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Abstract 

As the number of countries liberalizing their skies increases, some airlines, notably carriers in 

the Middle East, have extended their hub-and-spoke networks beyond domestic borders. This 

allows them to serve international destinations without the need to go through traditional 

gateway hubs, so that they can compete with airline alliances relying on the traditional 

dual-gateway, or the so-called “dog-bone” networks. This paper proposes a stochastic 

optimization model to address the location choice issue of additional gateway airports, with a 

consideration of the competition between airlines running traditional dog-bone networks and 

hub-and-spoke networks in a liberalizing inter-continental market. A two-stage approach is 

adopted to model the effects of demand uncertainty. In the first stage, the future passenger 

demand is not observable and thus airlines or airline alliances aim to maximize their own 

expected profit by choosing additional gateway airports from the set of candidate gateway 

airports pre-specified by the regulator. In the second stage, with the passenger demand 

observed and the gateway scheme fixed, airlines determine their aircraft sizes and service 

frequencies to maximize their own profit, and air passengers choose routes that minimize their 

own travel disutility. Based on a calibration of the demand dispersion parameters in elastic 

demand function, the proposed model is applied to the China-Europe aviation market, which 

includes the inter-continental international market and the associated Chinese and European 

domestic markets, so that to ascertain the comparative advantages of different network 

configurations. The social welfares of the system under different demand scenarios and 

different gateway schemes are compared, and the sensitivity analyses of some parameters are 

also implemented. 
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1. Introduction 

It has widely been recognized that one of the most important innovations in the aviation 

industry is the development of hub-and-spoke (HS) networks. HS networks can yield 

“economies of traffic density” by combing traffic volumes on feeder routes and funneling 

them to a central hub, where aggregated traffic is then channeled to domestic or international 

markets – a process that ensures high load factors and enhanced revenues for network airlines 

(Lei and O’Connell, 2011). As a result, airlines have an incentive to enhance their service 

qualities with increased flight frequencies, and to compete more strategically (Caves et al., 

1984; Brueckner and Spiller, 1994; Zhang, 1996; Brueckner and Zhang, 2001; Brueckner, 

2004)1. Following deregulations in the US and European countries, HS networks have been 

extensively adopted in the aviation industry. However, in international especially 

inter-continental markets, the primary network configuration is the so-called “dog-bone” 

networks with two gateway hubs2 (Button, 2009, 2012). This is partly due to the fact that 

most countries forbid a foreign airline to freely serve their domestic cities, so that airlines in 

the origin-destination (OD) countries have to jointly offer international services via their 

gateway hubs by forming an international alliance or code-share agreement. Fig. 1 illustrates 

a pure HS network and a dog-bone network. Clearly, the latter is essentially an 

extended/linked HS network. In the case of an inter-continental market, it consists of two 

gateway hubs, G1 and G2, located in two continents respectively, each connected to local 

spoke markets via domestic feeder flights. One example of such a configuration is the alliance 

network by Lufthansa and Air China in the China-Europe market. In such a case, G1 may 

represent Lufthansa’s hub at Frankfurt serving the intra-European market, whereas G2 may 

represent Air China’s hub in Beijing which has extensive services to mainland China and 

some Asian destinations. Both Lufthansa and Air China are members of Star Alliance and 

have developed extensive cooperation agreement through joint venture. They could thus 

jointly provide a connecting service for passengers flying from Manchester UK to Zhengzhou 

China via their respective hubs in Frankfurt and Beijing. The local spoke sections from 

Manchester to Frankfurt and from Beijing to Zhengzhou are, respectively, served by 

Lufthansa and Air China. 

                                                               
1 It is worth noting that recent empirical studies suggest that PoP (Point-to-Point) networks may also offer 
airlines competitive advantages through specific types of network effects (See for example the study on 
Southwest Airlines’ network development pattern by Fu et al. (2019)). 
2 In the literature, the dog-bone network is also referred to as the “dumb-bell” network. Because HS airlines may 
use more than one hub to serve markets with large geographic coverage, for clear reference we will consistently 
use the term of “dog-bone network” instead of alternative names such as dual-gateway or dual-hub networks.  
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Fig. 1. Airline network configurations: (a) a pure HS network, and (b) a dog-bone network. 

 

The adoption of dog-bone networks is largely due to both operational and regulatory 

considerations. First, aircraft sizes for inter-continental flights are generally large, which are 

not economically feasible for direct flights linking two spoke destinations. In the case of a 

dog-bone network, large-sized aircraft can be used to serve hub-to-hub routes, while smaller 

aircraft may be used to serve hub-to-spoke/spoke-to-hub routes. Second, international 

regulations often prohibit airlines to develop extensive networks in foreign countries (Fu et al., 

2010). As a result, airlines have usually resorted to forming alliances (e.g., OneWorld, Star 

Alliance and Sky Team) or enter into code-sharing agreements to jointly offer international 

services via their existing hubs. This allows airlines to consolidate traffic volumes through 

their gateway hubs so as to further leverage the advantages of HS networks, such as increased 

frequencies and decreased operating costs.  

 

However, in the past decades, the aviation industry has been experiencing some changes in 

technologies and regulatory policies. For example, relatively small-sized aircraft are 

introduced which can serve long-distance routes efficiently (e.g., A350 and B787 can serve 

long-distance routes with a seating capacity of about 300). As more countries are liberalizing 

their skies, it is now possible for airlines to expand their networks extensively across national 

borders. Carriers in the Middle East, such as Emirates, have been able to expand their HS 

networks to serve a large number of destinations in Europe, Asia, and North America. Thus, 

they can by-pass regional gateways and compete with airline alliances relying on dog-bone 

networks. Emirates, for example, now serve 144 destinations around the world directly out of 

Dubai3, where passengers only need to connect once for their inter-continental flights. Turkish 

Airlines, which developed extensive networks over Europe and Africa, has been adopting the 

similar strategy to expand its network in Asia Pacific.  

 

                                                               
3 According to OAG (Official Airline Guide) database, as of late 2017 these include 40 destinations in Europe 
and 42 destinations in Asia, respectively. 
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The fast expansion of the Middle East carriers has led to on-going policy debates and 

competition concerns. International aviation operates within the framework of the 1944 

Chicago Convention, under which airlines’ rights are primarily regulated by bilateral air 

services agreements (ASAs) between each country-pair. Other than a few regional open-skies 

in EU and ASEAN, most aviation liberalizations have been implemented on a bilateral basis. 

