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Abstract 

This study develops a Stackelberg-Nash game model (SNGM) to capture the interdependence between 

aircraft routing of airlines and maintenance staffing of maintenance providers, and to consider the price 

competition among maintenance providers. The SNGM’s overall Nash equilibrium is obtained using an 

iterative game algorithm. The SNGM effectiveness is demonstrated with a case study, in which a neural 

network-based algorithm is developed to forecast accurate non-propagated delays, and a multiple linear 

regression algorithm is adopted to predict demand-price relationship for each maintenance provider. The 

results reveal cost savings of about 26% and 22% for the airline and the maintenance providers, 

respectively. 
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1. Introduction

In the early twentieth century, the Wright brothers successfully achieved the first powered flight with their 

newly designed aircraft. In addition to being a technological triumph, this event marked the birth of the 

aviation industry that shaped the world during the twentieth century. Indeed, the aviation industry is one of 

the pillars of the global economy, as evidenced by the sustained growth in passenger volumes. Statistics 

released by the International Air Transport Association (IATA) indicated that the number of air passengers 

reached 3.5 billion in 2015, and this figure is expected to maintain an annual growth rate of 5%. The 

significant number of passengers reflects the economic significance of the aviation industry, which 

contributes around US$2.4 trillion annually to the worldwide economy, representing about 3.5% of the 

worldwide GDP1. To cope with the expected growth in traffic, the worldwide fleet is expected to increase 

from 24,597 aircraft in 2014 to 29,955 in 2022. Consequently, in 2014, airlines paid around US$62.1 billion 

to maintenance providers as maintenance cost, which is expected to increase to US$90 billion by 20242. 

Despite the promising industry prospects, airlines and maintenance providers face great challenges in 

managing the increasing numbers of aircraft. In this regard, the aircraft maintenance routing problem 

(AMRP) is of critical importance to airlines because it builds the routes for aircraft and schedules the aircraft 

1 http://www.iata.org/about/Documents/iata-annual-review-2015.pdf 
2 https://www.iata.org/whatwedo/workgroups/Documents/ACC-2015-GVA/1630-1650-mtc-cost-trends.pdf 
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maintenance visits. Similarly, the maintenance staffing problem (MSP) is recognized as a key issue in 

managing the workforce capacity of the maintenance providers that service the aircraft.  

The AMRP has been extensively discussed in the literature. Aircraft routing problems are classified into 

three main types: tactical (TARP), operational (OARP), and flight delay-based operational (FDARP). First, 

the TARP specifies the generic arrangement of flight legs or the cyclic schedule to be repeated by each 

aircraft, while ignoring some of the operational maintenance restrictions [1, 2]. Thus, the application of 

TARP rotations may not be viable due to ignorance of some of the operational maintenance restrictions. 

Therefore, the OARP has been developed to explicitly consider various operational maintenance restrictions 

[3, 4]. Nonetheless, it is questionable whether the OARP can effectively generate routes, because the AMRP 

models often overlook flight delays that frequently occur in aviation markets. As a result, the generated 

routes can be sensitive to disruptions. Thus, the FDARP combines flight delays with operational 

considerations to generate routes that better withstand disruptions [5]. The flight delays considered by the 

FDARP can be categorized as a propagated delay (PD) or a non-propagated delay (NPD). NPDs are often 

ascribed to bad weather, maintenance station congestion, technical problems, peak seasons, and passenger 

issues, which are generalized as non-routing reasons. A PD is described as a flight delay that is due to a 

delay of a previous flight performed by the same aircraft. Generally, the role of the FDARP is to minimize 

the PD after forecasting the NPD. In the literature, the NPD is forecasted using the expected value approach, 

which only focuses on analyzing the historical flight delay data.  

In practice, airlines use the FDARP to build a routing plan. This plan involves the determination of the 

routes to be flown by each aircraft, while taking into account the flight delays and operational maintenance 

restrictions. It should be noted that the operational maintenance restrictions are respected by including some 

scheduled maintenance visits for the aircraft. To implement the determined routes as planned, the airlines 

need to send the times of the scheduled maintenance visits outlined in the routing plan to the maintenance 

providers. Referring to the scheduled maintenance times, the maintenance providers use the MSP to 

determine the team sizes required to maintain the aircraft, which is known as the staffing plan. 

Because the FDARP of airlines and the MSP of maintenance providers are interrelated, the airlines and 

maintenance providers need to work together to implement the routing and staffing plans. First, to 

implement the routing plan as determined, the airlines are responsible for performing the flight legs, 

whereas the maintenance providers are responsible for maintaining the aircraft and releasing them from the 

maintenance station on time. If the maintenance providers fail to release the aircraft on time, the aircraft 

will not be able to cover the next flight, resulting in a delay for this flight. Second, to fulfil the staffing plan 

as determined the maintenance providers need to supply the appropriate teams and the airlines need to 

deliver the aircraft on time. If an aircraft arrives late at the maintenance station, the staffing plan will be 

interrupted because extra workers may be needed to finish the service on time. Thus, the FDARP of the 

airlines and the MSP of the maintenance providers are clearly interdependent.  

Maintenance providers operate in a highly competitive environment and are continually striving to improve 

their profitability by attracting more business from airlines. To do so, maintenance providers may slightly 

reduce their service prices to encourage airlines to increase their maintenance visits. As airlines increase 

their maintenance visits to providers that offer lower prices, the routing plan will be affected, because the 

maintenance is performed in different locations. Thus, the price competition among maintenance providers 

is another factor that can interrupt the routing plans of airlines.  
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To our best knowledge, no studies have examined the interdependence between the FDARP of airlines and 

the MSP of maintenance providers while considering the price competition among the maintenance 

providers. This study aims to investigate this setup. For this purpose, we develop a Stackelberg-Nash game 

model (SNGM), which consists of two sub-games: a leader-follower Stackelberg game (LFSG), which 

captures the interdependence between the FDARP and the MSP; and a Nash game (NG), which reflects the 

price competition among the maintenance providers. We combine a bi-level ant colony optimization 

(ACO)-based algorithm and an analytical method to develop an iterative game algorithm to find the overall 

Nash equilibrium of the proposed SNGM. The effectiveness of the proposed model is demonstrated with a 

case study in which the SNGM is applied to a major airline and four maintenance providers located in the 

Middle East. In undertaking this case study, it is necessary to forecast the NPD for the airline and the 

demand-price function for each maintenance provider. To achieve this, we exploit data analytics by 

developing a neural network-based algorithm to forecast an accurate NPD. The algorithm analyzes one-

year data collected on flight delays and other external factors such as bad weather and maintenance station 

congestion. In addition, we use a data analytics tool, called a multiple linear regression algorithm, to predict 

the relationship between the demand and price for each maintenance provider.  

The remainder of this study is organized as follows. In Section 2, we review the relevant literature. Section 

3 defines the research gap and the contribution of this study. Section 4 provides the scope, the description 

and formulation of the SNGM. The solution algorithm for the SNGM is presented in Section 5, and the 

neural network-based algorithm for predicting the NPD is described in Section 6. In Section 7, we report 

the case study of the SNGM for a major airline and four maintenance providers located in the Middle East, 

along with the performance analysis and managerial implications. Finally, Section 8 concludes the study.   

2. Literature review  

In this section, we briefly describe and discuss some of the major studies in the following areas; aircraft 

maintenance routing problem, maintenance staffing problem, game theory, and data analytics.  

2.1. Aircraft maintenance routing problem 

The AMRP is an effective tool for airlines to generate feasible aircraft routes. The AMRP model is generally 

classified into three problem types: tactical (TARP), operational (OARP), and flight delay-based 

operational (FDARP). First, the TARP specifies the generic arrangement of the flight legs, called rotations, 

to be repeated by each aircraft, while ignoring some of the operational maintenance restrictions. Second, 

the OARP determines the aircraft routes taking into account the operational maintenance restrictions (e.g. 

those mandated the Federal Aviation Administration (FAA) in the U.S.), such as the maximum number of 

flying hours, the maximum number of take-offs, and the maximum number of days since the last 

maintenance operation. Lastly, the FDARP is similar to the OARP except that flight delays are explicitly 

considered.  

In one of the earliest studies on the TARP, Kabbani and Patty [6] proposed a set portioning model for a 3-

day AMRP. To handle k-days AMRP, Gopalan and Talluri [7] developed an innovative polynomial time 

algorithm to solve the static and dynamic formulations of the problem. To solve the 4-day AMRP, Talluri 

[1] developed an effective heuristic based on the polynomial time algorithm developed by Gopalan and 

Talluri [7]. Clarke et al. [8] formulated the AMRP as an asymmetric travelling salesman problem to find 

feasible routes with maximized profit. Liang et al. [2] presented a new time space network for daily AMRP, 
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which formed the basis for their proposed integer linear programming model. Despite the success of the 

TARP in generating feasible aircraft rotations, application of these rotations may not be viable due to the 

ignorance of some of the operational maintenance restrictions and the difficulty of repeating the rotations 

due to the airlines’ fluctuating passenger demand. Consequently, the OARP was developed as an alternative 

classification of the AMRP.  

Sriram and Haghani [9] developed an OARP model that considered the maximum number of days since the 

last maintenance operation as an operational restriction. They used an effective heuristic that solved the 

proposed model in reasonable computational time compared with CPLEX. In another OARP study, Sarac 

et al. [3] modeled the AMRP as a set-partitioning model and used branch-and-price as a solution method. 

The proposed model considered the maximum number of flying hours as an operational maintenance 

restriction. Haouari et al. [10] proposed a non-linear OARP that obeyed all three operational maintenance 

restrictions. To solve the proposed model, they linearized the problem using a reformulation-linearization 

technique. Başdere and Bilge [4] presented an OARP model in which the maximum number of flying hours 

was considered as an operational maintenance restriction. The proposed model was solved using branch 

and bound (B&B) for small sized problems, whereas large sized problems were solved using compressed 

annealing. Although these approaches manage to generate routes that respect the operational maintenance 

restrictions, as in the OARP, the route plans are questionable because the flight delays, which frequently 

occur in the aviation industry, are not explicitly considered. Therefore, the generated routes are sensitive to 

disruptions. To generate routes that better withstand disruptions, a number of studies have jointly modeled 

the flight delays with the operational constraints. This leads to the third classification of the AMRP.   

Lan et al. [11] developed a FDARP model with the objective of minimizing the expected propagated delay. 

They proposed an approach in which the departure times of the flight legs were retimed to significantly 

reduce the PD. Dunbar et al. [12] incorporated the stochastic delay information in the model proposed by 

Lan et al. [11] to achieve accurate calculation of the expected PD. Liang et al. [5] proposed a model that 

aimed at mitigating the expected PD by inserting time buffers between the flight legs. Because the FDARP 

generates routes that respect both the operational maintenance restrictions and the flight delays, these routes 

can better withstand disruptions, resulting in good applications in the airline industry. Therefore, we use 

the FDARP as the basis of the model proposed in this study.  

The FDARP categorizes flight delays as either a PD or an NPD. Generally, the role of the FDARP is to 

minimize the PD after forecasting the NPDs. In the literature, the NPD is forecasted using the expected 

value approach, which only focuses on analyzing the historical flight delay data. For example, Liang et al. 

[5] collected the NPD data for the top three fleets with the longest average PDs, and constructed the 

probability mass functions (PMFs) of the NPDs for each fleet. Next, they constructed a single NPD PMF 

by taking the average of the constructed three PMFs, and then used the single PMF to calculate the expected 

NPD.  

In summary, numerous studies have examined the different classifications of the AMRP. In addition, 

researchers have examined the AMRP while considering the disruptions that frequently occur in practice. 

For a survey of the research on airline schedule planning disruptions in relation to the AMRP and other 

planning problems, we refer interested readers to the study by S.H. et al. [13]. 

2.2. Maintenance staffing problem 
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The MSP plays a critical role in planning the manpower required to service aircraft. Dietz  and Rosenshine 

[14] proposed a MSP model with the objective of finding the optimal team sizes required to maintain 

military aircraft. Beaumont [15] developed a MSP model that aimed to minimize the workforce supply. 

Brusco and Jacobs [16] developed an algorithm for solving set partitioning formulations by eliminating the 

redundant columns. This algorithm showed a good performance as it reduced the number of columns by 

about 56%, while solving a case from United Airline. In a follow-up paper, Brusco [17] presented a way to 

evaluate the performance of the dual all-integer cutting plane that used for solving the set covering 

formulations. The results reveled an outperformance of  the dual all-integer cutting plane over the 

commercial B&B. Alfares [18] presented a model that aimed at satisfying the maintenance demand with 

the objective of minimizing the number of workers. The proposed model was solved by developing a two-

phase algorithm. Yang et al. [19] also proposed a model to determine the team sizes, the number of shifts 

required each day, and the starting and closing times of each shift. Yan et al. [20] extended the model of 

Yang et al. [19] by incorporating some constraints regarding the level of training and the abilities of the 

workers. Beliën et al. [21] developed a mixed integer programming model for the MSP, and showed a 

successful application for while building team sizes for Sabena Technics, a major aircraft maintenance 

company in Belgium. The work by Beliën et al. [21] was extended by Van den Bergh et al. [22], in which 

the uncertainty of the scheduled arrival times of aircraft was considered. Beliën et al. [23] presented a model 

with the aim of building team sizes required to service the line maintenance. The authors developed an 

enumerative algorithm with bounding techniques to solve the proposed model. Similar to the work by Yang 

et al. [19], De Bruecker et al. [24] developed a model that considered the skills and training of the workers.  

It should be noted that the work by Beliën et al. [21], Van den Bergh et al. [22], Beliën et al. [23] and De 

Bruecker et al. [24] was formulated not only to consider the MSP, but also to consider the maintenance 

rostering problem. The main difference between the two problems is as follows. The MSP aims to build the 

team sizes required to maintain the aircraft, while considering the workforce capacity and the scheduled 

arrival and departure times for aircraft. The rostering problem, on the other side, aims to determine each 

individual working load, while considering the shift succession constraints and the limits on the number of 

worked hours. In this paper, the rostering problem is beyond the scope of this study, as there is no direct 

connection with the FDARP of the airline.  

