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Abstract 

The broad compositional space of high entropy alloys (HEA) is conducive to the 

design of HEAs with targeted performance. Herein, a data-driven and machine 

learning (ML) assisted prediction and optimization strategy is proposed to explore the 

prototype FeCoNiCrMn HEAs with low hydrogen diffusion coefficients. The model 

for predicting hydrogen solution energies from local HEA chemical environments was 

constructed via ML algorithms. Based on the inferred correlation between atomic 

structures and diffusion coefficients of HEAs built using ML models and kinetic 

Monte Carlo simulations, we employed the whale optimization algorithm to explore 

HEA atomic structures with low hydrogen diffusion coefficients. HEAs with low H 

diffusion coefficients were found to have high Co and Mn content. Finally, a 

quantitative relationship between the diffusion coefficient and chemical composition 

is proposed to guide the design of HEAs with low H diffusion coefficients and thus 

strong resistance to hydrogen embrittlement. 
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1. Introduction 

The demand for hydrogen (H) energy is rapidly growing in the current society[1-

3]. However, the wide application of H energy faces great challenges in the storage 

and transportation of H gas for that the presence of mobile H atoms in metals could 

render serious deterioration in the mechanical properties of metals, especially ductility 

and durability, inducing the so-call hydrogen embrittlement (HE). The mobile H 

atoms are prone to accumulate at crystal defects i.e., grain boundaries [4, 5], 

interfaces [6-8], and micro voids [9, 10], inducing decohesion or stress concentration, 

and consequently crack initiation and propagation.  One common strategy to increase 

the HE resistance of metals is to suppress severe H accumulation at defects by 

slowing down H diffusion through the dispersion of irreversible traps like 

precipitates[11] or reversible traps like grain boundaries [12] and dislocation walls 

[13]. However, to trap enough diffusive H, the defects should have sufficient density 

and proper dispersion in the matrix. Otherwise, H atoms would accumulate at the 

defects and cause embrittlement. Therefore, novel effective methodologies for 

trapping diffusive H are in demand.  

High entropy alloys (HEAs) have attracted intensive interest due to their unique 

properties such as good ductility[14], high thermal stability[15, 16], corrosion 

resistance[17, 18], and excellent low-temperature mechanical properties[19]. 

Particularly, certain HEAs, such as the prototype Cantor alloy (FeCoNiCrMn) [20-

24], have been found to be much less susceptible to HE than commercially used Ni-

based alloys and stainless steel, even at a higher level of H charging. The multiple 

principal components in HEAs lead to a vast compositional space for designing alloys 

with strong HE resistance. However, an effective way for designing HE resistant 

HEAs still requires an in-depth understanding of the underlying mechanisms of HE 

resistance in HEAs. It has been proposed that the highly fluctuated local chemical 

environment and the distorted lattice of HEAs result in a wide distribution of H 

diffusion energy barriers. The peaks/valleys in the potential energy landscape create 
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numerous H traps [25] in the HEA lattice. To develop an effective design strategy for 

HE resistant HEAs, it is necessary to identify how the local chemical environment is 

correlated with the local H trapping energy and clarify how the chemical composition 

influences the diffusion coefficient. 

Data-driven material design is an emerging field of research that can search for 

the optimal material with great efficiency by avoiding the traditional trial-error 

material development process [26-29]. Here we propose a data-driven and machine 

learning (ML) assisted strategy to design HE resistant non-equimolar FeCoNiCrMn 

HEAs. Our approach is to calculate the H solution energies using density functional 

theory (DFT) at critical sites of the HEA lattice, followed by ML algorithms to 

correlate the local chemical environment with H solution energies. H diffusion 

coefficients are subsequently calculated from H diffusion barriers by kinetic Monte 

Carlo (kMC) simulations [10, 30]. Whale optimization algorithms (WOA) [31] then 

allow us to explore HEA atomic structures with low H diffusion coefficients. Finally, 

using a polynomial model, we construct a mapping between the H diffusion 

coefficient and the chemical composition of the HEA. The model suggests that we can 

regulate the H diffusion coefficient of the HEA by tuning its chemical composition. In 

particular, HEAs with low H diffusion coefficients are predicted to have high Co and 

Mn content, while those with high H diffusion coefficients have high Fe and Ni 

content. The quantitative model linking the H diffusion coefficient with the chemical 

composition of HEA is expected to guide the design of high-performance HEAs with 

low H diffusion coefficients and strong resistance to HE.  

 

2. Theoretical Methods  

2.1. DFT calculations of the H solution energies 

In face-centered cubic (FCC) crystals, H atoms preferentially occupy the 

octahedral interstitial (OI) sites (Fig. 1a). H atoms at the tetrahedral interstitials (TIs, 

see Fig. 1a) are at relatively higher energy states. The diffusion pathway of an H atom 
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in a perfect FCC crystal starts from one OI, climbs across a saddle point, passes 

through a neighboring TI, then diffuses across another saddle point, and finally arrives 

at its neighboring OI [32], as shown in Figs. 1b and 1c viewed along the <100> and 

<110> directions, respectively. The saddle point positions and energies were 

calculated with the climbing image nudged elastic band method (CINEB) [33]. The 

TIs and OIs of a perfect FCC lattice can be obtained from the geometric 

characteristics of the FCC lattice. After several CINEB calculations, we find that the 

saddle points can be easily located at the centers of the triangles formed by the three 

nearest atoms in the FCC lattice. This allows us to identify the location of saddle 

points based on geometry rather than performing DFT calculations. The OIs, TIs and 

saddle points are the critical sites that determine the diffusion path and barriers of a H 

atom in an FCC crystal. The H solution energies at the critical sites in FCC crystals 

are calculated using 

𝐸𝐻−𝑠𝑜𝑙𝑢 = 𝐸𝐻+𝑏𝑢𝑙𝑘 − 𝐸𝑏𝑢𝑙𝑘 − 𝐸𝐻 ,      (1) 

where 𝐸𝐻+𝑏𝑢𝑙𝑘  is the total energy with zero-point energy (ZPE) correction of the 

relaxed lattice when the H atom is embedded in the interstitial or saddle point, 𝐸𝑏𝑢𝑙𝑘 

is the energy of the relaxed bulk lattice, 𝐸𝐻 is the energy of an H atom in a vacuum. 

 

Fig. 1. Critical sites in an FCC crystal (a) The positions of an OI, TI, and saddle point 

in FCC crystal. (b-c) The trajectory between TIs and OIs viewed along the (b) <100> 

and (c) <110> directions. 
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The DFT calculations were performed using the Vienna ab initio Simulation 

Package (VASP) [34, 35]. Perdew, Burke, and Ernzerhof (PBE) [36] functional of 

generalized gradient approximation with projector augmented wave (PAW) [37] was 

adopted to describe the electronic structures of HEAs. The plane-wave basis kinetic 

energy cut-off was set to 400 eV. All calculations were carried out with spin-

polarization switched on. During the geometrical optimizations, all atoms and the 

simulation cells were allowed to relax, so that the lattice distortion was taken into 

consideration when calculating the H solution energies. The total energy was 

converged to less than 10−6 eV for the electronic structure optimization. The 

convergence criterion for geometric optimization for calculating H solution energy 

was set to 0.1 eV, and the criterion for optimizing the atomic structure of the lattice 

was set to 0.001 eV. The atomic structure of the lattice was relaxed firstly, and then 

the H atoms were placed at the TIs, and OIs in the lattice. As the original structure 

was close to the final structure, the optimization usually finishes within 4 steps.  