This has led to the formation of dog-bone networks which are jointly operated by alliance 

airlines in the origin and destination (OD) countries. As HS networks expand beyond national 

borders, airlines in a third country can also compete in that OD market by utilizing the 6th 

freedom. This could significantly change the ways that airlines compete and thus the 

traditional bilateral negotiations of air transport liberalization. For example, the EU and China 

should consider the competitiveness of Middle East airlines in the inter-continental aviation 

market during the process of negotiating bilateral ASAs, even though the Middle East carriers 

are not directly involved in these negotiations. Regulations on airline alliances or code share 

agreement need also to be re-evaluated, because they significantly influence airline 

competition and operation.  

 

Airlines’ competitive strategies and network development also need to be revisited. Each type 

of networks has its own advantages and disadvantages. The dog-bone network is likely to 

bring airlines substantial cost savings via traffic consolidation on the hub-to-hub links. 

However, passengers will spend more time on flight connection. Global HS network is more 

convenient because the passengers can just transfer one time at its global hub airport. 

However, it can only serve sufficiently large destinations, which can fill long-range 

wide-body aircraft, and may need to be authorized the sixth freedom by the origin and 

destination countries. Despite the inter-continental HS network expansion by major Middle 

East carriers, it is unclear how the airlines’ HS network developments influence those of 

traditional dog-bone networks. Would these two network configurations each secure certain 

niche market with distinctive competitive advantages? Should governments take into account 

airline competition in ASA negotiations or should they focus on providing general 

infrastructures such as airport capacities? These policy and managerial issues need to be 

thoroughly addressed, as more countries are liberalizing their skies. For example, mainland 

China has been adopting more liberalized policies in the international markets, notably those 

to Europe and ASEAN countries under its Belt-and-Road initiative. If the dog-bone network 

will continue to dominate the future aviation market, more investments should be made on 

existing and potential gateway hubs. Otherwise, European and Chinese airlines should 
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re-think their alliance strategies and try to build their own global HS networks with more 

long-range aircraft.   

 

As afore-mentioned, a dog-bone network in the inter-continental aviation market consists of at 

least two sub-networks, each of which also serves the associated intra-continental aviation 

market. Obviously, the passenger demand in the local or domestic markets has significant 

impacts on the inter-continental market and the locations of the new gateway airports in the 

dog-bone network. On one hand, the inter-continental travelers may make trips in the 

destination continent, which contributes to the passenger demand of the local or domestic 

markets. On the other hand, most of the air passengers on the spoke-to-hub/hub-to-spoke links 

are the domestic air passengers. Ignoring the passenger demand of the domestic aviation 

market may lead to significant biases of modeling the airlines’ decisions and evaluating the 

competition between dog-bone network and HS network. 

 

In summary, an investigation on the effects of airline network competition is important for 

both airlines and regulators. For airlines, they could optimize and reconfigure their networks 

to improve their competitiveness. For regulators such as the Civil Aviation Administration of 

China (CAAC), a good assessment of the competition effects will help them design the related 

policies, such as aviation liberalization (Fu et al., 2010, 2015), slot allocation at major airports 

(Li et al., 2010; Sheng et al., 2015, 2019), and the approval of airline alliances or code share 

agreements. More importantly, regulators should not only take care of their national carriers, 

but also customers. If Chinese passengers enjoy substantially better services at lower costs 

due to increased competition (possibly the competition from Middle East carriers), then the 

Chinese government should promote liberalization even if Chinese airlines may lose some 

market shares.  

 

To address these important issues in this paper, a stochastic optimization model accounting 

for the effects of passenger demand uncertainty is first proposed. In the proposed model, the 

interactions between two types of stakeholders, namely the airlines and the air passengers, are 

explicitly considered. A two-stage approach is used to deal with the effects of demand 

uncertainty. In the first stage, the future passenger demand is not observable, and thus airlines 

or airline alliances maximize their own expected profits through deciding the locations of new 

gateway airports from a set of candidate gateway airports pre-specified by the regulator. In the 

second stage, with passenger demand observed and the gateway scheme fixed, airline 
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alliances operating the dog-bone networks and an airline running an inter-continental HS 

network compete for the inter-continental aviation market. Furthermore, the related domestic 

markets are also discussed simultaneously. Both the airline alliances and the airlines operating 

HS networks maximize their own profits by optimizing their aircraft sizes and frequencies. A 

heuristic solution algorithm combining the diagonalization method and the Hooke-Jeeves 

method is proposed to solve the proposed model. Then, a parameter calibration method is 

presented to estimate the value of the demand dispersion parameter in the elastic demand 

function for each OD pair. The value of such a demand dispersion parameter in the previous 

studies is usually assumed to be the same across OD pairs, and is seldom calibrated based on 

real market demand data. This may lead to an increased gap between the estimated and actual 

realized passenger demand. Therefore, a parameter calibration method should be presented to 

estimate the demand dispersion factor for each OD pair through collecting real data of the OD 

passenger demand matrix. Finally, a case study of the China-Europe aviation market 

(including the inter-continental international market and the Chinese and European domestic 

markets) is analyzed to illustrate the applications of the proposed model. The effects of 

aviation liberalization on passengers’ preferences for different aviation routes, airline network 

competition, and the total social welfare of the system are also evaluated, which allow 

relevant recommendations on regulatory policies and managerial strategies to be made. 