2.3. Game theory 

Game theory (GT) is concerned with the study of the strategic interactions among rational decision makers 

who must make decisions that potentially influence the interests of other decision makers. In this study, we 

focus on two types of game: a leader-follower Stackelberg game (LFSG), and a Nash game (NG). 

The LFSG focuses on the interaction between two self-interested players, known as the leader and the 

follower [25]. The leader holds a powerful position that allows him/her to make decisions that are 

observable by the follower. The follower then reacts rationally to the decisions of the leader. This game has 

been successfully applied in many areas, such as seller-buyer supply chains [26, 27], product families and 

supply chains [25, 28], inventory policies in the vendor managed inventory [29], and pricing [30]. 

The NG is usually used to capture the competition among different players when setting their product/ 

service price [31]. This price competition proceeds among the players as follows. First, each player sets a 

price that is judged based on the customer demand. Next, by observing the prices chosen by the other 

players, each player reacts by adjusting the price to maximize his/her own profit. So, the price set by one 
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player is not only dependent on his/her decision, but is also dependent on the prices offered by the other 

players. Similar to the LFSG, the NG has been successfully applied in many fields, such as manufacturer-

retailer supply chains [32, 33], pricing in supply chains [34], advertising in vendor managed inventory [31], 

and rail transportation systems [35].  

2.4. Data analytics 

Data analytics involves using various tools, including data mining and statistical tools, to discover the 

correlations, trends, and other valuable information in a body of data [36, 37]. Among the various data 

analytics tools, neural networks and regression algorithms are very efficient in capturing the relationships 

between a response variable and one or multiple predictors. The efficiency of the neural network has been 

reported in various fields, such as demand forecasting [38], liquidity risk assessment in banking [39], 

prediction of organ status in the healthcare industry [40], time series forecasting [41], and prediction of 

traveler behavior[42]. The regression algorithm has also been successfully applied in areas such as delay 

and demand forecasting in the railroad industry [43, 44], price prediction in the warm-water fish supply 

chain [45], acceleration prediction for railway wagons [46], forecasting air concentrations [47], and 

forecasting heat demand for district heating system [48]. All the aforementioned studies reveal the fact that, 

data analytics has been successfully applied in different fields. Therefore, it is worth enough to apply data 

analytics in this study.  

3. Research gap and contribution 

3.1. Research gap 

Although the FDARP of airlines and the MSP of maintenance providers are clearly interdependent, the 

literature has focused on independent solutions of the two problems [5, 11, 19, 20]. This interdependence 

stems from the interrelated requirements of the airlines and maintenance providers. Airlines use the FDARP 

as a tool to determine their routing plans, which involves determining the aircraft routes including visits to 

the maintenance providers [5]. For instance, if an aircraft undergoes a maintenance check by a maintenance 

provider who suffers a workforce shortage, this may result in prolonged maintenance, which in turn will 

delay the next flight performed by the aircraft, leading to an interruption to the routing plan. On the other 

hand, maintenance providers use the MSP to build staffing plan, which includes the team sizes required to 

maintain the received aircraft [20]. This staffing plan may be interrupted in the case of late arrival of the 

aircraft, which may necessitate extra workers being added to the planned teams to release the aircraft from 

the maintenance station without a long delay. Clearly, the FDARP of airlines and the MSP of maintenance 

providers are closely related. Therefore, if both problems are solved independently, the desired routing and 

staffing solutions may not be achieved, leading to severe flight delays for airlines and disruption of the 

staffing plans of the maintenance providers. 

Maintenance providers have faced tight competition and need to improve their profitability by attracting 

more demand from the airlines. The maintenance providers can cut their service prices to encourage airlines 

to increase maintenance visits. However, the increased maintenance visits to lower priced providers will 

affect the airlines’ routing plans, including changing the locations for maintenance. Therefore, the price 

competition among the maintenance providers is another factor that can interrupt the routing plans of 

airlines.  

In addition, the NPD in the FDARP has been forecasted using the expected value approach. However, in 

the literature, only historical flight delay data are considered and factors that affect the NPD, such as bad 
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weather and maintenance station congestion, are not dealt with [5, 11, 12]. This approach results in 

forecasting inaccurate NPDs. Lastly, although game theory and data analytics have been applied in many 

fields, few studies have used game models and data analytics techniques jointly to handle issues relating to 

the aviation industry.  

To the best of our knowledge, no studies have examined the interdependence between the FDARP of 

airlines and the MSP of maintenance providers while considering the price competition among the 

maintenance providers. Accordingly, in this study, we try to fill these gaps by developing a SNGM that can 

capture the relationship between the airlines and the maintenance providers. We also use data analytics 

tools to forecast accurate NPDs for the airlines and the demand-price relationship for each maintenance 

provider. In this sense, this study is a step forward addressing the real needs and practical problems of the 

aviation industry.    

3.2. Contribution  

This study makes a number of contributions to the literature. First, as mentioned, the majority of the 

reviewed studies solve the FDARP and MSP using independent approaches that ignore the interdependence 

between these problems [5, 11, 19, 20]. In contrast to the existing approaches, we propose a new approach 

that captures this interdependence. Achieving this goal is quite challenging because the FDARP and MSP 

address the needs of two different sectors with conflicting goals. For the airlines, the FDARP is solved with 

the goal of minimizing the expected cost of the PDs. To achieve this, it is necessary for the aircraft to 

complete the maintenance operations punctually, which requires maximizing the team sizes planned by the 

maintenance providers and thus increases the labor costs incurred by the maintenance providers. In contrast, 

the maintenance providers use the MSP to minimize their labor costs by reducing the team sizes required 

to maintain each aircraft. This may prolong the maintenance and delay the next flight of the aircraft, which 

in turn would increase the expected PD costs incurred by the airline. Consequently, due to the conflicting 

goals, it is not reasonable to model the FDARP and the MSP using an “all-in-one” method that combines 

the two objective functions. Accordingly, a coordinated system needs to be used to model the FDARP and 

the MSP while considering their interdependence and conflicting goals. Thus, the features of the FDARP 

and the MSP need to be examined in detail to determine the formulation of the coordinated system. We find 

that the FDARP of airlines determines the number of maintenance visits for each aircraft. These visits, in 

turn, form the demand for the maintenance providers who use the demand as an input for the MSP to 

determine the staffing plan. Accordingly, the FDARP clearly has the dominant position due to the 

determination of the demand, whereas the MSP holds the subordinate position because it uses the demand 

determined by the FDARP. To capture these features, in which the FDARP behaves as a leader and the 

MSP acts as a follower, we formulate the coordinated system as a LFSG model. To represent this model, 

we use a bi-level model in which the FDARP forms the upper-level and the lower-level is represented by 

the MSP. 

Second, as mentioned, ignoring the price competition among the maintenance providers may lead to 

disruptions to the routing plans of the airlines. Therefore, the competition is explicitly modelled in our 

analysis. Price cuts by a maintenance provider lead to increased maintenance demands (i.e., the number of 

aircraft to be maintained). Observing the prices of the other providers motivates the maintenance providers 

to adjust their prices to attract more demand from the airlines. This price setting process naturally leads to 

the formulation of the price competition among the maintenance providers as a NG model.  
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Lastly, as opposed to the expected value approach, which only focuses on the historical flight delay data, 

we propose considering some external factors that affect the NPD in practice, including bad weather, 

maintenance station congestion, and peak season effects. To consider this enormous amount of data, we 

develop a neural network-based data analytic algorithm that combines historical data and the external 

factors, which in turn results in accurate prediction of the NPD.   

The two sub-games, namely the LFSG and NG, form the SNGM. This model is of practical use for airlines 

and maintenance providers. The LFSG model helps in constructing the routing and staffing plans while 

meeting the conditions of each party, and ultimately minimizes the expected PD costs and the labor costs 

for the airline and maintenance providers, respectively. The NG model enables airlines to select cheaper 

providers, resulting in reduced maintenance service costs. The NG model also allows maintenance 

providers to attract more demand, resulting in increased net profits. Finally, the neural network-based 

algorithm is of use in the aviation industry because it provides airlines with a means of accurately predicting 

the NPD and developing efficient routing plans.  

4. The Stackelberg-Nash game model  

In this section, we mainly propose the two sub-games that form the SNGM. Before presenting these games, 

we first define the model scope and the notations.   

4.1. Model scope and notations 

The scope of the proposed model can be summarized as follows: 

• An airline and multiple maintenance providers are considered in the games.  

• The airline focuses on solving the FDARP with a 4-day planning horizon.  

• The FDARP of the airline considers only the Type A maintenance check as it is the most frequently 

used check [4]. 

• The FDARP of the airline considers the expected value of a non-propagated delay, which is defined 

as any delay resulting from bad weather, congested maintenance stations, and technical problems. 

Note that this value is considered for each flight leg in the schedule. In other words, when 

constructing the routing plan, we consider not only the flight duration of each flight leg, but also 

the expected NPD that might occur after each flight leg.  

• The maintenance providers focus on solving the MSP with deterministic workforce capacity . 

• The maintenance providers offer the maintenance service in a competitive market. This competition 

stems from the Type A maintenance check being the simplest as it includes visual inspection of 

major parts such as the aircraft engines, and thus the vast majority of providers can provide this 

check. Therefore, the airlines seek the cheapest provider because any provider can perform this 

service. Thus, due to the competition, each maintenance provider’s revenue is not only dependent 

on its own price, but is also affected by the price decisions of the other providers. 

• The maintenance service demand for a maintenance provider is not only a function of the price 

offered by the provider, but is also a function of the prices of all other providers. This is also due 

to the competition. 

• The information exchange among the maintenance providers is limited in that each maintenance 

provider does not have complete information about the other providers because each provider 
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thinks that it is risky to disclose much information. The only action that can be taken by each 

maintenance provider is to react to the price decisions of the other providers.  

After presenting the scope of the model, we summarize the notations used throughout this model as 

follows: 

Airline (Leader of the LFSG) 

Sets and indices: 

𝐼  Set of flight legs, indexed by 𝑖 or 𝑗. 

𝐾  Set of aircraft, indexed by 𝑘. 

𝑀𝑇  Set of maintenance providers, indexed by 𝑚 or 𝑔. 

𝐴 Set of airports, indexed by 𝑎. 

𝑣 ∈ {1,2, … , 𝛹}: The average number of maintenance operations such that each aircraft 

should receive during the planning horizon.  

{𝑜, 𝑡}:  Starting and ending nodes of the connection network. 

 

Parameters 

𝐷𝑇𝑖:  Departure time from the origin airport of flight leg 𝑖. 

𝑂𝑖𝑎:  Binary integer. It takes value of 1 if the origin airport of flight leg 𝑖 is 

airport 𝑎 and 0 otherwise.  

𝐴𝑇𝑖:  Arrival time at the destination airport of flight leg 𝑖. 

𝐷𝑖𝑎:  Binary integer. It takes value of 1 if the destination airport of flight leg 

𝑖 is airport 𝑎 and 0 otherwise. 

𝐹𝑇𝑖:  Duration of flight leg 𝑖. 

𝑇𝑅𝑇: Turn-around time. 

𝑇𝑚𝑎𝑥:  Maximum number of allowable cumulative flying hours since last 

maintenance operation. 

𝐶𝑚𝑎𝑥: Maximum number of allowable take-offs since last maintenance 

operation. 

𝐸(𝑁𝑃𝐷𝑖): Expected value of the non-propagated delay of flight leg 𝑖.  

𝑀𝑏𝑚𝑎: Binary indicator. It takes value of 1 if maintenance provider 𝑚 is located 

at airport 𝑎 and 0 otherwise. 

𝑀𝐴𝑇: Duration required to complete Type A maintenance check. This time 

should be determined by maintenance provider. However, it is assumed 

by the airline in the first round of the LFSG between the FDARP of the 

airline and the MSP of the maintenance providers. 

𝐹𝑆: Fleet size 

𝛹: Maximum average number of maintenance operations should be 

received by each aircraft. It is calculated by following this rule; 𝛹 =

∑ 𝐹𝑇𝑖𝑖∈𝐼 (𝑇𝑚𝑎𝑥 𝐹𝑆)⁄ . 

𝑀: A big number. 

𝑃𝐷𝑖𝑗𝑘𝑣: Value of propagated delay appeared when aircraft 𝑘 covers flight leg 𝑖 

and 𝑗 consecutively, before receiving the maintenance operation number 

𝑣. 
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𝑃𝐷𝑖𝑘𝑣 : Value of accumulated propagated delay that appears before covering 

flight leg 𝑖 by aircraft 𝑘, before receiving the maintenance operation 

number 𝑣. 

𝐶𝑝𝐷: Expected cost incurred by the airline for each minute of propagated 

delay. 

 

Decision variables  

𝑥𝑖𝑗𝑘𝑣 ∈ {0,1}: 

 

It takes value of 1 if aircraft 𝑘 covers two consecutive flight legs 𝑖 and 

𝑗, before receiving the maintenance operation number 𝑣, and 0 

otherwise.  

𝑦𝑖𝑚𝑘𝑣 ∈ {0,1}: 

 

It takes value of 1 if flight leg 𝑖 is covered by aircraft 𝑘, then the aircraft 

proceeds to maintenance provider 𝑚 to receive the maintenance 

operation number 𝑣, and 0 otherwise.    

𝑧𝑚𝑗𝑘𝑣 ∈ {0,1}: 

 

It takes value of 1 if aircraft 𝑘 leaves maintenance provider 𝑚 to cover 

flight leg 𝑗, after receiving the maintenance operation number 𝑣, and 0 

otherwise. 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚 > 0 Scheduled arrival time of aircraft 𝑘 at maintenance provider 𝑚 to 

receive the maintenance operation number 𝑣.  

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ > 0: Scheduled departure time of the aircraft 𝑘 from maintenance 

provider 𝑚, after receiving the maintenance operation number 𝑣. 

 

Maintenance providers (Follower of the LFSG + Forming the NG) 

Sets and indices  

𝑘𝑣 ∈

{11, … . ,1𝛺, … 𝑏𝑣, … , 𝐾𝛹}:  

Set of aircraft that are planned to visit the maintenance provider to 

receive a specific number of maintenance operation. Each element in 

this set consists of two parts such that the first part, 𝑘, represents the 

aircraft, whereas the second part, 𝑣, represents the number of the 

maintenance operation that will be received by the aircraft.  

𝑆  Set of shifts operated by maintenance provider, indexed by 𝑠.  