As one of the limitations of DFT calculations is that the simulation system is 

finite, it is difficult to directly simulate a real HEA system by DFT. In a real HEA 

lattice, even though the overall chemical composition is equimolar, the local structure 

might have elemental segregation that makes the composition deviate from equimolar 

[38-40]. Therefore, it is inadequate to simulate only five-component equimolar 

FeCoNiCrMn HEAs within DFT calculations. Hence, we build atomic structures with 

the number of components ranging from one to five, covering different combinations 

of the five alloying elements, as shown in Table 1. The H solution energies at all the 

critical sites in these structures are then calculated by DFT.  
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Table 1. Structures for DFT calculations of the H solution energies 

Pure Binary Ternary Quaternary 
Quinary (equimolar 

FeCoNiCrMn) 

Fe 
Fe-Co Fe-Co-Ni 

Fe-Co-Ni-Cr equi-HEA-1 
Fe-Ni Fe-Ni-Cr 

Co  
Fe-Cr Fe-Ni-Mn 

Fe-Ni-Cr-Mn  equi-HEA-2 
Fe-Mn Co-Ni-Cr 

Ni  
Co-Ni Co-Ni-Mn 

Fe-Co-Ni-Mn  equi-HEA-3 
Co-Cr Ni-Cr-Mn 

Cr 
Co-Mn Fe-Co-Mn 

Co-Ni-Cr-Mn equi-HEA-4 
Ni-Cr Fe-Cr-Mn 

Mn 
Ni-Mn Fe-Co-Cr 

Fe-Co-Cr-Mn equi-HEA-5 
Cr-Mn Co-Cr-Mn 

 

2.2. kMC simulations 

 The kMC simulations are used for calculating H diffusion coefficients. Here we 

only consider the low H-concentration scenario. One H atom was firstly placed in a 

randomly selected OI site. Due to the complicated local chemical environment of 

HEA, each OI has 8 different neighboring TIs, so there are 8 different barriers for 

hopping from OI to TI. The hopping rate to the ith neighboring TI is calculated by 

𝑘𝑖 = 𝑣0 exp (−
∆𝐸𝑖

𝑘𝐵𝑇
)        (2) 

For the H atom at this OI, the total hopping rate is 

𝑘𝑡𝑜𝑡 = ∑ 𝑘𝑖𝑖          (3) 

The probability of this H hopping to the ith TI is 𝑘𝑖/𝑘𝑡𝑜𝑡. The selection of the TI 

for hopping is then based on the probability of each hopping event. The hopping from 

TI to OI is determined by the same method. 

The time interval for each hopping event is calculated by,  

 ∆t = −
1

𝑘𝑡𝑜𝑡
ln⁡(𝑟2)         (4) 

where 𝑟2 is a random number between 0 and 1. The hopping continues until the preset 

number of steps has been reached. The H diffusion coefficient is then calculated by 
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𝐷 =
1

6𝑡
𝑀𝑆𝐷         (5) 

where MSD is the mean squared displacement of the H atom, t is the total time of the 

kMC simulation. 

 The attempt frequency 𝑣0 used here is 10-14 m2 s-1, which is calibrated to match 

the H diffusion coefficient in coarse-grained Ni[41]. The python code for the kMC 

simulation is presented in the Supplementary Materials. 

 

2.3. WOA 

 The WOA method, which is a meta-heuristic optimization algorithm [31], was 

applied to explore the HEA structure with low H diffusion coefficients. WOA mimics 

the hunting strategy of humpback whales, which starts from encircling the prey with 

multiple whales, followed by the bubble-net attacking phase, and then the prey 

searching phase. WOA is an efficient algorithm for structural optimization and 

displays an excellent balance between exploration and exploitation, enabling 

searching across a broad space for the optimal solution. However, the WOA method 

needs modification to search the structural and compositional space of the HEA 

structure. To be consistent with the structures for the DFT calculation of the H 

solution energies in quinary HEA, we use the 2×2×5 FCC supercell with a total of 80 

atoms as the optimization object. To search the structural and compositional space 

simultaneously, each atom of the supercell is allowed to choose from the five 

elements, Fe, Co, Ni, Cr, and Mn. Hence, the atomic structure of the HEA supercell 

has 580 permutations. By using integers ranging from 1 to 5 to represent the element 

type and an 80-component vector to represent the permutation of the atoms, we can 

then iteratively optimize the atomic structure of the HEA supercell to gradually lower 

the H diffusion coefficient using WOA. We use a vector, X, to represent the atomic 

structures of HEA. X has two key characteristics: all the elements are integer, and the 

elemental index should be in the range of 1-5. In addition, we expect the optimized 

structure to contain all the five elements of HEA, so the structures with less than five 
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elements are excluded. During the optimization, the components of X can easily 

exceed the range of 1-5. The X will be initiated with random integers in the range of 

1-5 if any components of X are lower than 1 or higher than 5. We used 5 whales for 

hunting within one WOA iteration and performed 300 iterations. The python codes for 

WOA are presented in the Supplementary Materials.  

 

3. Results 

The H solution energy distributions in pure Ni and HEA structures are plotted in 

Fig. 2a and Fig. 2b, respectively. It is clear that 𝐸𝐻−𝑠𝑜𝑙𝑢  in HEAs have wider 

distributions than that in Ni, and the 𝐸𝐻−𝑠𝑜𝑙𝑢 in HEAs are highly inhomogeneous. The 

H diffusion barriers in certain areas are significantly higher than others, implying the 

H diffusion pathway may be more rugged and the H atoms are highly dragged in 

HEAs. These results are consistent with the findings of Ren et al. [42] and Zhou et al. 

[25] that the lattices of HEAs can effectively trap H atoms. However, how the 

chemical composition of the HEA and the local chemical environment affect the H 

diffusion behavior, and to what extent the H diffusion coefficient can be reduced by 

the inhomogeneous distribution of 𝐸𝐻−𝑠𝑜𝑙𝑢 in HEA, remain to be resolved.  

 

Fig. 2. The H solution energy distributions in pure (a) Ni and (b) HEA structures. 

 

The overall flow chart for designing FeCoNiCrMn HEA with low H diffusion 

coefficients is presented in Fig. 3. After obtaining the H solution energy through DFT 

calculations, we adopt the Smooth Overlap of Atomic Positions (SOAP) descriptor 
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[43-46] to represent the chemical environment of a given H atom embedded in a metal 

lattice and then explore an ML model to correlate its SOAP descriptor to its solution 

energy. Using the ML model, H solution energies in new HEA structures that are not 

in the dataset can be evaluated. The prediction of H solution energies in new HEA 

structures is important because we need to find the optimal HEA structures from a 

broad compositional and structural space. The H diffusion coefficient of the new 

structure can be consequently calculated by kMC simulations. It is WOA that allows 

us to search the compositional and structural space of HEAs for structures with low 

diffusion coefficients. These structures generated by WOA serve as input to the ML 

model mentioned earlier to predict the H solution energy distribution. The H diffusion 

coefficient is then calculated from the H solution energy distribution. Using the large 

dataset containing HEA structures and H diffusion coefficients, the relationship 

between the H diffusion coefficient with the chemical composition of the HEA can 

then be accurately described by a 2-degree polynomial model. The details of each part 

in Fig. 3 are elaborated hereafter.  