 

Such an analysis allows us to make contributions in multiple ways. A few carriers using HS 

networks, notably gulf carriers (i.e. Emirates, Etihad and Qatar Airways), have been quite 

successful in expanding their global networks. As a result, certain countries turned 

conservative in giving them market access.4 Our study models the market equilibrium when 

airlines compete with different networks. As illustrated in the case study of the China-Europe 

inter-continental market, such an analysis allows regulators to better assess different types of 

airlines’ strengths and weakness, and the likely outcomes of alternative liberalizing policies 

(e.g. what types of markets/routes are ideal for dog-bone network operators vs. 

inter-continental HS network carriers; the likely market outcome and impacts to domestic 

airlines if more liberal market access is given to gulf carriers), and the choices of alternative 

international gateway hubs. As elaborated in the literature review section, existing network 

                                                               
4 For example, instead of awarding access to major international hubs, the Chinese government first allowed 
Emirates to serve the Chinese markets through Yinchuan, a non-hub third-tier airport in the country. Emirates’ 
services to the cross Tasman market also raised policy debates in Australia. 
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competition models cannot be easily adapted for such an analysis.5 In addition to industrial 

insights, our study also contributes to the modeling of airline competition over networks. To 

the best of our knowledge, few network competition studies have explicitly modeled the 

effect of demand uncertainty on airline rivalry. Our analysis formally addresses this issue by 

considering airlines as maximizing the expected profit when alternative demand scenarios are 

possible. Combined with traditional sensitivity analysis of key parameters, our study not only 

allows a robustness check of modeling results (e.g. ranking of additional gateway hubs), but 

also serves as a step toward a more systematic modeling of the effects of uncertainty. In 

addition, whereas we follow the usual practice adopted by previous investigations to calibrate 

the model using empirical estimates obtained from other markets, a maximum likelihood 

approach is introduced for the calibration of key parameter in the elastic demand function. 

This allows the model to reproduce observed market outcomes, and the calibration process to 

be performed in a more systematic and objective manner.  

 

The remainder of this paper is organized as follows. Section 2 reviews previous relevant 

studies. Section 3 presents the model formulation. Section 4 applies the proposed model to the 

China-Europe aviation market so that the likely market equilibrium can be identified. Section 

5 concludes the paper and provides recommendations for future studies. 

 

2. Literature Review 

In the literature, some studies have modeled the effects of airline network configuration and 

the competition between airlines. However, to the best of our knowledge, most of the previous 

studies about airline network competition focus on the interactions between HS networks or 

between an HS network and a full connected network. The competition between HS network 

and traditional dog-bone network has not been properly explored yet. The choices of 

alternative airline networks have been studied by Lederer and Nambimadom (1998) and Adler 

and Hashai (2005). However, the primary objective was to minimize the total costs of airlines 

and passengers, and thus airline competition was not considered explicitly. Adler (2001) 

adopted a two-stage best-response game model to identify the profitable hub choices and 

resultant market equilibria. This model was further extended by Adler (2005) to examine the 

most adaptable and profitable HS networks under airline competition in Western Europe. 

                                                               
5 Although not discussed in details in the literature review, our gateway hub choice analysis also complements 
location choice studies, which usually focus on the cost/distance minimization or service equality maximization, 
without explicitly considering inter-firm competition. 
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Adler and Smilowitz (2007) discussed the competition between dog-bone networks with and 

without airline alliances or mergers. However, possible rivalry with HS networks was not 

modeled and their study focused on airlines’ decisions only. Hansen and Kanafani (1990) 

explored the network competition between one-hub airlines and two-hub airlines in the 

US-Asia aviation market by a computer simulation model (but not a mathematical 

optimization model as presented in our paper). Moreover, the airlines analyzed in their study 

belong to either of the two continents but not cross both. Hansen (1990) and Takebayashi and 

Kanafani (2005) investigated the competitions between airlines running HS networks and 

point-to-point (PoP) networks. Alderighi et al. (2005) analytically demonstrated that HS 

networks and PoP networks may coexist at equilibrium. Pels et al. (2000) proposed a nested 

multinomial logit model to analyze airport competition and airline competition simultaneously. 

Silva et al. (2014) investigated how two symmetric airlines choose between fully connected 

networks and HS networks in the competition. They concluded that in addition to airport 

charges, other regulatory instruments on airlines’ route choices may be necessary to maximize 

social welfare. Network-based modeling has also been used to analyze a wide range of issues, 

such as airline competition, slot allocation, airline-airport arrangements over simplified HS 

networks (see for example, Hansen, 1990; Hong and Harker, 1992; Takebayashi and Kanafani, 

2005; Li et al., 2010; Takebayashi, 2011; Saraswati and Hanaoka, 2014; Sheng et al., 2015). 

Therefore, they cannot be used directly to examine the international markets in the presence 

of alternative network configurations.  

 

For airlines, important strategic decisions include the choice of gateway hubs and the design 

of their service networks. In certain cases, airlines use multi-hub networks to serve markets 

with a large geographic coverage. For example, United Airlines and American Airlines each 

developed multiple hubs in the US.6 Air China has also been developing hubs in Beijing, 

Chengdu and Shenzhen of China. Therefore, it is important for the airlines to determine the 

location for adding an alternative gateway hub in response to competition. This may alleviate 

the capacity shortage and congestion issue at the saturated gateway airport. In most markets, 

however, such a strategy cannot be implemented without strong government support, because 

substantial changes in airline and airport designations, 7  slot allocation and capacity 

                                                               
6 Over the years, United Airlines has developed hubs in San Francisco, Denver, Chicago and Washington D.C., 
whereas American Airlines has developed domestic hubs in Dallas, Chicago, Miami, St. Louis, New York, and Los 
Angeles.  
7  Absent full open-sky liberalization, only designated airlines can provide international services between 
designated/approved destinations in the OD countries under ASAs’ regulations related to designation and capacity.  
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investments at the new gateway airports are needed. In certain markets like China, the 

strategic planning for airports is developed or endorsed by the regulator CAAC.8 In other 

cases, governments invest in airport infrastructures but have limited influence over airlines’ 

hub choices.9 Regardless of the regulatory frameworks and aviation market developments, it 

would be useful to take into account the (additional gateway) hub choice in the model so that 

such strategic decisions are reasonable and accurate. The seminal work by Hansen and 

Kanafani (1990) investigated the effects of developing additional hubs on Tokyo’s role as the 

transpacific gateway under the situation of network competition. However, their computer 

simulation model only considered a single kind of aircraft for all airlines’ flight services and 

assumed that airlines only optimize the frequencies, which may not be consistent with the 

current situation because the aviation industry has been experiencing many changes in aircraft 

technologies. Besides, passengers’ route choice only depends on traveler’s preference of the 

types of routing, transcontinental service frequency and service circuity. Adler (2005) 

developed a multinomial logit model to compute different airlines’ market shares and then 

formulated a mathematical model to investigate the HS network design under competition. 

