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Abstract 

The flight delay-based operational aircraft maintenance routing problem (OAMRPFD) and the maintenance 

staffing problem (MSP) are interrelated and interdependent. Despite this interdependency, each problem is 

solved separately. Therefore, the optimal plan specified by each problem is not executed as planned, which 

consequently increases the operating cost of each aspect of the problem. 

The present research paper studies OAMRPFD in addition to MSP, with two main objectives. The first is 

to develop an OAMRPFD model that appropriately reflects the flight delay and, accordingly, a new 

stochastic framework of a scenario-based OAMRPFD (SOAMRPFD) is put forward. The second is to 

handle the interdependence between SOAMRPFD and MSP, by proposing a coordinated configuration of 

SOAMRPFD and MSP that is formulated like the leader-follower Stackelberg game, with SOAMRPFD as 

the leader and MSP as the follower. A bi-level optimization model is used to present this game and is solved 

by a bi-level nested ant colony optimization (ACO) algorithm. The viability and potential of the proposed 

model are established using a major airline and a maintenance company, which are based in the Middle 

East, as a case study. The results demonstrate significant cost savings for both the airline and maintenance 

company.   

Keywords:  Aircraft maintenance routing problem, Maintenance staffing problem, Stackelberg game, Bi-

level optimization. 

1. Introduction

Airlines have used the aircraft maintenance routing problem (AMRP) as an efficient method for 

determining feasible aircraft maintenance routes (Haouari et al., 2012). Nevertheless, some challenges, due 

to increased flight delays, have appeared in the last decade. As a result, airlines have incurred increasing 

operating cost due to their inability to operate the generated aircraft routes as planned. For instance, Liang 

et al. (2015) stated that the operating cost of the U.S. airline industry in 2011 increased to about US$7.7 

billion due to over 100 million minutes of delay. In the coming years, air traffic is expected to increase 

dramatically, hence, flight delays will be increased leading to serious revenue losses in the airline industry. 
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Accordingly, there is a paradigm shift from profit maximization to the minimization of the expected cost 

of flight delays in the airline industry (Dunbar et al., 2012; Lan et al., 2006; Liang et al., 2015).  

AMRP has received tremendous research attention, with scholars focusing on three main areas: tactical 

(TAMRP), operational (OAMRP), and flight delay-based operational (OAMRPFD). TAMRP studies focus 

on the generation of typical rotations, which are repeated for each aircraft, while overlooking some 

operational constraints related to the maintenance process (Clarke et al., 1997; Gopalan & Talluri, 1998). 

As a result of ignoring these constraints, the generated routes could not be operated in reality, therefore, 

researchers developed OAMRP, which considers the operational constraints related to the maintenance 

process (Başdere & Bilge, 2014; Haouari et al., 2012). However, the main weakness of OAMRP is that it 

overlooks flight delays that are frequently encountered in reality, hence, the generated routes are prone to 

disruption due to delays. Thus, researchers have combined flight delays with the operational side, to 

generate realistic routes that can better withstand disruption (Lan et al., 2006; Liang et al., 2015). 

OAMRPFD studies are anchored on the expected value of a non-propagated delay. It should be noted that 

a non-propagated delay results from non-routing problems including bad weather, delays due to passengers, 

and technical problems. Nevertheless, the disadvantage of OAMRPFD lies in that the realized delays for 

some flights turn out to be significantly different from their expected values, due to the associated high 

degree of uncertainty (Yen & Birge, 2006). Consequently, flight delays are propagated, and the airlines 

incur increased related cost.  

The use of OAMRPFD provides a solution (known as the routing plan), which involves assigning sequential 

flight legs to each aircraft, that includes some maintenance visits that satisfy the operational requirements. 

In particular, each aircraft starts covering the assigned flight legs, and then moves to the maintenance 

station. On completion of the maintenance process, the aircraft resumes covering its assigned flights. To 

achieve this solution as planned, the airline is required to send the scheduled times of arrival and departure 

for its aircraft to the maintenance company. Based on the received scheduled times, the maintenance 

company has to solve the maintenance staffing problem (MSP), so that it can determine the team sizes 

required for the arriving aircraft, while taking into account the workforce capacity and the scheduled times 

of the aircraft (Yan et al., 2004; Yang et al., 2003).  

From the above, in achieving the solution of OAMRPFD as planned, it is the responsibility of the 

maintenance company to release the aircraft punctually from the maintenance station. Similarly, the MSP 

solution (known as the staffing plan) can be realized as planned if the airline sends their aircraft on time, so 

that any disturbance to the staffing plan can be avoided. Therefore, OAMRPFD and MSP are closely 

interdependent, and contingent on joint decision making. 

Here, we study OAMRPFD along with MSP, with two main objectives. Firstly, to develop an OAMRPFD 

that appropriately reflects non-propagated delays. To achieve this, a new stochastic framework of a 

scenario-based OAMRPFD (SOAMRPFD) is proposed. Secondly, to examine the inherent interdependence 

between the proposed SOAMRPFD and MSP through a proposed coordinated configuration of 

SOAMRPFD and MSP that is formulated using the Stackelberg game, wherein SOAMRPFD and MSP act 

as a leader and a follower, respectively. This formulated leader-follower Stackelberg game can be modeled 

as a bi-level optimization model so that the existing coordination between SOAMRPFD and MSP can be 

captured. Furthermore, we propose a bi-level nested ACO algorithm as a solution method for the proposed 

model. The viability of the proposed model is established using a major airline and a maintenance company, 

which are based in the Middle East, as a case study.  



 

The remainder of this paper proceeds as follows. In Section 2, we begin by discussing the literature review, 

research gaps and contribution of this study. Section 3 defines the problem context of SOAMRPFD, MSP, 

and the coordinated configuration. The upper-level optimization model (SOAMRPFD) is explained in 

Section 4, whereas the lower-level optimization model (MSP) is elaborated in Section 5. The bi-level 

optimization model is presented in Section 6. A bi-level nested ACO algorithm as a solution method is 

explained in Section 7. Using a major airline and a maintenance company as a case study, the performance 

analysis of the proposed model is presented in Section 8. Section 9 contains the conclusions of this study. 

 

 

2. Literature review, research gap and contribution 

2.1 Literature review 

 

2.1.1 Aircraft maintenance routing problem 

AMRP is handled by airlines focusing on three areas: tactical (TAMRP), operational (OAMRP), and flight 

delay-based operational (OAMRPFD). TAMRP studies focus on the generation of typical rotations, which 

are repeated for each aircraft, while overlooking some operational constraints related to the maintenance 

process. The OAMRP, on the other hand, aims to specify each aircraft’s route while considering operational 

maintenance constraints. These constraints, as required by the Federal Aviation Administration (FAA), 

include restrictions on the total cumulative flying time, the total number of days between consecutive 

maintenance processes, and the total number of take-offs. Lastly, for OAMRPFD, all the operational 

restrictions must be obeyed besides considering fight delays, which frequently occur, and is neglected in 

the first two classifications. 

A large number of studies with a tactical focus have been reported over last two decades. In the study by 

Kabbani and Patty (1992), a set-partitioning model was formulated for a 3-day AMRP so that lines of flight 

(LOF) could be achieved. Gopalan and Talluri (1998) expanded the use of LOF to cover AMRP for multiple 

days by developing a polynomial time algorithm, which was utilized to establish aircraft maintenance routes 

for a 3-day AMRP. Talluri (1998) developed an effective heuristic to solve the 4-day AMRP, which was 

shown to be NP-hard. With the aim of achieving feasible rotations that provide maximum through-value, 

Clarke et al. (1997) applied the lagrangian relaxation approach. The through-value is described as the extra 

profits derived from connecting flights with short transit times. A more recent study by Liang et al. (2011) 

focused on daily AMRP by proposing an integer linear programming (ILP) approach to capture their 

developed novel time-space network. Solutions of the proposed model were derived from a commercial 

software, called CPLEX. The application of tactical side studies, that uses a single rotation for each aircraft, 

is limited because operational constraints related to maintenance process are not taken into consideration. 

Therefore, the research focus has shifted from the tactical side to the operational side of AMRP. 

Based on operational side of AMRP, Sriram and Haghani (2003) considered only the restriction on the total 

number of allowable days between consecutive maintenance processes, when they proposed their ILP 

model. Although the authors attempted to extend their model to consider the total cumulative flying time 

restriction, no solution was provided owing to the high complexity of the model. Further, Sarac et al. (2006) 

presented a set-partitioning formulation for OAMRP by considering a single maintenance constraint 
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(restriction on the total cumulative flying time), while ignoring others. Since the set-partitioning 

formulation produces an exponential number of feasible routes, the authors adopted column generation as 

a solution technique. A more improved non-linear OAMRP model, that simultaneously considered all three 

maintenance constraints, was reported by Haouari et al. (2012). They achieved linearization through a 

reformulation-linearization technique so that the proposed model could be easily solved using CPLEX. In 

another study, Başdere and Bilge (2014) considered the restriction on the total cumulative flying time as 

the only maintenance constraint and developed an ILP model for OAMRP. The authors utilized an exact 

method called branch-and-bound (B&B), but it could not solve large-scale problems. Therefore, to handle 

large scale problems, the authors adopted a metaheuristic method named compressed annealing (CA). The 

results revealed that CA was superior to B&B considering the relatively short computational time required 

for achieving feasible solution and its applicability to large-scale problems. Another OAMRP study was 

reported by Eltoukhy et al. (2017b) who proposed a model in which the restriction on the total cumulative 

flying time was considered as a maintenance constraint. In a follow-up paper, Eltoukhy et al. (2018) 

extended their previous work by proposing a polynomial formulation for OAMRP such that the main three 

maintenance constraints were considered. The authors solved their model by developing an efficient 

algorithm based on forward and backward insertion approaches. Although considerable research efforts 

have been expended in both TAMRP and OAMRP studies, the main weakness of these studies is that they 

ignore flight delays, which occur frequently in the real world. Consequently, the routes that are generated 

are readily disrupted by the delays and are difficult to implement in reality. For this reason, researchers now 

consider flight delays, besides the operational side, to produce routes that better withstand disruptions.  

Few studies have been reported on the focus of OAMRPFD. The first study related to OAMRPFD was 

conducted by Lan et al. (2006). Their proposed model, whose objective was to reduce the total expected 

propagated delay, was solved using a column generation algorithm. Later, Dunbar et al. (2014) incorporated 

delay information in their model and proposed two algorithms to minimize the total delay propagation by 

re-timing the routes. The practical viability of the model was tested, and the computational results showed 

an average reduction of about 14% on the delay propagation. Recently, Liang et al. (2015) developed a new 

weekly LOF network model with the objective of minimizing the expected propagated delay and proposed 

a two-stage column generation approach for the solution. For a recent survey regarding AMRP, we refer 

interested readers to the review paper by Eltoukhy et al. (2017a).   

2.1.2 Maintenance staffing problem 

MSP is a problem that is handled by maintenance companies. On the focus of MSP, Dietz  and Rosenshine 

(1997) proposed an approach that aimed at determining the optimal arrangement of workforce teams that 

provided maintenance for military aircraft. Beaumont (1997) also presented a model that was formulated 

as a mixed integer programming (MIP), so that the manpower supply could be minimized. With the same 

objective, Yang et al. (2003) proposed an MIP model that was used for deciding the size of work teams, the 

number of day shifts, and their starting time. Their proposed model took into account different flexible 

management strategies for efficiently managing the labor supply. In a follow up paper, Yan et al. (2004) 

expanded their previous work by considering some certification constraints, including the degree of training 

and functional abilities. They validated the model by using a case study from a Taiwan airline. 



 

Although the MSP is usually solved separately, and its results used as an input to the rostering problem, 

there has been some research that considered both problem simultaneously (Beli et al., 2012; Beliën et al., 

2013). 

2.1.3 Leader-follower Stackelberg game 

The basic form of the leader-follower decision structure coincides with the Stackelberg game (Stackelberg, 

1952). This form of game includes two-level optimization problems; the upper-level (the leader) and the 

lower-level (the follower). In this hierarchical structure, the leader makes decisions firstly, due to holding 

a powerful position, and announces these decisions to the follower. Then, the follower reacts rationally to 

the received decisions, through making the decisions and feeding them back to the leader. The application 

of the leader-follower Stackelberg game has been successfully demonstrated in different fields, including 

advertising (Aust & Buscher, 2012), the manufacturer-distributor supply chain (Qin, 2012), the retailer-

manufacturer supply chain (Tsao et al., 2014), pricing (van Hoesel, 2008), and the seller-buyer supply chain 

(Esmaeili et al., 2009; Xiao et al., 2014). 

2.2 Research gap 

From the above literature review, we can see that most researchers handled OAMRPFD and MSP in 

isolation or separately, neglecting the interdependence between them. From a practical point of view, 

airlines and maintenance companies have a close relationship. To airlines, a flight will be delayed if an 

aircraft cannot be released from the maintenance station punctually. Similarly, for maintenance companies, 

if an aircraft misses the scheduled appointment at the maintenance station, this will also cause a huge 

disruption to the maintenance company’s original plan. So, if these two problems are solved separately, the 

optimal aircraft routing plan determined by OAMRPFD may not be fulfilled because the planned arrival 

and departure times cannot be satisfied due to constraints in the MSP. In a similar way, the optimal staffing 

plan determined by MSP may not be realized because of constraints in OAMRPFD. This situation will 

result in severe flight delays, and consequently lead to a waste of resources and energy. 

To our best knowledge, so far, in the existing research, there has been no attempt to investigate the 

interdependence between OAMRPFD and MSP. In this connection, this paper attempts to fill this gap by 

providing a coordinated configuration between OAMRPFD and MSP through the adoption of the leader-

follower Stackelberg game. In this sense, this research is a step closer to the real situation as compared to 

the research work found in the literature.  

 

2.3 Contribution 

This paper is focused on OAMRPFD along with MSP and has two contributions. Firstly, it is observed in 

the reviewed studies that the formulation of OAMRPFD was premised on the expected value of the non-

propagated delay, defined as delays initiated by bad weather, technical problems, delays due to passengers, 

etc., which are classified as non-routing issues. Nevertheless, the disadvantage of this formulation is 

manifested as a significant difference between the realized delay (RD) for some flights and their expected 

values (EV), owing to the high level of uncertainty associated with the non-propagated delays (Yen & 

Birge, 2006). To provide an empirical evidence for the significant difference between the RD for some 

flights and their EV, we conduct a computational experiment using the data acquired from a Middle Eastern 

major airline. This experiment includes three steps. First step is collecting the flight information for all 



 

flights recorded by the airline from January 2016 to December 2016, including flight number, departure 

airport, departure time, arrival airport, arrival time, visited maintenance station, day of operation, and flight 

duration. The data contain a total of 292,000 flights flown by 12 fleets. Second step is analyzing the 

collected data and selecting some fleets for our experiment. While analyzing the data, we consider any 

flight as a delayed flight even if its related non-propagated delay time is less than 15 minutes, as any non-

propagated delay may easily cause the propagated delay in real practice. Meanwhile, any non-propagated 

delay time longer than 170 minutes is discarded because it reflects a severe disruption, which is not in the 

scope of this study. Based on this analysis, we pick the top three fleets that suffer from large number of 

delayed flights, as shown in Table 1. Last step of the experiment is using the collected data to calculate the 

EV of the non-propagated delay for the flights flown by the picked fleets, calculating the difference between 

the RD and the EV, and finally counting the number of flights with significant difference between RD and 

EV. These flights with significant difference are called FWSD. In this experiment, we consider any flight 

as a FWSD if the difference between RV and EV is larger than 45 minutes as recommended by experts in 

the airline. The results of the experiment are summarized in the last two columns of Table 1, in which the 

number of FWSD and the likelihood of facing these flights, are reported. The results of this experiment 

reveal that the number of FWSD is quite large, as being 13.58%, 11.28%, and 10.24% of total flights flown 

by first, second, and third fleet, respectively. A consequence of this situation is that the delay is propagated, 

and its related cost is increased. This forms the basis of our motivation to find a better alternative to capture 

the non-propagated delay. Therefore, we study different potential scenarios for the non-propagated delay, 

which enable us to derive a suitable look-ahead feature, as opposed to the expected value approach. 