{𝑜′, 𝑡′} Starting and ending node of the layered graph. 

 

Parameters  

𝑆𝐴𝑇𝑘𝑣𝑚: Scheduled arrival time of an aircraft 𝑘 to receive the maintenance 

operation number 𝑣 by maintenance provider 𝑚. 

𝑆𝐷𝑇𝑘𝑣𝑚: Scheduled departure time of an aircraft 𝑘 after receiving the 

maintenance operation number 𝑣 by maintenance provider 𝑚. 

𝑤𝑠𝑚
𝑙 : Minimal team size (number of worker) that can be formed by 

maintenance provider 𝑚 during shift 𝑠. 

𝑤𝑠𝑚
𝑢 : Maximal team size (number of worker) that can be formed by 

maintenance provider 𝑚 during shift 𝑠. 

𝑄𝑠
𝑚𝑎𝑥: Capacity of workforce during shift 𝑠. 

𝑙𝑘𝑣: Workload (man-hours) required to maintain an aircraft 𝑘 that receives 

maintenance operation number 𝑣. 
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𝐶𝑤𝑘𝑣𝑠𝑚: Cost incurred by maintenance provider 𝑚 when assigns 𝑤 workers to 

maintain an aircraft 𝑘 that receives maintenance operation number 𝑣 

during shift 𝑠.  

𝐷𝑒𝑚: Demand volume of maintenance service for maintenance provider 𝑚. 

𝜃𝑚: A positive constant that reflects the potential size of maintenance service 

that can be offered by maintenance provider 𝑚. 

𝜗𝑚:  Sensitivity of maintenance service demand for maintenance provider 𝑚 

to its maintenance service price. 

𝛿𝑚𝑔:  Sensitivity of maintenance service demand for maintenance provider 𝑚 

to the maintenance service price set by competitor 𝑔. 

𝑇𝐴𝑚: Total number of aircraft served by maintenance provider 𝑚. 

𝑁𝑃𝑚: Profit of maintenance provider 𝑚. 

 

Decision variables for maintenance providers 

𝑤𝑓𝑘𝑣𝑠𝑚 ∈ {𝑤𝑠𝑚
𝑙 , … , 𝑤𝑠𝑚

𝑢 } 

: 

Number of workers (team size) assigned by maintenance provider 𝑚 to 

maintain an aircraft 𝑘 that receives maintenance operation number 𝑣 

during shift 𝑠. 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚 > 0: Real departure time of an aircraft 𝑘 after receiving maintenance 

operation number 𝑣 by maintenance provider 𝑚. 

𝑃𝑚 > 0: Price of the maintenance service offered by maintenance provider 𝑚. 

 

4.2. Framework of the SNGM 

Figure 1 illustrates the framework of the SNGM, which consists of two sub-games: a vertical LFSG and a 

horizontal NG. 

The vertical LFSG captures the interdependence between two main players;  

1. An airline that acts as a leader with the following characteristics: 

a. Objective function (payoff): Minimization of the expected PD cost and the maintenance 

service cost. 

b. Decision variables (strategies); 𝑥𝑖𝑗𝑘𝑣, 𝑦𝑖𝑚𝑘𝑣, 𝑧𝑚𝑗𝑘𝑣, 𝐴𝑇𝐵𝑀𝑘𝑣𝑚, and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ . 

c. Constraints: Coverage constraints, the balance constraints, and the operational 

maintenance constraints, as explained in section 4.3. 

2. Multiple maintenance providers that acts as followers with the following characteristics: 

a. Objective function (payoff): Minimization of the labor cost. 

b. Decision variables (strategies): 𝑤𝑓𝑘𝑣𝑠𝑚 and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚 

c. Constraints: Workforce capacity constraints, the scheduled arrival and departure times for 

the aircraft. 

LFSG proceeds as follows. Acting as a leader, the airline starts the game by solving the FDARP to 

determine the routing plan decisions (referred to as 𝑥𝑖𝑗𝑘𝑣, 𝑦𝑖𝑚𝑘𝑣, 𝑧𝑚𝑗𝑘𝑣, 𝐴𝑇𝐵𝑀𝑘𝑣𝑚, and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ ). The 

last two decisions determine the scheduled arrival and departure times for the aircraft. The last two decisions 

are sent to the maintenance providers, who in turn act as followers and solve the MSP to determine their 
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staffing plan decisions (referred to as 𝑤𝑓𝑘𝑣𝑠𝑚 and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚). The last decisions indicate the real departure 

times for the aircraft, which is sent back to the airline. The decision process is iterated until the Stackelberg 

equilibrium is reached, at which point both players no longer have the intention to change their decisions, 

because any change might have a negative impact on their objective functions. 

The horizontal NG captures the competition among multiple players that have the following characteristics: 

a. Objective function (payoff): Maximization of the profit.  

b. Decision variable (strategies): 𝑃𝑚.  

c. Constraints: Prices set by competitors, as explained in section 4.4. 

The horizontal NG interacts with the LFSG as follows. The game starts with two decisions from the LFSG. 

First, the routing decision, 𝑦𝑖𝑚𝑘𝑣, which reflects the demand for the maintenance providers. Second, the 

staffing plan decision, 𝑤𝑓𝑘𝑣𝑠𝑚, which is used to calculate the labor cost with the help of 𝐶𝑤𝑘𝑣𝑠𝑚. The 

previous two decisions are shown in Figure 1 as an arrow from the LFGG to the NG. In fact, these decisions 

help the NG to determine the maintenance service price for each provider (referred to as 𝑃𝑚). Note that 

these prices are determined not only by considering the self-pricing decisions, but also by considering the 

competitors’ price decisions. Therefore, no provider has the intention to change the price, resulting in the 

Nash Equilibrium.  

The equilibrium pricing decisions are then sent back to the LFSG. Note that the pricing decisions are shown 

in Figure 1 as an arrow from the NG to the LFSG. If these prices change the Stackelberg decisions, the 

LFSG will generate new routing and staffing decisions. Next, the new decisions are sent to the NG and the 

process continues. This process is iterated until a stable situation is reached in which none of the players 

are willing to change their decisions because any deviation will not improve their own benefits. This stable 

situation, in which the LFSG and NG are both in equilibrium, is called the overall Nash equilibrium.  
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Figure 1: Framework of the Stackelberg-Nash game 

4.3. Formulation of the LFSG  

In this section, we present the LFSG, which is modeled as a bi-level model, in which the FDARP of the 

airline forms the upper-level and the lower-level is represented by the MSP. It is important to mention here 

that, usually, the LFSG aims to find the equilibrium solution, whereas the bi-level programming model 

aims to find the optimal solution. Since the bi-level programming is used to model the LFSG, the main aim 

is to find the equilibrium solution and is not to find out the optimal solution.   

The upper-level includes the FDARP, which aims to construct the routing plan with the objective of 

minimizing the expected PD cost and the maintenance cost. Note that the FDARP is formulated by 

following the connection network because it is one of the most efficient networks used for representing the 

AMRP [3, 4, 10]. This network includes two node sets and three arc sets. For the node sets, the first set 

represents the flight legs (𝐼) and the second set denotes the maintenance providers (𝑀𝑇), as shown in Figure 

2. The arc sets are compressed into three different types: the coverage arc set (𝐶𝑂𝑉), the visiting 

maintenance arc set (𝑉𝑀𝐴), and the leaving maintenance arc set (𝐿𝑀𝐴). The coverage arc 𝑐𝑜𝑣(𝑖, 𝑗) ∈ 𝐶𝑂𝑉 

can be used to cover the flight legs because it helps the aircraft to cover two consecutive flight legs. The 

other arc sets, 𝑉𝑀𝐴 and 𝐿𝑀𝐴, can be used to visit the maintenance providers. The visiting maintenance arc 

𝑣𝑚𝑎(𝑖, 𝑚) ∈ 𝑉𝑀𝐴 helps the aircraft to visit the maintenance providers after the flight coverage, whereas 

the leaving maintenance arc 𝑙𝑚𝑎(𝑚, 𝑗) ∈ 𝐿𝑀𝐴 plays the role of covering the flight legs after completing 
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the maintenance operations. The nodes and arcs included in the connection network ease the formulation 

of the FDARP as a multi-commodity network flow model, in which each aircraft denotes a single 

commodity moving throughout the network. To build the routing plan, the FDARP uses 𝑥𝑖𝑗𝑘𝑣, 𝑦𝑖𝑚𝑘𝑣, and 

𝑧𝑚𝑗𝑘𝑣 as decision variables to represent the coverage arcs, the visiting maintenance arcs, and the leaving 

maintenance arcs, respectively. The FDARP also uses other decision variables, called 𝐴𝑇𝐵𝑀𝑘𝑣𝑚 and 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ , to determine the scheduled arrival and departure times for the aircraft.   

 

 

The lower-level represents the MSP for constructing the staffing plan, with the objective of minimizing the 

labor cost. We formulate the MSP as a layered graph, because this graph has shown efficient performance 

in capturing the staffing and worker allocation problem [49]. The graph is constructed using three 

components: the layers, nodes, and arcs, as shown in Figure 3. The layers represent the aircraft that will 

receive the maintenance operations, in addition to representing the starting and ending points of the layered 

graph. The nodes are incorporated in each layer to represent the potential number of workers that can 

maintain the aircraft. Lastly, the arcs are inserted in the graph to connect the layers, so that the model can 

be easily solved using metaheuristics such as ACO. 

The decision variables used by the MSP mainly include 𝑤𝑓𝑘𝑣𝑠𝑚 and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚. 𝑤𝑓𝑘𝑣𝑠𝑚 helps to determine 

the number of workers required to maintain the aircraft, whereas 𝑅𝑇𝐴𝑀𝑘𝑣𝑚 specifies the real departure 

times for the aircraft from the maintenance station. These MSP decisions are finally leading to generate an 

efficient staffing plan.   

Figure 2: Construction of the connection network 
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Based on the predefined notations, the LFSG can be formulated as a bi-level model as follows: 

min ∑ 𝐶𝑝𝐷 (∑ ∑ ∑  𝑃𝐷𝑖𝑗𝑘𝑣 𝑥𝑖𝑗𝑘𝑣

𝑗∈𝐼𝑖∈𝐼𝑘∈𝐾

)

𝑣=1,…,𝛹

+ ∑ 𝑃𝑚

𝑚∈𝑀𝑇

(∑ ∑ ∑ 𝑦𝑖𝑚𝑘𝑣
𝑣=1,…,𝛹𝑘∈𝑘𝑖∈𝐼

) 

 

(1.0) 

s.t. 𝑃𝐷𝑖𝑗𝑘𝑣 = 𝑃𝐷𝑖𝑘𝑣 + (𝐸(𝑁𝑃𝐷𝑖𝑘) − (𝐷𝑇𝑗 − 𝐴𝑇𝑖 − 𝑇𝑅𝑇))
+

          ∀ 𝑖, 𝑗 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 (1.1) 

∑ ( ∑ ∑ 𝑥𝑖𝑗𝑘𝑣

𝑣∈𝛹

+ ∑ ∑ 𝑦𝑖𝑚𝑘𝑣

𝑣∈𝛹𝑚∈𝑀𝑇𝑗∈𝐼∪{𝑡}

)

 𝑘∈𝐾

= 1                                       ∀ 𝑖 ∈ 𝐼 

 

(1.2) 

∑ 𝑥𝑜𝑗𝑘𝑣 + ∑ 𝑦𝑜𝑚𝑘𝑣

𝑚∈𝑀𝑇𝑗∈𝐼

= 1                                                                       ∀ 𝑘 ∈ 𝑘, ∀ 𝑣 = 1, … , 𝛹 
(1.3) 

∑ 𝑥𝑖𝑡𝑘𝑣 + ∑ 𝑧𝑚𝑡𝑘𝑣

𝑚∈𝑀𝑇𝑖∈𝐼

= 1                                                                         ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 
(1.4) 

∑ 𝑥𝑗𝑖𝑘𝑣 + ∑ 𝑧𝑚𝑖𝑘𝑣

𝑚∈𝑀𝑇

= ∑ 𝑥𝑖𝑗𝑘𝑣 + ∑ 𝑦𝑖𝑚𝑘𝑣

𝑚∈𝑀𝑇

                  ∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾

𝑗∈𝐼∪{𝑡}𝑗∈𝐼∪{𝑜}

, ∀ 𝑣 = 1, … , 𝛹 
(1.5) 

∑ ∑ 𝑦𝑗𝑚𝑘𝑣 = ∑ ∑ 𝑧𝑚𝑗𝑘𝑣

𝑣=1,…,𝛹𝑗∈𝐼∪{𝑡}𝑣=1,…,𝛹𝑗∈𝐼

                                                              ∀ 𝑚 ∈ 𝑀𝑇, ∀ 𝑘 ∈ 𝐾    (1.6) 

𝐴𝑇𝑖 + 𝑇𝑅𝑇 − 𝐷𝑇𝑗 ≤ 𝑀(1 − 𝑥𝑖𝑗𝑘𝑣)                                                ∀ 𝑖, 𝑗 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 (1.7) 

∑ 𝑥𝑖𝑗𝑘𝑣 ≤ ∑ 𝐷𝑖𝑎𝑂𝑗𝑎                                                                                     ∀ 𝑖, 𝑗 ∈ 𝐼, ∀ 𝑣 = 1, … , 𝛹
𝑎∈𝐴 𝑘∈𝐾

 
(1.8) 

∑ 𝑦𝑖𝑚𝑘𝑣 ≤ ∑ 𝐷𝑖𝑎𝑀𝑏𝑚𝑎                                                                     ∀ 𝑖 ∈ 𝐼, ∀ 𝑚 ∈ 𝑀𝑇, ∀ 𝑣 = 1, … , 𝛹
𝑎∈𝐴 𝑘∈𝐾

 
(1.9) 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚 ≥ ∑ ∑ (𝐴𝑇𝑖 + 𝑇𝑅𝑇 + 𝑃𝐷𝑖𝑘𝑣)𝑦𝑖𝑚𝑘𝑣

𝑚∈𝑀𝑇

 

𝑖∈𝐼∪{𝑜}

                          ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 
(1.10) 