According to the p-hub median model, Adler and Smilowitz (2007) proposed a 

game-theoretic model to study the airline merger and hub location decisions. However, the 

responses of air passengers to airlines’ services and the airport congestion delay were not 

explicitly considered in both studies. Yang (2009, 2010) proposed a two-stage stochastic 

model to study the hub location issue and the flight routes and flow allocations. However, the 

interaction between airlines and air passengers, the demand-supply equilibrium, and the 

passengers’ route choices were not discussed yet, which will be considered in our present 

study.  

 

In addition, it should be mentioned that the model parameters in the previous studies were 

seldom calibrated for real aviation markets. For example, the passenger demand dispersion 

parameter in the elastic demand function is very important because it determines the resultant 

passenger demand and thus airlines’ service decisions. However, most previous studies 

                                                               
8 For example, in the 13th Five Year Plan for Civil Aviation Airports Development released by CAAC, which 
covers the plan during 2016-2020, it was indicated that 10 international hub airports will be developed, including 
the airports in Beijing, Shanghai, Guangzhou, Chengdu, Kunming, Shenzhen, Chongqing, Xi'an, Urumqi, and 
Harbin. 
9 For example, Odoni and De Neufville (2003) noted that the Dulles airport in Washington DC and the Newark 
airport in New York/New Jersey experienced severe under-utilization for extended periods, because airlines are 
reluctant to switch their operations from existing hubs. In comparison, regulators in China, Korea and France can 
designate certain airlines/aviation services to selected airports. 
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usually applied a single or uniform value for the passenger demand dispersion factor for all 

the OD pairs in the network (Zhang and Wei, 1993; Zhou et al., 2005; Li et al., 2010; 

Saraswati and Hanaoka, 2014; Sheng et al., 2015). There are also several studies that 

mentioned the importance of using different demand dispersion factors for different OD pairs 

(see Yang and Bell, 1997; Yang et al., 2004; Szeto and Lo, 2004). However, few studies 

implemented the calibration work of such parameters for real cases, which will be done in this 

paper.  

 

Hub location, similar to other network design problems (NDPs), is a strategic long-term 

decision, relying on the forecast of future passenger demand. However, it is difficult to 

precisely predict future demand in the planning stage. Therefore, it is important to consider 

passenger demand uncertainty in NDPs. Lee and Dong (2009) explored the design of reverse 

logistics networks with both demand and supply uncertainty, and concluded that the results 

from the stochastic problem are more suitable for practical decisions. Ukkusuri and Patil 

(2009) developed a multi-time-period NDP formulation considering both demand uncertainty 

and elasticity to model the future network investment. Compared to a single-stage NDP, this 

formulation can lead to 10%-30% higher expected consumer surplus. Yin et al. (2009) 

proposed three different stochastic models to determine the robust optimal improvement 

schemes for road networks. Chen et al. (2010) discussed an NDP with demand uncertainty by 

adopting three stochastic multi-objective models and obtained a Pareto optimal solution set. 

These studies mostly modeled uncertainty by generating a substantial number of samples 

from the pre-given probability distribution. However, it is usually difficult to ascertain a 

probability distribution of future passenger demand in the first place. Instead, there are 

usually clear seasonal patterns in the aviation industry. Therefore, Yang (2009, 2010) 

incorporated seasonal demand variations into a two-stage stochastic programming model to 

study an airline network design problem. Such an approach is also adopted in this study to 

account for the effects of demand uncertainty.  

 

3. Model formulation 

Network configuration strategies are fundamental decisions of airlines. In this study, we 

consider a network with a set of nodes (airports) and a set of arcs (links), which are 

respectively denoted as N and A. A link a A  is defined as the direct linkage between a pair 

of airports. A route may consist of several links. Let K denote the set of airlines, and k be a 
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generic element of K. kA A  is the set of associated links in the sub-network of airline k. 

G N  is the set of all international gateways, whereas G N  is the set of candidate 

gateway airports to be added. Let W be the set of all OD pairs, 1W W  be the set of 

inter-continental OD pairs, and 2W W  be the set of local/domestic markets’ OD pairs. 

 

The choice of gateway airports is strategic and cannot be changed in the short term. However, 

it is extremely difficult to forecast long-term travel demand at route level or airport level 

(Xiao et al., 2013, 2017). Therefore, it is important to explicitly consider the effects of 

passenger demand uncertainty. Because air passenger demand usually exhibits clear seasonal 

patterns and airlines adjust their service offerings regularly10, it would be useful to model 

some demand scenarios in the analysis which correspond to flight seasons or quarterly 

changes. To simplify the presentation of the problem while sufficiently characterize the key 

dynamics in the aviation market, the following assumptions are made in this study. 

 

A1. Two types of airlines are considered for the inter-continental aviation market, which 

include the carriers operating HS networks and the carriers operating traditional dog-bone 

networks. In practice, the latter often refers to the airlines in the OD markets which jointly 

offer the flight services through alliance or code-share agreements (e.g., Air China and 

Lufthansa in the China-Europe market). Additionally, the local or domestic aviation markets 

in intra-continent are also considered, which are served by their own airlines in the continents 

concerned. Certainly, the inter-continental aviation market is the focus of our research. The 

airports are classified into the feeder airports and the hub/gateway airports. The hub/gateway 

airports play the role of concentrating and distributing air passengers. An HS network 

involves only one hub airport, while the dog-bone network usually contains two international 

gateway airports, each in one continent. In a dog-bone network, the feeder airports are 

assumed to connect to all gateway airports at the same continent for the purpose of 

inter-continental transportation. In an HS network, the feeder airports are all connected to the 

unique global hub airport (e.g. Dubai for Emirates). A passenger route for the inter-continental 

OD pair involves at most two transfers/connections, which is in line with the industry reality. 

However, for the local or domestic markets, we assume that the passengers can fly directly 

                                                               
10 For example, there are two flight seasons per year, for which airlines systematically update their operation 
plans of frequencies, aircraft schedules and flight destinations. Moderate changes can also be introduced upon 
the approval and confirmation of regulators, air traffic controllers and airports. 
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from the origin airport to the destination airport. All the airports and airlines are pre-given, 

and thus no entrant airlines are considered in our model. 

 

A2. The members in an alliance jointly set service qualities for the inter-continental OD pairs 

(i.e., airline alliance with anti-trust immunity), as if they were one single airline (Takebayashi, 

2011). In this study, the proposed model is mainly for long-term planning purpose at a 

strategic level, and thus it is a stationary-state model. A concept of average airfare for each 

route is adopted, as done in Hansen (1990), Hsu and Wen (2003), and Li et al. (2010). Such an 

average airfare for each route can be pre-determined through the data collected from industry 

database or airlines’ official websites. Each airline is allowed to join at most one alliance. It is 

further assumed that airlines are allowed to serve all city pairs, so that airlines’ operational 

decisions can be endogenously modeled (Berechman and de Wit, 1996; Yang, 2008). 