Furthermore, this scenario-based concept results in proposing SOAMRPFD, which has been demonstrated 

to be a very successful method for handling stochastic parameters (Chen et al., 2002; Mohammadi et al., 

2014; Samimi et al., 2017).  

Table 1:Features of selected fleets 

Fleet Total flights Delayed flights FWSD 

No. %=No./Total flights No. %=No. /Total flights 

A300 21,960 6,318 28.77 2,982 13.58 

B757 29,280 6,204 21.19 3,303 11.28 

B737 18,300 3,665 20.03 1,874 10.24 

  

Secondly, from the literature review, one of the significant gaps is caused by solving OAMRPFD and MSP 

separately. However, the pitfall of this separation is ignoring the interdependence between them, as 

discussed earlier. In this paper, for the first time, we attempt to fulfill this research gap by solving the 

proposed SOAMRPFD and MSP, while considering their interdependence. To do so, it is much trickier to 

find an appropriate approach, while considering the different characteristics of each problem. Firstly, 

SOAMRPFD and MSP are of different companies with inconsistent objectives. This inconsistency stems 

from the fact that SOAMRPFD seeks to minimize the expected propagated delay cost, which requires 

maximizing the worker team sizes in the maintenance company in order to release the aircraft punctually, 

resulting in an increase in the labor cost. On the other hand, MSP aims at minimization of the labor cost, 

which might result in releasing the aircraft behind the scheduled departure time, leading to an increase in 

the propagated delay cost. Therefore, handling both problems using “all-in-one” approach, which enables 

the combination of the two objectives into a single objective function is not viable. In this sense, handling 

both problems appropriately in the presence of conflicting goals as well as the interdependence makes the 



 

coordinated configuration between them indispensable. Practically, SOAMRPFD determines the number 

of aircraft to be maintained, which constitutes the demand for the maintenance company. Based on the 

demand as an input, MSP is solved, and the staffing plan is determined. From this description, we can see 

that SOAMRPFD holds a powerful position as it determines the demand, and MSP acts based on the 

received demand. This situation leads naturally to the formulation of the coordinated configuration of 

SOAMRPFD and MSP as a leader-follower Stackelberg game, with the SOAMRPFD acting as a leader, 

and MSP as a follower, responds rationally to the SOAMRPFD decisions. This game can be represented 

using a bi-level optimization model that captures the coordination among both parties. Using such a 

coordinated configuration is helpful to the airlines and maintenance companies for reducing resource 

wastage and energy consumption caused by flight delays or disruptions, and in improving their service 

levels.  

 

3. Problem description 

3.1 Stochastic operational aircraft maintenance routing problem  

SOAMRPFD is regarded as the first part of the coordinated configuration, which is handled by the airlines. 

The traditional task of SOAMRPFD is to generate feasible maintenance routes for each aircraft flown. A 

feasible maintenance route is defined as that which respects the operational maintenance restrictions 

mandated by FAA including the maximum number of allowable flying time, the maximum number of 

allowable days between consecutive maintenance processes, and the maximum number of allowable take-

offs (Haouari et al., 2012). In order to generate these routes, SOAMRPFD has to deal with two main issues, 

as shown in the left-hand side of Fig.1. Firstly, the aircraft that has a limited number in the airline, and 

secondly, is the list of flight legs. Each flight leg is characterized by six features: departure time, origin 

airport, arrival time, destination airport, flight duration, and non-propagated delay. The critical issue of 

SOAMRPFD is to build routes while satisfying all the operational maintenance requirements. Meanwhile, 

it becomes more challenging to generate these routes when considering the non-propagated delay for each 

flight. It should be noted that handling the non-propagated delays is carried out by generating different 

disruption scenarios, resulting in more complexity being added to the problem.  

Insert Fig. 1 appropriate here 

 

Based on the above information and requirements, the solution of SOAMRPFD has the objective of 

minimizing the expected cost of the propagated delays. A flight delay in the airline industry can be 

categorized as a propagated delay and a non-propagated delay. Regarding the non-propagated delay, it is 

ascribed to bad weather, technical problems, passenger, etc., which are generalized as non-routing reasons. 

On the other hand, a propagated delay is described as when the aircraft covering a later flight is delayed 

due to a delay on its previous covered flight. Based on these definitions, we can see that the propagated 

delay is a function of routing decisions. Therefore, minimizing the expected cost of propagated delays is 

logically the main objective of SOAMRPFD.  

SOAMRPFD provides a solution (known as the routing plan), which is illustrated on the right-hand side of 

Fig. 1. The generated solution consists of sequential flight legs assigned to each aircraft, with each sequence 

including some maintenance visits to satisfy the operational requirements. In particular, each aircraft starts 

covering the assigned flight legs as planned, then moves to the maintenance station for maintenance. It 



 

should be pointed out here that there are number of maintenance stations located on the hub airports where 

the maintenance companies can work at. On completion of the maintenance, the aircraft moves from the 

maintenance station in order to resume covering its assigned flights. To achieve this goal, it is the 

responsibility of the maintenance company to release the aircraft punctually from the maintenance station. 

This requires the maintenance company to assign their workforce to perform the maintenance processes 

efficiently by solving the MSP. 

From the above description, it becomes clear that achieving solution of SOAMRPFD as planned is not only 

dependent on the airlines, but also dependent on the maintenance companies, as their operations are part of 

the solution. Therefore, an essential requirement is to optimize SOAMRPFD along with MSP decisions. In 

other words, SOAMRPFD makes decisions, including the scheduled arrival and departure times of each 

aircraft at maintenance stations, and sends these decisions to the maintenance companies. By observing the 

sent decisions, MSP makes decisions, including the required team sizes and the actual departure time for 

the aircraft from the maintenance station. Then, MSP decisions, especially the actual departure time after 

receiving the maintenance process, are sent back to the aircraft company. If these decisions affect the initial 

constructed routes, the SOAMRPFD is resolved in order to improve the obtained solutions.  

3.2 Maintenance staffing problem 

The second part of the coordinated configuration is represented by MSP, which is solved by the 

maintenance companies that own maintenance stations located on the hub airports where the maintenance 

companies can work at. The main goal of MSP is to determine the workforce team sizes required to perform 

the maintenance processes to the aircraft. To do so, MSP has to manage three main issues: the received 

aircraft, the workforce, and the planned shifts, as illustrated in the left-hand side of Fig. 2. Starting with the 

aircraft, it represents the demand for the maintenance company, which is characterized by the scheduled 

arrival and departure times for each aircraft. Moving to the workforce, each maintenance company has its 

own workforce capacity and limits on team sizes. Lastly, for planned shifts, some companies build their 

plan based on a two-shift pattern (morning and afternoon), whereas others deal with a three-shift pattern 

(morning, afternoon, and night). The critical issue of MSP is to determine efficient team sizes while taking 

into account the workforce capacity and the scheduled arrival and departure times of the aircraft. Clearly, 

when the team size is large, the maintenance time will be shorter, resulting in an early departure for the 

aircraft from the station ahead the scheduled departure time, and vice versa.  

Insert Fig. 2 appropriate here 

 

Using the aforementioned information, the main objective of solving MSP is to minimize the labor cost. 

The generated solution from MSP (known as the staffing plan) indicates how many workers are assigned 

to maintain each aircraft, and accordingly, the actual departure time for each aircraft from the maintenance 

station can be determined. Sometimes, due to workforce capacity restrictions, the solution in terms of actual 

departure time might be behind the scheduled departure time, resulting in a delay to the aircraft. As a result, 

the routing plan determined by the airline will be affected, and its plan will not be realized. Meanwhile, if 

the aircraft misses its scheduled appointment at the maintenance station, this will also cause a huge 

interruption to maintenance company’s staffing plan. So, it is again confirmed from the MSP side that 

achieving the staffing plan is a mutual responsibility between the airline and maintenance companies. 

Therefore, MSP should be solved jointly with SOAMRPFD, in which the MSP decisions including the 



 

actual departure time for the aircraft are sent back to the airline. In a response to these decisions, the airline 

will change its decisions, including the scheduled arrival and departure time, if its initial plan is affected.  

3.3 Coordinated configuration  

Based on the above description, both SOAMRPFD and MSP have inconsistent objectives. This 

inconsistency stems from the fact that SOAMRPFD seeks to minimize the expected propagated delay cost, 

which requires maximizing the worker team sizes in the maintenance company in order to release the 

aircraft punctually, resulting in an increase in the labor cost. On the other hand, MSP aims at minimization 

the labor cost, which might result in releasing the aircraft behind the scheduled departure time, leading to 

an increase in the propagated delay cost. These conflicting goals as well as the interdependence between 

SOAMRPFD and MSP make the coordinated configuration between them indispensable. One of the tools 

that can handle this situation is the Stackelberg game, known as leader-follower game. This game can be 

adopted to handle decisions of two self-interested problems with hierarchical features. In this game, 

SOAMRPFD firstly makes decisions in terms of the routing plan and then MSP responds to SOAMRPFD 

decisions by making decisions in terms of the staffing plan. As a result, the coordinated configuration 

between SOAMRPFD and MSP enables the formulation of the problem as a leader-follower Stackelberg 

game, where SOAMRPFD acts as a leader and MSP as a follower, as shown in Fig. 3.  

Insert Fig. 3 appropriate here 

 

Fig. 3 elaborates such interdependence between two decision makers in the coordinated configuration, 

whereas Table 2 summarizes the definitions of the sets, parameters and decision variables used throughout 

SOAMRPFD and MSP models. The upper part of Fig. 3 represents the airline and its SOAMRPFD, whereas 

the lower part represents the maintenance companies and their MSP. Acting as leader, SOAMRPFD makes 

decisions according to the routing plan (𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

), then these decisions are sent to the 

maintenance companies. Based on the received decisions, the maintenance companies calculate the 

scheduled arrival and departure times for the aircraft, known as 𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

 and 𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

, respectively. Based 

on 𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

 and 𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

as the input, MSP makes decisions according to the staffing plan 

( 𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

). Then, the MSP decisions are sent back to SOAMRPFD. If these decisions affect 

the initial routing plan, SOAMRPFD is resolved. This process is iterated until reaching the Stackelberg 

equilibrium, in which both leader and follower do not have any intention to adjust their decisions, as any 

change will result in negative impact in their objective functions. Accordingly, the optimal setting for the 

coordinated configuration can be derived. 

Table 2: Sets, parameters and decision variables. 

Upper- level optimization model (SOAMRPFD decision model) 

Sets  

𝑖, 𝑗 ∈ 𝐼:  Set of flight legs. 

𝑚 ∈ 𝑀𝑇:  Set of maintenance stations. 

𝑘 ∈ 𝐾:  Set of aircraft. 

𝑎 ∈ 𝐴: Set of airports. 



 

𝜉 ∈ 𝛹: Set of scenarios corresponding to non-propagated delay realizations (known 

as disruption scenarios). 

𝑣 ∈ {1,2, … , 𝛺} Average number of maintenance processes that each aircraft should receive 

during the planning horizon.  

{𝑜, 𝑡}:  Artificial source and sink nodes of the aircraft routing network. 

 

Parameters 

𝐷𝑇𝑖:  Local time when flight leg 𝑖 departs from its origin airport, known as 

departure time. 

𝑂𝑖𝑎:  Binary indicator for the origin airport of flight leg 𝑖. It equals 1 when the 

origin airport of flight leg 𝑖 and the airport 𝑎 are the same, and 0 otherwise.  

𝐴𝑇𝑖:  Local time when flight leg 𝑖 arrives at its destination airport, known as arrival 

time. 

𝐷𝑖𝑎:  Binary indicator for the destination airport of flight leg 𝑖. It equals 1 when 

the destination airport of flight leg 𝑖 and the airport 𝑎 are the same, and 0 

otherwise. 

𝐹𝑇𝑖:  Duration of flight leg 𝑖. 

𝑇𝑅𝑇: 

 

Time consumed for getting passengers off, unloading the luggage, changing 

the gate, boarding, loading the luggage, moving the aircraft between the gate 

and maintenance station, and fueling the aircraft. It is Known as turn-around 

time. 

𝑇𝑚𝑎𝑥:  Maximum number of allowable flying time since last maintenance process. 

𝐶𝑚𝑎𝑥: Maximum number of allowable take-offs since last maintenance process.  

𝑁𝑃𝐷𝑖
𝜉

: Realized value of the non-propagated delay of flight leg 𝑖, while considering 

disruption scenario 𝜉. 

𝑀𝑏𝑚𝑎: Binary indicator for maintenance station 𝑚. It equals 1 when the location of 

the maintenance station 𝑚 and the airport 𝑎 are identical, and 0 otherwise. 

𝑀𝐴𝑇: Duration of Type A maintenance check. The airline assumes this value only 

in the first round of the coordination between the airline and maintenance 

companies. 

𝐾𝑇: Fleet size. 

𝛺: Maximum average number of maintenance processes that each aircraft 

should receive during the planning horizon. It is calculated according to the 

following equation; 𝛺 = ∑ 𝐹𝑇𝑖𝑖∈𝐼 (𝑇𝑚𝑎𝑥 𝐾𝑇⁄ ) 

𝑀: A big number. 

𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

: Value of propagated delay resulted when aircraft 𝑘 covers two successive 

flight legs 𝑖 and 𝑗, before receiving the maintenance process number 𝑣, while 

considering disruption scenario 𝜉. 

𝑃𝐷𝑖𝑘𝑣
𝜉

: Value of accumulated propagated delay resulted after covering flight leg 𝑖 

by aircraft 𝑘, before receiving maintenance process number 𝑣, while 

considering disruption scenario 𝜉.  It should be pointed out here that this 

propagated delay is the total delay, due to non-propagated delays that are 



 

ascribed to bad weather, technical problems, passenger, and congestion of 

maintenance stations. 

𝑝𝜉: Probability in which disruption scenario 𝜉 can be realized.  

𝐶𝑝𝐷:  Expected cost per each minute of propagated delay. 

 

Decision variables 

𝑥𝑖𝑗𝑘𝑣
𝜉

∈ {0,1}: 

 

Flight coverage decision variable, while considering disruption scenario 𝜉. 

𝑥𝑖𝑗𝑘𝑣
𝜉

=1 when aircraft 𝑘 covers two successive flight legs 𝑖 and 𝑗, before 

receiving the maintenance process number 𝑣 and 0 otherwise.  

𝑦𝑖𝑚𝑘𝑣
𝜉

∈ {0,1}: 

 

Visiting maintenance station decision variable, while considering disruption 

scenario 𝜉. 𝑦𝑖𝑚𝑘𝑣
𝜉

=1 when flight leg 𝑖 is covered by aircraft 𝑘 then the aircraft 

proceeds to maintenance station 𝑚 to receive the maintenance process 

number 𝑣 and 0 otherwise.    

𝑧𝑚𝑗𝑘𝑣
𝜉

∈ {0,1}: 

 

Leaving maintenance station decision variable, while considering disruption 

scenario 𝜉. 𝑧𝑚𝑗𝑘𝑣
𝜉

=1 when aircraft 𝑘 leaves maintenance station 𝑚 in order 

to cover flight leg 𝑗, after receiving the maintenance process number 𝑣 and 

0 otherwise. 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

> 0 Scheduled arrival time of aircraft 𝑘 at maintenance station 𝑚 to receive the 

maintenance process number 𝑣, while considering disruption scenario 𝜉.  