 

Fig. 3. Graphic representation of the design strategy. Data preparation, model training, 

prediction, and optimization process for designing FeCoNiCrMn HEA with low H 

diffusion coefficients. 
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3.1. Data preparation 

In total, we built 35 atomic structures (Table1) for DFT calculations and 

calculated the H solution energies at the critical sites in the structures. The 

corresponding atomic structure files can be found in the Supplementary Data. The 

number of critical sites in each calculated structure ranges from 392 (in binary alloys) 

to 880 (in quinary alloys). The complete size of the dataset, which contains the atomic 

positions of critical sites and their corresponding H solution energies in the 35 

structures, is 24566. The atomic positions of the critical sites and the corresponding H 

solutions of each atomic structure can also be found in the Supplementary Data. The 

calculated H solution energy distributions in several representative binary, ternary, 

quaternary, and quinary alloys are shown in Fig. 4. The rest of the H solution energy 

distributions are shown in Fig. S1-4 in the Supplementary Materials.  We see that in 

certain structures, such as FeMn and FeCoMn, the H solution energy distributions are 

‘narrower’, and the energy distributions at saddle and TI sites overlap less. In 

structures such as CoCr and FeCoNiCrMn, the H solution energy distributions are 

‘wider’ with partially overlapping distributions at saddle and TI points. In addition, 

the average solution energies at the critical sites of different structures are quite 

different. For example, the energies at OI sites of the FeNiCrCo structure are centered 

around -3.1 eV, whereas the energies at OI sites of the FeCoMn structure are centered 

around -2.95 eV, indicating that the OIs in FeNiCrCo are deeper H traps than those in 

FeCoMn. The differences in H solution energy distributions will cause large 

deviations in the lattice-trapping ability, hence we further investigated the influence of 

HEA structure and composition on the H diffusion coefficient.  
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Fig. 4. H solution energy distributions at the critical sites, i.e., the saddle points, TIs 

and OIs in typical binary (a) FeMn alloy, (b) CoCr alloy, ternary (c) CoNiMn alloy, 

(d) FeCoMn alloy, (e) quaternary FeNiCrCo alloy, and quinary (f) FeCoNiCrMn 

HEA.  

 

3.2. Model training 

To define features for each H atom embedded in the 35 structures, we adopt 

SOAP descriptors [43] as they accurately describe the local chemical environment 

surrounding the target H atom within a certain cutoff. There are three important 

hyperparameters to be optimized when constructing a SOAP descriptor, namely, the 

radial cutoff (𝑟𝑐𝑢𝑡 ), the maximum number of radial basis functions (𝑛𝑚𝑎𝑥 ), and 

angular degree of the spherical harmonics (𝑙𝑚𝑎𝑥). To evaluate the influence of these 

hyperparameters on the model accuracy, we use the mean square error (MSE) as a 

performance measure and use linear regression as the ML model. The whole data set 

was split into a training set (85 %), validation set (5 %), and test set (10 %). We used 

the validation set for selecting hyperparameters of the SOAP descriptors, while the 

test set was used for evaluating the performances of the ML models. The whole data 

set can be found in Supplementary Data (see the ‘x_arr.npy’ and ‘y_arr.npy’ files for 
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the SOAP descriptors and the H solution energies) 

      The variation of MSE with increasing 𝑟𝑐𝑢𝑡, 𝑛𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 is depicted in Figs. 5a-

c, which indicates that for 𝑟𝑐𝑢𝑡 = 7,  𝑛𝑚𝑎𝑥 = 4  and 𝑙𝑚𝑎𝑥 = 4 , the MSE is near-

optimal for predicting H solution energies in the validation set. The generated SOAP 

descriptor is a vector with 1500 components. However, many components of the 

SOAP descriptor are close to zero, contributing little to the learning target. Therefore, 

we used principal component analysis (PCA) to reduce the dimension of the features. 

As shown in Fig. 5d, MSE reaches a steady-state value provided the feature number is 

no less than 600. Therefore, we use 600 as the feature number of the original SOAP 

descriptors for further analysis.  

 

Fig. 5. Hyperparameter analysis for SOAP descriptors. Variation of MSE with 

increasing (a) 𝑟𝑐𝑢𝑡, (b) 𝑛𝑚𝑎𝑥 and (c) 𝑙𝑚𝑎𝑥, and the (d) number of features after PCA.  
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After constructing the SOAP descriptors for the critical sites and calculating the 

corresponding H solution energies, we built the ML model to correlate the local 

chemical environment of an H atom at a critical site with its solution energy. As 

presented in Fig. 6, an ML model as simple as ridge regression with built-in cross-

validation[47] (referred to as RidgeCV hereafter) can give satisfactory results. 

RidgeCV outperformed random forest but was slightly inferior to the neural network. 

Based on the performance of the three ML models, the neural network was selected as 

the ML model for further prediction of the H solution energy distribution based on the 

atomic structure of a given HEA. 

 

Fig. 6. Performance of the ML models on the training set and the test set, respectively. 

(a, b) random forest model, (c, d) ridge regression model, (e, f) neural network model. 

 

3.3. Prediction and Optimization 

With the trained ML model, we can now predict the complete H solution energies 

at the critical sites of the HEA atomic structures generated during WOA. The H 

diffusion coefficient of the structure is calculated through kMC. The H diffusion 

coefficients at 300 K of the 35 structures are listed in Table S1 in Supplementary 
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Material. At this point, we have established the correlation between the atomic 

structure of the alloy and its H diffusion coefficient.  

The WOA optimizations are then performed to explore HEA structures with low 

H diffusion coefficients. Despite the broad search space of the WOA optimization, the 

H diffusion coefficient can be effectively reduced by 2 orders of magnitude after 

merely 300 WOA steps with five whales for hunting, wherein the optimized structures 

are non-equimolar. Because the local chemical environments and the corresponding H 

solution energies in the training set are all calculated from either pure-metal structures 

or equimolar-alloy structures, the ML model displays relatively low accuracy in the 

prediction of H diffusion coefficients of non-equimolar HEA. To address this issue, 

we performed additional DFT calculations on the optimized non-equimolar structures 

to obtain H solution energies at the critical sites, and then iteratively added these DFT 

calculation results along with their corresponding SOAP descriptors to the training set 

to enhance the accuracy of the ML model predictions (see Fig. 7a). The iteration stops 

when the convergence criterion between the predicted and DFT calculated H diffusion 

coefficients is reached.  

 

Fig. 7. The iteration process and the results of the iteration loops. (a) The iteration 
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process to expand the training set and increase the accuracy of ML model prediction 

on non-equimolar HEA structures. (b) The evolution of the diffusion coefficient (300 

K) during the iteration process. (c) The Arrhenius relations of the diffusion coefficient 

of the equimolar HEA and the optimized non-equimolar structures. The diffusion 

activation energies, Q, are calculated through the slopes of the curves.  