 

A3. The potential OD demand on each route is a random variable due to seasonal demand 

variation and forecasting error, and is assumed to have a discrete distribution with a finite 

number of possible realizations called demand scenarios (Li et al., 2012; Yang, 2009, 2010).  

 

A4. Two types of players are considered in the aviation market, namely the airlines and air 

passengers. For the airlines, a two-stage model is used to determine the decision variables: 

locations of gateway airports and flight services (i.e., aircraft sizes and flight frequencies). In 

the first stage, the locations of gateway airports are determined to maximize the expected net 

profit of airlines before actual travel demand is observed. In the second stage, for a realized 

demand scenario and a given gateway scheme, each airline alliance or HS network airline 

aims to maximize its own profit by optimizing the associated flight services (including 

aircraft sizes and flight frequencies). An elastic demand function is applied to capture the 

responses of air passengers to airlines’ services. Airlines running the dog-bone networks are 

assumed to jointly make their decisions of flight services, as if they were one company 

operating within an open-sky market. Therefore, we consider the joint profits for the airline 

alliances in this paper for simplicity. This is a restrictive assumption. However, additional 

assumptions and justification will be needed if specific agreements of code-sharing, revenue 

pooling or capacity sharing are modeled, which will also impose unknown limitation on the 

generality. Note that if airlines agreed to a fixed sharing ratio, there will be little change in our 

model. Besides, airlines, especially those already within the same global alliance such as Star 

Alliance and OneWorld, often form close cooperative arrangements. For example, Lufthansa 
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had signed a Group Route Joint Venture with Air China in September 2016, allowing the two 

airlines to make many joint decisions. The set of alternative aircraft sizes for each airline is 

assumed to be pre-given, and each airline schedules only one type of aircraft on each link (or 

an average aircraft size on that link).  

 

A5. The effects of congestion delay at the hub airports are considered. If an airport is subject 

to capacity constraint, then the airlines landing at or taking off from that airport would incur 

congestion cost. The capacity of an airport is the maximum number of flights (i.e., aircraft 

movements) that the airport can serve.  

 

3.1. Scenario-based air passengers’ route choices 

Let   be the set of finite demand scenarios under the situation of stochastic demand, and 

  be a realized demand scenario. According to assumption A4, for a given gateway 

scheme and demand scenario  , the potential OD demand is pre-given and the air 

passengers are assumed to make route choices based on their own perceptions of the disutility 

on alternative routes and services. Let kwR  denote the set of all possible routes served by 

airline k between OD pair w W . For a specific demand scenario and the temporarily fixed 

service levels provided by all airlines, the travel disutility function krwu  of route kwr R  

served by airline k is computed as a weighted sum of the line-haul travel time krwt , the 

schedule delay time at airports krwd  , an additional penalty term krw  to reflect passengers’ 

preferences over different trip patterns (i.e., non-stop, one-stop, or two-stop), the congestion 

delay time at the capacitated hub airports krwC , and the airfares krwp  (Kanafani and 

Ghobrial, 1985; Hsu and Wen, 2003; Li et al., 2010, 2011). The passengers using the HS 

networks transfer just once during their trips. However, passengers may make at most two 

connections when they travel with airline alliances operating dog-bone networks. krwu  can, 

therefore, be expressed as follows 

 1 2 3 4 , , , ,krw krw krw krw krw krw kwu t d C p r R w W k K                   ,  (1) 

where 1  is the passenger’s value of line-haul travel time, 2  is the value of schedule delay 

time, 3  converts the additional penalty term into monetary cost, and 4  is the passenger’s 

value of time for the congestion delay at the capacitated hub airports. 
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The line-haul travel time krwt  on route kwr R  can be expressed as the sum of the travel 

times on all links along route r, specified as 

,  , , ,
k

krw ka ar kw
a A

t t r R w W k K 



       ,  (2) 

where kat  is the travel time on link a, assumed to be dependent on the distance of link a and 

the velocity of the aircraft of airline k allocated for that link. ar  equals 1 if link a is on route 

r, and 0 otherwise. 

 

The schedule delay time at an airport refers to the time difference between passengers’ 

preferred departure time and the time of a schedule flight, which decreases with the flight 

frequency. The schedule delay time on route kwr R , krwd   , can be specified as the sum of 

the schedule delays on all links along this route 

,  , , ,
k

krw ka ar kw
a A

d d r R w W k K 



       ,  (3) 

where kad   is the schedule delay on link a, which can be approximated as the quarter of the 

average headway according to Kanafani and Ghobrial (1985), expressed as 

,  , ,
4ka k

ka

T
d a A k K

f


     ,  (4) 

where T is the average operating duration of the airport over the period of analysis (T usually 

takes 18h/day, and thus it can be converted to 22.5 days/month), and kaf   is the flight 

frequency of airline k on link a. 

 

The congestion delay time on route kwr R , krwC , can be expressed as the sum of the 

congestion delays at all the hub airports subject to the capacity constraints along this route 

,  , , ,
k

krw H ar Ha kw
H a A

C d r R w W k K



        , (5) 

where Hd  is a flight’s delay at airport H, Ha  equals 1 if airport H is on link a, and 0 

otherwise. A flight’s delay time Hd  can be calculated as the ratio of the total number of 

flights to the capacity of airport H (Borger and Dender, 2006; Basso and Zhang, 2007; Yang 

and Zhang, 2011; Benoot et al., 2013; Gillen and Mantin, 2014; Silva et al., 2014), given as 

H
H

H

F
d

C
 , (6) 
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where H G  represents a capacitated hub airport. HF  is the sum of all aircraft movements 

(i.e. landing and taking off flights) at airport H, and HC  is the capacity of airport H.  

 

The expected disutility function w
  between OD pair w can, therefore, be expressed by the 

following formula (Oppenheim, 1995)  

 1
ln exp ,  ,

kw

w krw
k K r R

u w W 

 

 
       

  
  , (7) 

where   measures the error in the passenger perceptions of travel disutility krwu  . A higher 

value of   means a smaller passenger perception error, and vice versa (Huang, 2002; Huang 

and Li, 2007; Li et al., 2010).  