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

> 0: Scheduled departure time of the aircraft 𝑘 from maintenance station 𝑚, after 

receiving the maintenance process number 𝑣,  while considering disruption 

scenario 𝜉.  

 

Lower-level optimization model (MSP decision model) 

Sets  

𝑘𝑣 ∈

{11, … . ,1𝛺, … 𝑏𝑣, … , 𝐾𝛺}:  

Set of aircraft that are planned to visit the maintenance station in order to 

receive a specific number of maintenance process. Each element in this set 

consists of two parts such that the first part, 𝑘, represents the aircraft, 

whereas the second part, 𝑣, represents the number of the maintenance 

process that will be received by the aircraft. For example, 11, refers to the 

aircraft number 1 that is planned to receive maintenance process number 1.   

𝑠 ∈ 𝑆:  Set of shifts. 

{𝑜′, 𝑡′}: Artificial source and sink nodes of the layered graph. 

  

Parameters  

𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

: Scheduled arrival time of an aircraft 𝑘 to receive maintenance process 

number 𝑣, at maintenance station 𝑚, while considering disruption scenario 𝜉 

received from airline.  

𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

: Scheduled departure time of an aircraft 𝑘 after receiving maintenance 

process number 𝑣, at maintenance station 𝑚, while considering disruption 

scenario 𝜉 received from airline.  



 

𝑤𝑠𝑚
𝑙 : Minimal team size (number of workers) that can be formed to perform a 

maintenance process, during shift 𝑠, at maintenance station 𝑚. 

𝑤𝑠𝑚
𝑢 : Maximal team size (number of workers) that can be formed to maintain an 

aircraft, during shift 𝑠, at maintenance station 𝑚. 

𝑄𝑠
𝑚𝑎𝑥: Capacity of workforce available during shift 𝑠. 

𝑙𝑘𝑣: Workload (man-hours) required to maintain an aircraft 𝑘 that receives 

maintenance process number 𝑣. 

𝐶𝑤𝑘𝑣𝑠𝑚: Cost incurred when assigning 𝑤 workers to maintain an aircraft 𝑘 that 

receives maintenance process number 𝑣, during shift 𝑠, at maintenance 

station 𝑚. Suppose that the maintenance companies having certain 

personnel and it is probably no ability to change the employment level over 

the planning horizon; how can the cost incurred be variable. To answer this 

question, it is should be pointed out that the payment system for the workers 

in the Middle Eastern maintenance companies is based on the type of the 

shift. In real practice, most of the workers prefer to serve at the morning and 

the afternoon shifts instead of serving at the night shift. Therefore, the cost 

incurred for the team served at the morning and the afternoon shifts is 

relatively lower than the night shift. Consequently, the cost incurred might 

be variable for the same personnel over the planning horizon of the model, 

depending on the shifts when the workers serve the aircraft. Note that these 

shifts are determined according to the arrival and departure times of the 

aircraft at maintenance stations.   

 

Decision variables 

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

∈ {𝑤𝑠𝑚
𝑙 , … , 𝑤𝑠𝑚

𝑢 }: Number of workers (team size) assigned to maintain an aircraft 𝑘 that 

receives maintenance process number 𝑣, during shift 𝑠, at maintenance 

station 𝑚, while considering disruption scenario 𝜉. 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

> 0: Actual departure time of an aircraft 𝑘 after receiving maintenance process 

number 𝑣, at the maintenance station 𝑚, while considering disruption 

scenario 𝜉.  

4. Upper-level optimization model (SOAMRPFD decision model) 

With the objective of minimizing the total expected propagated delay cost for all aircraft, SOAMRPFD is 

required to establish feasible maintenance routes for each aircraft. The formulation of SOAMRPFD is 

anchored on the connection network due to its efficiency in capturing the whole image of the routing 

problem (Gopalan & Talluri, 1998; Haouari et al., 2012). The nodes in the original connection network 

correspond to the flight legs, while the arcs denote the potential connections between those flight legs. As 

mentioned earlier, our proposed SOAMRPFD model considers two main issues. Firstly, considering three 

main maintenance constraints. Secondly, determining the appropriate time and location each aircraft should 

undergo maintenance processes. As mentioned earlier, these maintenance processes are performed at a 

number of maintenance stations located on the hub airports where the maintenance companies can work at.  

The previous two considerations can be done as follows. Initially, we determine the average number of 

maintenance processes that should be received by each aircraft, based on the overall number of flying hours 

in the schedule, the available number of aircraft, and the maximum number of allowable flying time for 



 

each aircraft. Next, the number of maintenance processes is assigned to each aircraft in the fleet. In order 

to keep covering the flight legs and assigning maintenance processes simultaneously, we need to add other 

arc and node types to the original connection network. Therefore, it is slightly modified by adding one type 

of nodes (known as the maintenance station node) and two types of arcs (known as maintenance arc and 

auxiliary arc), as shown in Fig. 4. The node set includes the maintenance station node set (𝑀𝑇) besides the 

flight leg node set (𝐼). On the other hand, the arc set is modified to include the maintenance arc set (𝑀𝐴𝐼𝑁𝑇) 

and the auxiliary arc set (𝐴𝑈𝑋), besides the ordinary arc set (𝑂𝑅𝐷). In our modified network, the ordinary 

arc 𝑜𝑟𝑑(𝑖, 𝑗) ∈ 𝑂𝑅𝐷 is used for connecting between flight legs 𝑖 and 𝑗, between the flight leg and source 

node at the beginning of the route construction, and between the flight leg and sink node at the end of the 

route construction. On the other hand, the maintenance arc 𝑚𝑎𝑖𝑛𝑡(𝑖, 𝑚) ∈ 𝑀𝐴𝐼𝑁𝑇 is incorporated in the 

network for connecting between flight leg 𝑖 and maintenance station 𝑚, whereas the auxiliary arc 

𝑎𝑢𝑥(𝑚, 𝑗) ∈ 𝐴𝑈𝑋 is added for connecting between maintenance station 𝑚 and flight leg 𝑗. Finally, the 

auxiliary arc helps the aircraft to resume covering the flight legs after finishing the maintenance processes. 

Insert Fig. 4 appropriate here 

 

Modifying the connection network helps us to formulate SOAMRPFD as a multi-commodity network flow 

model, such that each aircraft represents a separate commodity circulating in the network. Definitions of 

the sets, parameters, and decision variables are summarized in Table 2. 

The used decision variables are 𝑥𝑖𝑗𝑘𝑣
𝜉

,𝑦𝑖𝑚𝑘𝑣
𝜉

 and 𝑧𝑚𝑗𝑘𝑣
𝜉

, which represent ordinary arcs, maintenance arcs, 

and auxiliary arcs, respectively. In addition, decision variables 𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

are used in order 

to help in calculating the scheduled arrival and departure times for aircraft when visiting the maintenance 

stations. The non-propagated delays randomness in the proposed model is represented using a set of 

generated scenarios 𝛹, in which each scenario 𝜉 defines a set of possible non-propagated delay realizations 

for scheduled flight legs. Clearly, if, for instance, the number of scheduled flight legs is 240, then 240 non-

propagated delay realizations represent a single scenario 𝜉, such that each flight leg takes a single non-

propagated delay realization. By incorporating these scenarios in the proposed model, we can simulate the 

potential disruptions that may occur in the future, resulting in the generation of a routing plan that can be 

easily implemented in reality. These scenarios can be generated using the following procedures: 

• Data collection. It should be noted that, if the scenarios will be generated for a group of flight legs, 

the data should be collected for these flights, named the target flights. For this purpose, we collect 

the flight information for the target flights flown by the airline during the last year, including flight 

number, departure airport, departure time, arrival airport, arrival time, flight duration, and the non-

propagated delay for each flight.   

• Data preprocessing. As mentioned earlier, for the collected data, any flight is considered as a 

delayed flight even if its related non-propagated delay time is less than 15 minutes. This because 

any non-propagated delay may easily cause a propagated delay in practice. In addition, any non-

propagated delay time longer than 170 minutes is discarded, as it reflects a severe disruption, which 

is not in the scope of this study. 

• Overall data analyzing. Using the collected data, determine the number of delayed flights and its 

percentage compared to the total flights. For each delayed flight, determine the value of the non-

propagated delay and its related cause. In our preliminary experiments, we discovered three main 



 

causes for the non-propagated delay; passengers delays, technical problems, and bad weather. Next, 

determine the percentage of each cause for the non-propagated delay among other causes. 

• Specific data analyzing. For each flight leg in the target flight, determine the number of times such 

that the flight leg appears in the following situations; free of delay, delay due to passenger delays, 

delay due to technical problems, and delay due to bad weather. Next, determine the percentage of 

each situation. The main reason for adding this procedure is that, using the previous procedure, 

overall data analyzing, to generate the disruption scenarios results in producing scenarios that only 

respect the overall percentage of delayed flights and the overall percentage of each cause of non-

propagated delay, but overlook the detailed history for each flight leg. This in turn results in 

generating a set of scenarios that do not represent the correct situations. 

• Scenario generation. By considering the information calculated in the previous two procedures, 

generate the required number of scenarios using a truncated gamma distribution for the length of 

non-propagated delays to match delay data collected from the airline for mean, second moment, 

and range. 

Before presenting the SOAMRPFD decision model, we specify its scope as follows:  

• The planning horizon of the proposed model is 4-day. It should be noted that, in the literature, 

there are three main planning horizons; daily, 4-day, and weekly. The daily horizon assumes that 

the flight schedule is repeated every day of the week. On the other hand, 4-day or weekly horizons 

permit different flight schedules for each day of the week. Practically, using daily horizon is not 

viable as airlines permit variations on the flight schedule for each day of the week to cope with the 

demand fluctuation of different flight legs (e.g. the demand at weekend is higher than other days) 

(Eltoukhy et al., 2017a). In light of this fact, 4-day or weekly horizons are more practical in 

handling different flight schedules each day, so that the proposed model can handle real flight 

schedules. Extending the planning horizon to be 4-day or weekly has some advantages, as 

mentioned, but extensions to weekly horizons produce routes that are susceptible to disruptions. 

Therefore, 4-day is preferable for airlines compared to weekly horizon. In addition, airlines tend 

to use 4-day planning horizon in order to ease the requirement of satisfying one maintenance visit 

every 4 days for the aircraft, as mandated by FAA (Eltoukhy et al., 2018). Moreover, the 4-day 

horizon is commonly used in the literature (Feo & Bard, 1989; Talluri, 1998). Therefore, based on 

the previous observations, we stick with the 4-day horizon to be consistent with the existing 

research and practice.   

• The hub airports host the maintenance stations. 

• The decision model is limited to the existing maintenance stations and does not consider the 

construction of new ones 

• The decision model only considers Type A maintenance checks, as frequently reported in past 

publications. 

Based on the predefined scope and notations, the optimization model for SOAMRPFD, as a leader, can 

formulated as follows: 

𝑚𝑖𝑛 ∑ 𝑝𝜉 { ∑ 𝐶𝑝𝐷 (∑ ∑ ∑  𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

 𝑥𝑖𝑗𝑘𝑣
𝜉

𝑗∈𝐼𝑖∈𝐼𝑘∈𝐾

)

𝑣=1,…,𝛺

}

𝜉∈𝛹

 

 

(1.0) 

s.t. 𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

= 𝑃𝐷𝑖𝑘𝑣
𝜉

+ (𝑁𝑃𝐷𝑖
𝜉

− (𝐷𝑇𝑗 − 𝐴𝑇𝑖 − 𝑇𝑅𝑇))+               ∀ (𝑖, 𝑗) ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 (1.1) 



 

∑ ( ∑ ∑ 𝑥𝑖𝑗𝑘𝑣
𝜉

𝑣=1,…,𝛺

+ ∑ ∑ 𝑦𝑖𝑚𝑘𝑣
𝜉

𝑣=1,…,𝛺𝑚∈𝑀𝑇𝑗∈𝐼∪{𝑡}

)

 𝑘∈𝐾

= 1                           ∀ 𝑖 ∈ 𝐼, 𝜉 ∈ 𝛹 

 

(1.2) 

∑ 𝑥𝑜𝑗𝑘𝑣
𝜉

+ ∑ 𝑦𝑜𝑚𝑘𝑣
𝜉

𝑚∈𝑀𝑇𝑗∈𝐼

= 1                                                         ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, 𝜉 ∈ 𝛹 
(1.3) 

∑ 𝑥𝑖𝑡𝑘𝑣
𝜉

+ ∑ 𝑧𝑚𝑡𝑘𝑣
𝜉

𝑚∈𝑀𝑇𝑖∈𝐼

= 1                                                         ∀ 𝑘 ∈ 𝐾, 𝑣 = 𝛺, 𝜉 ∈ 𝛹 
(1.4) 

∑ 𝑥𝑗𝑖𝑘𝑣
𝜉

+ ∑ 𝑧𝑚𝑖𝑘𝑣
𝜉

𝑚∈𝑀𝑇

= ∑ 𝑥𝑖𝑗𝑘𝑣
𝜉

+ ∑ 𝑦𝑖𝑚𝑘𝑣
𝜉

𝑚∈𝑀𝑇

     ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾

𝑗∈𝐼∪{𝑡}𝑗∈𝐼∪{𝑜}

, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 
(1.5) 

∑ ∑ 𝑦𝑗𝑚𝑘𝑣
𝜉

= ∑ ∑ 𝑧𝑚𝑗𝑘𝑣
𝜉

𝑣=1,…,𝛺𝑗∈𝐼∪{𝑡}𝑣=1,…,𝛺𝑗∈𝐼

                                               ∀ 𝑚 ∈ 𝑀𝑇, 𝑘 ∈ 𝐾, 𝜉 ∈ 𝛹 
(1.6) 

𝐴𝑇𝑖 + 𝑇𝑅𝑇 − 𝐷𝑇𝑗 ≤ 𝑀(1 − 𝑥𝑖𝑗𝑘𝑣
𝜉

)                                     ∀ (𝑖, 𝑗) ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 (1.7) 

∑ 𝑥𝑖𝑗𝑘𝑣
𝜉

≤ ∑ 𝐷𝑖𝑎𝑂𝑗𝑎                                                                ∀ (𝑖, 𝑗) ∈ 𝐼, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹

𝑎∈𝐴 𝑘∈𝐾

 
(1.8) 

∑ 𝑦𝑖𝑚𝑘𝑣
𝜉

≤ ∑ 𝐷𝑖𝑎𝑀𝑏𝑚𝑎                                                          ∀ 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀𝑇, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹

𝑎∈𝐴 𝑘∈𝐾

 
(1.9) 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

≥ ∑ ∑ (𝐴𝑇𝑖 + 𝑇𝑅𝑇 + 𝑃𝐷𝑖𝑘𝑣
𝜉

)𝑦𝑖𝑚𝑘𝑣
𝜉

𝑚∈𝑀𝑇𝑖∈𝐼∪{𝑜}

                         ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 
(1.10) 

∑ 𝑧𝑚𝑗𝑘𝑣
𝜉

≤ ∑ 𝑀𝑏𝑚𝑎  𝑂𝑗𝑎                                                         ∀ 𝑚 ∈ 𝑀𝑇, 𝑗 ∈ 𝐼, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹

𝑎∈𝐴 𝑘∈𝐾

 
(1.11) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

− 𝐷𝑇𝑗 ≤ 𝑀(1 − 𝑧𝑚𝑗𝑘𝑣
𝜉

)                                          ∀ 𝑚 ∈ 𝑀𝑇, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹       (1.12) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

≥ ∑ ∑ (𝐴𝑇𝑖 + 𝑇𝑅𝑇 + 𝑃𝐷𝑖𝑘𝑣
𝜉

+ 𝑀𝐴𝑇)𝑦𝑖𝑚𝑘𝑣
𝜉

𝑚∈𝑀𝑇𝑖∈𝐼∪{𝑜}

              ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 
(1.13) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