 

The iteration process in Fig. 7a was performed five times to guarantee the 

accuracy of the ML model. Fig. 7b shows the evolution of the logarithm of the 

diffusion coefficient during the iteration process. After five iteration loops, the 

predicted and the DFT calculated H diffusion coefficients reached the convergence 

criterion. Five optimized structures generated in the iteration process are labeled non-

equi-HEA-1 to non-equi-HEA-5. (See Fig. S5 in Supplementary Materials for the 

atomic structures.) The H diffusion coefficient of the non-equimolar HEAs that were 

evaluated by kMC using the DFT calculated H solution energies are listed in Table S1 

in Supplementary Materials. 

The optimized non-equimolar HEA structures have H diffusion coefficients in 

the order of 10-16, which is two orders of magnitude smaller than those of the 

equimolar HEAs. To evaluate the ability of the non-equimolar HEA structures to trap 

H atoms, we calculated the activation energy of H diffusion in a typical equimolar 

HEA and the optimized non-equimolar HEA. The Arrhenius equation of the diffusion 

coefficient as a function of temperature is given by Eq. 2.  

𝐷(𝑇) = 𝐷0 exp (
𝑄

𝑅𝑇
)        (6) 

A linear fitting of the logarithm of the diffusion coefficient as a function of 1/T 

can be described as in Eq. 3, 

ln[𝐷(𝑇)] = ln𝐷0 +
𝑄

𝑅

1

𝑇
         (7) 

from which the activation energy of H diffusion in the structures can be obtained. Fig. 

7c shows the Arrhenius plots of the diffusion coefficient of an equimolar HEA and an 

optimized non-equimolar HEA at 300 K. The activation energy of H diffusion in the 
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optimized non-equimolar HEA is 0.191 eV higher than that in the equimolar HEA. 

The increase of H diffusion activation energy by structural optimization indicates that 

the optimized non-equimolar HEA has higher trapping ability and may serve as 

reversible H trapping sites with comparable trapping energies as typical reversible H 

traps, such as dislocations (0.11 eV for screw dislocation and 0.18 for edge dislocation 

in aluminum, as calculated by DFT[48]) and low-angle grain boundaries which are 

often considered to be composed of multiple edge dislocations[49].  

 

Fig. 8. (a) The evolution of the diffusion coefficient during WOA. (b) Chemical 

compositions of the optimized structures after WOA.  

 

With the expanded training set after the iterative process, the ML model can 

accurately predict the H solution energies in non-equimolar HEAs. We then 

performed another four WOAs to obtain four optimized HEA structures with the 

improved ML model. The evolution of the diffusion coefficient during WOA and the 

chemical compositions of the optimized structures after WOA are shown in Fig. 8a 
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and 8b, respectively. Fig. 8a shows that the H diffusion coefficient can be rapidly 

reduced, indicating that WOA is efficient in exploring the broad and high-dimensional 

searching space of the current optimization problem. We can see that owing to the 

broad composition and structure space of the HEA atomic structure, the WOA 

exploration arrives at different local optimal points each time, and it is not easy to 

locate the global minimum. However, all the optimized structures have H diffusion 

coefficients considerably lower than those of the unoptimized ones. The optimized 

structures are labeled WOA-1 to WOA-4 and their atomic structures are plotted in 

Fig. S5 in the Supplementary Materials. The charge density distributions of the four 

optimized structures are representatively shown in Fig. S6 in the Supplementary 

Materials. It can be seen that the charge density distribution is highly inhomogeneous, 

which would result in the highly varied H solution energies, and then the formation of 

various H traps in the HEA lattices. All of the optimized structures are non-equimolar, 

and typically have high Co content and low Ni content. This suggests that there might 

be certain relationships between the chemical composition and the H diffusion 

coefficient of the structure, which make it possible to achieve a low H diffusion 

coefficient by tuning the chemical composition.  

 

4. Discussion 

We have shown that the optimized structures generated by WOA can act as 

reversible H trapping sites, with trapping ability comparable to that of dislocation 

cores and low-angle grain boundaries. As the optimization target, the H diffusion 

coefficient has multiple local minima, thus this kind of lattice trap can be abundant in 

HEAs. Unlike H traps such as grain boundaries and dislocations, lattice traps result 

from the heterogeneity of the local chemical environment of the HEA lattice, which 

will not cause severe segregation of H atoms and can thus avoid the risk of H-induced 

interface decohesion, stress concentration, and crack initiation. This quality of lattice 

traps might explain the high HE resistance observed in many HEAs[17, 20, 22-24, 50, 
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51].  

The WOA not only finds the HEA structures with low H diffusion coefficients 

but also generates massive data containing the HEA chemical compositions and their 

corresponding H diffusion coefficients during the optimization process, which makes 

it possible to further uncover the characteristics of HEA structures with low H 

diffusion coefficients, and the relationship between the chemical composition of the 

HEA structure and its H diffusion coefficient.  

Fig. 9a and Fig. 9b present the chemical composition distributions of the HEAs, 

which were generated from WOA, with H diffusion coefficients lower than 10-16 m2 s-

1 (Fig. 9a), or higher than 10-14 m2 s-1 (Fig. 9b). The HEAs with low H diffusion 

coefficients have high Co and Mn content, while those with high H diffusion 

coefficients have high Fe and Ni content. The influence of Cr is not as obvious, but 

still has a positive effect on reducing the H diffusion coefficient.  

 

Fig. 9. The chemical composition distributions of the HEAs with (a) low (< 10-16 m2 

s-1) or (b) high (> 10-14 m2 s-1) H diffusion coefficients. 
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We further carried out linear regression with the composition of Fe, Co, Ni, Cr, 

Mn as features and the logarithmic H diffusion coefficient as the learning target. The 

dataset was split into the training set and the test set with a split ratio of 4:1. The 

performance of linear regression is shown in Fig. 10a and Fig. 10b. Linear regression 

gives an R2 value of 0.75 on the test set, indicating that although the variance is large, 

there does exist a certain relationship between the H diffusion coefficient and the 

chemical composition. The large variance may come from the nonlinear dependency 

of the H diffusion coefficient on the chemical composition. It also indicates that as the 

H diffusion coefficient decreases, the linear prediction becomes less accurate, as 

shown by the lower-left region of Fig. 10a and 10b, suggesting that the lack of model 

complexity manifests itself when predicting low H diffusion coefficients. The linear 

model gives an explicit expression of the logarithm of H diffusion coefficient as a 

function of chemical components, i.e., 

log(𝐷) = 0.096𝐹𝑒 − 0.47𝐶𝑜 + 3.05𝑁𝑖 − 1.01𝐶𝑟 − 1.66𝑀𝑛 − 15.05  (8) 

where Fe, Co, Ni, Cr, Mn represent the atomic ratio of the elements. Eq. 8 suggests 

that the increased Co, Cr, and Mn ratio can reduce the H diffusion coefficient whereas 

an increase of Fe and Ni might result in the opposite effect. Note that the linear model 

fails to make accurate predictions for structures with H diffusion coefficients lower 

than 10-16 m2 s-1. 
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Fig. 10. The performance of the linear model on the training set (a) and the test set (b) 

and the performance of the 2-degree polynomial model on the training set (c) and the 

test set (d). 