∑ 𝑧𝑚𝑗𝑘𝑣 ≤ ∑ 𝑀𝑏𝑚𝑎  𝑂𝑗𝑎                                                                       ∀ 𝑚 ∈ 𝑀𝑇, ∀ 𝑗 ∈ 𝐼, ∀ 𝑣

𝑎∈𝐴 𝑘∈𝐾

= 1, … , 𝛹 

(1.11) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ − 𝐷𝑇𝑗 ≤ 𝑀(1 − 𝑧𝑚𝑗𝑘𝑣)                                     ∀ 𝑚 ∈ 𝑀𝑇, ∀ 𝑗 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾, ∀𝑣 = 1, … , 𝛹     (1.12) 

Figure 3: Construction of the layered graph 
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𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ ≥ ∑ ∑ (𝐴𝑇𝑖 + 𝑇𝑅𝑇 + 𝑃𝐷𝑖𝑘𝑣 + 𝑀𝐴𝑇)𝑦𝑖𝑚𝑘𝑣

𝑚∈𝑀𝑇𝑖∈𝐼∪{𝑜}

                       ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 
(1.13) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ ≥ 𝑅𝑇𝐴𝑀𝑘𝑣𝑚                                                                        ∀𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹, ∀ 𝑚 ∈ 𝑀𝑇 (1.14) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑣

𝑗∈𝐼𝑖∈𝐼∪{𝑜}

≤ 𝐶𝑚𝑎𝑥                                                                         ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹         (1.15) 

∑ ∑ 𝐹𝑇𝑗𝑥𝑖𝑗𝑘𝑣

𝑗∈𝐼

≤

𝑖∈𝐼∪{𝑜}

𝑇𝑚𝑎𝑥                                                                 ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1          (1.16) 

∑ ∑ 𝐹𝑇𝑗𝑥𝑖𝑗𝑘𝑣

𝑗∈𝐼

+ ∑ ∑ 𝐹𝑇𝑗𝑧𝑚𝑗𝑘𝑣

𝑗∈𝐼𝑚∈𝑀𝑇

≤

𝑖∈𝐼

𝑇𝑚𝑎𝑥                            ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 2, … , 𝛹          (1.17) 

𝑥𝑖𝑗𝑘𝑣 ∈ {0,1}                                                                                         ∀ 𝑖, 𝑗 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 (1.18) 

𝑦𝑖𝑚𝑘𝑣 ∈ {0,1}                                                                         ∀ 𝑖 ∈ 𝐼, ∀ 𝑚 ∈ 𝑀𝑇, ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 (1.19) 

𝑧𝑚𝑗𝑘𝑣 ∈ {0,1}                                                                         ∀ 𝑚 ∈ 𝑀𝑇, ∀ 𝑗 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹 (1.20) 

𝐴𝑇𝐵𝑀𝑘𝑣𝑚 > 0                                                                                 ∀𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹, ∀ 𝑚 ∈ 𝑀𝑇 (1.21) 

 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ > 0                                                                                 ∀𝑘 ∈ 𝐾, ∀ 𝑣 = 1, … , 𝛹, ∀ 𝑚 ∈ 𝑀𝑇 (1.22) 

 

where given decision variables (𝐴𝑇𝐵𝑀𝑘𝑣𝑚 and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ ) are used for solving: 

 

min ∑ ∑ ∑ 𝐶𝑤𝑘𝑣𝑠𝑚

𝑘𝑣∈𝑘𝛹𝑠∈𝑆𝑚∈𝑀𝑇

𝑤𝑓𝑘𝑣𝑠𝑚 
 

(2.0) 

s.t.  

𝑅𝑇𝐴𝑀𝑘𝑣𝑚 ≥ 𝑆𝐷𝑇𝑘𝑣𝑚 + (𝑆𝐴𝑇𝑘𝑣𝑚
𝜉

+ 𝑇𝑅𝑇 +
𝑙𝑘𝑣

𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

− 𝑆𝐷𝑇𝑘𝑣𝑚
𝜉

)

+

                   ∀𝑘𝑣 ∈ 𝑘𝛹, ∀𝑚 ∈ 𝑀𝑇 

(2.1) 

∑ 𝑤𝑓𝑘𝑣𝑠𝑚 ≤

𝑘𝑣∈𝑘𝛹

𝑄𝑠
𝑚𝑎𝑥                                                                                                        ∀𝑠 ∈ 𝑆, ∀𝑚 ∈ 𝑀𝑇 

(2.2) 

𝑆𝐴𝑇𝑘𝑣𝑚 = 𝐴𝑇𝐵𝑀𝑘𝑣𝑚                                                                               ∀𝑘𝑣 ∈ 𝑘𝛹, ∀𝑠 ∈ 𝑆, ∀𝑚 ∈ 𝑀𝑇       (2.3) 

𝑆𝐷𝑇𝑘𝑣𝑚 = 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗                                                                                ∀𝑘𝑣 ∈ 𝑘𝛹, ∀𝑠 ∈ 𝑆, ∀𝑚 ∈ 𝑀𝑇  (2.4) 

𝑤𝑓𝑘𝑣𝑠𝑚 ∈ {𝑤𝑠𝑚
𝑙 , … , 𝑤𝑠𝑚

𝑢 }                                                                ∀𝑘𝑣 ∈ 𝑘𝛹, ∀𝑠 ∈ 𝑆, ∀𝑚 ∈ 𝑀𝑇       (2.5) 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚 > 0                                                                                            ∀𝑘𝑣 ∈ 𝑘𝛹, ∀𝑚 ∈ 𝑀𝑇         (2.6) 

The FDARP, as the upper-level, is represented by Eqs. (1.0) – (1.20), whereas the lower-level is represented 

by the MSP in Eqs. (2.0) – (2.8). 

The objective function of the upper-level is to minimize the expected PD cost and the maintenance service 

cost, as described by Eq. (1.0). Note that the maintenance cost is determined based on the maintenance 

service prices specified by the NG. Constraints (1.1) describe the calculation of the PD. 

To build a feasible routing plan, the aircraft need to cover all the flight legs. For this reason, coverage 

constraints (1.2), (1.3), and (1.4) are formulated. Constraints (1.2) indicate that each flight leg is covered 

exactly once, whereas constraints (1.3) and (1.4) ensure the route initiation and the route completion for 

each aircraft, respectively. 

When constructing the routing plan, the circulation of the aircraft throughout the network should be 

maintained. This can be achieved by using the balance constraints (1.5) and (1.6). Constraints (1.5) maintain 

the balance when the aircraft covers the flight legs, whereas constraints (1.6) ensure the balance when the 

aircraft visits the maintenance providers.  
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The time and place issues are important factors to be considered when constructing the routing plan. 

Therefore, constraints (1.7) and (1.8) are formulated. Constraints (1.7) indicate the time constraints because 

they manage the timing when connecting two consecutive flight legs using the same aircraft. Constraints 

(1.8) indicate the place constraints because they handle the origin and destination considerations when 

connecting two consecutive flight legs using the same aircraft. 

As mentioned, an applicable routing plan should include some maintenance visits for the aircraft, as 

mandated by the FAA. To achieve this, we use constraints (1.9). These constraints guarantee that each 

aircraft can visit the maintenance provider if the destination airport of the last covered flight leg and the 

location of the maintenance provider are the same. In real practice, to prepare a suitable maintenance 

operation for the aircraft, the airline should inform the maintenance provider with the scheduled arrival 

time of the aircraft. For this purpose, constraints (1.10) are cast. These constraints ensure that the scheduled 

arrival time of the aircraft at the maintenance provider is later than or equal the arrival time of the last 

covered flight leg plus the turn-around time and the value of accumulated propagated delay. 

After completing the maintenance operation, the aircraft should leave the maintenance provider and resume 

covering the next scheduled flight leg. To achieve this, constraints (1.11) – (1.14) are imposed. Constraints 

(1.11) constitute the place constraints, which handle the origin considerations when selecting the next flight 

to be covered after leaving the maintenance provider. The time constraints in (1.12) guarantee that the 

aircraft can cover the next flight leg after leaving the maintenance provider if the departure time of the next 

flight leg is larger than or equal to the scheduled departure time of aircraft 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ , which is determined 

by constraints (1.13) and (1.14). Initially, in the first round of the LFSG between the FADRP of the airline 

and the MSP of the maintenance providers,  𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗  is determined using constraints (1.13), which 

include an assumption by the airline regarding the maintenance duration. In reality, this assumption is not 

applicable, because this duration should be determined by the maintenance provider. Therefore, in the 

subsequent rounds of the LFSG, constraints (1.13) become redundant and  𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗  is determined using 

constraints (1.14). These constraints ensure that the airline builds its calculation based on the real departure 

time of the aircraft received from the MSP of the maintenance provider. In this model, constraints (1.14) 

constitute the links between the upper and lower-levels of the bi-level model.   

Forcing an aircraft to undergo maintenance cannot be achieved using the abovementioned constraints. 

Therefore, the operational maintenance constraints (1.15) – (1.17) are imposed. Constraints (1.15) ensure 

that the number of take-offs since the last maintenance operation does not exceed the allowable limit. 

Similarly, constraints (1.16) and (1.17) are restrictive constraints regarding the accumulated flying hours. 

Finally, constraints (1.18) – (1.22) represent the domain restrictions imposed on the decision variables. 

The lower level has the objective function of minimizing the total labor cost incurred by the maintenance 

providers, as represented by Eq. (2.0). Constraints (2.1) describe the calculation of the real departure time 

for the aircraft to leave the maintenance provider. 

To build a feasible staffing plan, the worker capacity in each shift needs to be considered. For this purpose, 

constraints (2.2) are imposed to ensure that the total number of workers allocated to service the aircraft in 

each shift does not exceed the worker capacity.  

Because the MSP acts as a follower of the LFSG, it should receive some information from the leader. For 

this purpose, constraints (2.3) and (2.4) are incorporated in the model. Constraints (2.3) and (2.4) help to 

calculate the scheduled arrival and departure times for each aircraft, respectively. These two constraints are 
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formulated based on the decision variables 𝐴𝑇𝐵𝑀𝑘𝑣𝑚and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗  received from the leader. Finally, 

constraints (2.5) and (2.6) indicate the domain definitions of the decision variables.  

4.4. Formulation of the NG 

In this section, we propose the NG, which describes how the maintenance providers compete to set the price 

of the maintenance service. The NG can be modeled as follows: 

Maximize (for ∀𝑚 ∈ 𝑀𝑇):  

𝑁𝑃𝑚 = 𝐷𝑒𝑚𝑃𝑚 − (
∑ ∑ 𝐶𝑤𝑘𝑣𝑠𝑚𝑤𝑓𝑘𝑣𝑠𝑚𝑘𝑣∈𝑘𝛹𝑠∈𝑆

𝑇𝐴𝑚

) 𝐷𝑒𝑚 
 

(3.0) 

where  𝐷𝑒𝑚 = 𝜃𝑚 − 𝜗𝑚𝑃𝑚 + ∑ 𝛿𝑚𝑔𝑃𝑔

𝑔∈𝑀𝑇

 
(3.1) 

𝑇𝐴𝑚 = ∑ ∑ ∑ 𝑦𝑖𝑚𝑘𝑣

𝑣=1,…,𝛹 𝑘∈𝑘𝑖∈𝐼

 
(3.2) 

Eq. (3.0) represents maintenance provider 𝑚’s profit, which is determined by the revenue represented in 

the first term minus the total labor cost as described in the second term. Note that the total labor cost is 

determined by multiplying the demand (𝐷𝑒𝑚) by the average labor cost incurred for each aircraft 

((∑ ∑ 𝐶𝑤𝑘𝑣𝑠𝑚𝑤𝑓
𝑘𝑣𝑠𝑚𝑘𝑣∈𝑘𝛹𝑠∈𝑆 )/𝑇𝐴𝑚). The average labor cost incurred for each aircraft is calculated using the 

decision variable 𝑤𝑓𝑘𝑣𝑠𝑚  that is received from the follower of the LFSG. The leader of the LFSG also 

helps the NG to determine the average labor cost incurred for each aircraft using the decision variable 

𝑦𝑖𝑚𝑘𝑣, which specifies 𝑇𝐴𝑚, as shown in Eq. (3.2).  

Because the maintenance providers compete in setting the maintenance service price, each maintenance 

provider’s demand should be formulated based on its own price and the other observed prices. Therefore, 

the demand is formulated consistent with this observation, as shown in Eq. (3.1), such that the demand for 

maintenance provider 𝑚 is not only a function of its own price 𝑃𝑚, but also of the competitors’ prices 𝑃𝑔. 

Note that 𝜗𝑚 and 𝛿𝑚𝑔 are given while considering the demand properties 
𝜕𝐷𝑒𝑚

𝜕𝑃𝑚
< 0, 

𝜕𝐷𝑒𝑚

𝜕𝑃𝑔
> 0, 𝑚, 𝑔 ∈ 𝑀𝑇 

following Samuelson [50]. 

 

5. Solution algorithm for the overall Nash equilibrium  

To obtain the overall Nash equilibrium, we have to obtain: (1) the Stackelberg equilibrium for the LFSG 

and (2) the Nash equilibrium for the NG. Therefore, in Sections 5.1 and 5.2, we discuss how to find the two 

types of equilibrium. We then provide the algorithm to find the overall Nash equilibrium in Section 5.3. 

5.1. Obtaining the Stackelberg equilibrium  

To obtain the Stackelberg equilibrium, it is necessary to solve the bi-level model. Before presenting the 

proposed solution method, we briefly discuss the existing solution methods. There are two main approaches 

for solving the bi-level model: indirect and direct. The indirect approach changes the model from a bi-level 

to a single level structure, and solves it using methods such as B&B based on the K times best method [51], 

the Karushe-Kuhne-Tucker (KTT) conditions method [52], and the penalty function method [53]. However, 

using the indirect approach to solve our bi-level model is not promising for two reasons. First, it overlooks 

the fact that each level belongs to a different company with a specific self-interested goal. Second, the 
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leader’s decision power might be dominated by the follower’s decision, resulting in a different 

representation for the model. Alternatively, the direct approach solves the bi-level model directly using 

methods such as the satisfactory solution method [54]. Although the direct approach respects the structure 

of the bi-level model, it becomes quite challenging for the direct solution methods to handle large scale 

network problems. This is apparent when the efficiency of the direct solution methods is significantly 

reduced due to the large number of nodes included in the network model [28]. Because each level of our 

bi-level model (known as the FDARP and the MSP) belongs to large scale network problem, the application 

of the direct approach is challenging.  