≥ 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

                                                             ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹 (1.14) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑣
𝜉

𝑗∈𝐼𝑖∈𝐼∪{𝑜}

≤ 𝐶𝑚𝑎𝑥                                                             ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹       (1.15) 

∑ ∑ 𝐹𝑇𝑗  

𝑗∈𝐼

𝑥𝑖𝑗𝑘𝑣
𝜉

≤

𝑖∈𝐼∪{𝑜}

𝑇𝑚𝑎𝑥                                                      ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, 𝜉 ∈ 𝛹          (1.16) 

∑ ∑ 𝐹𝑇𝑗  𝑥𝑖𝑗𝑘𝑣
𝜉

𝑗∈𝐼

+ ∑ ∑ 𝐹𝑇𝑗  𝑧𝑚𝑗𝑘𝑣
𝜉

𝑗∈𝐼𝑚∈𝑀𝑇

≤

𝑖∈𝐼

𝑇𝑚𝑎𝑥                      ∀ 𝑘 ∈ 𝐾, 𝑣 = 2, … , 𝛺, 𝜉 ∈ 𝛹        (1.17) 

∑ ∑ ∑ 𝑦𝑖𝑚𝑘𝑣
𝜉

𝑣=1,…,𝛺𝑚∈𝑀𝑇𝑖∈𝐼

≥ 1                                                              ∀ 𝑘 ∈ 𝐾, 𝜉 ∈ 𝛹 
(1.18) 

𝑥𝑖𝑗𝑘𝑣
𝜉

∈ {0,1}                                                             ∀  (𝑖, 𝑗) ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 (1.19) 

𝑦𝑖𝑚𝑘𝑣
𝜉

∈ {0,1}                                                            ∀ 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀𝑇, 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 (1.20) 

𝑧𝑚𝑗𝑘𝑣
𝜉

∈ {0,1}                                                            ∀ 𝑚 ∈ 𝑀𝑇, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝜉 ∈ 𝛹 (1.21) 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

> 0                                                             ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹 (1.22) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

> 0                                                             ∀ 𝑘 ∈ 𝐾, 𝑣 = 1, … , 𝛺, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹 (1.23) 

 

The objective function (1.0) is required to minimize the total expected cost of the propagated delay, under 

all generated disruption scenarios. Constraints (1.1) describe the calculation of the propagated delay caused 

when an aircraft will potentially cover flight leg 𝑗 after covering flight leg 𝑖. By looking precisely at 

constraints (1.1), we can notice that they are sequence-dependent constraints. This is because the propagated 



 

delay when covering flight 𝑗, represented by 𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

, is dependent on the accumulated propagated delay 

caused at its previous flight leg 𝑖, known as 𝑃𝐷𝑖𝑘𝑣
𝜉

.   

Constraints (1.2), (1.3), and (1.4) are cast, which ensure that all the flight legs are covered. Constraints (1.2) 

ensure the exact coverage of each flight leg by a single aircraft. Constraints (1.3) and (1.4) ensure the route 

initiation and the route completion for each aircraft, respectively. 

Some balance constraints (1.5) and (1.6) are designed to maintain the aircraft movement throughout the 

connection network. The constraints in (1.5) ensure that a balance is maintained for aircraft during the 

process of covering the flight leg nodes. In other words, they ensure that when the aircraft uses the ordinary 

or the auxiliary arc to cover a flight leg, it is necessary for the aircraft to use the ordinary or the maintenance 

arc to cover the subsequent flight leg. Similar to constraints (1.5), constraints (1.6) keep a balance for 

aircraft during the process of visiting the maintenance stations. Constraints (1.6) ensure that if the aircraft 

covers the flight leg and visits the maintenance station by usage of the maintenance arc, then the aircraft 

must leave the maintenance station by using the auxiliary arc to cover the next flight.  

To let an aircraft to cover two consecutive flight legs by adoption of the ordinary arc, it is important to 

consider the time and place issues of these two flight legs. Therefore, constraints (1.7) and (1.8) are cast. 

The time constraints indicated in (1.7) guarantee the existence of the turn-around time between the arrival 

and departure time of two successive flight legs, when these flight legs are covered by the same aircraft. 

The place constraints in (1.8) ensure that two successive flight legs can be flown by an aircraft on the 

condition that the same airport is shared between the destination airport and the origin airport of the first 

and the second flight leg, respectively.  

One of the important aspects of SOAMRPFD is in allowing the aircraft to receive the maintenance process 

after covering a flight leg. This can be done by using the maintenance arc and taking cognizance of the 

location of the potentially visited maintenance station. This is summarized by constraints (1.9). They 

guarantee that a maintenance station can be visited by an aircraft, provided that the same location is shared 

by the destination airport of the last covered flight leg and the location of the maintenance station. In real 

practice, to receive the maintenance process, the airline should inform the maintenance station with the 

scheduled arrival time of the aircraft. For this purpose, constraints (1.10) are cast. These constraints ensure 

that the scheduled arrival time of the aircraft at the maintenance station is larger than or equal the arrival 

time of the last covered flight leg plus the turn-around time and the value of accumulated propagated delay.  

On completion of the maintenance process, the aircraft is required to leave the maintenance station and use 

the auxiliary arc to proceed to the next flight leg. To achieve this, constraints (1.11), (1.12), (1.13) and 

(1.14), representing place and time constraints regarding this situation. The place constraints are indicated 

by constraints (1.11). They mandate that the aircraft is only allowed to cover the next flight leg after 

receiving the maintenance process on the condition that the same location is shared by the maintenance 

station and the origin airport of the next flight leg. On the other hand, the time constraints are summarized 

in (1.12). They ensure that the next flight leg can proceed by the aircraft on the condition that the scheduled 

departure time of aircraft 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

 determined by constraints (1.13) and (1.14), is less than or equal to the 

departure time of the next flight leg. Initially, in the first round of the coordination between SOAMRPFD 

and MSP,  𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

 is determined by using constraints (1.13), which include an assumption made by the 

airline regarding the duration of maintenance process. In reality, this assumption is not applicable, because 

this duration is determined by the maintenance company not by the airline. Therefore, in the subsequent 



 

rounds of coordination, constraints (1.13) become redundant, and  𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

 is determined using 

constraints (1.14). These constraints ensure that the airline builds its calculation based on the actual 

departure time of aircraft 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

that is determined by maintenance company through solving MSP. In 

this model, constraints (1.10) and (1.14) constitute the linkage between SOAMRPFD and MSP, as both 

problems are optimized conjunctionally.   

A close look at the scheduled arrival and departure times of the aircraft in constraints (1.10) and (1.13), we 

can see that these times are function of accumulated propagated delay 𝑃𝐷𝑖𝑘𝑣
𝜉

, which is due to the non-

propagated delays caused by all previous covered flight legs. Based on this observation, it is obvious that 

the non-propagated delay is considered indirectly while calculating the scheduled arrival and departure 

times of the aircraft. It should be noted that in real practice, the scheduled arrival and departure times of the 

aircraft at the maintenance stations are two important factors that affect the aircraft maintenance sequencing 

(Beliën et al., 2013). Therefore, considering the non-propagated delay indirectly while determining the 

scheduled arrival and departure times of aircraft at maintenance stations, results in an indirect linkage 

between the non-propagated delay and the aircraft maintenance sequencing.  

Forcing an aircraft that needs maintenance to undertake such an operation cannot be fulfilled through the 

coverage and balance constraints. Therefore, the operational restrictive constraints (1.15), (1.16), (1.17) and 

(1.18) are cast. Constraints (1.15) ensure that the maximum number of allowable take-offs is not violated 

by any aircraft in the fleet. Similarly, the accumulated flying times are restricted by constraints (1.16) and 

(1.17). In order to guarantee that the number of maintenance processes received by each aircraft is larger 

than or equal to one, constraints (1.18) are formulated. Given that our study has a planning horizon of 4-

day and constraints (1.18) guarantee a greater than one maintenance process received by each aircraft, the 

constraint of one maintenance process every four days is accomplished. Finally, the constraints (1.19) - 

(1.23) represent the domain restrictions imposed upon the decision variables.  

By looking at the objective function in Eq. (1.0), it is noticed that it is only dependent on the propagated 

delay happen between the flight legs, as shown by  ∑ 𝐶𝑝𝐷 (∑ ∑ ∑  𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

 𝑥𝑖𝑗𝑘𝑣
𝜉

𝑗∈𝐼𝑖∈𝐼𝑘∈𝐾 )𝑣=1,…,𝛺 , and there 

is no contribution from the aircraft maintenance sequencing, in terms of scheduled departure time of aircraft 

from maintenance stations 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

. The main reason is as follows. In fact, the main idea of our model is 

to solve the SOAMRPFD jointly with MSP, meaning that the scheduled departure times of aircraft 

 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

are determined based on the real departure times  𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

 calculated by maintenance stations. 

By doing so, we can avoid the delay occurs when covering the first flight leg after completing the 

maintenance. This means that the propagated delay will start when covering the later flight legs, which are 

included in the current terms of objective function. Based on the previous observation, the aircraft 

maintenance sequencing, known as the scheduled departure times, does not affect the overall delay. 

Therefore, the objective function is free from any factors regarding the aircraft maintenance sequencing.   

The current formulation of the SOAMRPFD, including its objective function in Eq. (1.0) and its constraints 

in Eqs. (1.1)- (1.23) means that this model is solved for each disruption scenario. This point is apparent in 

two different parts. Firstly, it is apparent in the objective function, as it includes ∑ 𝑝𝜉
𝜉∈𝛹 , which means that 

each disruption scenario is considered with its related occurrence probability. Secondly, it is also apparent 

in the constraints, as each constraint is formulated while considering each disruption scenario by inserting 

∀𝜉 ∈ 𝛹. It is noteworthy that the current formulation of SOAMRPFD is inspired by the formulation 



 

presented in the work by Chen et al. (2002) who proposed a scenario-based stochastic formulation for 

capacity planning, in which different scenarios for the demand realizations are generated.   

After presenting the SOAMRPFD and the procedures of generating the disruption scenarios, it is obvious 

that these scenarios are generated based on a time of one-year delay data, while respecting the overall 

percentage of delayed flights, the overall percentage of each cause of non-propagated delay, and the 

historical status of each flight leg. This helps in generating scenarios that can capture the disruption events 

happened during that year, resulting in a realistic representation for these events. Therefore, by doing so, 

there is no need to select these scenarios over time to ensure a realistic representation for them.  

5. Lower-level optimization model (MSP decision model) 

Referring to the description in Section 3.2, MSP, whose objective is to minimize the labor cost, is used to 

determine the workforce team sizes required to perform the maintenance processes to the aircraft. The MSP 

presented in this section is formulated based on a layered graph, which is commonly used in the literature 

when handling the staffing problem and the worker allocation problem (Yin & Wang, 2006). As shown in 

Fig. 5, the layered graph consists of number of layers, nodes, and arcs. Starting with the layers, each layer 

represents an aircraft that will receive the maintenance process, except the first and last layers which 

represent the source and sink nodes, respectively. Since MSP aims to determine the required workers for 

each aircraft represented as a layer, it is necessary to represent the workers in each layer. For this purpose, 

we insert nodes, which are the main components in each layer, so that the allowable number of workers 

available for performing maintenance processes can be represented. Finally, the arcs are incorporated in the 

graph in order to help in solving the model using ACO, especially when updating the pheromone trail.  

Insert Fig. 5 appropriate here 

 

Since SOAMRPFD, as a leader, is solved for different generated disruption scenarios, MSP as a follower 

should take a decision corresponding to each disruption scenario. Therefore, MSP is solved in response to 

each scenario, by using the decision variables, including 𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

 and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

, which determine the 

number of workers assigned for each aircraft, and the actual departure time of the aircraft from the 

maintenance station, respectively.  

Before presenting the MSP decision model, we define its scope as follows:  

• The workforce capacity of each maintenance station is deterministic.  

• The decision model is formulated based on the existing shifts without regards to future changes. 

Based on the predefined scope and notations, the optimization model for MSP, as a follower, can be written 

as below. 

min ∑ 𝑝𝜉 { ∑ ∑ ∑ 𝐶𝑤𝑘𝑣𝑠𝑚

𝑘𝑣∈𝐾𝛺𝑠∈𝑆𝑚∈𝑀𝑇

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

}

𝜉∈𝛹

 
 

(2.0) 

s.t. 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

≥ 𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

+ (𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

+ 𝑇𝑅𝑇 +
𝑙𝑘𝑣

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

− 𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

)

+

               ∀ 𝑘𝑣 ∈ 𝐾𝛺, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹 

(2.1) 

∑ 𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

≤

𝑘𝑣∈𝐾𝛺

𝑄𝑠
𝑚𝑎𝑥                                                                                         ∀ 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹      (2.2) 



 

𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

=  𝐴𝑇𝐵𝑀𝑘𝑣𝑚                                                                                                     
𝜉

∀ 𝑘𝑣 ∈ 𝑘𝛺, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹 (2.3) 

𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

= 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

                                                                                 ∀ 𝑘𝑣 ∈ 𝑘𝛺, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹 (2.4) 

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

∈ {𝑤𝑠𝑚
𝑙 , … , 𝑤𝑠𝑚

𝑢 }                                                         ∀ 𝑘𝑣 ∈ 𝑘𝛺, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹 (2.5) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

> 0                                                                                    ∀ 𝑘𝑣 ∈ 𝐾𝛺, 𝑚 ∈ 𝑀𝑇, 𝜉 ∈ 𝛹         (2.6) 

 

The objective function (2.0) serves to minimize the total labor cost. Calculation of the actual departure time 

for the aircraft from the maintenance station is represented by constraints (2.1). Here, in constraints (2.1), 

(𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

+ 𝑇𝑅𝑇 +
𝑙𝑘𝑣

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉 − 𝑆𝐷𝑇𝑘𝑣𝑚

𝜉
)

+

= max {(𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

+ 𝑇𝑅𝑇 +
𝑙𝑘𝑣

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉 − 𝑆𝐷𝑇𝑘𝑣𝑚

𝜉
), 0}. By looking 

precisely at constraints (2.1), we can notice that team size 𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

 can only affect the maintenance duration, 

represented by 𝑙𝑘𝑣 𝑤𝑓𝑘𝑣𝑠𝑚
𝜉⁄ . As much the team size is large, the maintenance duration will be short. One of 

the question that might be asked is “where is the relation between the team size and turn-around times?”. 

To answer this question, it is worth to remind that the turn-around times are the times consumed for getting 

passengers off, unloading the luggage, changing the gate, boarding, loading the luggage, moving the aircraft 

between the gate and maintenance station, and fueling the aircraft. All these activities during the turn-

around time, are called the ground handling operations and are provided either by the airline itself or other 

service companies. This means that the maintenance companies do not participate on these operations. 

Therefore, there is no relationship between the team size assigned by maintenance companies and turn-

around times.  

In order to properly allocate the workers in carrying out the maintenance process, the worker capacity in 

each shift should be respected. Therefore, constraints (2.2) are formulated to guarantee that the designated 

number of workers for maintenance processes in each shift does not exceed each shift worker’s capacity.  

Acting as a follower to build an efficient staffing plan requires MSP to receive some information from the 

airline. For this purpose, linkage constraints (2.3) are incorporated in the model to represent the scheduled 

arrival time of each aircraft, whereas other linkage constraints (2.4) are cast to capture the scheduled 

departure time of the same aircraft. It should be noted that these linkage constraints are designed to ensure 

that the scheduled arrival and departure times, known as 𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

and 𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

, are calculated based on the 

decision variables (𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

) received from the airline, as MSP is formulated as a follower 

and optimized in conjunction with SOAMRPFD. Finally, the domain of the decision variables is captured 

in constraints (2.5) and (2.6). 

