*D

 else:

 rand_index = np.random.randint(low=0, high=whale_num)

 X_rand = X[rand_index, :]

 D = abs(C*X_rand - X[i, :])

 X[i, :] = X_rand - A*D

26

The chemical compositions of the HEA structures generated during the WOA

process and their corresponding H diffusion coefficients were saved as numpy arrays.

We then use them to perform regressions to reveal the dependence of H diffusion

coefficient on chemical composition. The python codes are as follows:

x_arr=np.load(‘compositions.npy') #the atomic ratios of each element in the HEA

y_arr=np.load('diffusion_coefficients.npy') #the corresponding H diffusion coefficients

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x_arr, y_arr, test_size=0.2, random_state=42)

from sklearn.linear_model import RidgeCV

from sklearn.metrics import r2_score

nn = RidgeCV()

nn.fit(x_train,y_train)

w=nn.coef_

import matplotlib.pyplot as plt

low = min(y_arr)-0.1

high = max(y_arr)+0.1

lims = [-16.9,-13]

text = 'Linear regression'

plt. figure(2,figsize=(8,8))

plt.plot(lims,lims,'--',linewidth=2,color='black')

coeff_predict = nn.predict(x_train)

plt.plot(y_train, coeff_predict, '+', color = 'orangered',alpha=0.5)

plt.xlim(lims)

plt.ylim(lims)

27

plt.text(-16.8,-13.2, text,fontsize=22)

plt.text(-16.8,-13.5,'Training set',fontsize=22)

plt.text(-16.8,-13.8,'$\mathregular{R^2}$ ='+str(round(r2_score(y_train,

coeff_predict),2)),fontsize=22)

plt.ylabel('Predicted value', fontsize=20)

plt.xlabel('True value', fontsize=20)

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13]

plt.xticks(a,fontsize = 18)

plt.yticks(a,fontsize = 18)

plt.figure(3,figsize=(8,8))

plt.plot(lims,lims,'--',linewidth=2,color='black')

coeff_predict = nn.predict(x_test)

plt.plot(y_test, coeff_predict, '+', color = 'deeppink',alpha=0.5)

plt.xlim(lims)

plt.ylim(lims)

plt.text(-16.8,-13.2, text,fontsize=22)

plt.text(-16.8,-13.5,'Test set',fontsize=22)

plt.text(-16.8,-13.8,'$\mathregular{R^2}$ ='+str(round(r2_score(y_test,

coeff_predict),2)),fontsize=22)

plt.ylabel('Predicted value', fontsize=20)

plt.xlabel('True value', fontsize=20)

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13]

plt.xticks(a,fontsize = 18)

plt.yticks(a,fontsize = 18)

2-degree polynomial regression

from sklearn.preprocessing import PolynomialFeatures

28

poly = PolynomialFeatures(interaction_only=True,degree=2)

poly.fit(x_arr)

x_arr = poly.transform(x_arr)

x_train, x_test, y_train, y_test = train_test_split(x_arr, y_arr, test_size=0.2, random_state=42)

nn = RidgeCV()

nn.fit(x_train,y_train)

w=nn.coef_

import matplotlib.pyplot as plt

low = min(y_arr)-0.1

high = max(y_arr)+0.1

lims = [-16.9,-13]

text = 'Degree-2 polynomial regression'

plt.figure(2,figsize=(8,8))

plt.plot(lims,lims,'--',linewidth=2,color='black')

coeff_predict = nn.predict(x_train)

plt.plot(y_train, coeff_predict, '+', color = 'royalblue',alpha=0.5)

plt.xlim(lims)

plt.ylim(lims)

plt.text(-16.8,-13.2, text,fontsize=22)

plt.text(-16.8,-13.5,'Training set',fontsize=22)

plt.text(-16.8,-13.8,'$\mathregular{R^2}$ ='+str(round(r2_score(y_train,

coeff_predict),2)),fontsize=22)

plt.ylabel('Predicted value', fontsize=20)

plt.xlabel('True value', fontsize=20)

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13]

29

plt.xticks(a,fontsize = 18)

plt.yticks(a,fontsize = 18)

plt. figure(3, figsize=(8,8))

plt.plot(lims,lims,'--',linewidth=2,color='black')

coeff_predict = nn.predict(x_test)

plt.plot(y_test, coeff_predict, '+', color = 'darkviolet',alpha=0.5)

plt.xlim(lims)

plt.ylim(lims)

plt.text(-16.8,-13.2, text,fontsize=22)

plt.text(-16.8,-13.5,'Test set',fontsize=22)

plt.text(-16.8,-13.8,'$\mathregular{R^2}$='+str(round(r2_score(y_test,

coeff_predict),2)),fontsize=22)

plt.ylabel('Predicted value', fontsize=20)

plt.xlabel('True value', fontsize=20)

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13]

plt.xticks(a,fontsize = 18)

plt.yticks(a,fontsize = 18)

	ISE-0006_Yang_Machine_Learning_Assisted
	1-s2.0-S1359645421009137-mmc1