Note that each level of the proposed bi-level model belongs to the class of NP-hard problems [3, 49]. 

Therefore, it is reasonable to use meta-heuristics to solve the proposed model because they have been 

successfully applied in solving different problems, such as the crew scheduling problem [55], the vehicle 

routing problem [56], the aircrew rostering problem [57], and the control attitude behavior problem [58]. 

As aforementioned, both the FDARP and the MSP are modeled as network-based problems, for which ACO 

has been successfully applied in solving large and complex network-based problems [59-62]. These 

observations motivate us to propose a bi-level ACO based-algorithm to solve the bi-level model. This 

algorithm consists of two levels: the upper-level ACO-based algorithm for the FDARP and the lower-level 

ACO-based algorithm for the MSP. These two levels are designed because each level of the bi-level model 

has its unique features and goals.  

5.1.1. Upper-level ACO-based algorithm 

The upper-level ACO-based algorithm consists of three main steps: 

• Covering flight legs; to conduct this step, the ants, which simulate the aircraft, scout throughout the 

network to cover flight legs using the so-called state transition rule. In other words, suppose that 

an ant covers a flight leg represented by node 𝑖 and looks for covering next flight leg represented 

by node 𝑗. To select the next flight leg, we adopt the following state transition rule:  

 

𝑗 = {
arg _𝑚𝑎𝑥

𝑗∈𝑁𝐹𝐿𝑖
𝑘 { [𝜏𝑖𝑗]

𝛼
[𝜂𝑖𝑗]

𝛽
}                𝑖𝑓 𝑞 ≤ 𝑞0

𝐽                                                                          𝑖𝑓 𝑞 > 𝑞0

      (4.0) 

where 𝑁𝐹𝐿𝑖
𝑘 denotes the potential flight legs to be covered by ant 𝑘 after covering flight leg 𝑖. The 

terms 𝜏𝑖𝑗 and 𝜂𝑖𝑗 represent the pheromone trail and the heuristic function of the coverage arc 

𝑐𝑜𝑣 (𝑖, 𝑗). Note that the 𝜂𝑖𝑗 can be determined as 1/(𝐶𝑝𝐷 ∗ 𝑃𝐷𝑖𝑗𝑘𝑣). The terms 𝛼 and 𝛽 are used to 

express the relative importance of 𝜏𝑖𝑗 and 𝜂𝑖𝑗, respectively. 𝑞 is a random number based on uniform 

distribution [0~1], whereas 𝑞0 is the exploration parameter (0 ≤ 𝑞0 ≤ 1). Actually, 𝑞 guides the 

ant to select the next flight leg. In other words, if 𝑞 ≤ 𝑞0, the flight leg 𝑗 in which its arc 𝑐𝑜𝑣(𝑖, 𝑗) 

carries the greatest 𝜏𝑖𝑗 and 𝜂𝑖𝑗will be selected. On the contrary, if 𝑞 > 𝑞0, the flight leg 𝑗 is selected 

using the following probability rule: 

𝑃𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

𝑗∈𝑁𝐹𝐿𝑖
𝑘 

            𝑖𝑓 𝑗 ∈ 𝑁𝐹𝐿𝑖
𝑘                              (4.1) 
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where 𝑃𝑖𝑗
𝑘  is the probability of selecting flight leg 𝑗 to be covered after flight leg 𝑖 using the same 

aircraft 𝑘. 

• Visiting maintenance providers; this step is similar to the previous step, but here we select flight 

legs in which their destination airports have maintenance providers. This can be done using the 

following transition and probability rules: 

𝑗 = {
arg _𝑚𝑎𝑥

𝑗∈𝑁𝑉𝑀𝑖
𝑘 { [𝜏𝑗𝑚]

𝛼
[𝜂𝑗𝑚]

𝛽
}                𝑖𝑓 𝑞 ≤ 𝑞0

𝐽                                                                          𝑖𝑓 𝑞 > 𝑞0

      (4.2) 

 𝑃𝑗𝑚
𝑘 =

[𝜏𝑗𝑚]
𝛼

[𝜂𝑗𝑚]
𝛽

∑ [𝜏𝑗𝑚]
𝛼

[𝜂𝑗𝑚]
𝛽

𝑗∈𝑁𝑉𝑀𝑖
𝑘 

            𝑖𝑓 𝑗 ∈ 𝑁𝑉𝑀𝑖
𝑘                                 (4.3) 

where 𝑁𝑉𝑀𝑖
𝑘 is similar to 𝑁𝐹𝐿𝑖

𝑘, but the potential flight legs in this step offer maintenance 

providers in their destination airports. The terms 𝜏𝑗𝑚 and 𝜂𝑗𝑚 are the pheromone trail and the 

heuristic function of the visiting maintenance arc 𝑣𝑚𝑎 (𝑗, 𝑚). The 𝜂𝑗𝑚 can be calculated as 1/𝑃𝑚. 

The term 𝑃𝑗𝑚
𝑘  is the probability of selecting flight leg 𝑗 that its destination airport offers maintenance 

provider 𝑚 to perform the maintenance for aircraft 𝑘. 

• Updating the pheromone trail; this step is conducted with the objective of reflecting the quality of 

the obtained solution. To do so, we use the following equations:  

𝜏𝑖𝑗,𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑖𝑗,𝑜𝑙𝑑 + ∆ 𝜏𝑖𝑗              (4.4) 

𝜏𝑗𝑚,𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑗𝑚,𝑜𝑙𝑑 + ∆ 𝜏𝑗𝑚              (4.5) 

∆ 𝜏𝑗𝑚 = ∆ 𝜏𝑖𝑗 =
𝑄

𝑐𝑜𝑠𝑡(𝐴𝑏𝑒𝑠𝑡)
            𝑖𝑓{𝑖, 𝑗} 𝑎𝑛𝑑 {𝑗, 𝑚} ⊆ 𝐴𝑏𝑒𝑠𝑡                (4.6) 

Eq. (4.4) is used to update the pheromone of the coverage arcs, whereas the pheromone of the 

visiting maintenance arcs is updated using Eq. (4.5). Note that 𝜌 is the evaporation rate parameter 

(0 < 𝜌 < 1). The concept of this step is that, at each iteration of the algorithm, the pheromone 

existing on the coverage and the maintenance arcs are eroded uniformly, so that the ants can ignore 

the bad paths and look for better paths in the next iterations. This erosion can be achieved by using 

the terms (1 − 𝜌)𝜏𝑖𝑗,𝑜𝑙𝑑 and (1 − 𝜌)𝜏𝑗𝑚,𝑜𝑙𝑑 to update the pheromone of the coverage arcs and the 

visiting maintenance arcs, respectively. To recognize the best solution found so far, the pheromone 

of the arcs that forms the best solution should be updated by depositing a quantity on these arcs. 

This can be achieved by the second terms of Eqs. (4.4) and (4.5), ∆ 𝜏𝑖𝑗 and ∆ 𝜏𝑗𝑚, which reflects 

the pheromone amount that will be deposited in the arcs. This amount is calculated using Eq. (4.6). 

It should be noted that 𝑄 is a pheromone depositing control factor, in which its value guides the 

algorithm whether to converge to the local optimal or to search randomly. The term 𝑐𝑜𝑠𝑡(𝐴𝑏𝑒𝑠𝑡) is 

the objective function of the best solution found so far.  

5.1.2. Lower-level ACO-based algorithm 

The lower-level ACO-based algorithm includes two main steps: 

• Forming maintenance teams; similar to the first step of the previous ACO, this step is conducted 

through the ants that move throughout the layered graph. Indeed, each ant forms a path that starts 
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from the starting node and ends at the ending nodes. Between the starting and ending nodes, each 

ant visits the layers sequentially and selects the appropriate team sizes. In other word, suppose an 

ant selects the team size while visiting a layer 𝑏𝑣 and intends to visit the next layer 𝑘𝑣 to select its 

team size. This can be achieved as in the previous ACO, by adoption of the following rules: 

 

𝑤 = {
arg _𝑚𝑎𝑥𝑤∈𝑁𝑘𝑣 { [𝜏𝑏𝑣𝑘𝑣𝑤]𝛼′

[𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟]
𝛽′

}          𝑖𝑓 𝑞 ≤ 𝑞0
′

𝑊                                                                                    𝑖𝑓 𝑞 > 𝑞0
′

           (4.7) 

𝑃𝑏𝑣𝑘𝑣𝑤 =
[𝜏𝑏𝑣𝑘𝑣𝑤]𝛼′

[𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟]
𝛽′

∑ [𝜏𝑏𝑣𝑘𝑣𝑤]𝛼′
[𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟]

𝛽′

𝑤∈𝑁𝑓 

           𝑖𝑓 𝑤 ∈ 𝑁𝑘𝑣                                   (4.8) 

 

where 𝑁𝑘𝑣 is the possible team sizes that could be formed for layer 𝑘𝑣. The terms 𝜏𝑏𝑣𝑘𝑣𝑤 and 

𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟 indicate the pheromone trail and heuristic function of the edge between layers 𝑏𝑣 

and 𝑘𝑣, whereas 𝛼′ and 𝛽′ reflect the relative importance of pheromone trail and heuristic function 

respectively. Here, 𝜂𝑏𝑣𝑘𝑣𝑤,𝑤𝑜𝑟𝑘𝑒𝑟 can be calculated as 1/(𝑤𝑓𝑘𝑣𝑠𝑚
𝜉

∗ 𝐶𝑤𝑘𝑣𝑠𝑚), and 𝑞0
′  is the 

exploration parameter (0 ≤ 𝑞0
′ ≤ 1). 

• Updating the pheromone; by using the same concept as in the previous ACO, this step can be done 

in accordance to the following equations: 

𝜏𝑏𝑣𝑘𝑣𝑤,𝑛𝑒𝑤 = (1 − 𝜌′)𝜏𝑏𝑣𝑘𝑣𝑤,𝑜𝑙𝑑 + ∆ 𝜏𝑏𝑣𝑘𝑣𝑤                                (4.9) 

∆ 𝜏𝑏𝑣𝑘𝑣𝑤  =
𝑄′

𝑐𝑜𝑠𝑡(𝐵𝑤𝑚,𝑏𝑒𝑠𝑡)
            𝑖𝑓 𝑒𝑑𝑔𝑒 ⊆ 𝐵𝑤𝑚,𝑏𝑒𝑠𝑡                (4.10) 

 

where 𝜌′ is the evaporation rate factor of the lower-level ACO-based algorithm, whereas 𝐵𝑤𝑚,𝑏𝑒𝑠𝑡 

reflects the objective function of the best solution found so far. The factor 𝑄′ is a pheromone 

depositing control factor of the lower-level ACO-based algorithm. 

So far, we present the main steps for the bi-level ACO-based algorithm to solve both the FDARP and the 

MSP. However, it is not clear how the Stackelberg equilibrium can be calculated and achieved. Therefore, 

in the next sub-section, we explain how the Stackelberg equilibrium can be calculated during the 

implementation of the bi-level ACO-based algorithm.   

5.1.3.  Calculating the Stackelberg equilibrium 

As mentioned, the LFSG includes two main players: the FDARP of the airline and the MSP of the 

maintenance providers. To simplify the explanation of the Stackelberg equilibrium, we let 𝑋0 represent the 

decision variables (𝑥𝑖𝑗𝑘𝑣, 𝑦𝑖𝑚𝑘𝑣, 𝑧𝑚𝑗𝑘𝑣, 𝐴𝑇𝐵𝑀𝑘𝑣𝑚, and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚
∗ ) taken by the FDARP of the airline, 

whereas 𝑋𝑚,𝑆𝑡𝑎𝑐𝑘 denotes the decision variables (𝑤𝑓𝑘𝑣𝑠𝑚 and 𝑅𝑇𝐴𝑀𝑘𝑣𝑚) used by the MSP of the 

maintenance providers. Based on the previous definitions, the response functions of the FDARP and the 

MSP can be defined as Eqs. (4.11), and (4.12), respectively. This means that the decision, 𝑋0, of the FDARP 

is a function, 𝑟0(.), of the variable 𝑋𝑚,𝑆𝑡𝑎𝑐𝑘 used by the MSP. Similarly, Eq. (4.12) indicates that the decision 

taken by the MSP is a function of the decision taken by the FDARP.                                  

𝑋0 = 𝑟0(𝑋𝑚,𝑆𝑡𝑎𝑐𝑘)                                (4.11) 

𝑋𝑚,𝑠𝑡𝑎𝑐𝑘 = 𝑟𝑚(𝑋0)                               (4.12) 
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To achieve the Stackelberg equilibrium, the upper-level ACO based algorithm and the lower-level ACO-

based algorithm are used in a dynamic reaction process with multiple iterative stages. Suppose that at a 

given iterative stage 𝑡, with the decision 𝑋𝑚,𝑆𝑡𝑎𝑐𝑘
𝑡  taken by the MSP and the decision 𝑋0

𝑡 taken by the 

FDARP, the FDARP and the MSP make the responses as shown in Eqs. (4.13) and (4.14) to obtain their 

decisions at the iterative stage 𝑡+1.  

𝑋0
𝑡+1 = 𝑟0(𝑋𝑚,𝑆𝑡𝑎𝑐𝑘

𝑡 )                                (4.13) 

 𝑋𝑚,𝑠𝑡𝑎𝑐𝑘
𝑡+1 = 𝑟𝑚( 𝑋0

𝑡)                                  (4.14) 

The Stackelberg equilibrium can be achieved if the following conditions exist and are satisfied [31, 63]: 

 ‖𝑋0
𝑡+1 − 𝑟0(𝑋𝑚,𝑆𝑡𝑎𝑐𝑘

𝑡 )‖ == 0                                (4.15) 

 ‖𝑋𝑚,𝑠𝑡𝑎𝑐𝑘
𝑡+1 − 𝑟𝑚( 𝑋0

𝑡)‖ == 0                                  (4.16) 

This means that both the FDARP and the MSP are unwilling to change their decisions because any change 

may have a negative impact on their objective functions. Therefore, the bi-level ACO-based algorithm is 

terminated.   