A close look at the formulation of the MSP, we can notice that it is solved in response to each disruption 

scenario received from the airline. This issue is obvious in two different parts of the model; the objective 

function and the constraints. For the objective function, it is formulated by inserting ∑ 𝑝𝜉
𝜉∈𝛹 , which means 

that MSP will take decisions for each disruption scenario received from airline. For the constraints, on the 

other hand, they are formulated while considering each disruption scenario, as they include ∀𝜉 ∈ 𝛹. From 

the previous description, the scenario linkage between SOAMRPFD and MSP becomes apparent.   

 

6. Joint configuration optimization     



 

In this section, we present a joint optimization model for the coordination between SOAMRPFD and MSP. 

This joint optimization is formulated as a Stackelberg game bi-level optimization model, in which the 

upper-level optimization model is represented by the SOAMRPFD that acts as a leader, whereas the lower-

level optimization model is denoted by the MSP that acts as a follower. The decision variables (strategies) 

and objective functions (payoffs) are different for each model. Initially, SOAMRPFD, as a leader, 

determines its strategy which is sent to MSP. Next, MSP responds to the SOAMRPFD’s strategy by 

choosing a strategy that maximizes its own payoff. The following equations summarize the bi-level 

optimization model for the coordination between SOAMRPFD and MSP: 

𝑚𝑖𝑛 ∑ 𝑝𝜉 { ∑ 𝐶𝑝𝐷 (∑ ∑ ∑  𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

 𝑥𝑖𝑗𝑘𝑣
𝜉

𝑗∈𝐼𝑖∈𝐼𝑘∈𝐾

)

𝑣=1,…,𝛺

}

𝜉∈𝛹

 

 

(3.0) 

s.t. Constraints Eqs. (1.1) - (1.23) (3.1) 

where given decision variables (𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

) are used for solving: 

 

min ∑ 𝑝𝜉 { ∑ ∑ ∑ 𝐶𝑤𝑘𝑣𝑠𝑚

𝑘𝑣∈𝐾𝛺𝑠∈𝑆𝑚∈𝑀𝑇

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

}

𝜉∈𝛹

 
 

(4.0) 

s.t. Constraints Eqs. (2.1) - (2.6) (4.1) 

From the above formulation, it is observed that SOAMRPFD makes decisions for the routing plan, 

including the maintenance visits through the decision variables 𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

 and 𝑅𝑇𝐴𝑀𝑘𝑣
∗𝜉

. With these results 

as an input, MSP determine its staffing plan to satisfy the required maintenance processes through the 

decision variables 𝑤𝑓𝑘𝑣𝑠𝑚 
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

. Next, MSP sends these decisions to SOAMRPFD. If these 

decisions influence the initial routing plan, SOAMRPFD further adjusts its decisions by resolving the 

model. This process is iterated until reaching the Stackelberg equilibrium, at which neither of the players 

are unwilling to adjust their decisions, because any change result in losses in their objective functions. 

Therefore, an optimal setting for the coordinated configuration is derived. 

7. Solution method 

Before describing our solution method, we present briefly the solution methods of existing bi-level 

optimization models. In the literature, there are two main solution methodologies; indirect and direct. Using 

the indirect methodology, the original bi-level model is converted to a single model, which is then solved 

by adoption of methods such as the B&B method based on Karushe-Kuhne-Tucker (KTT) conditions (Bard 

& Falk, 1982) and the penalty function method (Ren & Wang, 2016). Applying such indirect methodology 

to our model raises three issues. Firstly, it ignores the fact that each of the bi-level optimization problems 

are related to different companies with self-interest goals. Secondly, it ensures cooperation between the two 

companies that is not guaranteed in reality. Thirdly, it may lead to dominance of the follower’s decision 

over the leader’s decision, which will result in an incorrect representation for the proposed model. 

Therefore, in the light of these issues, using the indirect methodology to handle our bi-level optimization 

model is not a sound idea. The direct methodology, on the other hand, seeks the solution of the bi-level 

model directly by the adoption of specific methods, such as satisfactory solution methods (Muñoz & 

Abdelaziz, 2012). This type of methodology has certain advantages, such as maintaining the leader-follower 

structure and respecting the self-interest goals. However, using direct methodology becomes quite difficult 

in handling large-scale network optimization problems. This point is confirmed through the work by Wang 



 

et al. (2016), in which it was mentioned that the direct method, such as satisfactory solution methods 

proposed by Muñoz & Abdelaziz (2012), could not solve a case study for power transformer product family 

and supply chain network. In particular, that case study consists of 10 power transformer base modules, 32 

suppliers, 6 manufacturers, 4 assembly plants, and 3 distribution centers. This inability in solving this case 

study is due to the increase in network nodes. It is worth mentioning that the case study presented in our 

paper is even larger in size (i.e. number of nodes) compared to the case study by Wang et al. (2016). Indeed, 

our case study consist of a bi-level optimization model, in which the upper-level optimization model 

consists of 240 flight legs and 4 maintenance stations, whereas the lower-level optimization model consists 

of about 60 maintenance operations for aircraft and 360 potential team sizes. Since each upper-level and 

lower-level optimization model is related to a large-size network optimization problem, therefore, applying 

direct methodology such as satisfactory solution method to handle our bi-level optimization model is 

challenging.  

As described in Sections (4) and (5), the upper-level optimization problem (SOAMRPFD) and the lower-

level optimization problem (MSP) are essentially modeled as network-based problems, which can be 

efficiently solved with ACO due to its ability to handle large and complex network-based problems (Wu et 

al., 2009; Deng & Lin, 2011; Yu & Yang, 2011; Balseiro et al., 2011). All these observations motivate us 

to develop a bi-level nested ACO approach, to address the interdependence between each level of the 

problems, whilst each individual level is solved by one specific ACO. The nested ACO can capture the 

existing link between the leader and the follower by way of feeding back the decision variables. Due to the 

fact that each level of the bi-level model has distinctive features and goals, we explain ACO for solving 

each level. Next, the nested ACO algorithm is explained.  

7.1 ACO for the upper-level optimization 

In this section, the main two parts of the ACO adopted to solve SOAMRPFD are as follows: 

1) Route construction. Since SOAMRPFD is represented by a modified connection network, as shown 

in Fig. 4, it is appropriate for ACO to construct the required routes. This part is conducted with the 

help of an ant (i.e. each ant simulates an aircraft 𝑘 ∈ 𝐾) that moves throughout the network. Each 

ant constructs its route by building a path, starting at the source node and ending at the sink node. 

Between the source and sink nodes, the ant scouts for appropriate flight nodes to be added to its 

route by the usage of the state transition rule. To clarify this point, assume an ant is currently 

positioned at flight leg node 𝑖 and it intends to select its next flight leg node 𝑗. This selection is done 

based on the following state transition rule:  

𝑗 = {
arg _𝑚𝑎𝑥

𝑗∈𝑁𝑖
𝑘 { [𝜏𝑖𝑗

𝜉]
𝛼

[𝜂𝑖𝑗
𝜉]

𝛽
}                𝑖𝑓 𝑞 ≤ 𝑞0

𝐽                                                                          𝑖𝑓 𝑞 > 𝑞0

                   (5.1) 

where 𝑁𝑖
𝑘represents the group of possible flight legs that ant 𝑘 can select after covering flight leg 𝑖. 

The term 𝜏𝑖𝑗
𝜉 is the pheromone trail of the ordinary arc 𝑜𝑟𝑑(𝑖, 𝑗) that results during consideration 

of the disruption scenario 𝜉. On the other hand,  𝜂𝑖𝑗
𝜉  is the heuristic function of the same arc, which 

is equal to 1/(𝐶𝑝𝐷 ∗ 𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

). The relative importance of 𝜏𝑖𝑗
𝜉  and  𝜂𝑖𝑗

𝜉 is denoted by parameters 

𝛼 and 𝛽, respectively. 𝑞0 is the exploration threshold parameter (0 ≤ 𝑞0 ≤ 1) and 𝑞 represents 

random number that is generated according to the uniform distribution [0~1]. Ideally, the value 𝑞 

determines the selection of the next flight leg 𝑗.  If 𝑞 ≤ 𝑞0, flight leg 𝑗 is selected because its arc 



 

𝑜𝑟𝑑(𝑖, 𝑗) carries the greatest 𝜏𝑖𝑗
𝜉 and 𝜂𝑖𝑗

𝜉. Conversely, if 𝑞 > 𝑞0, flight leg 𝑗 is selected using the 

probability rule below: 

𝑃𝑖𝑗
𝑘 =

[𝜏𝑖𝑗
𝜉]

𝛼
[𝜂𝑖𝑗

𝜉]
𝛽

∑ [𝜏𝑖𝑗
𝜉]

𝛼
[𝜂𝑖𝑗

𝜉]
𝛽

𝑗∈𝑁𝑖
𝑘 

            𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘                             (5.2)    

This selection part continues until all the flight legs are covered by the aircraft. It should be pointed 

out that when the upper-level ACO is adopted to resolve SOAMRPFD in subsequent iterations, a 

new routing plan is built. This includes changing in the leg-to-leg connections that are 

predetermined in the first iteration, as the upper-level ACO seeks to minimize the expected cost of 

propagated delay. The changes in leg-to-leg connections occur in two different situations; 

connecting between maintenance stations and flight legs, and connecting between flight legs.  

To clarify the first situation, suppose that, in the first iteration of the upper-level ACO, the airline 

gets a solution for SOAMRPFD as shown in Fig 1. By looking at the solution, we can see that the 

first aircraft will cover flight 5 then visit the maintenance station. On completion of the 

maintenance, the aircraft will resume covering flight legs by flying flight 8. Imagine, for instance, 

due to manpower restrictions, the maintenance station cannot complete the maintenance as planned 

by airline, meaning different departure time for the aircraft. Accordingly, covering flight 8 will be 

delayed. In this case, when the airline uses the upper-level ACO to resolves the SOAMRPFD in 

subsequent iterations, the different departure time for aircraft determined by the current 

maintenance station will be considered. In this connection, the upper-level ACO will try to find out 

another flight instead of flight 8, in order to minimize the expected cost of propagated delay. If 

flight 8 is replaced by another flight, it is highly probable to change all its subsequent leg-to-leg 

connections.  

To clarify the second situation, which is connecting between flight legs, we use the same solution 

shown in Fig 1. By looking at the solution, it is noticed that the first aircraft starts its route by 

covering flight 1, then covering flights 3 and 4. Suppose that the expected cost of the propagated 

delay caused by connecting flights 1 and 3 is 125.  Imagine, for instance, when the upper-level 

ACO is adopted to resolve SOAMRPFD in subsequent iterations, it finds another connection for 

flight 1, say connection between flights 1 and 23, such that the expected propagated delay cost for 

this connection is 75. As a result, in subsequent iteration, the ACO will change the connection 

between flights 1 and 3, to be between flights 1 and 23. Since flight 3 is replaced by flight 23, it is 

highly probable to change all the subsequent leg-to-leg connections. From these two situations, it 

is obvious that, when resolving the SOAMRPFD, the predetermined leg-to-leg connections are not 

fixed. 

 

2) Updating the pheromone trail: This part considers the core part of ACO, where the pheromone trail 

is updated to reflect the quality of the current solution. Taking 𝜌 as the evaporation rate parameter 

(0 < 𝜌 < 1), the pheromone trail can be updated in accordance with the following rule:  

𝜏𝑖𝑗,𝑛𝑒𝑤
𝜉

= (1 − 𝜌)𝜏𝑖𝑗,𝑜𝑙𝑑
𝜉

+ ∆ 𝜏𝑖𝑗
𝜉               (5.3) 

For each iteration, the first term (1 − 𝜌)𝜏𝑖𝑗,𝑜𝑙𝑑
𝜉

 is utilized to achieve a uniform reduction of the 

pheromones. The advantage is that in the next iterations, the ants are able to ignore the bad routes 

and search for better ones. In a disruption scenario 𝜉, the pheromone quantity on the edge 𝑜𝑟𝑑(𝑖, 𝑗) 

is defined by the second term ∆ 𝜏𝑖𝑗
𝜉, which is only applied to update the phermone trails of the 

edges that constitute the best solution so far. Thus, such updating enables the ants to look for better 



 

routes in the subsequent iterations. By taking 𝑄 as the control factor in depositing the pheromone, 

then ∆ 𝜏𝑖𝑗
𝜉 is calculated using Eq. (5.4) 

∆ 𝜏𝑖𝑗
𝜉 =

𝑄

𝑐𝑜𝑠𝑡 (𝐴𝑏𝑒𝑠𝑡
𝜉

)
            𝑖𝑓{𝑖, 𝑗} ⊆ 𝐴𝑏𝑒𝑠𝑡

𝜉
               (5.4) 

The value of 𝑄 specifies either a local optimal convergence or a random search for the algorithm. 

The 𝑐𝑜𝑠𝑡 (𝐴𝑏𝑒𝑠𝑡
𝜉

) represents the lowest propagated delay cost between the start and the present 

iteration, and  𝜉 is the handling disruption scenario.  

 

7.2 ACO for the lower-level optimization 

Similar to Section 7.1, the main two parts of ACO used to solve MSP are described as follows: 

1) Staffing construction: Thanks to the layered graph representation for MSP, it eases the process of 

building the staffing plan for each maintenance station. The staffing plan is built by the ants by 

starting from the source node, visiting each layer (i.e. each layer represents an aircraft that will 

receive the maintenance process) in sequence by selecting a node with an appropriate team size, 

and eventually ending at the sink node. To clarify the step of selecting the appropriate team size, 

suppose an ant currently visits layer 𝑏𝑣 and the next layer 𝑘𝑣 contains the team size to be selected. 

This selection is applied according to the following state transition rule: 

𝑤 = {
arg _𝑚𝑎𝑥𝑤∈𝑁𝑘𝑣

′𝑎𝑛𝑡 { [𝜏𝑏𝑣𝑘𝑣𝑤
𝜉

]
𝛼′

[𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟
𝜉

]
𝛽′

}     𝑖𝑓 𝑞 ≤ 𝑞0
′

𝑊                                                                                    𝑖𝑓 𝑞 > 𝑞0
′

         (6.1) 

where 𝑁𝑘𝑣
′𝑎𝑛𝑡 is the set of potential team sizes that can be determined to maintain the aircraft in layer 

𝑘𝑣. The term 𝜏𝑏𝑣𝑘𝑣𝑤
𝜉

 is the pheromone trail of the edge connecting layers 𝑏𝑣 and 𝑘𝑣, such that 

layer 𝑘𝑣 will be served by team size 𝑤, under disruption scenario 𝜉. On the other hand, 

𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟
𝜉

 is the heuristic function for the same edge, which is equal to 1/𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

. The two 

parameters 𝛼′and 𝛽′represent the relative importance of 𝜏𝑏𝑣𝑘𝑣𝑤
𝜉

 and 𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟
𝜉

, respectively. 