 

For each demand scenario  , define wQ  as the potential travel demand between OD 

pair w. An elastic demand function is adopted to capture the responses of passengers to 

airlines’ services and airfares (Li et al., 2010, 2011; Saraswati and Hanaoka, 2014). Let wQ  

be the resultant OD demand, specified as follows 

 exp ,   ,  ,  w w w wQ Q w W         (8) 

where w  is the demand dispersion factor that reflects the demand sensitivity to the expected 

travel disutility w
  between OD pair w W . The value of w  may be different for 

different OD markets (Yang and Bell, 1997; Yang et al., 2004), and ={ , }w w W   is the 

vector of the demand dispersion factors. Therefore, the passenger volume krwq  on route 

kwr R  served by airline k can be obtained by a multinomial logit formulation, which has 

been applied in many previous studies to model the route choice behavior of air passengers 

(Davis, 1994; Lam et al., 2002; Li et al., 2010; Saraswati and Hanaoka, 2014). 

 
 

exp
,  , , ,

exp
kw

krw

krw w kw

kr w
k K r R

u
q Q r R w W k K

u


 




 


     

 
. (9) 

The aggregated passenger flow kaq  on link ka A  in the sub-network of airline k can be 

calculated by 

 

,  , ,
k

ka krw ar k
w W r R

q q a A k K 

 

       . (10) 
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3.2. Scenario-based airlines’ decisions on aircraft size and service frequency 

According to assumption A2, alliance airlines are considered as one single decision-maker in 

this paper. We can thus formulate the profit maximization problem for the HS network airline 

and for the airline alliances, respectively. Airlines usually adjust their operations and flight 

schedules according to the seasonal variations in the passenger demand. According to 

assumption A4, for a given gateway scheme and demand scenario  , the airlines 

maximize their own profits by competing in airfares, flight frequencies and types of aircraft. 

However, owing to the fluctuation in the daily airfares of airlines, an average airfare for each 

air route is adopted and pre-determined according to the actual data collected from industry 

database and airlines’ official websites. The profit function k
  of airline k K  is defined 

as the difference between the total revenues and the total costs on all routes operated by 

airline k, expressed as 

   , , ,
kw k

k k k k k krw krw a ka ka ka
w W r R a A

p q q f         
 

  

     f s f s -   

( ) ( )

,  ,
k k

H ka
H a A H A H

d f k K
 



 

     , (11) 

where k
f  and k

s  are the vectors of frequencies and aircraft sizes of airline k under demand 

scenario  , whereas k

f  and k


s  are the vectors of corresponding variables for other 

airlines excluding airline k under demand scenario  . krwp  denotes the airfare of airline k 

on route kwr R  under demand scenario  . krwq  and kaq  are determined by the 

passenger route choice model (1) - (10). a  is the marginal cost per passenger on link a, 

which includes the passenger-related costs, such as the baggage handling cost, and costs of 

meals on board. ka
  is the marginal cost per flight on link a in the network of airline k under 

demand scenario  , which includes various flight-based costs, such as the pilot and crew 

wages, fuel costs, and maintenance cost.   is the marginal congestion cost that airlines incur 

at the capacitated airports. ( )kA H  (or ( )kA H ) denotes the set of links with a tail (or head) 

node H in airline k’s network. Hd  is a flight’s delay at airport H. kaf   is airline k’s frequency 

on link a under demand scenario  . The first term on the right-hand side of Eq. (11) 

represents the total revenue of airline k. The second term contains the total passenger-related 

costs and the flight-related costs of the airline. The third term is the total congestion costs of 
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airline k that are incurred in the capacitated hub airports. 

 

According to the empirical study of Swan and Adler (2006), the link distance and aircraft size 

(in terms of the number of seats) are two important factors determining the marginal cost per 

flight. They suggested determining ka
  by 

   0 1 2 ,  , ,ka a ka kD s a A k K             , (12) 

where aD  is the distance of link ka A , kas  is the type of aircraft operated on link a by 

airline k under demand scenario  . 0 , 1 , and 2  are the parameters determined by the 

link distance.  

 

Accordingly, the profit maximization problem for airline k can be formulated as 

 
 

,
max , , , ,  ,

k k

k k k k k k K
 

    
    

f s
f s f s , (13) 

subject to 

,  , ,ka ka ka kq s f a A k K       , (14) 

0, 0,  ,k k k K     f s , (15) 

where  ,k k
 f s  are the decision variables of airline k. The optimization model (13) - (15) 

maximizes the profit of airline k given other airlines’ services. Constraint (14) indicates that 

the aggregated passenger volume of link ka A  must not exceed the available number of 

seats provided by airline k on this link. Constraint (15) ensures that the flight frequencies and 

capacities of aircraft are nonnegative.  

 

For profit maximization model (13) - (15), the Lagrangian relaxation and penalty function 

approaches are applied to incorporate the above side constraints into the objective function 

(13). The augmented Lagrangian penalty function for airline k can be formulated as 

        221
 , , , , , max 0,

2
k

k k k k k k k k k ka ka ka ka ka
a A

L q s f             
 



           f s f s f s , (16) 

where   is a penalty constant. ka
  is the Lagrangian multiplier associated with constraint 

(14), and k
  is the corresponding vector. Therefore, the constrained maximization problem 

(13) - (15) can be transformed into the following unconstrained maximization problem 
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 
 

, ,

max  , , ,  ,
k k k

k k k kL k K
  

      
f s

f s


 .   (17) 

Following the study of Li et al. (2010), the unconstrained maximization problem (17) can be 

solved by a heuristic solution algorithm that combines the diagonalization method and the 

Hooke-Jeeves method (Bazaraa et al., 2006, p. 370).  