5.2. Obtaining the Nash equilibrium  

Achieving the Nash equilibrium necessitates solving the NG model expressed in Eqs. (3.0) – (3.2). In the 

NG model, the net profit is calculated as a continuous and differentiable function. Therefore, the NG model 

can be solved using the standard optimization approaches, such as partial differentiation with respect to 

prices [31, 35]. Note here that the discrete decision variables 𝐶𝑤𝑘𝑣𝑠𝑚 and 𝑦𝑖𝑚𝑘𝑣 are determined by the 

LFSG, and their values are used in the NG. Therefore, the profit function is still continuous and 

differentiable. Based on the previous observation, we can obtain the optimal decision on 𝑃𝑚 for all the 

maintenance providers by using the following equation: 

𝜕𝑁𝑃𝑚

𝜕𝑃𝑚
= 0         ∀ 𝑚 ∈ 𝑀𝑇                   (5.0) 

To simplify the calculation of the Nash equilibrium, we design 𝑋𝑚,𝑁𝑎𝑠ℎ to represent the decision variable 

𝑃𝑚 taken by maintenance provider 𝑚. For any maintenance provider 𝑚, the decision variables of all other 

maintenance providers can be expressed as 𝑋−𝑚,𝑁𝑎𝑠ℎ. Based on the previous definitions, the response 

functions of maintenance provider 𝑚 can be defined as: 

𝑋𝑚,𝑁𝑎𝑠ℎ = 𝑟𝑚(𝑋−𝑚,𝑁𝑎𝑠ℎ)                                (5.1) 

This means that the decision, 𝑋𝑚, taken by maintenance provider 𝑚 is a function of the variable 𝑋−𝑚,𝑁𝑎𝑠ℎ 

taken by all other providers. To achieve the Nash equilibrium, the maintenance providers normally behave 

in a dynamic manner with multiple iterative stages. Suppose that at a given iterative stage 𝑡, with the 

decision 𝑋−𝑚,𝑁𝑎ℎ
𝑡  taken by all other maintenance providers, the maintenance provider 𝑚 makes the response 

shown in Eq. (5.2) to obtain its decisions at the iterative stage 𝑡+1.  

𝑋𝑚,𝑁𝑎𝑠ℎ
𝑡+1 = 𝑟𝑚(𝑋−𝑚,𝑆𝑡𝑎𝑐𝑘

𝑡 )                                (5.2) 

The Nash equilibrium can be achieved if the following conditions exist and are satisfied [31, 63]: 
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 ∑ ‖𝑋0
𝑡+1 − 𝑟0(𝑋𝑚,𝑆𝑡𝑎𝑐𝑘

𝑡 )‖𝑚∈𝑀𝑇 == 0                                (5.3) 

This means that none of the maintenance providers are willing to change their pricing decisions because 

any change may result in a loss of profit. 

5.3. Obtaining the overall Nash equilibrium 

To obtain the overall Nash equilibrium, we need to use an algorithm that can simultaneously achieve both 

the Stackelberg equilibrium and the Nash equilibrium. For this purpose, we propose an iterative game 

algorithm that couples the bi-level ACO-based algorithm and the analytical method described in the 

previous sections. The detailed procedures of the iterative game algorithm are as follows: 

The iterative game algorithm 

Step 0: Initialize the parameter values of the bi-level ACO-based algorithm (i.e., 

𝛼, 𝛽, 𝑞0, 𝜌, 𝑄, 𝛼′, 𝛽′, 𝑞0
′ , 𝜌′, 𝑄′, and the number of ants). Then, set a value for the maximum number 

of iterative stages, 𝑡 ∈ 𝑇.  

Step 1: Initialize the number of iterative stages 𝑡 = 1. 

Step 2: Determine the routing plan decisions by applying Steps 2.1 – 2.14. 

Step 2.1: Construct two lists such that the first one stores the aircraft (𝐾) and the second one contains 

the flight legs (𝐼). Note that each aircraft is represented by an ant. 

Step 2.2: Examine the status of the 𝐾 list. In the case of a nonempty 𝐾 list, select a single aircraft 

or ant from the 𝐾 list to start its route construction, otherwise proceed to Step 2.13. 

Step 2.3: Using the 𝐼 list, examine its status. In the case of a nonempty 𝐼 list, go to Step 2.4, 

otherwise go to Step 2.13. 

Step 2.4: Initiate the route construction for the ant 𝑘 by picking a random flight leg 𝑖 from the 𝐼 list. 

Step 2.5: By considering the constraints described by Eqs. (1.7) and (1.8), scan through the 𝐼 list 

and identify the possible flight legs to be covered. If there are no more possible flight legs 

for coverage, go to Step 2.12, otherwise go to Step 2.6. 

Step 2.6: Using the state transition and probability rules described in Eqs. (4.0) and (4.1), pick out 

the next flight leg 𝑗. 

Step 2.7: Check whether the operational constraints expressed in Eqs. (1.15) – (1.17) are violated 

after selecting the flight leg 𝑗. In the case of violation, proceed to Step 2.8, otherwise go to 

Step 2.11. 

Step 2.8: Scan through the 𝐼 list to identify the possible flight legs in which the destination airports 

offer maintenance providers. This can be done by using constraints in Eqs. (1.9) and (1.10). 

If there are no more possible choices for coverage, go to Step 2.12, otherwise go to Step 

2.9. 

Step 2.9: Using the state transition and probability rules described in Eqs. (4.2) and (4.3), pick out 

the next flight leg 𝑗 such that the ant 𝑘 covers that flight and then receives the maintenance 

operation. Note that when 𝑡 = 1, the 𝑃𝑚 included in this step can be assumed by the 

FDARP of the airline, but when 𝑡 > 1, the 𝑃𝑚 is determined based on the NG prices, as 

calculated in Step 4.  

Step 2.10: After completing the maintenance operation, the ant should resume covering the flight 

legs by following the constraints described in Eqs. (1.5), (1.6), and (1.11) – (1.14). Note 

that when 𝑡 = 1, the departure time for the aircraft from the maintenance station is assumed 
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by the FDARP of the airline through constraints (1.13), but when 𝑡 > 1, this time is 

determined by the MSP of the maintenance providers, as stored in Step 3.14. 

Step 2.11: Add the chosen flight leg to the route of ant 𝑘, then exclude that flight leg from the 𝐼 list 

and proceed to Step 2.5. 

Step 2.12: Terminate the route for ant 𝑘 by following the constraints stated in Eq. (1.4). Next, 

proceed to Step 2.2, after excluding the ant or aircraft 𝑘 from the 𝐾 list. 

Step 2.13: Conduct the pheromone trail updating process for the coverage and the visiting 

maintenance arcs, by following Eqs. (4.4) – (4.6). 

Step 2.14: For the existing iterative stage 𝑡, store the routing plan decisions in 𝑋0
𝑡. Next, calculate 

the solution of this stage and update the best solution found so far. 

Step 3: Determine the staffing plan decisions by applying Steps 3.1 – 3.15. 

Step 3.1: Construct a list called (𝑀𝑇), which includes all the maintenance providers.  

Step 3.2: Examine the status of the 𝑀𝑇 list. In the case of an empty 𝑀𝑇 list, go to Step 3.15, 

otherwise pick a random maintenance provider 𝑚 and go to Step 3.3. 

Step 3.3: Based on the decisions stored in 𝑋0, extract the aircraft that will be maintained by the 

selected maintenance provider and store them in a list named (𝐾𝛹 ). 

Step 3.4: Prepare a list called 𝐴𝑁𝑇 to store the ants designed to construct the staffing plan. 

Step 3.5: Using the 𝐴𝑁𝑇 list, examine its status. In the case of an empty 𝐴𝑁𝑇 list, proceed to Step 

3.14, otherwise randomly pick an 𝑎𝑛𝑡 from the 𝐴𝑁𝑇 list and put it in the starting node of 

the graph as its current position.  

Step 3.6: Check the condition of the 𝐾𝛹  list. If all the aircraft stored in the 𝐾𝛹 list are visited by 

the selected 𝑎𝑛𝑡, go to Step 3.11, otherwise proceed to Step 3.7. 

Step 3.7: By using the 𝐾𝛹 list, select the first unvisited aircraft 𝑘𝑣 from the list and make it the next 

position to be covered by the 𝑎𝑛𝑡. 

Step 3.8: For the selected aircraft, determine its scheduled arrival and departure times by following 

the constraints stated in Eqs. (2.3) and (2.4). Next, determine the possible team sizes while 

considering the constraints described by Eqs. (2.2) and (2.5). 

Step 3.9: Using the state transition and probability rules described in Eqs. (4.7) and (4.8), select the 

team size required to maintain the selected aircraft. 

Step 3.10: Change the status of aircraft 𝑘𝑣 to a visited aircraft in the 𝐾𝛹 list. Then, let the 𝑎𝑛𝑡 move 

to layer 𝑘𝑣 as its current position and go to Step 3.6. 

Step 3.11: Terminate the role of the selected 𝑎𝑛𝑡 by putting it in the ending node of the layered 

graph.  

Step 3.12: Conduct the pheromone trail updating process by following Eqs. (4.9) and (4.10). 

Step 3.13: For all the aircraft stored in the 𝐾𝛹 list, change their status to unvisited and go to Step 

3.5. 

Step 3.14: For the existing iterative stage 𝑡, store the staffing plan decisions of maintenance provider 

𝑚 in 𝑋𝑚,𝑆𝑡𝑎𝑐𝑘
𝑡  and go to Step 3.2. 

Step 3.15: For the existing iterative stage 𝑡, calculate the solution and update the best solution found 

so far. 

Step 4: Determine the maintenance service price 𝑃𝑚 for each maintenance provider by applying Eq. (5.0) 

Step 5: Using Eqs. (4.15), (4.16), and (5.2), check whether the Stackelberg equilibrium and the Nash 

equilibrium are achieved. If both equilibriums are achieved, go to Step 6, otherwise increment the 

iterative stage and go to Step 2. 
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Step 6: Because the Stackelberg equilibrium and the Nash equilibrium are achieved, the overall Nash 

equilibrium is obtained. Then, terminate the algorithm.   

Figure 4 shows the flowchart of the iterative game algorithm. The upper-part of the figure shows the bi-

level ACO-based algorithm, which is used to handle the LFSG, whereas the lower-part of the figure 

illustrates the analytical method used to solve the NG. For the sake of computational convenience, we set 

the maximum number of iterative stages to be 500. The description of the iterative game algorithm shows 

that the existence of the overall Nash equilibrium is mainly dependent on two main equilibriums; the 

Stackelberg equilibrium and the Nash equilibrium. To get the Stackelberg equilibrium, it is necessary to 

find out feasible solutions for the FDARP and the MSP, then reach the convergence points, in which no 

player intends to change the taken decisions. To get the Nash equilibrium, it can be achieved by reaching 

the points, in which no player wants to change the pricing decision.  

As mentioned, finding out the feasible solutions for the FDARP and the MSP is first step to get the 

Stackelberg equilibrium. Imagine, if the maximum number of iterations is completed, and the feasible 

solutions cannot be achieved. This means that there is no feasible routing plan to meet the requirement of 

the staffing plan or vice versa. In this situation, the iterative game algorithm should be re-run for maximum 

100 runs as recommended by Yu and Huang [31], while setting the most sensitive factor, 𝑀𝐴𝑇, to be around 

6 and 8 hours. If the maximum number of runs is completed before finding out the feasible solutions, which 

was very rare during our preliminary experiments, the Stackelberg equilibrium cannot be got. 

Consequently, the overall Nash equilibrium cannot be derived. As mentioned earlier, reaching the 

convergence point is the second step after finding out the feasible solutions. Imagine, if the maximum 

number of iterations is completed while the feasible solutions are found out before reaching the convergence 

points. This necessitates re-running the iterative game algorithm while using the same conditions the first 

run with the same maximum number of runs that is mentioned earlier. In case of completing the maximum 

number of runs before reaching the convergence points, which was also rare in our preliminary experiments, 

the Stackelberg equilibrium cannot be got. Consequently, the overall Nash equilibrium cannot be derived. 

Lastly, to find the Nash equilibrium, we need to reach the point in which all players do not change their 

decisions. To do so, we need feasible solutions for the FDARP and the MSP, as they contribute in the 

calculation of the pricing decisions. If the maximum number of iterations is completed and the feasible 

solutions are achieved before getting the Nash equilibrium, the iterative game algorithm should be re-run 

while using the same conditions the first run with the same maximum number of runs that is mentioned 

earlier. When the maximum number of runs is completed before getting the Nash equilibrium, which was 

again rare in our preliminary experiments, the Nash equilibrium cannot be got. Consequently, the overall 

Nash equilibrium cannot be derived. 
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6. Data analytics for non-propagated delay forecasting  

Using the iterative game algorithm to solve the proposed the SNGM is insufficient, because it misses how 

to calculate the NPD. Instead of the expected value approach, which focuses on the historical data, we use 

a data analytics technique that is able to consider massive amounts of information to forecast the NDP. This 

approach includes developing a neural network-based algorithm to capture the nonlinear relationship 

among the various factors that affect the NPD. The main steps of this algorithm are as follows. 

 

Figure 4: Flowchart of the iterative game algorithm. 
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The neural network-based algorithm 

Step a: Data collection. The data are collected from a major airline in the Middle East. The data include 

certain features such as the flight number, departure airport, arrival airport, arrival time, 

departure time, flight duration, the NPD for each flight, and other factors.  

Step b: Data preprocessing. For the collected data, a flight is considered delayed even if its related 

NPD time is less than 15 minutes, because any NPD time can easily cause a propagated delay 

in practice. Moreover, NPDs longer than 170 minutes are discarded, because this indicates a 

severe disruption, which is beyond the scope of our study [64]. 

Step c: Define the input sets. These sets include historical information and other factors that affect the 

NPD, and can be summarized as follows. 

i. Set 1: flight number, departure airport, departure time, arrival airport, arrival time, 

visited maintenance station, day of operation, and flight duration. 

ii. Set 2: bad weather indicator. It is known that NPDs frequently occur during bad 

weather. Because it is difficult to predict the time of bad weather, a 3-point scale 

indicator is proposed, in which the values of 1, 2, and 3 indicate low chance, medium 

chance, and high chance of bad weather occurrence, respectively.  

iii. Set 3: maintenance station congestion indicator. An NPD can be caused by a delay in 

the maintenance station in cases of congestion. To capture this situation, we use a 4-

point scale indicator, with values of 1, 2, 3, and 4, which indicate below 30% station 

utilization, 30%-60% station utilization, 60%-80% station utilization, and over 80% 

station utilization, respectively.  

iv. Set 4: season indicator. It is known that NPDs frequently occur during holiday seasons, 

such as Christmas and summer vacations. Accordingly, a 3-point scale indicator is 

used, in which the values of 1, 2, and 3 indicate a normal day, one week before or after 

the holiday season, and the holiday season, respectively.   