 

 To predict the H diffusion coefficients with higher accuracy, we adopted 2-degree 

polynomial regression and obtained a higher R2 value of 0.86 on the test set (Fig. 

10d). The coefficients and intercept of the 2-degree polynomial regression are listed in 

Table 2. The polynomial model can predict H diffusion coefficients lower than 10-16 

m2 s-1 with improved accuracy, which could be a better choice when quantitative 

prediction is necessary. Although the linear model is less accurate, it gives a more 

intuitive understanding of the influence of each element on the H diffusion 

coefficient, which can serve as a general estimation for designing HEAs with low 

diffusion coefficients. 
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Table 2. The coefficients and intercept of the 2-degree polynomial regression 

Intercept FeFe FeCo FeNi FeCr FeMn CoCo CoNi 

-15.3483 -1.4491  0.2543  2.5556  -0.4160  -0.9448  3.4148  4.3146  

CoCr CoMn NiNi NiCr NiMn CrCr CrMn MnMn 

0.2795  6.0980  1.6180  -1.1773  -5.8116  -2.0221  -0.3837  2.8789  

 

5. Conclusion 

In summary, we have proposed a data-driven and ML-assisted prediction and 

optimization strategy to assist the design of FeCoNiCrMn HEAs with low H diffusion 

coefficients. The neural network was used to bridge the relationship between the 

SOAP descriptors and the H solution energies. With the help of kMC, the H diffusion 

coefficients based on the H solution energies can be accurately evaluated, and the 

relationship between the atomic structure of HEA to its H diffusion coefficient can be 

built. From the data collected from the WOA processes, we found that HEAs with low 

H diffusion coefficients typically have high Co and Mn content, while those with high 

H diffusion coefficients have high Fe and Ni content. We then developed linear and 

polynomial models between the chemical composition and the H diffusion coefficient 

to guide the design of HEAs with low H diffusion coefficient and high HE resistance. 
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Fig. S1. H solution energy distributions at saddle points, TIs, and OIs in binary alloys. 
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Fig. S2. H solution energy distributions at saddle points, TIs, and OIs in ternary 

alloys. 
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Fig. S3. H solution energy distributions at saddle points, TIs, and OIs in quaternary 

alloys. 
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Fig. S4. H solution energy distributions at saddle points, TIs, and OIs in quinary 

alloys. 
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Fig. S5. Atomic arrangements of the equimolar HEA1-5, the optimized non-equimolar 

HEA1-5, and the structures generated by four WOA processes, WOA1-4. 
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Fig. S6. (a-d) Charge density distributions in the four optimized HEA structures. (e-h) 

Cross-section views of the charge density distributions.  
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Table S1. The H diffusion coefficients D (m2 s-1) calculated by kMC in various atomic systems.  

Pure Binary Ternary Quaternary Quinary 

Fe 
1.26E-

16 

CoCr 
8.41E-

16 
FeCoNi 

8.29E-

15 CoFeNiCr 

 

4.49E-

15 

 

equi-HEA-1 
2.13E

-15 

CoNi 
1.52E-

14 
FeNiCr 

2.00E-

15 
equi-HEA-2 

5.44E

-15 

Co 
1.18E-

13 

FeCo 
2.47E-

14 
FeNiMn 

7.94E-

14 
FeCoNiMn 

5.38E-

13 

equi-HEA-3 
1.30E

-15 

FeCr 
3.17E-

15 
NiCoCr 

4.35E-

15 
equi-HEA-4 

4.97E

-15 

Ni 
2.36E-

14 

FeNi 
2.46E-

14 
NiCrMn 

3.08E-

14 
FeNiCrCo 

1.88E-

14 

equi-HEA-5 
3.84E

-15 

FeMn 
3.37E-

15 
CoCrMn 

1.40E-

16 
non-equi-HEA-1 

5.72E

-15 

Cr 
4.00E-

16 

NiCr 
6.64E-

15 
CoNiMn 

4.76E-

16 
FeNiCrMn 

3.46E-

16 

non-equi-HEA-2 
2.50E

-15 

CoMn 
1.02E-

16 
FeCoCr 

1.43E-

16 
non-equi-HEA-3 

6.97E

-16 

Mn 
8.21E-

14 

CrMn 
1.25E-

15 
FeCoMn 

2.77E-

16 
FeCoCrMn 

7.99E-

16 

non-equi-HEA-4 
6.66E

-17 

NiMn 
1.21E-

15 
FeCrMn 

9.48E-

16 
non-equi-HEA-5 

2.57E

-17 
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Description of the Supplementary Data 

x_arr.py: The scaled SOAP descriptors constructed using the optimized parameters 

(rcut = 7, nmax = l max = 4, after reduced to 600 components after PCA)  

y_arr.py: The H solution energies 

Note that the x_arr and y_arr represent the whole data set.  

compositions.npy: The chemical compositions for the linear and the polynomial 

model 

diffusion_coefficients.npy: The corresponding diffusion coefficients 

The position_energy_converted_X file contains the positions of the H atoms (1-3 

columns) in the X model and their corresponding H solution energies (the 4th 

column). The last column represents the interstitial type, with 3 representing the 

saddle point, 2 representing TI and 1 representing OI.  

The POSCAR_X files contain the POSCAR of the X models.  
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The python codes for establishing ML models, kMC simulations and WOA 

optimizations 

The SOAP descriptors were constructed based on the ideal FCC lattices, meaning that 

the lattice distortion induced by different elements is not considered. The positions of 

H atoms were also determined from the ideal lattice. We use the ideal lattice instead 

of the relaxed lattice and the relaxed H positions to ensure the predictability of the ML 

model in predicting the H solution energies in completely new HEA structures. Using 

the ideal lattice for constructing SOAP descriptors indicates that only the chemical 

environments of the H atoms are considered, excluding the influence of lattice 

distortion induced by multiple components and H embedding, which we cannot 

predict in new HEA structures. This is important because little variations in the SOAP 

descriptor can cause a large difference in the predicted H solution energies.  

 

The construction of SOAP descriptors is achieved through the following Python 

codes.  