 

3.3. Airline’s gateway airport location problem 

Investment of additional gateway airports is a strategic decision of airlines, which can 

facilitate airlines’ efforts to optimize their network configuration, improve service qualities, 

and alleviate the congestion at busy hub airports. In addition, other regulatory changes may 

also be necessary, such as ASA specifications of airline and airport designations, flight 

frequency and airport slot allocation. Such strategic decisions may significantly affect the 

performance of aviation service systems, and thus need to be carefully made, particularly in 

the presence of demand uncertainty. As is stated above, the aviation demand shows obvious 

seasonal variations, thus a two-stage approach is used to deal with such effects of demand 

uncertainty. Assume that airline k  aims to choose the locations of gateway hubs to 

maximize its own expected profit, we formulate a two-stage model of gateway airport 

locations as follows 

max  [ ( )] ( )k kE P 
 

  
x

x x , (18) 

subject to 

g
g G

x M


 , (19) 

1,   if  airport  is set to be a gateway,
  

0,   otherwise,g

g
x g G


  


, (20) 

where ( )k

 x  can be calculated by solving the scenario-based airlines’ profit-maximization 

problem (13)-(15). 

 

In this model, g G  is a candidate gateway airport. ={ }gxx  is the vector of the decision 

variable, and gx  equals 1 if airport g is a gateway and 0 otherwise. P  and ( )k

 x  are, 

respectively, the probability and the profit of airline k  under demand scenario  . M is 

the allowed maximum number of gateway airports that airline k  plans to develop.  
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The two-stage model is a 0-1 integer programming problem with the binary decision variable 

 gx . The objective function (18) maximizes the expected profit of airline k . Constraint (19) 

means that the total number of new gateway hubs must be less than the pre-given value M. 

Constraint (20) states that the location variables are binary. In order to solve the 0-1 integer 

programming problem (18)-(20) and (13)-(15), we propose the following heuristic solution 

algorithm, as depicted by the flowchart in Fig. 2.  

 

Step 1. Initialization. Define a set of candidate gateway airports G  and a set of demand 

scenarios  . 

Step 2. First loop operation. Set [ ]kE 
    as the lower bound of the expected profit of 

airline k , [ ]kE   in Eq. (18) and  0,  gx g G   x  as the initial gateway 

scheme. Based on G , check all possible gateway schemes sequentially. Set the 

scheme counter i = 1. 

Step 3. Second loop operation. Perform all demand scenarios sequentially and set the scenario 

counter 1  . 

Step 4. Third loop operation (demand-supply equilibrium). For a given gateway scheme and 

demand scenario, do the interactive process of demand and supply. Set counter j = 1. 

Step 4.1. Solve airline’s profit maximization model (13) - (15) and passengers’ route choice 

model (1) - (10) separately and sequentially for all airlines, so as to obtain the 

passenger demand  ( ) ( )j j
wQ Q , optimal frequencies ( )jf , aircraft sizes ( )js , 

and the corresponding airlines’ profits  ( ) ( )j j
k

   . Then, calculate the relative 

variations in resultant passenger demand  ( )jr Q  and airlines’ profits  ( )jr π  

respectively by Eqs. (21) and (22) below (Hsu and Wen, 2003). 

   
( ) ( 1)

( )

( ) ( 1)0.5

j j
w wj

j j
w W w w

Q Q
r

Q Q

  


  






Q , (21) 

   
( ) ( 1)

( )

( ) ( 1)0.5

j j
k kj

j j
k K k k

r
  


  



  


  
π . (22) 

Step 4.2. Termination check for the third loop operation. If ( )
1( )jr   Q  and ( )

2( )jr   π  

( 1  and 2  are pre-defined), then go to Step 5. Otherwise, set j = j + 1 and go to 

Step 4.1.  
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Fig. 2. Flowchart of the solution algorithm. 

 

Step 5. Termination check for the second loop operation. If all demand scenarios are 

performed, compute the expected profit of airline k , ( )[ ] i
kE  , by Eq. (18) for 

The decisions of new gateways of airline k   1 or 0gx    

Passengers’ route choices: passenger flows  rwq  

Airlines’ decisions: aircraft sizes and frequencies  ,k k
 s f  

Is equilibrium 
 reached? 

No 

Yes 

Output airlines’ profits  k
  and 

passenger flows  rwq  

OD demand scenario   

No Are all gateway schemes 
compared? 

Yes 

Output optimal gateway locations  gx  

Are all demand 
scenarios discussed? 

No 

Yes 

Output the expected profit 
[ ]kE   of airline k   

Demand-supply equilibrium 
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gateway scheme i. If ( )[ ] [ ]i
k kE E 
    , then let ( )[ ] [ ] i

k kE E
     and obtain the 

optimal gateway scheme  ( )i
gx x . Otherwise, set 1    and go to Step 4. 

Step 6. Termination check for the first loop operation. If all possible gateway schemes are 

checked, terminate the algorithm and report the optimal gateway scheme x  and the 

corresponding expected profit, [ ]kE 
 , of airline k . Otherwise, set i = i + 1, and go 

to Step 3. 

 

Note that in Step 4, when the relative variations in the resultant passenger demand and 

airlines’ profits are small enough, one can conclude that a demand-supply equilibrium is 

reached. At equilibrium, airlines’ market share on each OD pair is at optimal level, thus that 

their profit-maximizing decisions on the service qualities will not change given the 

competitors’ strategies. Similarly, passengers have no incentive to change their route choices, 

and so the demand-supply interaction convergences. 

 

3.4. Parameter calibration 

Note that there are many parameters in the proposed stochastic optimization model in the 

previous sections. The values of some parameters can be found in previous empirical studies 

based on some real market data. However, some parameters were not empirically estimated in 

the previous related studies yet. Additional parameter calibrations are thus needed here. 

Specifically, the demand dispersion factors ={ , }w w W   in the elastic demand function, 

i.e., Eq. (8), as important parameters, need to be calibrated for each OD pair. They reflect the 

demand sensitivity to the expected travel disutility w
  and determine the actual travel 

demands of the aviation markets, which further determine the profits of associated airlines 

and the social welfare of the system. It should be pointed out that the data of the OD demand 

matrices collected are the actual realized aviation passenger demand. For calibration purpose, 

the potential passenger demand in Eq. (8) is assumed to be an appropriate multiplier of the 

actual realized passenger demand. The values of   can then be adjusted and calibrated such 

that the resultant OD passenger demand matrices are nearly consistent with the actual realized 

OD passenger demand matrices. 