Step d: Design the structure of the neural network. We use a multilayer feed-forward neural network 

because this structure is commonly adopted. The network consists of an input layer, hidden 

layer, and output layer. For the activation function, we use the sigmoid function, due to its 

efficiency in capturing the non-linear relationships between different factors. 

Step e: Train the neural network. To achieve this, we use the supervised learning method, in which 

70% of the data is used for training and the rest is used for validation.  

7. Case study 

7.1. Problem context 

After proposing the SNGM to capture the coordination between the FDARP of the airline and the MSP of 

the maintenance providers, and the competition among the maintenance providers, it is necessary to 

demonstrate the effectiveness of the proposed model as a decision tool for airlines and maintenance 

providers. For this purpose, a case study based on real data acquired from a major airline and four 

maintenance providers located in the Middle East is presented. Note that the case selected from the airline 

represents the fleet with the longest average PD. This is to assess the performance of the proposed model 

to minimize the PD. The details of the collected data are presented in Table 1. The proposed algorithm and 

model were coded in MATLAB R2014a, and tested on an Intel i7 CPU processor with 2.50 GHz CPU clock 

speed and an 8 GB RAM laptop running Windows 10. 
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Table 1: Characteristics of the collected data 

Airline  

𝐼 320 flight legs 

𝐹𝑆 36 aircraft  

𝐴 8 airports 

𝐶𝑚𝑎𝑥 10 take-offs 

𝑇𝑚𝑎𝑥 40 hours 

𝑀𝑇 4 maintenance providers  

𝑇𝑅𝑇 45 minutes  

𝑀𝐴𝑇 8 hours 

𝐶𝑝𝐷 

𝐶𝑝𝐷 = {
750                 𝑃𝐷𝑖𝑗𝑘𝑣

𝜉
≤ 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

1250               𝑃𝐷𝑖𝑗𝑘𝑣
𝜉

> 16 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 

Maintenance provider 1 Maintenance provider 2 Maintenance provider 3 Maintenance provider 4 

• 𝑙𝑘𝑣=50 hrs 

Morning shift (8 hrs) 

𝑤𝑆𝑚
𝑙  8 workers 

𝑤𝑠𝑚
𝑢  15 workers 

𝑄𝑠
𝑚𝑎𝑥 150 workers 

 

Afternoon shift (8 hrs) 

𝑤𝑆𝑚
𝑙  5 workers 

𝑤𝑠𝑚
𝑢  10 workers 

𝑄𝑠
𝑚𝑎𝑥 100 workers 

 

Night shift (8 hrs) 

𝑤𝑆𝑚
𝑙  2 workers 

𝑤𝑠𝑚
𝑢  5 workers 

𝑄𝑠
𝑚𝑎𝑥 50 workers 

 

• 𝑙𝑘𝑣=50 hrs 

Morning shift (8 hrs) 

𝑤𝑆𝑚
𝑙  6 workers 

𝑤𝑠𝑚
𝑢  12 workers 

𝑄𝑠
𝑚𝑎𝑥 120 workers 

 

Afternoon shift (8 hrs) 

𝑤𝑆𝑚
𝑙  4 workers 

𝑤𝑠𝑚
𝑢  8 workers 

𝑄𝑠
𝑚𝑎𝑥 80 workers 

 

Night shift (8 hrs) 

𝑤𝑆𝑚
𝑙  2 workers 

𝑤𝑠𝑚
𝑢  4 workers 

𝑄𝑠
𝑚𝑎𝑥 40 workers 

 

• 𝑙𝑘𝑣=50 hrs 

Morning shift (12 hrs) 

𝑤𝑆𝑚
𝑙  8 workers 

𝑤𝑠𝑚
𝑢  15 workers 

𝑄𝑠
𝑚𝑎𝑥 100 workers 

 

Night shift (12 hrs) 

𝑤𝑆𝑚
𝑙  5 workers 

𝑤𝑠𝑚
𝑢  10 workers 

𝑄𝑠
𝑚𝑎𝑥 100 workers 

 

 

• 𝑙𝑘𝑣=50 hrs 

Morning shift (12 hrs) 

𝑤𝑆𝑚
𝑙  7 workers 

𝑤𝑠𝑚
𝑢  12 workers 

𝑄𝑠
𝑚𝑎𝑥 80 workers 

 

Night shift (12 hrs) 

𝑤𝑆𝑚
𝑙  5 workers 

𝑤𝑠𝑚
𝑢  10 workers 

𝑄𝑠
𝑚𝑎𝑥 80 workers 

 

 

    

 

7.2. Non-propagated delay forecasting  

The data presented in the previous section are insufficient to conduct the experiments because they miss 

the NPD. To obtain the NDP, the proposed neural network-based algorithm is applied. For this purpose, we 

collected the information for all of the flights recorded by the airline from January 2017 to December 2017, 

including the flight number, departure airport, departure time, arrival airport, arrival time, visited 

maintenance station, day of operation, and flight duration. The data comprise 292,000 flights flown by 12 

fleets. After analyzing the data, the top fleet with the longest average PD was selected to test the capability 

of the proposed model in minimizing the PD and test the potential of the proposed neural network-based 

algorithm for forecasting accurate NPDs. The features of the selected fleet are summarized in Table 2. Note 

that the selected fleet in this section and the previous section are same. 

Table 2: Features of the selected fleet. 

Fleet Total 

flights 

Delayed flights NPD (minutes) PD (minutes) 

No. % Total  Average  Total  Average  

A300 29,440 6,597 22.41 333,849 11.34 287,628 9.77 
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7.3. Data analytics for predicting the demand-price function for the maintenance providers 

The experiments necessitate predicting the demand-price function for the maintenance providers. For this 

purpose, data analytics in the form of a regression is adopted, because this is one of the most efficient ways 

to capture the relationship between a response variable and one or multiple predictors. Because the demand 

for a maintenance provider is a function of its own price and the prices offered by all other providers, the 

demand is a function of multiple predictors. Therefore, the multiple linear regression algorithm, as a part 

of the Minitab standard tools, is reasonable to be used in this study. Note that this regression algorithm is 

based on real data collected from the maintenance providers for the January 2017 to December 2017 period. 

The multiple linear regression algorithm is used to obtain the demand-price function for each maintenance 

provider, as shown in Table 3. Two indicators are used to assess the quality of the obtained relationship. 

The first indicator is the R-squared, which indicates how well the obtained model fits the collected data. 

The results in Table 3 show that the R-squared indicators for all of the functions are larger than 90%, 

indicating that the regression model fits the collected data very well. The second indicator is the 𝑝-value, 

which indicates the relationship between the response variable and the predictors. If the obtained 𝑝-value 

is larger than the selected significance level, there is no significant relationship between the response 

variable and the predictors. The 𝑝-values presented in Table 3 indicate that there is a significant relationship 

between the demand and the prices because the 𝑝-values are smaller than the significance level, which is 

5% in this study. 

Table 3: Regression analysis between the demand and the related prices. 

Maintenance 

provider 

Regression fitted line 

𝑫𝒆𝒎 = 𝜽𝒎 − 𝝑𝒎𝑷𝒎 + ∑ 𝜹𝒎𝒈𝑷𝒈

𝒈∈𝑴𝑻

 

R-squared Predictor 

variable  

𝒑-value 

1 𝐷𝑒1= 35 - 0.00428 𝑃1+ 0.00117 𝑃2+ 0.00150 𝑃3 + 0.000842 𝑃4 98.7% 𝜃1 

𝑃1 

𝑃2 

𝑃3 

𝑃4 

0.001 

0.000 

0.000 

0.000 

0.000 

2 𝐷𝑒2= 30 - 0.00296 𝑃2+ 0.00105 𝑃1+ 0.00097 𝑃3 +0.000604 𝑃4 

 

94.5% 𝜃2 

𝑃2 

𝑃1 

𝑃3 

𝑃4 

0.000 

0.000 

0.000 

0.000 

0.000 

3 𝐷𝑒3= 32 - 0.00348 𝑃3+ 0.00121 𝑃1+ 0.00120 𝑃2 +0.000996 𝑃4 

 

 

95.4% 𝜃3 

𝑃3 

𝑃1 

𝑃2 

𝑃4 

0.000 

0.000 

0.000 

0.000 

0.000 

4 𝐷𝑒4= 27 - 0.00235 𝑃4+ 0.000900 𝑃1+ 0.00049 𝑃2 +0.00059 𝑃3 

 

 

91.1% 𝜃4 

𝑃4 

𝑃1 

𝑃2 

𝑃3 

0.000 

0.000 

0.000 

0.000 

0.000 

 

7.4. Results of the Stackelberg-Nash model 
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In this section, the results obtained by solving the Stackelberg-Nash model are reported using the iterative 

game algorithm. The values of the parameters of the iterative game algorithm first need to be set. For the 

sake of computational convenience, the iterative game algorithm uses the following values: 𝛼=1, 𝛽=2, 

𝑞0=0.95, 𝜌=0.05, 𝑄=0.01, 𝛼′=2, 𝛽′=2, 𝑞0
′ =0.85, 𝜌′=0.05, 𝑄′=0.01, ant size for upper-level ACO=fleet size, 

and ant size for lower-level ACO=number of flights in which their aircraft are maintained.-The results of 

the iterative game algorithm are provided in Figures 5 and 6. Figure 5 shows the results of the LFSG that 

acts as a coordinated system between the FDARP of the airline and the MSP of the maintenance providers. 

Figure 5 indicates that after 450 iterative stages, the algorithm reaches the convergence point, meaning that 

none of the players are willing to change their decisions, resulting in overall Nash equilibrium values of 

477,295 for the airline and 207,520 for the maintenance providers. Figure 6 shows the results of the NG 

among the maintenance providers, including the prices and net profits achieved at the overall Nash 

equilibrium.  

 

Figure 5: Convergence of the iterative game algorithm 

As mentioned, the proposed model consists of two sub-games: the LFSG and the NG. To determine the 

overall performance of the proposed model, we need to address the following questions: “what is the role 
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and importance of each game of the model,” “what determines the model performance,” and “is it due to 

considering the coordination using the LFSG or to considering the competition through the NG?” To answer 

these questions, we extend our experiments to compare different settings in the proposed model, as shown 

in Sections 7.5 and 7.6. 

7.5. Importance of the NG 

To determine the importance of the NG, which captures the competition among the maintenance providers, 

two cases are compared: considering the competition and neglecting the competition. The first case can be 

represented using the model proposed in the previous section, which considers both the coordination 

through the LFSG and the competition through the NG. The second case can be represented by a model 

that only considers the coordination through the LFSG, so that the competition is neglected. The second 

model can be captured by Eqs. (1.0) – (2.6) and solved by the bi-level ACO-based algorithm presented in 

Section 5.1. This bi-level ACO-based algorithm can be implemented by applying all the steps of the iterative 

game algorithm, while neglecting step 4, the Nash equilibrium consideration in step 5, and any prices set 

by the NG throughout the algorithm. The results of the bi-level ACO-based algorithm are summarized as 

follows. The algorithm converges after 500 iterative stages and returns Stackelberg equilibrium values of 

570,381 for the airline and 207,250 for the maintenance providers.  

The performance of the two models in handling the airline and maintenance providers’ costs is shown in 

Table 4. The results show that the first model outperforms the second by about 16.32% in handling the 

airline costs, especially the maintenance costs. The first model outperforms the second because it considers 

the competition among the maintenance providers, which includes cutting the maintenance service prices, 

and thus enables the airline to identify the cheaper providers. This results in a reduction in the cost paid by 

the airline, as in the first model. In contrast to the first model, the second model neglects the competition, 

and the airline thus loses the opportunity to trace the cheaper prices due to competition, resulting in higher 

maintenance costs. The labor costs of the maintenance providers are mainly affected by the coordination 

between the airline and the maintenance providers, which includes adjusting the staffing plan decisions 

until the Stackelberg equilibrium is reached. Because the two models consider the coordination through the 

LFSG, there is no expected change in the labor cost. 

Table 4: The performance of the first and second models while handling the airline and maintenance providers’ costs 

Costs First model  

(Coordination + Competition) 

Second model  

(Only Coordination)  

Outperformance (%) 

 

Propagated delay and 

maintenance costs by 

airline 

477,295 570,381 16.32 

Labor cost by 

maintenance providers  

207,500 207,500 0 

Table 5 shows the results of the two models while handling the net profit of the maintenance providers. It 

can be seen from Table 5 that three out of four providers achieve better profits while using the first model. 

This improvement is due to the competition, which includes the process of cutting the price of the 

maintenance service. Indeed, cutting the price leads to more demand from the airline, and thus results in 

increased net profit. Of course, not all the providers increase their profits due to the competition, because 

some of them cannot cut their prices due to certain financial obligations. This is why the last provider suffers 

from the competition effect, with the profit decreased by around 39%. 
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Table 5: The performance of the first and second models while handling the net profit of maintenance providers. 

Maintenance provider First model  

(Coordination + Competition) 

Second model  

(Only Coordination)  

Improvement (%) 

 

Provider 1 106,100 56,982 86.19 

Provider 2 64,082 62,162 3.08 

Provider 3 57,431 46,622 23.18 

Provider 4 34,931 56,982 -38.69 

To summarize, considering the competition through the NG is fruitful for the airline because it leads to 

reduced maintenance costs. The competition is also useful for the majority of the providers because it helps 

attract more demand from the airline, resulting in increased net profit. 