 

import numpy as np 

import ase.io 

from dscribe.descriptors import SOAP 

 

# Read in the POSCAR file for the metal matrix 

fname = ‘POSCAR’ 

fhand = open(fname) 

header = [] 

atoms = [] 

for n, line in enumerate(fhand): 

    if n <=7: 

        header.append(line) 

    if n>7: 
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        line = line.rstrip().split() 

        if len(line) ==3: 

            atom = [float(line[0]), float(line[1]), float(line[2])] 

            atoms.append(atom)  

header[5] = 'H '+ header[5] 

header[6] = str(1)+ ' '+header[6] 

 

# Read in the H positions, embed the H atom into the metal matrix, and write it to a 

CONTCAR file 

for i in range(len(H_positions)): 

    fname = 'CONTCAR' 

    with open(fname, "w") as fwrite: 

        for line in header: 

            fwrite.writelines(line) 

        atom = H_positions[i] 

        line = [] 

        line.append(str(atom[0]) + '\t') 

        line.append(str(atom[1]) + '\t') 

        line.append(str(atom[2]) + '  '+ '\n') 

        fwrite.writelines(line) 

        for atom in atoms: 

            line = [] 

            line.append(str(atom[0]) + '\t') 

            line.append(str(atom[1]) + '\t') 

            line.append(str(atom[2]) + ' '+'\n') 

            fwrite.writelines(line) 

# Use ase module to read in the CONTCAR file 

    model=ase.io.read('CONTCAR',format='vasp') 

model.set_pbc([1,1,1]) 
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Before constructing the SOAP descriptor, there are several parameters to be 

tuned before constructing the SOAP descriptors, namely rcut, nmax and lmax. The 

whole data set has 24566 data points. Here we randomly select 1230 (about 5 % of the 

whole data set) data points for validation, 20876 (85 %) data points as the training set 

and 2461 data points as the test set. The training set and the test set were used for 

model selection. The rcut, nmax and lmax were then tuned for better performance on 

the validation set. 

 

# Parameter setting for the SOAP descriptors 

H_soap_desc = [] 

periodic_desc = SOAP(species=['H','Fe','Co','Ni','Cr','Mn'],rcut=rcut, \ 

                     average = 'off', nmax=nmax,lmax=lmax,periodic=True,sparse=False) 

 

# Create SOAP descriptor for the H atoms 

H_soap = periodic_desc.create(model,positions =[0],n_jobs=-1) 

H_soap_desc.append(H_soap[0]) 
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After constructing the descriptors for the H atoms, we then build the ML 

models to learn the relation between the SOAP descriptors and the H solution 

energies. To further improve the prediction accuracy of the ML models, the calculated 

H solution energies of different structures were shifted by their average values so the 

H solution energies of each structure are centered around 0 eV. The shift of the H 

solution energies of a certain structure as a whole will not affect the H diffusion 

barriers and thus will not influence the prediction on the H diffusion coefficient of the 

structure. 

 

# First, we scale the features 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

scaler.fit(H_soap_desc) 

H_soap_desc = scaler.transform(H_soap_desc) 

 

y_train = solution_energies 

x_train = H_soap_desc 

 

# Train the model using RidgeCV 

from sklearn.linear_model import RidgeCV 

# Train model  

nn = RidgeCV() 

nn.fit(x_train, y_train) 

 

# Train the model use Random Forest 

from sklearn.ensemble import RandomForestRegressor 

nn = RandomForestRegressor(max_depth=25, random_state=0) 

nn.fit(x_train, y_train) 
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# Train the model use neural network 

# The hyperparameters (node_num and reg_para) for the neural network have already been 

optimized  

reg_para=0.005 

node_num = 100 

 

nn=tf.keras.Sequential() 

nn.add(tf.keras.layers.Dense(2*node_num,input_dim=600,kernel_initializer='normal',\ 

                                

activation='relu',kernel_regularizer=regularizers.l2(reg_para))) 

nn.add(tf.keras.layers.Dense(node_num,kernel_initializer='normal',\ 

                                

activation='relu',kernel_regularizer=regularizers.l2(reg_para))) 

nn.add(tf.keras.layers.Dense(1,kernel_initializer='normal')) 

optimizer=tf.optimizers.Adam(learning_rate=0.00001) 

model.compile(loss='mse',optimizer= optimizer) 

 

nn.fit(x_train, y_train,verbose=0,epochs=100) 
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The H diffusion coefficients are calculated by the kMC simulation. We define 

two functions to complete the simulation. The first one is for identifying the neighbor 

list for H jumping, the second one is for the calculation of the diffusion coefficient. 

The codes of which are as follows: 

 

def neighborlist(system):     

# Read in atomic positions of the metal matrix (perfect crystal)    

    fname = 'POSCAR'  

    fhand = open(fname) 

    header = [] 

    atoms = [] 

    for n, line in enumerate(fhand): 

        if n <=7: 

            header.append(line) 

        if n>7: 

            line = line.rstrip().split() 

            if len(line) ==3: 

                atom = [float(line[0]), float(line[1]), float(line[2])] 

                atoms.append(atom)  

    lattice_const = float(header[1].rstrip().split()[0]) 

    xhi=float(header[2].rstrip().split()[0]) 

    yhi=float(header[3].rstrip().split()[1]) 

    zhi=float(header[4].rstrip().split()[2]) 

    for atom in atoms: 

        if atom[0]<0.3: 

            atoms.append([atom[0]+1,atom[1],atom[2]]) 

        if atom[1]<0.3: 

            atoms.append([atom[0],atom[1]+1,atom[2]]) 

        if atom[2]<0.3: 
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            atoms.append([atom[0],atom[1],atom[2]+1]) 

     

    for atom in atoms: 

        if atom[0]>0.7: 

            atoms.append([atom[0]-1,atom[1],atom[2]]) 

        if atom[1]>0.7: 

            atoms.append([atom[0],atom[1]-1,atom[2]]) 

        if atom[2]>0.7: 

            atoms.append([atom[0],atom[1],atom[2]-1]) 

    atoms = np.array(atoms) 

    for atom in atoms: 

        atom[0]=round(atom[0]*xhi*lattice_const,3) 

        atom[1]=round(atom[1]*yhi*lattice_const,3) 

        atom[2]=round(atom[2]*zhi*lattice_const,3) 

    atoms = np.unique(atoms,axis=0)     

     

    fname = 'H_positions.dat' #POSCAR file, Direct coordinate, lattice constant on the second 

row 

    fhand = open(fname) 

    H_atoms = [] 

    for n,line in enumerate(fhand): 

        line = line.rstrip().split() 

        if len(line) ==3: 

            atom = [float(line[0]), float(line[1]), float(line[2]),n] 

            H_atoms.append(atom)  

     

    for atom in H_atoms: 

        if atom[0]<0.3: 

            H_atoms.append([atom[0]+1,atom[1],atom[2],atom[3]]) 
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        if atom[1]<0.3: 

            H_atoms.append([atom[0],atom[1]+1,atom[2],atom[3]]) 

        if atom[2]<0.3: 

            H_atoms.append([atom[0],atom[1],atom[2]+1,atom[3]]) 

     

    for atom in H_atoms: 

        if atom[0]>0.7: 

            H_atoms.append([atom[0]-1,atom[1],atom[2],atom[3]]) 

        if atom[1]>0.7: 

            H_atoms.append([atom[0],atom[1]-1,atom[2],atom[3]]) 

        if atom[2]>0.7: 

            H_atoms.append([atom[0],atom[1],atom[2]-1,atom[3]]) 

    H_atoms = np.array(H_atoms)    

    for atom in H_atoms: 

        atom[0]=round(atom[0]*xhi*lattice_const,3) 

        atom[1]=round(atom[1]*yhi*lattice_const,3) 

        atom[2]=round(atom[2]*zhi*lattice_const,3) 

    H_atoms = np.unique(H_atoms,axis=0)     

     