𝑞0
′  is the exploration threshold parameter (0 ≤ 𝑞0

′ ≤ 1) and 𝑞 represents random number that is 

generated according to the uniform distribution [0~1]. Ideally, value 𝑞 determines a team size to 

be selected by the ant. If 𝑞 ≤ 𝑞0
′ , then it selects a team size 𝑤 in which its edge has the best 

information heuristic and pheromone trail. Conversely, if 𝑞 > 𝑞0
′ , the ant chooses a team size 𝑤 

according to the following probability rule: 

𝑃𝑏𝑣𝑘𝑣𝑤
𝑎𝑛𝑡 =

[𝜏𝑏𝑣𝑘𝑣𝑤
𝜉

]
𝛼′

[𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟
𝜉

]
𝛽′

∑ [𝜏𝑏𝑣𝑘𝑣𝑤
𝜉

]
𝛼′

[𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟
𝜉

]
𝛽′

𝑙∈𝑁𝑘𝑣
′𝑎𝑛𝑡 

           𝑖𝑓 𝑤 ∈ 𝑁𝑘𝑣
′𝑎𝑛𝑡          (6.2)    

 

2) Updating the pheromone trail: This process is done using Eq. (6.3) 

𝜏𝑏𝑣𝑘𝑣𝑤,𝑛𝑒𝑤
𝜉

= (1 − 𝜌′)𝜏𝑏𝑣𝑘𝑣𝑤,𝑜𝑙𝑑
𝜉

+ ∆ 𝜏𝑏𝑣𝑘𝑣𝑤
𝜉               (6.3) 

Similar to the ACO used for OSAMRPFD, the first term (1 − 𝜌′)𝜏𝑏𝑣𝑘𝑣𝑤,𝑜𝑙𝑑
𝜉

 is applied after each 

𝑎𝑛𝑡 completes its path, whereas the second term ∆ 𝜏𝑏𝑣𝑘𝑣𝑤
𝜉 is utilized to update the the phermone 



 

trails of the edges that form the best solution so far. ∆ 𝜏𝑏𝑣𝑘𝑣𝑤
𝜉represents the pheromone quantity 

on the edge connected between the layers 𝑏𝑣 and 𝑘𝑣, such that the aircraft in layer 𝑘𝑣 is served by 

team size of 𝑤, under disruption scenario 𝜉. To calculate ∆ 𝜏𝑖𝑗
𝜉, we use the following rule: 

∆ 𝜏𝑏𝑣𝑘𝑣𝑤
𝜉 =

𝑄′

𝑐𝑜𝑠𝑡 (𝐵𝑤𝑚,𝑏𝑒𝑠𝑡
𝜉

)
            𝑖𝑓 𝑒𝑑𝑔𝑒 ⊆ 𝐵𝑤𝑚,𝑏𝑒𝑠𝑡

𝜉
               (6.4) 

where 𝑄′is the factor controlling the process of pheromone depositing. The 𝑐𝑜𝑠𝑡 (𝐵𝑤𝑚,𝑏𝑒𝑠𝑡
𝜉

) 

denotes the lowest cost achieved from the start to the present iteration, while determining the 

staffing plan for maintenance station 𝑚, under disruption scenario 𝜉.  

 

7.3 Bi-level nested ACO algorithm for leader-follower optimization  

The solution of joint optimization of SOAMRPFD and MSP, including interdependence, necessitates an 

algorithm that captures this issue. For this purpose, a bi-level nested ACO algorithm is proposed. It starts 

with the upper-level ACO in order to solve SOAMRPFD and makes decisions regarding the routing plan 

and maintenance visits using variables 𝐴𝑇𝐵𝑀𝑘𝑣𝑚
∗𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

. The upper-level solution is sent to the 

lower-level ACO as an input in order to solve MSP and make decisions regarding the staffing plan using 

decision variables 𝑤𝑓𝑘𝑣𝑠𝑚 
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

 to satisfy the received solution. All the lower-level best solutions 

are relayed to the upper-level ACO to be re-run and its solution adjusted. The algorithm undergoes some 

iterations until it arrives at the Stackelberg game equilibrium. The following is a detailed stepwise 

procedure for implementing the bi-level nested ACO algorithm: 

Step 1.0: Set the initial value for the upper-level and the lower-level ACOs’ parameters including; 

(𝛼, 𝛽, 𝑞0, 𝜌, 𝑄, 𝛼′, 𝛽′, 𝑞0
′ , 𝜌′, 𝑄′, number of ants for each ACO). 

Step 1.1: Create a specific number of disruption scenarios. Then, store these scenarios in a list named (𝛹). 

Step 1.2: Calculate the value of (𝛺), which indicates the maximum average number of maintenance 

processes that each aircraft should receive. Next, set the value for the maximum number of 

iterations.  

Step 1.3: Set the number of iterations to be one. 

Step 1.4: Apply the upper-level ACO by carrying out the following Steps 1.5 - 1.13: 

Step 1.5: Examine the condition of the 𝛹 list. Proceed to Step 1.6 if it is not empty, else move to step 1.12.  

Step 1.6: Select a single disruption scenario 𝜉 from the 𝛹 list. 

Step 1.7: Put all the aircraft operated by the airline in a list called (𝐾). Note that each aircraft is denoted by 

an ant. Store all the flight leg nodes that should be covered by the aircraft in another list named (𝐼). 

Step 1.8: To initiate the construction of the routes, go through the next sub-steps: 

Step a:  Using the 𝐾 list, examine its condition. Proceed to Step 1.9 if it is empty, else select an ant 

or aircraft 𝑘 and place it on the source node of the network shown in in Fig. 4.   

Step b: Examine the condition of the 𝐼 list with respect to the coverage constraints in Eq. (1.2). 

Proceed to Step c if it is not empty, else move to step 1.9.  

Step c: According to the constraints defined in Eq. (1.3), let ant 𝑘 starts its routes by covering a 

flight leg 𝑖 from the 𝐼 list.  

Step d: By scanning through the 𝐼 list, select the possible flight legs to be covered by taking the 

constraints defined in Eqs. (1.7) and (1.8) into consideration. Proceed to Step j if there are 

no more possible flights to be covered, else move to Step e. 



 

Step e: Using the state transition equation denoted in Eqs. (5.1) and (5.2), choose the flight leg 𝑗 

among the possible flight legs to be covered.   

Step f: Using the constraints given in Eqs. (1.15) - (1.18), determine if there is a violation of the 

operational maintenance constraints after selecting flight leg 𝑗. Proceed to Step g if the 

constraints are violated, else move to Step i. 

Step g: Using the constraints shown in Eqs. (1.9) and (1.10) as a basis, draw up a maintenance 

visit. 

Step h: On completing the maintenance, proceed to cover the flight legs by taking these constraints 

(Eqs. 1.5, 1.6, and 1.11 - 1.14) into consideration. Note that the constraints in Eq. (1.13) 

are considered only when the number of iterations=1, as discussed in Section 4. For the 

remaining iterations, we consider the constraints in Eq. (1.14), which contains the decisions 

(𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

) stored in Step 2.8.  

Step i: Using the 𝐼 list, exclude the selected flight leg 𝑗 and insert it to the constructed route. Next, 

repeat the process of selecting another flight leg by moving to step d. 

Step j: Place aircraft 𝑘 in the sink node and terminate its route, while considering the constraints 

shown in Eq. (1.4).  

Step k: Using the 𝐾 list, exclude aircraft 𝑘 and proceed to step a. 

Step 1.9: For all arcs of the obtained solution, keep the pheromone trails up-to-date by using Eqs. (5.3) and 

(5.4). 

Step 1.10: For the existing iteration, calculate the solution regarding the disruption scenario 𝜉 (𝑍𝑖𝑡𝑒𝑟
𝜉

). If a 

better solution is obtained, revise the best solution for the disruption scenario 𝜉 (𝑍𝑏𝑒𝑠𝑡
𝜉

). 

Step 1.11: Save the best solution of the present disruption scenario 𝑍𝑏𝑒𝑠𝑡
𝜉

 and the decision variables 

(𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

 and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

) that are related to it. Eliminate 𝜉 from the 𝛹 list and move on to Step 

1.5. 

Step 1.12: Augment the best solution gotten from each disruption scenario ( 𝑍𝑖𝑡𝑒𝑟,𝑟𝑜𝑢𝑡𝑖𝑛𝑔 = ∑ 𝑍𝑏𝑒𝑠𝑡
𝜉

𝜉∈𝛹 ∗

𝑝𝜉) to examine the solution of the present iteration.  

Step 1.13: Check whether the stopping criteria for the upper-level ACO (SAC-UL) is satisfied or not, given 

the satisfaction status of the lower-level ACO stopping criteria (SAC-LL). There are three 

possibilities for this step, as follows: 

• If SAC-UL is satisfied or not, while SAC-LL is not satisfied, then go to Step 1.14. 

• If SAC-UL is not satisfied, while SAC-LL is satisfied, then use the same list generated in 

Step 1.1 to update the 𝛹 list, increase the number of iterations, and proceed to Step 1.4. 

• If both SAC-UL and SAC-LL are satisfied, then go to Step 2.11. 

Step 1.14: Apply the lower-level ACO by carrying out Steps (2.1) - (2.10). 

Step 2.1: Prepare a routing list (𝑅𝐿𝜉) that stores the routing solution under different disruption scenarios 

received from Step 1.11. For each routing solution, prepare a maintenance station list (𝑀𝑇𝜉) that 

contains the maintenance stations that will be visited by the aircraft.  

Step 2.2: Examine the condition of the 𝑅𝐿𝑚
𝜉

 list. Proceed to Step 2.3 if it is not empty, else move to Step 

2.9.   

Step 2.3: Select a routing solution  𝑟𝑙𝑚
𝜉

 from the 𝑅𝐿𝑚
𝜉

 list. 



 

Step 2.4: Examine the condition of the 𝑀𝑇𝜉 list. Proceed to Step 2.5 if it is not empty, else move to Step 

2.7.  

Step 2.5: Select a maintenance station 𝑚𝜉 from the 𝑀𝑇𝜉 list. Based on the routing solution 𝑟𝑙𝑚
𝜉

, extract all 

the aircraft that will be maintained at the maintenance station 𝑚𝜉, and store them in a list called 

(𝐾𝛺). 

Step 2.6: Build the staffing plan by executing these sub-steps: 

Step a: Construct the 𝐴𝑁𝑇 list. 

Step b: Pick an 𝑎𝑛𝑡 from the 𝐴𝑁𝑇 list and put it in the source node of the graph represented in Fig. 

5. Mark this position as an initial position for the 𝑎𝑛𝑡 in its constructed path.  

Step c: Check the status of the 𝐾𝛺 list as to whether all the aircraft are visited by the 𝑎𝑛𝑡 or not. 

If all aircraft are visited, then proceed to Step i, else move to Step d. 

Step d: Pick the first unvisited 𝑘𝑣 aircraft from the 𝐾𝛺 list. According to the graph in Fig. 5, mark 

the picked aircraft’s layer as a next position to be visited by the 𝑎𝑛𝑡. 

Step e: Calculate the scheduled arrival and departure time for the picked aircraft, while considering 

the constraints mentioned in Eqs. (2.3) and (2.4), which contains decisions received from 

the upper-level ACO. 

Step f: Based on results of Step e, determine the targeted shift. Then, determine the potential sizes 

for the team that can be built, while considering the constraints stated in Eqs. (2.2) and 

(2.5).  

Step g: Select the team size according to the state transition equation described in Eqs. (6.1) and 

(6.2). 

Step h: Put the 𝑎𝑛𝑡 on the aircraft in 𝑘𝑣 layer represented by the graph in Fig. 5, mark this position 

as an initial position for the next selection. Then, mark the aircraft 𝑘𝑣 as a visited aircraft 

on the 𝐾𝛺 list and go to Step c.  

Step i: Put the 𝑎𝑛𝑡 in the sink node and terminate its path. 

Step j: Use the rule represented in Eqs. (6.3) and (6.4) to keep the pheromone trails up-to-date. 

Step k: Examine the condition of the 𝐴𝑁𝑇 list. Proceed to Step l if it is not empty, else move to 

step m. 

Step l: Update all the aircraft in 𝐾𝛺 list to be unvisited aircraft and proceed to Step c. 

Step m: Assess the solution of the present iteration (𝑍𝑚
𝜉

), update the best solution (𝑍𝑚,𝑏𝑒𝑠𝑡
𝜉

) if 

needed, and proceed to Step 2.4. 

Step 2.7: Compute the best solution for the staffing plan under disruption scenario 𝜉, calculated 

as 𝑍𝑡𝑜𝑡𝑎𝑙,𝑚,𝑏𝑒𝑠𝑡
𝜉

= ∑ 𝑍𝑚,𝑏𝑒𝑠𝑡
𝜉

𝑚∈𝑀𝑇 . Then, proceed to Step 2.2. 

Step 2.8: Store the best solution of each disruption scenario 𝜉, and its related decision variables (𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

).  

Step 2.9: Assess the solution of the present iteration 𝑍𝑖𝑡𝑒𝑟,𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔 = ∑  𝑍𝑡𝑜𝑡𝑎𝑙,𝑚,𝑏𝑒𝑠𝑡
𝜉

𝜉∈𝛹 *𝑝𝜉. 

Step 2.10: Check whether the stopping criteria for the lower-level ACO (SAC-LL) is satisfied or not, given 

the satisfaction status of the upper-level ACO stopping criteria (SAC-UL). There are three 

possibilities for this step, as follows: 

• If SAC-LL is satisfied or not, while SAC-UL is not satisfied, then use the same list 

generated in Step 1.1 to update the 𝛹 list, increase the number of iterations, and proceed 

to Step 1.4. 



 

• If SAC-LL is not satisfied while SAC-UL is satisfied, then increase the number of 

iterations, and proceed to Step 1.14. 

• If both SAC-LL and SAC-UL are satisfied, then proceed to Step 2.11. 

Step 2.11: Return the best solution generated by both levels. Since these solutions generate the status in 

which both players are unwilling to adjust their decisions, the Stackelberg equilibrium is derived, 

and we terminate the algorithm. 

Fig. 6 presents the flow chart of the bi-level nested ACO algorithm. The left-hand side of the figure shows 

the upper-level ACO used to solve the SOAMRPFD, whereas the lower-level ACO that is used to solve the 

MSP is shown on the right-hand side of the figure. For computational efficiency and a reasonable problem 

context, we set the stopping criteria for the bi-level ACO to be the convergence (i.e. 100 successive 

iterations without solution improvement), or when completing the maximum number of iterations (i.e. 500 

iterations), whichever comes first. If both stopping criteria for the bi-level are satisfied, then the nested 

algorithm is terminated, and the Stackelberg equilibrium is derived. 

From the description of the bi-level nested ACO, we can see that the existence of the Stackelberg 

equilibrium is mainly dependent on two main points: (1) finding feasible solutions to SOAMRPFD and 

MSP, then (2) reaching the convergence points using the obtained feasible solutions.  

Regarding the feasible solutions, imagine, if, for instance, the maximum number of iterations is completed 

and the feasible solution of one model, SOAMRPFD or MSP, cannot generate a feasible one for the other 

model. This situation means that there is no feasible staffing plan by maintenance companies to meet the 

requirement of the routing plan by airline or vice versa. Accordingly, the convergence points cannot be 

reached and the Stackelberg equilibrium cannot be derived. In this situation, we need to rerun the bi-level 

nested ACO algorithm, but two questions might be asked here. Firstly, should the reruns experiments be 

conducted using the same conditions as in the first run, or different conditions. If the answer is, reruns with 

different conditions, what are the factors that should be changed. Secondly, how many runs are required to 

find out feasible solutions. For the first question, the conditions of reruns, in fact, if the reruns experiments 

are conducted using the same conditions, it is highly probable to face a deadlock situation, where there are 

no feasible solutions, so that the convergence points cannot be reached and the Stackelberg equilibrium 

cannot be derived. This situation happened once during our preliminary experiments, when setting 

unreasonable value for the assumed maintenance duration by airline  𝑀𝐴𝑇=5. Indeed, this maintenance 

duration is short and quite difficult to be realized, as it requires large team sizes from maintenance 

companies, which sometimes go beyond the workforce capacity. This finally results in infeasible solutions 

even when rerunning the algorithm many times using the same conditions. Therefore, in the light of this 

observation, the reruns experiments should be conducted using different conditions. In our preliminary 

experiments, it was noticed that the most critical factor that influences the feasibility of the solutions, is the 

assumed maintenance duration 𝑀𝐴𝑇. This factor is assumed by the airline in the first iteration of the 

algorithm. If this duration is relatively short, less than 6 hours, it means large team sizes required from the 

maintenance companies, which sometimes difficult to be realized due to workforce limitations, so that 

feasible solutions cannot be achieved and then the Stackelberg equilibrium at the convergence points cannot 

be derived. On the other hand, if this duration is reasonable, from 6 to 9 hours, it will be easier for 

maintenance companies as they need to provide medium and small team sizes, resulting in finding out 

feasible solutions. Then, the convergence points can be reached and the Stackelberg equilibrium can be 

derived. Based on this observation, in the rerun experiments, we change the condition of the experiment by 



 

extending the assumed maintenance duration 𝑀𝐴𝑇 to be within 6 to 9 hours. Regarding the second question, 

the number of required reruns, it was recommended in the literature to set the maximum number of runs at 

100 runs (Y. Yu & Huang, 2010). If the maximum number of runs is completed without finding out feasible 

solutions, which was very rare during our preliminary experiments, this means that convergence points 

cannot be reached and the Stackelberg equilibrium cannot be derived, resulting in unachievable cooperation 

among the players.  