7.6. Importance of the LFSG  

Similar to the previous section, two cases are compared in this section: considering the coordination 

between the airline and maintenance providers, and neglecting this coordination. The first case can be 

captured by the first model proposed in the previous section. The second case can be represented by a model 

that only considers the competition through the NG, while neglecting the coordination, meaning a separate 

FDARP of the airline and MSP of the maintenance the providers. We call the model for this second case 

the third model, in which the FDARP of the airline can be represented using Eqs. (1.0) – (1.22), while 

neglecting the linkage constraints expressed in Eq. (1.14). The MSP of the maintenance providers of the 

third model can be represented using Eqs. (2.0) – (2.6), while redesigning the constraints in (2.1) as 

𝑅𝑇𝐴𝑀𝑘𝑣𝑚 = 𝑆𝐷𝑇𝑘𝑣𝑚. Finally, the competition captured by the third model can be represented using Eqs. 

(3.0) – (3.2). This third model can be solved as follows. First, the FDARP and the MSP can be solved using 

the upper and lower-level ACO-based algorithms, respectively. These algorithms are expressed in steps 2 

and 3 of the iterative game algorithm. Second, the competition part can be handled using the analytical 

method explained in Section 5.2. The results of the upper and lower-level ACO-based algorithms are as 

follows. The upper-level algorithm converges after 470 iterations and returns its best value of 526,815 for 

the airline, whereas the lower-level algorithm converges after 500 iterations and achieves its best value of 

265,705 for the maintenance providers.   

Table 6 summarizes the performance results of the first and third models while handling the airline and 

maintenance providers’ costs. The results show that the first model outperforms the third model by about 

9.40% and 22% while handling the airline and maintenance providers’ costs, respectively. This 

outperformance arises because considering the coordination between the airline and the maintenance 

providers enables both players to keep adjusting their routing and staffing decisions to improve their results. 

This finally leads to reductions in the PD cost and the labor costs paid by the airline and the maintenance 

providers, respectively. In contrast to the first model, the third model neglects the coordination, and thus 

the airline and maintenance providers lose the opportunity to adjust their routing and staffing decisions, 

leading finally to higher costs for the airline and the maintenance providers. 
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Table 6: The performance of the first and third models while handling the airline and maintenance providers costs 

Costs First model  

(Coordination + Competition) 

Third model  

(Only competition) 

Outperformance (%) 

 

Propagated delay and 

maintenance costs by 

airline 

477,295 526,815 9.40 

Labor cost by 

maintenance providers  

207,500 265,705 22 

The results of the two models in handling the net profit of the maintenance providers are reported in Table 

7. The table shows that all the providers enjoy better profits using the first model instead of the third model, 

which neglects the coordination. This is mainly due to the coordination, which helps the maintenance 

providers to minimize the labor costs and results in increased net profits.   

Table 7: The performance of the first and third models while handling the net profit of maintenance providers. 

Maintenance provider First model  

(Coordination + Competition) 

Third model  

(Only competition) 

Improvement (%) 

 

Provider 1 106,100 80,271 32.17 

Provider 2 64,082 50,488 26.92 

Provider 3 57,431 45,196 27.07 

Provider 4 34,931 28,134 24.15 

In conclusion, considering the coordination between the airline and the maintenance providers through the 

LFSG is important for the airline because it leads to reduced PD costs. The maintenance providers can also 

benefit from the coordination because it helps to minimize their labor costs, resulting in increased net 

profits. 

7.7. Performance analysis 

The performance of the SNGM, as presented in the previous sections, is not sufficient to demonstrate its 

importance and superiority over the models in the literature. Therefore, we extend our experiments to 

compare the performance of the proposed model with that of the traditional models, which do not consider 

the coordination and competition. We name this traditional approach the fourth model. Our proposed model 

is the same as the first model presented in the previous two sections, whereas the fourth model is similar to 

the third model presented in Section 7.6, except it neglects the competition captured by the NG. The results 

of the upper and lower-level ACO-based algorithms can be summarized as follows. In fact, both algorithms 

converge after 300 iterations and return their best values of 645,866 for the airline and 265,705 for the 

maintenance providers.   

Table 8 compares the performance of the first and fourth models. The table shows that the first model 

outperforms the fourth model by about 26.10 % and 22% while handling the airline and maintenance 

providers’ costs, respectively. The first model performs better because it considers the coordination and 

competition games. The coordination between the airline and maintenance providers helps both players to 

keep adjusting their routing and staffing decisions, so that the airline can achieve a lower PD and the 

maintenance providers can reduce their labor costs. The competition game enables the airline to select the 

cheapest maintenance provider, resulting in reduced maintenance costs. In contrast to the first model, the 

fourth model neglects both the coordination and the competition, and the airline and maintenance providers 
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lose these opportunities for reducing costs, resulting in higher incurred costs for the airline and maintenance 

providers. 

Table 8: The performance of the first and fourth models while handling the airline and maintenance providers costs 

Costs First model  

(Coordination + Competition) 

Fourth model  

(No Coordination + No Competition) 

Outperformance 

(%) 

Propagated delay and 

maintenance costs by 

airline 

477,295 645,866 26.10 

Labor cost by 

maintenance 

providers  

207,500 265,705 22 

Table 9 reports the results of the two models while handling the net profit of the maintenance providers. 

The table shows that three out of four providers enjoy better profits while adopting the first model. The 

providers gain increased profits because the model considers the coordination, which leads to reduced labor 

costs, whereas taking the competition into account leads to increased demand. These two factors finally 

lead to the improved net profit of the providers. As aforementioned, some providers cannot reduce their 

prices due to certain financial restrictions and thus cannot attract more demand, leading to a reduction in 

their net profit, as shown in the case of Provider 4.  

Table 9: The performance of the first and fourth models while handling the net profit of maintenance providers. 

Maintenance provider First model  

(Coordination + Competition) 

Fourth model  

(No Coordination + No Competition) 

Improvement 

(%) 

Provider 1 106,100 42,054 152.29 

Provider 2 64,082 45,849 39.76 

Provider 3 57,431 34,387 67.01 

Provider 4 34,931 42,028 -16.88 

In conclusion, the modeling of the coordination between the airline and maintenance providers through the 

LFSG and the competition among the maintenance providers through the NG is important for airlines and 

maintenance providers. The airlines enjoy lower PD costs owing to the coordination and lower maintenance 

costs due to the competition. Moreover, the maintenance providers achieve lower labor costs due to the 

coordination, whereas the net profits of the majority of providers improve while considering the 

competition.  

In this study, we propose a neural network-based algorithm to improve the forecasting of the NPD. To 

demonstrate the importance of this algorithm, we extend our experiments to compare the performance of 

the proposed algorithm with that of the expected value approach. In the experiments, we use the two 

methods to forecast the NPD for the collected data and then use the forecasted NPD to solve the proposed 

SNGM. The results are summarized in Table 10. The results show that the neural network-based algorithm 

is more accurate than the other method because it considers more factors that affect the NPD, including bad 

weather, the holiday seasons, and the maintenance station congestion factors. In addition, the neural 

network-based algorithm outperforms the other method by about 7.82% while handling the airline costs. 

Specifically, the expected value approach underestimates the NPD and, because the delay is easily 

propagated, this results in a higher PD cost, which in turn leads to increased airline costs. In contrast, the 
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neural network-based algorithm provides an accurate NPD, which mitigates the problem of delay 

propagation. As a result, the related costs are minimized, thus resulting in reduced airline costs.  

Table 10: Results obtained by the different forecasting methods    

Output  Neural network-based algorithm Expected value approach Improvement (%) 

Root mean square 

error (RMSE) 

9.208 27.26 66.22 

Airline cost 477,295 517,785 7.82 

 

7.8. Performance of the iterative game algorithm 

In the previous sections, the performance of the SNGM is presented by using the iterative game algorithm. 

Indeed, solving our case study that includes a single test instance is not enough to demonstrate the efficiency 

of the iterative game algorithm, however, by using this case study, we are able to compare the performance 

of the SNGM with that of the traditional models, which do not consider the coordination and competition. 

Therefore, to assess the scalability and applicability of the SNGM, we extend the computational 

experiments by using additional test instances that are characterized by different sizes. In particular, the 

experiments include using another three test instances for FDARP and the same MSP test instance presented 

in our case study. It is important to note here that, the source of the new FDARP test instances is the same 

airline that delivers the data for our case study. Table 11 presents more information about the test instances. 

For all test instances, we assumed according to the airline that 𝑇𝑚𝑎𝑥 is 40 hours, 𝑀𝐴𝑇 is 8 hours, 𝑇𝑅𝑇 is 

45 minutes, and 𝐶𝑝𝐷 is the same as presented in Table 1.  

Before conducting our experiments, it is noteworthy that assessing the performance of any solution 

algorithm can be usually done using two criteria; the optimality gap and the computational time. Using the 

optimality gap is not sound in this study, as the SNGM and its iterative game algorithm seek for the 

equilibrium, not for optimal solution. Based on this observation, the computational time is used as a 

criterion for assessing the performance of the algorithm.  

Table 11: Characteristics of test cases 

Test case 
Airline (FDARP) Maintenance providers (MSP) 

𝐼 𝐹𝑆 𝐶𝑚𝑎𝑥 𝐴 𝑀𝑇 

The information is same as Table 1 

Case 1 160 11 7 5 4 

Case 2 240 30 10 13 4 

Case 3 (our case study) 320 36 10 8 4 

Case 4 400 42 10 28 4 

Table 12 summarizes the results obtained from the iterative game algorithm while solving the test instances 

with different sizes. The results of the LFSG, in terms of Stackelberg equilibrium, are reported in the first 

two columns of Table 12. In addition, the results of the NG, in terms of Nash equilibrium, are represented 

in columns 3 to 6 of Table 12. These two equilibriums constitute the overall Nash equilibrium. The last 

column of Table 12, 𝐶𝑃𝑈 (𝑚𝑖𝑛), records the computational time taken by the algorithm to reach the overall 

Nash equilibrium. Note that this time is recorded as obtained by the internal calculation function of 

MATLAB.  
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Looking at Table 12, a striking observation is that, the iterative game algorithm can provide reasonable 

performance, in terms of computational time. For instance, it takes around 8 minutes to solve the smallest 

case, case 1, whereas the largest case, case 4, takes around 33 minutes to be solved. This computational 

time performance is acceptable in practice; therefore, the algorithm can be implemented in real industry. 

Table 12: Performance characteristics of the iterative game algorithm. 

Test 

case  

LFSG NG Computational 

time  

𝑪𝑷𝑼 (𝒎𝒊𝒏) 

 

Airline 

costs 

Maintenance 

providers 

costs 

Profit of 

Maintenance 

provider 1 

Profit of 

Maintenance 

provider 2 

Profit of 

Maintenance 

provider 3 

Profit of 

Maintenance 

provider 4 

Case 1 186,156 127,000 20,533 15,029.64706 14,921 8,670 7.78 

Case 2 329,294 224,700 32,054 29,904 29,688 12,948 14.32 

Case 3  477,295 207,000 106,100 64,082 57,431 34,931 19.45 

Case 4 500,840 372,000 46,340 37,692 37,368 7,438 32.63 

 

7.9. Managerial implications  

Our findings have a number of managerial implications, which are outlined below: 

• Airlines can benefit from the leader-follower Stackelberg game by obtaining lower propagated delay 

costs due to the dominant position and being the leader in the game. The maintenance providers mainly 

benefit from the leader-follower Stackelberg game in terms of having lower labor costs, but with less 

advantage if compared with airline, owing to their subordinate position as the followers in the game.   

• The competition among the maintenance providers captured by the Nash game should favor the airlines 

because it provides opportunities to select cheaper providers, resulting in lower maintenance costs for 

the airline. Moreover, this game also benefits the majority of the providers because it helps them attract 

more demand from the airlines, and thus increases their net profit. However, this game does not help 

the providers that cannot reduce their prices because they suffer from lower demand and lower net 

profit. 

• The leader-follower Stackelberg game is more beneficial to the maintenance providers than the Nash 

game because all the providers enjoy lower labor costs owing to the leader-follower Stackelberg game, 

as shown in Table 7, whereas some providers suffer lower profits due to the Nash game, as shown in 

Table 5.  

• The change in the service prices of the maintenance providers affects the decisions of the airlines. This 

is apparent because the airlines enjoy an approximately 8% reduction in maintenance costs with 

improved routing plans. This change has a significant impact on the net profits of the maintenance 

providers, as demonstrated by the significant increase in the net profits of the first and third providers 

in the study. These results are shown in Table 5. 

• The iterative game algorithm can find the overall Nash equilibrium for the model within at maximum 

33 minutes. This computational time is acceptable in practice, and therefore, the algorithm can be 

implemented in practice. 

• Data analytics is an important tool for airlines because it can consider massive amounts of information, 

which in turn results in accurate non-propagated delay forecasting.   

8. Conclusions and future directions 
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In this study, we discuss how airline and maintenance providers interact to maximize their own profits. This 

is captured by our proposed SNGM, which consists of the LFSG between the airline and the maintenance 

providers and the NG between the maintenance providers. An iterative game algorithm is developed to 

determine the overall Nash equilibrium for the proposed model. 

To verify the superior performance of the proposed model, we present a case study based on real data 

acquired from a major Middle Eastern airline and four maintenance providers located in the same region. 

The case study requires forecasting the NPD for the airline and the demand-price function for each 

maintenance provider. To achieve this, we develop a neural network-based algorithm to forecast an accurate 

NPD based on a one-year dataset that contains information on the historical flight delays and other external 

factors, such as bad weather and maintenance station congestion. We also use a data analytics tool, called 

the multiple linear regression algorithm, to predict the relationship between the demand and price for each 

maintenance provider. The results reveal significant savings for the airline and the maintenance providers 

owing to the LFSG, whereas the NG improves the net profits for the majority of the maintenance providers.  

Although this study presents a formulation of a unique problem in the literature, there are some limitations 

that could be addressed in future research. First, the scope of the proposed FDARP is limited to a 4-day 

planning horizon, thus it would be interesting to solve the FDARP with a weekly planning horizon in which 

the size of the problem increases significantly. Second, we assume the workforce capacity for the MSP is 

deterministic. Another research direction would be to solve this model with a stochastic workforce capacity. 

In addition, the proposed model considers a single airline and multiple maintenance providers. Thus, it 

would be beneficial to extend this model to consider multiple airlines and multiple maintenance providers. 

Finally, in this study, the proposed game is limited to the price competition, thus it would be a fruitful idea 

to involve the tendering (auction mechanism) in the scope of the game.  
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