# classify the H positions into saddle points, TIs and OIs based on their numbers of 

neighboring metal atoms 

    saddles = [] 

    for H_atom in H_atoms: 

        neighbors = [] 

        for atom in atoms: 

            if cal_distance(H_atom,atom)<2: 

                neighbors.append(atom) 

        if len(neighbors)==3: #if the H atom has 3 nearest neighbors, then it should be at a 

saddle point 
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            saddles.append(H_atom) 

     

    TIs=[]         

    for H_atom in H_atoms: 

        neighbors = [] 

        for atom in atoms: 

            if cal_distance(H_atom,atom)<2: 

                neighbors.append(atom) 

        if len(neighbors)==4: #if the H atom has 4 nearest neighbors, then it should be at a 

TI 

            TIs.append(H_atom) 

     

    OIs=[] 

    for H_atom in H_atoms: 

        neighbors = [] 

        for atom in atoms: 

            if cal_distance(H_atom,atom)<2: 

                neighbors.append(atom) 

        if len(neighbors)==6: #if the H atom has 6 nearest neighbors, then it should be at a 

OI 

            OIs.append(H_atom)            

    H_num=0 

    H_atom_inbox=[] 

    for H_atom in H_atoms: 

        if In_Boundary(H_atom,xhi*lattice_const,yhi*lattice_const,zhi*lattice_const): # 

exclude atoms outside the simulation box 

            H_num=H_num+1 

            H_atom_inbox.append(H_atom) 
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# build the neighbor list based on the connectivity of the TIs, OIs and saddle points 

    OI_TI_saddle = [] 

    for OI in OIs: 

        if In_Boundary(OI,xhi*lattice_const,yhi*lattice_const,zhi*lattice_const): 

            neighbor_OI=[] 

            neighbor_saddle=[] 

            TI_saddle = [] 

            for TI in TIs: 

                if cal_distance(OI,TI)<1.8: 

                    neighbor_OI.append(TI) 

            for TI in neighbor_OI: 

                nearest_saddle = [] 

                for saddle in saddles: 

                    if cal_distance(saddle,TI)<0.8: 

                        nearest_saddle.append(saddle) 

                for saddle in nearest_saddle: 

                    if cal_distance(OI,saddle)<cal_distance(OI,TI): 

                        neighbor_saddle.append(saddle) 

                        TI_saddle.append([OI,TI,saddle]) 

            OI_TI_saddle.append(TI_saddle)  

       

    TI_OI_saddle = [] 

    for TI in TIs: 

        if In_Boundary(TI,xhi*lattice_const,yhi*lattice_const,zhi*lattice_const): 

            neighbor_TI=[] 

            neighbor_saddle=[] 

            OI_saddle = [] 

            for saddle in saddles: 

                if cal_distance(saddle,TI)<0.8: 
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                    neighbor_saddle.append(saddle) 

            for OI in OIs: 

                if cal_distance(OI,TI)<1.8: 

                    neighbor_TI.append(OI) 

            for OI in neighbor_TI: 

                for saddle in neighbor_saddle: 

                    if cal_distance(OI,saddle)<cal_distance(OI,TI): 

                        OI_saddle.append([TI,OI,saddle]) 

            TI_OI_saddle.append(OI_saddle) 

             

    neighborlist=[OI_TI_saddle,TI_OI_saddle] 

return (neighborlist) 

 

def kMC(neighborlist,sol_energy): #input the neighbor list and the H solution energies 

    OI_TI_saddle=neighborlist[0] 

    TI_OI_saddle=neighborlist[1] 

    #kMC steps start 

    kBT = 0.025852 

    t = [] 

    distance = [] 

    OI_id = random.randint(0,len(OI_TI_saddle)-1) 

    positions=[] 

    for step in range(100000): 

        rates=[] 

    ##### OI jump to TI############################################## 

        for TI_saddle in OI_TI_saddle[OI_id]: 

            OI=TI_saddle[0] 

            TI=TI_saddle[1] 

            saddle=TI_saddle[2] 
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            barrier = sol_energy[int(saddle[-1])]-sol_energy[int(OI[-1])] 

            rate = 10**13*math.exp(-barrier/kBT) 

            rates.append(rate) 

        sum_rates=sum(rates) 

        x=[0] 

        accum_rate=0 

        for rate in rates: 

            accum_rate=accum_rate+rate 

            x.append(accum_rate/sum_rates) 

         

        gamma=random.random() 

        for i in range(0,len(x)): 

            if gamma>x[i] and gamma<x[i+1]: 

                next_TI_index=i 

        next_TI=OI_TI_saddle[OI_id][next_TI_index][1] 

        positions.append(next_TI) 

        rho=random.random() 

        t.append(-math.log(rho)/sum_rates) 

        distance.append(cal_distance(next_TI, OI)) 

         

    ##### TI jump to OI############################################## 

        for i, OI_saddle in enumerate(TI_OI_saddle): 

            TI=OI_saddle[0][0] 

            if TI[-1]==next_TI[-1]: 

                next_TI_ID=i 

        rates=[] 

        for OI_saddle in TI_OI_saddle[next_TI_ID]: 

            TI=OI_saddle[0] 

            OI=OI_saddle[1] 
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            saddle=OI_saddle[2] 

            barrier = sol_energy[int(saddle[-1])]-sol_energy[int(TI[-1])] 

            rate =10**13*math.exp(-barrier/kBT) 

            rates.append(rate) 

        sum_rates=sum(rates)   

        x=[0] 

        accum_rate=0 

        for rate in rates: 

            accum_rate=accum_rate+rate 

            x.append(accum_rate/sum_rates)   

         

        gamma=random.random() 

        for i in range(0,len(x)): 

            if gamma>x[i] and gamma<x[i+1]: 

                next_OI_index=i 

        next_OI=TI_OI_saddle[next_TI_ID][next_OI_index][1]    

        positions.append(next_OI) 

        rho=random.random() 

        t.append(-math.log(rho)/sum_rates) 

        distance.append(cal_distance(next_OI, TI_OI_saddle[next_TI_ID][0][0])) 

         

        for i, TI_saddle in enumerate(OI_TI_saddle): 

            OI=TI_saddle[0][0] 

            if OI[-1]==next_OI[-1]: 

                next_OI_ID=i 

        OI_id = next_OI_ID 

    positions=np.array(positions) 

 

    D=0 
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    t_add=0 

    add_D=[] 

    add_t=[] 

    for step in range(len(t)): 

        delta_D = distance[step]**2 

        D=D+delta_D 

        t_add=t_add+t[step] 

        add_D.append(D) 

        add_t.append(t_add) 

    d_D=add_D[-1]-add_D[0] 

    d_t=add_t[-1]-add_t[0] 

    D_coeff=d_D/(6*d_t)*10e-20   #convert unit to m2/s 

    plt.plot(add_t,add_D) 

    return D_coeff 

Using the two functions, one can calculate the H diffusion coefficient in any HEA 

system once the H solution energies are known. With the functions for kMC 

simulations, we can then perform the WOA to find the optimized HEA structures 

with low H diffusion coefficients.   