Moving to convergence after obtaining the feasible solutions, imagine a situation, in which the maximum 

number of iterations is completed, and feasible solutions are obtained, but the convergence points are not 

reached. This means that both players keep adjusting their discussions, resulting in underived Stackelberg 

equilibrium. In this situation, we also need to rerun the algorithm and the same questions about the 

conditions of reruns and the number of runs might be asked here. Regarding these questions, in our 

preliminary experiments, we find out that rerunning the experiments using the same conditions of the first 

run can easily help in reaching the convergence points in few number of runs. Therefore, based on this 

observation, to find out the convergence points, we need to rerun the bi-level nested ACO, using the same 

conditions of the first run and the same maximum number of runs that is mentioned earlier. If the maximum 

number of runs is completed without reaching the convergence points, which was also rare in our 

preliminary experiments, it means that the Stackelberg equilibrium cannot be derived and the cooperation 

among the players cannot be achieved.  

Insert Fig. 6 appropriate here 

 

7.4 Evaluating the algorithm performance 

One of the obvious question after using the bi-level nested ACO algorithm is how close to optimality the 

obtained solutions are. In ideal situations, we would like to use the optimal solution as a benchmark, but 

sometimes it is challenging to get the optimal solution, as in our bi-level optimization model. This challenge 

is apparent in each level of the bi-level optimization model. For the upper-level optimization model, known 

as the SOAMRPFD, it was proved that it belongs to the class of NP-hard problem, even in its deterministic 

form (Eltoukhy et al., 2018). In our study, the upper-level optimization model is a stochastic routing model 

that considers large number of disruption scenarios. In addition, the upper-level optimization model is 

validated through a real case study that consists of large number of flight legs and aircraft. Moving to the 

lower-level optimization mode, known as the MSP, it is also NP-hard problem (Yin & Wang, 2006). 

Moreover, in our study, the MSP is solved in a response to each disruption scenario received from the 

SOAMRPFD. All the previous observations result in more complexity being added to the bi-level 

optimization model, therefore, it is challenging to find out the optimal solution. To compromise this 

situation, we propose finding out an approximated lower bound for each of SOAMRPFD and MSP. Then, 

calculating the gap between the obtained solution and the lower bound, to be the criterion for evaluating 

the algorithm performance.    

To find out an approximated lower bound of the SOAMRPFD, we propose an algorithm, which its main 

idea plays around generating all the feasible routes and selecting the routes with the lowest expected 

propagated delay cost (Liang et al., 2015). The main procedure of the algorithm can be summarized as 

follows: 

Step 1: Generate a number of disruption scenarios. Then, store them in a list called (𝛹). 



 

Step 2: Construct two lists, such that the first one contains the aircraft (𝐾), whereas the second one contains 

the flight legs (𝐼).  

Step 3: Check the status of 𝛹 list. If it is not empty, pick a disruption scenario 𝜉 from the 𝛹 list, otherwise 

go to Step 10. 

Step 4: Check the status of 𝐾 list. In case of nonempty 𝐾 list, pick aircraft 𝑘, otherwise proceed to Step 9. 

Step 5: Using the 𝐼 list, examine its condition. Proceed to Step 6 if it is not empty, else go to Step 9.  

Step 6: Generate all the feasible routes for the picked aircraft 𝑘, while considering the constraints stated in 

Eqs. (1.2) – (1.23). In our preliminary experiments, we observed that the expected propagated 

delay cost increases significantly, when the maximum number of take-offs goes beyond 7 take-

offs. This is because the accumulated propagated delay increases with the number of flights or 

take-offs in the route, resulting in an increase in the expected propagated delay cost. For 

example, when handling a case of 240 flight legs that are covered by 30 aircraft, the expected 

propagated delay cost was about 1604.85 and 2899.78 in case of 7 take-offs and 8 take-offs as 

the maximum, respectively. This observation reveals that going beyond 7 take-offs as the 

maximum results in a generation of unprofitable routes. Therefore, to generate profitable routes 

and save the long computational time consumed in generating all the feasible routes, we restrict 

this step to generate feasible routes with 7 take-offs as the maximum.  

Step 7: Calculate the expected propagated delay cost for each generated route using Eq. (1.1). Next, pick 

the route with the lowest cost, and store its cost in 𝑍𝑘
𝜉 

. 

Step 8:  Assign the picked route to aircraft 𝑘. Next, exclude all the flight legs included in the picked route 

from the 𝐼 list, remove aircraft 𝑘 from the 𝐾 list, and go to Step 4. 

Step 9: Calculate the lower bound for disruption scenario 𝜉, as follows; 𝐿𝐵𝑟𝑜𝑢𝑡𝑖𝑛𝑔 
𝜉 

= ∑ 𝑍𝑘
𝜉 

.𝑘∈𝐾  Then, go 

to Step 3. 

Step 10: Calculate the overall lower bound for all disruption scenarios, as follows;  𝐿𝐵𝑟𝑜𝑢𝑡𝑖𝑛𝑔 =

∑ 𝐿𝐵𝑟𝑜𝑢𝑡𝑖𝑛𝑔 
𝜉 

∗ 𝑝𝜉
𝜉∈𝛹 . Then, terminate the algorithm.  

Moving to the MSP, to find its approximated lower bound, we propose another algorithm for this purpose. 

By looking at the MSP, we can see that the team sizes are formed while respecting two limits; the minimal 

team sizes, and the maximal team sizes. This observation is exploited as the main idea of our algorithm, 

such that the teams with the possible minimal sizes are selected to perform the maintenance for the aircraft. 

Since the possible minimal sizes are selected, the lowest labor cost can be achieved. This finally results in 

finding out the approximated lower bound of the MSP. The main steps of this algorithm can be described 

as follows: 

Step 1: Store the solution generated in the previous algorithm in a list, called the routing solution 𝑅𝐿𝜉. It 

should be noted that the stored solutions in this step are the solutions achieved at the lower 

bound of SOAMRPFD. For the solution generated under a specific disruption scenario, 

construct a maintenance station list (𝑀𝑇𝜉) to store the maintenance stations that will be visited 

by the aircraft.  

Step 2: Check the status of the 𝑅𝐿𝑚
𝜉

 list. If it is not empty, select a routing solution  𝑟𝑙𝑚
𝜉

 from the 𝑅𝐿𝑚
𝜉

 list, 

otherwise move to Step 10. 

Step 3: Using the 𝑀𝑇𝜉 list, check its condition. If it is not empty, pick a maintenance station 𝑚𝜉 from 

the 𝑀𝑇𝜉 list, else move to Step 9. 



 

Step 4: Using the routing solution 𝑟𝑙𝑚
𝜉

, extract all the aircraft that will receive the maintenance process at 

the maintenance station 𝑚𝜉, and store them in a list called (𝐾𝛺). 

Step 5: Examine the status of the 𝐾𝛺. In case of nonempty 𝐾𝛺, proceed to Step 6, otherwise move to Step 

8. 

Step 6: Pick aircraft 𝑘𝑣 from the 𝐾𝛺 list. Then, determine the possible team sizes that can be formed using 

constraints stated in Eqs. (2.2) and (2.5) and calculate their related labor cost. 

Step 7: Select the team size with the lowest labor cost, which most likely is the team with the smallest 

possible size. Then, store the related cost of the selected team in 𝑍𝑘𝑣,𝑚
𝜉

, and go to Step 5. 

Step 8: Calculate the lower bound for maintenance station 𝑚, while handling disruption scenario 𝜉, as 

follows;  𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔,𝑚
𝜉

= ∑ 𝑍𝑘𝑣,𝑚
𝜉

𝑘𝑣∈𝐾𝛺 . Then, go to Step 3. 

Step 9: Calculate the lower bound for all maintenance stations, while handling disruption scenario 𝜉, as 

follows; 𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔
𝜉

= ∑ 𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔,𝑚
𝜉

𝑚∈𝑀𝑇 . Then, move to Step 2. 

Step 10: Calculate the overall lower bound for all disruption scenarios, as follows; 𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔 =

∑ 𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔 
𝜉 

∗ 𝑝𝜉
𝜉∈𝛹 . Then, terminate the algorithm.  

 

 

8. Case study 

8.1 Data setting 

After developing a method that can allow coordination among the decision makers of SOAMRPFD and 

MSP, it is necessary to demonstrate the validity of the method. To do so, a case study for a Middle Eastern 

major airline and a maintenance company is presented. As discussed earlier, SOAMRPFD is presented with 

the objective of minimizing the expected propagated delay cost. To assess the performance of SOAMRPFD 

in minimizing the propagated delay, the fleet with the largest minutes of delay is selected and its associated 

data are collected. These data are presented in the upper part of Table 3. In order to build a feasible routing 

plan for the airline, its aircraft need to visit the maintenance company to receive maintenance service. 

Hence, it becomes imperative to collect data for the visited maintenance stations to execute a real case 

study. The collected data from the maintenance company includes the workforce capacity, shifts, etc. In 

our case study, the maintenance company has four stations, and each station is located in different airports. 

From the acquired data, it was noted that these stations have more or less the same conditions. Therefore, 

for simplicity, we assume that all the stations have the same conditions in terms of number of shifts, team 

sizes, and costs, as shown in the lower part of Table 3. 

Table 3: Detailed description of data acquired from airline and maintenance companies. 

Airline  

𝐼 240 flight legs 

𝐾𝑇 30 aircraft  

𝐶𝑚𝑎𝑥 10 take-offs 

𝑇𝑚𝑎𝑥  40 hours 

𝐴 8 airports 

𝑀𝑇 4 maintenance stations  



 

𝑇𝑅𝑇 45 minutes  

𝑀𝐴𝑇 8 hours 

𝐶𝑝𝐷 
𝐶𝑝𝐷 = {

75                 𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

≤ 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

125               𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

> 16 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 

 

Maintenance company  

• Morning shift 

 𝑤𝑆𝑚
𝑙  8 workers 

𝑤𝑠𝑚
𝑢  15 workers 

𝑄𝑠
𝑚𝑎𝑥 150 workers 

Potential team size (𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

) 8 9 10 11 12 13 14 15 

Cost of the team size (𝐶𝑤𝑘𝑣𝑠𝑚) 720 800 950 1000 1050 1120 1180 1250 

 

• Afternoon shift 

 𝑤𝑆𝑚
𝑙  5 workers 

𝑤𝑠𝑚
𝑢  10 workers 

𝑄𝑠
𝑚𝑎𝑥 100 workers 

Potential team size (𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

) 5 6 7 8 9 10 

Cost of the team size (𝐶𝑤𝑘𝑣𝑠𝑚) 670 730 800 870 950 1020 

 

• Night shift 

 𝑤𝑆𝑚
𝑙  2 workers 

𝑤𝑠𝑚
𝑢  5 workers 

 𝑄𝑠
𝑚𝑎𝑥 50 workers 

Potential team size (𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

) 2 3 4 5 

Cost of the team size (𝐶𝑤𝑘𝑣𝑠𝑚) 670 720 790 830 

     
 

 𝑙𝑘𝑣  50 hours 

The experiments on this case study were performed on an 8 GB RAM Windows 10 laptop, equipped with 

an Intel i7 CPU with a clock speed of 2.50 GHz. MATLAB R2014a was utilized to code the proposed 

model and algorithm. 

8.2 Scenario generation 

It is worth mentioning that, in real practice, a larger number of disruption scenarios results in a better 

representation to the randomness of the non-propagated delay, but it requires a higher computational 

burden. Therefore, one of the obvious questions before implementing our case study is how many the 

generated disruption scenarios are enough to reflect real situations without requiring high computational 

burden. To answer this question, computational experiments were conducted, in which the SOAMRPFD 

was solved under a different number of equally likely scenarios, starting from 50 up to 150, as 

recommended by experts in the airline. For this purpose, we collect the flight information for all the case 

study flights recorded by the major Middle Eastern airline from January 2016 to December 2016. The 

collected information includes features such as flight number, departure airport, departure time, arrival 

airport, arrival time, flight duration, and the non-propagated delay for each flight. In each experiment, a 

number of scenarios was generated using the procedure explained in section 4, so that we have realistic 



 

representation for the disruption events. Next, the SOAMRPFD with a 4-day planning horizon was solved 

and the value of objective function, expected propagated delay cost, was calculated and illustrated in Fig. 

7. So, the planning horizon and the realistic representation of disruption events, known as the disruption 

scenarios, are considered while calculating the results presented in Fig. 7. The question of why Fig. 7 

collapses sequence-dependent issue. Indeed, this issue is considered in the constraints (1.1) of the model. 

Therefore, this point is taken into consideration while solving the model, which its results are presented in 

Fig. (7).    

We can see from this figure that, when the number of generated scenarios is low, say 50 scenarios, we 

obtain a low or underestimated value for the expected propagated delay cost. On the other hand, when the 

number of generated scenarios increases, we get better estimation for the expected propagated delay cost. 

The rationale behind the aforementioned situation lies in the fact that when the number of generated 

scenarios is low, the randomness of the non-propagated delay is not well represented. So, it is highly 

probable to overlook some situations for the delay, resulting in a low (underestimated) expected propagated 

delay cost. As the number of scenarios increases, we get better representation to the randomness of the non-

propagated, so that overlooking some situations for the delay can be avoided. This finally results in a better 

estimation for the expected propagated delay cost. By looking at the results represented at Fig. 7, we can 

see that the appropriate number of scenarios needed to reflect the real situation is 100, as considering more 

than 100 scenarios does not lead to any significant improvement in the estimation of the expected 

propagated delay cost. This number of scenarios was confirmed by two parties. Firstly, when the experts of 

the airline were initially consulted, they recommended that 100 equally likely scenarios were more than 

enough to capture the real disruption situations. Secondly, from the literature, this number is confirmed 

through the work by Yen and Birge (2006), who generated disruption scenarios for flight delays, while 

solving the crew scheduling problem. Therefore, based on these observations, we decided to set the number 

of scenarios to be 100 throughout our case study. 

 

Insert Fig. 7 appropriate here 

 

 

8.3 Parameter setting of bi-level nested ACO algorithm 

To adopt the bi-level nested ACO algorithm as a solution method, it is necessary to find out the best setting 

of the algorithm’s parameter, as different parameters with different setting are expected to influence the 

performance of the ACO algorithm (Deng & Lin, 2011). Towards this goal, the most important parameters 

that influence the ACO performance should be selected, then different levels of the selected parameters 

should be determined. By doing so, pheromone trail importance, heuristic function importance, exploration 

threshold, evaporation rate, and ant size are selected as the most important parameters (Dorigo & Stützle, 

2004). For the selected parameters, different levels are determined for the upper-level ACO and the lower-

level ACO, as listed in Tables 4 and 5, respectively. It should be noted that these parameters’ levels are 

determined as being commonly used in the literature (Deng & Lin, 2011; Yin & Wang, 2006). 

Table 4: Parameters levels of the upper-level ACO. 