 

dim=80 

b=1 

whale_num=6 

max_iter=500 

 

#initialize the locations of whales 

X = [] 

for whale in range(whale_num): 

    atom_types=[] 

    for i in range(dim): 
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        atom_types.append(random.randint(1,5)) 

    X.append(atom_types) 

X = np.array(X) 

 

gBest_coeff = 1 

gBest_X = np.zeros(dim) 

gBest_curve = np.zeros(max_iter) 

nei_list = neighborlist('equiHEA1')        

gBest_solu_ener = []  

t = 0 

random.seed(19) 

while t < max_iter: 

    #update best whale and best coefficient 

    for i in range(whale_num): 

        for ele in range(dim): 

            if X[i,ele]> 5 or X[i,ele] <1: 

                X[i,ele]=random.randint(1,5) 

        x=[0,0,0,0,0] 

        for atom_type in X[i,:]: 

            x[int(atom_type)-1]+=1 

        if x[0]*x[1]*x[2]*x[3]*x[4]==0: 

            atom_types = [] 

            for j in range(dim): 

                atom_types.append(random.randint(1,5)) 

            X[i,:]=np.array(atom_types) 

        solu_ener = solution_energy(X[i,:])    #use the trained ML model to predict H 

solution energies 

 

        fitness = kMC(nei_list,solu_ener) 
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        if round(np.log(fitness),2) <= round(np.log(gBest_coeff),2): #to avoid falling into 

local minimum 

            gBest_coeff = fitness 

            gBest_X = X[i,:].copy() 

            gBest_solu_ener = solu_ener 

  

    a = 2*(max_iter - t)/max_iter 

    #update the whales 

    for i in range(whale_num): 

        p = np.random.uniform() 

        R1 = np.random.uniform() 

        R2 = np.random.uniform() 

        A = 2*a*R1-a 

        C = 2*R2 

        l = 2*np.random.uniform()-1 

         

        if p >= 0.5: 

            D = abs(gBest_X - X[i, :]) 

            X[i, :] = D*np.exp(b*l)*np.cos(2*np.pi*l)+gBest_X 

        else: 

            if abs(A) < 1: 

                D = abs(C*gBest_X - X[i, :]) 

                X[i, :] = gBest_X - A*D 

            else: 

                rand_index = np.random.randint(low=0, high=whale_num) 

                X_rand = X[rand_index, :] 

                D = abs(C*X_rand - X[i, :]) 

                X[i, :] = X_rand - A*D 
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The chemical compositions of the HEA structures generated during the WOA 

process and their corresponding H diffusion coefficients were saved as numpy arrays. 

We then use them to perform regressions to reveal the dependence of H diffusion 

coefficient on chemical composition. The python codes are as follows: 

 

x_arr=np.load(‘compositions.npy') #the atomic ratios of each element in the HEA 

y_arr=np.load('diffusion_coefficients.npy') #the corresponding H diffusion coefficients  

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(x_arr, y_arr, test_size=0.2, random_state=42) 

from sklearn.linear_model import RidgeCV 

from sklearn.metrics import r2_score 

nn = RidgeCV() 

 

nn.fit(x_train,y_train) 

w=nn.coef_ 

 

import matplotlib.pyplot as plt 

low  = min(y_arr)-0.1 

high = max(y_arr)+0.1 

lims = [-16.9,-13] 

 

text = 'Linear regression' 

plt. figure(2,figsize=(8,8)) 

plt.plot(lims,lims,'--',linewidth=2,color='black') 

coeff_predict = nn.predict(x_train) 

plt.plot(y_train, coeff_predict, '+', color = 'orangered',alpha=0.5) 

plt.xlim(lims) 

plt.ylim(lims) 
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plt.text(-16.8,-13.2, text,fontsize=22) 

plt.text(-16.8,-13.5,'Training set',fontsize=22) 

plt.text(-16.8,-13.8,'$\mathregular{R^2}$ ='+str(round(r2_score(y_train, 

coeff_predict),2)),fontsize=22) 

plt.ylabel('Predicted value', fontsize=20) 

plt.xlabel('True value', fontsize=20) 

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13] 

plt.xticks(a,fontsize = 18) 

plt.yticks(a,fontsize = 18) 

 

plt.figure(3,figsize=(8,8)) 

plt.plot(lims,lims,'--',linewidth=2,color='black') 

coeff_predict = nn.predict(x_test) 

plt.plot(y_test, coeff_predict, '+', color = 'deeppink',alpha=0.5) 

plt.xlim(lims) 

plt.ylim(lims) 

 

plt.text(-16.8,-13.2, text,fontsize=22) 

plt.text(-16.8,-13.5,'Test set',fontsize=22) 

plt.text(-16.8,-13.8,'$\mathregular{R^2}$ ='+str(round(r2_score(y_test, 

coeff_predict),2)),fontsize=22) 

plt.ylabel('Predicted value', fontsize=20) 

plt.xlabel('True value', fontsize=20) 

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13] 

plt.xticks(a,fontsize = 18) 

plt.yticks(a,fontsize = 18) 

 

# 2-degree polynomial regression 

from sklearn.preprocessing import PolynomialFeatures 
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poly = PolynomialFeatures(interaction_only=True,degree=2) 

poly.fit(x_arr) 

x_arr = poly.transform(x_arr)  

 

x_train, x_test, y_train, y_test = train_test_split(x_arr, y_arr, test_size=0.2, random_state=42) 

nn = RidgeCV() 

nn.fit(x_train,y_train) 

w=nn.coef_ 

 

import matplotlib.pyplot as plt 

low  = min(y_arr)-0.1 

high = max(y_arr)+0.1 

lims = [-16.9,-13] 

 

text = 'Degree-2 polynomial regression' 

plt.figure(2,figsize=(8,8)) 

plt.plot(lims,lims,'--',linewidth=2,color='black') 

coeff_predict = nn.predict(x_train) 

plt.plot(y_train, coeff_predict, '+', color = 'royalblue',alpha=0.5) 

plt.xlim(lims) 

plt.ylim(lims) 

 

plt.text(-16.8,-13.2, text,fontsize=22) 

plt.text(-16.8,-13.5,'Training set',fontsize=22) 

plt.text(-16.8,-13.8,'$\mathregular{R^2}$ ='+str(round(r2_score(y_train, 

coeff_predict),2)),fontsize=22) 

plt.ylabel('Predicted value', fontsize=20) 

plt.xlabel('True value', fontsize=20) 

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13] 
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plt.xticks(a,fontsize = 18) 

plt.yticks(a,fontsize = 18) 

 

plt. figure(3, figsize=(8,8)) 

plt.plot(lims,lims,'--',linewidth=2,color='black') 

coeff_predict = nn.predict(x_test) 

plt.plot(y_test, coeff_predict, '+', color = 'darkviolet',alpha=0.5) 

plt.xlim(lims) 

plt.ylim(lims) 

 

plt.text(-16.8,-13.2, text,fontsize=22) 

plt.text(-16.8,-13.5,'Test set',fontsize=22) 

plt.text(-16.8,-13.8,'$\mathregular{R^2}$='+str(round(r2_score(y_test, 

coeff_predict),2)),fontsize=22) 

plt.ylabel('Predicted value', fontsize=20) 

plt.xlabel('True value', fontsize=20) 

a=[-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13] 

plt.xticks(a,fontsize = 18) 

plt.yticks(a,fontsize = 18) 
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