Parameter Level 1 Level 2 Level 3 Level 4 

𝛼 1 2 3 4 

𝛽 1 2 3 4 

𝑞0  0.95 0.90 0.85 0.80 



 

𝜌 0.01 0.05 0.1 0.15 

Ant size  0.5*Fleet 

size= 120 

Fleet size=240 1.5*Fleet 

size=360 

2*Fleet 

size=480  

 

Table 5: Parameters levels of the lower-level ACO. 

Parameter Level 1 Level 2 Level 3 Level 4 

𝛼′ 1 2 3 4 

𝛽′ 1 2 3 4 

𝑞0
′  0.95 0.90 0.85 0.80 

𝜌′ 0.01 0.05 0.1 0.15 

Ant size  0.5*number of 

maintenance 

operations=30 

number of 

maintenance 

operations=60 

1.5*number of 

maintenance 

operations=90 

2*number of 

maintenance 

operations=120 

 

After selecting the most important parameters and their levels, now, it is the turn for selecting the best 

setting for these parameters. For this purpose, Taguchi method is adopted because it is one of the powerful 

tools for identifying the best setting of the parameters using orthogonal array technique and signal-to-noise 

(S/N) ratios (Dehnad, 1989). For the orthogonal array technique, it is an economic design technique that is 

used to minimize the number of experiments cases. Regarding the S/N ratio, it can be considered as a 

performance indicator that reflects the quality of each experiment case. Using Taguchi method to handle 

five parameters with four levels, as in the upper and lower-level ACO, leads naturally to select 𝐿16
′  to be 

our orthogonal array in the Taguchi experiment design. Since we have two levels of ACO, the Taguchi 

experiment design was conducted twice using Minitab software. The average S/N ratio of the parameters at 

each level, while handling the upper and lower-level ACO, are illustrated in Fig. 8 and Fig. 9, respectively. 

Since the objective function in our study is to minimize the cost, the parameter level should be selected 

based on the smaller is better, meaning that a level with a small mean S/N is superior to the one with higher 

mean. Applying this rule in Fig. 8 and Fig. 9 results in selecting the best levels of the parameters as shown 

in Table 6. Since parameters 𝑄 and 𝑄′ are not among the most important parameters that influence the ACO 

performance, we assume that these parameters take the value of 0.01. 

Insert Fig. 8 appropriate here 

 

Insert Fig. 9 appropriate here 

 

Table 6: Best parameter setting for the upper-level ACO and lower-level ACO. 

Upper -level ACO Lower-level ACO 

Parameter  Best level Parameter  Best level 

𝛼 1 𝛼′ 1 

𝛽 2 𝛽′ 1 

𝑞0  0.95 𝑞0
′  0.95 

𝜌 0.10 𝜌′ 0.15 

Ant size  240 Ant size  60 

 

8.4 Solution of leader-follower Stackelberg game model 



 

In this section, the bi-level nested ACO algorithm is implemented in order to obtain near optimal solutions 

for the joint SOAMRPFD and MSP, which is formulated as a leader-follower Stackelberg game. It is 

noteworthy that our algorithm is implemented based on the best parameter setting determined in the 

previous section.   

Fig. 10 shows the tradeoffs between the upper-level ACO for the expected propagated delay cost of the 

airline and the lower-level ACO for the labor cost of the maintenance company. It is clear from Fig. 10 that 

the upper-level ACO reaches the convergence point and gives its best result after 350 iterations. On the 

other hand, after 450 iterations, the lower-level ACO reaches the convergence point and its best result is 

achieved. Since these results (at the convergence points) constitute the situation in which both companies 

are unwilling to change their decisions and objective functions, the Stackelberg equilibrium is achieved, 

with values 1,635.23 for the airline and 23,192.53 for the maintenance company.  

After presenting the results of our proposed bi-level nested ACO algorithm, it is clear that it can handle a 

case study, which its upper-level optimization model consists of 240 flight legs and 4 maintenance stations, 

and its lower-level optimization model consists of nearly 60 maintenance operations for aircraft and 360 

potential team sizes. As mentioned earlier, it was reported by Wang et al. (2016) that the direct methods 

such as satisfactory solution methods proposed by Muñoz & Abdelaziz (2012), could not solve their case 

study, which consists of 10 power transformer base modules, 32 suppliers, 6 manufacturers, 4 assembly 

plants, and 3 distribution centers. From the above observation, it is obvious that our proposed algorithm 

can efficiently handle a case study, which its size is much larger compared to the case study by Wang et al. 

(2016) that could not be handled by satisfactory solution methods. Therefore, our proposed algorithm is 

more efficient to handle large-scale problems compared to satisfactory solution methods. 

Insert Fig. 10 appropriate here 

 

 

8.5 Performance of the Stackelberg game model and the existing method  

The performance of the developed Stackelberg game decision model (LFS) has been given in the previous 

section.  Presenting the LFS performance is not adequate in demonstrating its advantage over the existing 

methods in the literature. Accordingly, the computational experiments are extended with the aim of 

comparing the LFS performance with the non-joint optimization method (NJOP), which is one of the 

traditional methods that is commonly used in the literature. The NJOP appeared in the study by Liang et al. 

(2015) that solved OAMRPFD independently from MSP, and also noticed in the study by Yan et al. (2004) 

that handled MSP in isolation from OAMRPFD.   

In particular, the NJOP method treats each problem of SOAMRPFD and MSP as individual optimization 

problems and returns separate solutions for each. It first optimizes SOAMRPFD solely on the minimal cost, 

and then optimizes MSP to minimal cost as well. The results of these computational experiments, while 

handling SOAMRPFD and MS separately, are presented in Fig. 11 and Fig.12, respectively.  

In terms of the expected propagated delay cost of the airline, Fig. 11 shows that the LFS model outperforms 

the NJOP model by 15.72% (1,635.23 vs. 1,940.20). Similarly, Fig. 12 shows further outperformance of 

the LFS model over the NJOP model by 18.56% (23,192.53 vs. 28,480.78), while handling the labor cost 

of the maintenance company. The rationale behind this outperformance lies in the fact that the LFS model 



 

optimizes SOAMRPFD in conjunction with MSP, which means that the results of one part are sent back to 

the other part. This results in giving the two parties a chance to continue adjusting their decisions in order 

to improve the results until reaching equilibrium. In contrast, the NJOP model optimizes both problems 

separately, which means there is no feedback movement, leading to a loss of opportunity in adjusting the 

decisions and improving the obtained results.  

So, it is clear cut from this section that the proposed LFS model significantly improves the results obtained 

by the airline and maintenance company. This echoes the importance of the coordinated configuration of 

SOAMRPFD and MSP being implemented in reality. 

Insert Fig. 11 appropriate here 

 

Insert Fig.12 appropriate here 

 

8.6 Performance of the bi-level nested ACO algorithm  

In the previous sub-sections, we present the performance of the developed Stackelberg game decision model 

using the bi-level nested ACO algorithm. In fact, solving a single test instance, as in our case study, is not 

enough to discuss the efficiency of the proposed algorithm, however, with this test instance, we are able to 

compare the performance of the developed Stackelberg game model with the non-joint optimization 

method. Therefore, to assess the applicability and scalability of the proposed algorithm, the computational 

experiments are further extended using test instances with different sizes. These experiments include using 

another three SOAMRPFD test instances, and the same MSP test instance presented in our case study. It 

should be noted here that the additional SOAMRPFD test instances are provided by the same airline that 

provides data for our case study. Detailed information about the test instances are shown in Table 7. For all 

test instances, it was assumed by the airline that 𝑇𝑚𝑎𝑥 is 40 hours, 𝑀𝐴𝑇 is 8 hours, 𝑇𝑅𝑇 is 45 minutes, and 

𝐶𝑝𝐷follows the same information presented in Table 3.  

Table 7: Characteristics of the test cases 

Test case 
Airline (SOAMRPFD) Maintenance company (MSP) 

𝐼 𝐾𝑇 𝐶𝑚𝑎𝑥 𝐴 𝑀𝑇 

The information is same as Table 3 

Case 1 160 11 7 5 4 

Case 2 

(Our case 

study) 

240 30 10 8 4 

Case 3 296 35 10 26 4 

Case 4 400 42 10 28 4 

Table 8 summarizes the results obtained from the bi-level nested ACO algorithm, as shown in the first four 

columns of the Table. The 𝑍𝑆𝑂𝐴𝑀𝑅𝑃𝐹𝐷 and 𝑍𝑀𝑆𝑃 columns represent the Stackelberg equilibrium for airline 

and maintenance companies, respectively. The No. of runs column shows the number of runs the algorithm 

takes to get the Stackelberg equilibrium, whereas the 𝐶𝑃𝑈(𝑚𝑖𝑛) column records the computational time of 

the algorithm as obtained from the MATLAB’s internal calculation function. To assess the performance of 

the proposed algorithm, we calculate the approximated lower bound for SOMARPFD and MSP using the 

algorithms explained in section 7.4. These bounds and their computational times are reported in columns 5 



 

to 8 of Table 8. After calculating the lower bounds, we calculate the gap (%𝐺𝐴𝑃) between the solution 

obtained from the bi-level nested ACO algorithm and the lower bound, to be the criterion for evaluating the 

algorithm performance. These gaps are shown in the last two columns of Table 8 

Table 8: Performance characteristics of Bi-level nested ACO algorithm 

Test 

case 

Bi-level nested ACO algorithm Approximated lower bound 
%𝑮𝑨𝑷=(Z-LB) 

*100/Z 

𝑍𝑆𝑂𝐴𝑀𝑅𝑃𝐹𝐷 𝑍𝑀𝑆𝑃 
No. of 

runs 
𝐶𝑃𝑈(𝑚𝑖𝑛) 

SOAMRPFD MSP 
SOAMRPFD MSP 

𝐿𝐵𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝐶𝑃𝑈(𝑚𝑖𝑛) 𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔 𝐶𝑃𝑈(𝑚𝑖𝑛) 

Case 1 0 6800.54 1 20.45 0 600.15 6800.54 0.66 0 0 

Case 2 1635.40 23192.53 1 66.67 1615.36 1158.25 23098.87 0.82 1.23 0.40 

Case 3 825.85 25250.69 1 85.45 819.52 1947.72 25119.53 1.29 0.77 0.52 

Case 4 1125.42 33450.23 1 115.85 1112.87 2689.24 33192.48 1.42 1.12 0.77 

A close look at the results in Table 8, we can see that the bi-level nested ACO algorithm produces high 

quality solutions in a reasonable computational time. Regarding the solution quality, the high quality is 

apparent in both of SOAMRPFD and MSP. Starting with SOAMRPFD, it is noted that 𝑍𝑆𝑂𝐴𝑀𝑅𝑃𝐹𝐷 reaches 

𝐿𝐵𝑟𝑜𝑢𝑡𝑖𝑛𝑔, as in the first case. As the number of flight legs and aircraft increase, 𝑍𝑆𝑂𝐴𝑀𝑅𝑃𝐹𝐷 deviates from 

𝐿𝐵𝑟𝑜𝑢𝑡𝑖𝑛𝑔 with a %𝐺𝐴𝑃 of at most 1.23%, as in the second case. Moving to 𝑍𝑀𝑆𝑃, it also reaches the 

𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔, as in case 1, but when the number of maintenance operations increases, 𝑍𝑀𝑆𝑃 deviates slightly 

from 𝐿𝐵𝑠𝑡𝑎𝑓𝑓𝑖𝑛𝑔 by at most 0.77%, as in the last case. With respect to the computational time, the bi-level 

nested ACO algorithm shows a reasonable performance. This is clearly shown in case 4 since the proposed 

algorithm produces the solution in about 2 hours, while the approximated lower bound needs up to 2 days. 

The reason behind this long computational time, is due to the large number of feasible routes that could be 

generated while computing the approximated lower bound of SOAMRPFD. Finally, we can see that getting 

the approximated lower bound is computationally expensive, as we need to generate all feasible routes, but, 

using the bi-level nested ACO algorithm can solve this issue with a small deviation from the approximated 

lower bounds. Therefore, it is clear from this section that the proposed bi-level nested ACO algorithm can 

efficiently handle cases with different sizes, as it produces profitable solutions in a reasonable 

computational time. 

9. Conclusions and future directions 

In this research work, we propose a joint optimization model for coordinated configuration of SOAMRPFD 

and MSP utilizing the Stackelberg game. In this game, SOAMRPFD, which is handled by the airline, plays 

the leader’s role for minimization the propagated delay cost. On the other hand, MSP, which is handled by 

the maintenance company, performs the role of the follower that reacts rationally to the leader’s decision 

with respect to the departure time of the airline’s aircraft from the maintenance company. In order to achieve 

the Stackelberg equilibrium, a nested ACO algorithm is applied to provide a solution to the joint 

optimization model.  

The results from a case study of a Middle Eastern major airline and a maintenance company validate the 

superiority of the proposed model. The results demonstrate significant savings in the costs of both 

companies compared to the results obtained from the traditional non-joint optimization method. 

Furthermore, they indicate that the proposed model has great potential for implementation in actual practice.  

This work presents a formulation for a unique problem in the literature, whereas the case study verifies the 

effectiveness of the proposed work. However, there are some limitations that are suggested for future works. 



 

The proposed MSP model assumes that the workforce capacity is deterministic. In this regard, relaxing this 

assumption is suggested for future research. Further, the proposed SOAMRPFD has a scope that is limited 

to four days. It would be beneficial to extend the scope to weekly, in which the number of flights and aircraft 

increase significantly. 
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Fig.  1: Typical representation of the routing problem and its solution 

Fig. 2:  Typical representation of the staffing problem and its solution 



 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig. 4: Modified connection network representation. 

Fig. 3: Joint configuration for SOAMRPFD and MSP 
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Fig. 5:  MSP layered graph representation. 



 

 

Start  

Initialization: Set the initial 

value for the upper-level and 

lower-level ACOs’ parameters 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

and

 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

 

Yes/No 

No/No 

 

Update 

the 𝛹 

list 

No/Yes 

 

Return the best solution generated by 

upper-level and lower level. 

Yes/Yes 

 

Upper-level ACO-based algorithm  

No 

Is the 𝛹 list 

empty? 

• Pick scenario 𝜉 from the 𝛹 list. 

• Build the required routes. 

Update the pheromone trails. 

Evaluate the solution of current scenario. 

• Evaluate the solution of current 

iteration and update the best solution 

if needed. 

• Store the decision variables 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚
𝜉

and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗𝜉

 

Yes 

SAC-UL/ 

SAC-LL? 

Apply upper-level ACO 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

 

Yes/No 

 No/No 

 

Lower-level ACO-based algorithm   

No 

Is the 𝑅𝐿𝑚
𝜉

 

list empty? 

• Pick solution  𝑟𝑙𝑚
𝜉

  from the  𝑅𝐿𝑚
𝜉

 

list. 
• Build the required staffing plan. 

Update the pheromone trails. 

Evaluate the solution of current scenario. 

• Evaluate the solution of current 

iteration and update the best solution if 

needed. 

• Store the decision variables 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
𝜉

 

Yes 

SAC-UL/ 

SAC-LL? 

Apply lower-level ACO 

Yes/Yes 

 

Update 

the  𝑅𝐿𝑚
𝜉

  

list 

No/Yes 

 

End  

Fig. 6: Flow chart of the bi-level nested ACO algorithm. 

 



 

 

 

Fig. 7: Results of SOAMRPFD under different scenario numbers.   
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Fig. 8: Main effect plot for S/N ratio while using upper-level ACO algorithm 

 



 

 

 

Fig. 9: Main effect plot for S/N ratio while using the lower-level ACO algorithm 

 

 

 

 

 

 



 

 

Fig. 10: Convergence of the nested ACO algorithm. 

 

 

 

 Fig. 11: Performance comparison for SOAMRPFD. 
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 Fig. 12: Performance comparison for MSP. 
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