 

In order to calibrate the values of  , the maximum likelihood method is adopted and stated 

as follows. Define the likelihood function L and correspondingly the calibration model as 
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0
0

0

( )!
max = ,

! ( )

subject to Eqs. (1)-(10) and (13)-(15),

wQ

w

w
w W

QQ
L

Q Q


 
 
 


  (23) 

where 0
wQ  is the actual realized passenger demand of OD pair w W , and 

0 0
ww W

Q Q


   is the total actual realized passenger demand of the system. ( )wQ   and 

( ) ( )ww W
Q Q


    are, respectively, the forecasted passenger demand of OD pair 

w W and the forecasted total passenger demand by the model. Both can be obtained by 

solving airlines’ profit-maximization model (13)-(15) and passengers’ route choice model 

(1)-(10) for given demand scenario and gateway scheme. It is not easy to quickly obtain an 

optimal solution of ={ , }w w W   based on the maximization problem (23) due to a large 

size of the calibrated parameters  . Therefore, according to Boyce and Zhang (1998), an 

alternative condition, 
0( ) ( ( ) ( ))w w w ww W w W

Q Q Q Q
 

      , is adopted as the 

termination rule for calibrating the values of ={ , }w w W  , where the right-hand side and 

the left-hand side of the equation denote the actual and estimated average expected travel 

disutility of the system, respectively. A heuristic solution algorithm for calibrating the demand 

dispersion parameters ={ , }w w W   is shown as follows. 

 

Step 1. Choose an initial vector for ={ , }w w W  , denoted as (1) (1)={ , }w w W  , and set 

the iteration counter to i = 1. 

Step 2. Calculate ( ) ( ){ ( ), }i i
wQ w W  based on airlines’ profit-maximization model (13)-(15) 

and passengers’ route choice model (1)-(10) by using the demand-supply equilibrium 

algorithm stated in Section 3.3. 

Step 3. If 
( ) ( ) ( ) ( )

0 0

( ( ) ( ))
-1

( )

i i i i
w ww W

w ww W

Q Q

Q Q





 





 

 (   is a pre-defined precision), stop and 

output the optimal solution ={ , }w w W   ; otherwise, update the value of 

={ , }w w W   by Eq. (24) , set i = i +1 and return to Step 2, 

 

( ) ( ) ( ) ( )
( 1) ( )

0 0

( ( ) ( ))
,  .

( )

i i i i
w wi i w W

w w
w ww W

Q Q
w W

Q Q
 



 
       




 
 (24) 
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Based on the collected passenger demand data of Year 2015 and the solution procedure above, 

the calibrated values of demand dispersion parameters ={ , }w w W    can be obtained, 

which can be applied for future passenger demand forecast for each aviation market 

concerned. 

 

4. Case study: China-Europe inter-continental aviation market 

4.1. Parameter specifications 

In this case study, the China-Europe inter-continental aviation market, the Chinese domestic 

aviation markets and European domestic aviation market are used to illustrate the proposed 

model. Two kinds of airline decision-makers are considered in the aviation market. One is the 

airline alliances, which may represent the Air China-Lufthansa alliance (both are Star-alliance 

members), the China Eastern-Air France alliance (both are SkyTeam members), and the China 

Southern-British Airways alliance. The airlines in an alliance are modeled as a whole (i.e., 

one decision-maker) in our study. For the China-Europe inter-continental aviation market, all 

the alliance airlines have been together operating the dog-bone networks via their own hubs. 

For the domestic market in China or Europe, point-to-point aviation networks are assumed for 

simplicity and modeling tractability. The other competitor is an HS network carrier, which 

may represent the Emirates Airlines. The Middle East airline has secured significant market 

shares in the China-Europe inter-continental aviation market using its HS network. Therefore, 

in the “base case”, the dog-bone network of Air China-Lufthansa alliance contains two 

international gateway hubs, namely the Beijing Capital International Airport (PEK) in China 

and Frankfurt Airport (FRA) in Europe. In the dog-bone network of the China Eastern-Air 

France alliance, the Shanghai Pudong International Airport (PVG) in China and Charles de 

Gaulle Airport (CDG) in Paris serve as alliance’s gateway hubs. In the dog-bone network of 

the China Southern-British Airways alliance, the Guangzhou Baiyun International Airport 

(CAN) and Heathrow Airport (LHR) in London are the gateway hubs. In the HS network, the 

Dubai International Airport serves as the Emirates Airlines’ unique global hub. Three airports 

located in Western China, namely airports of Chengdu, Kunming and Xi’an, are considered by 

the Air China-Lufthansa alliance as candidates for new additional international gateways in 

China. Such a scenario is consistent with the strategic plan of the regulator CAAC (i.e., the 

13th Five Year Plan for Civil Aviation Airports Development).  
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Real market data for OD passenger volumes between China and Europe in 2015 are compiled 

from the OAG and IATA PaxIS databases, and the top 14 airports in China and top 10 airports 

in Europe are chosen for simulations. The list of airports is reported in Tables 1 and 2. Fig. 3 

illustrates the locations of all relevant airports (including 14 airports in China, 10 airports in 

Europe and the airport in Dubai). Because Shanghai Pudong Airport and Shanghai Hongqiao 

Airport are both located in Shanghai, they are modeled as one airport with the combined 

traffic volume (the same treatments applied to the Xiamen Gaoqi Airport and Fuzhou Changle 

Airport). For simplicity, we assume that the two-way traffic volumes of the inter-continental 

OD markets are symmetric. The OD demands for the China-Europe inter-continental aviation 

market and for the Chinese and European domestic aviation markets are set according to the 

2015 actual traffic volumes. Tables 3-5 show the average monthly OD demand matrices for 

these aviation markets. 

 

The other input parameters used in the numerical study are also from real market data where 

possible. Note that the values of demand dispersion factors ={ , }w w W   of the model 

were not empirically estimated in the previous related studies for the aviation markets 

concerned in this paper. Thereby, a validation and calibration of the model parameters is 

carried out here. Specifically, the potential passenger demand is assumed to be an appropriate 

multiplier of the actual passenger demand (assumed as 1.3 times in view of the average 

market growth). Given that the values of other parameters are taken from previous empirical 

studies and the passenger demand data of Year 2015 for each OD market are collected based 

on the real case, the values of the demand dispersion parameters ={ , }w w W   can be 

calibrated by the proposed procedure and are shown in Table 6, with an average relative error 

of 0.93% between the actual and estimated passenger demand and the maximum relative error 

of 1.92%. 

 

The data for the flight distances of links ( aD ) are from the website of http://www.gcmap.com. 

The velocity of aircraft is assumed to be 700km/h, which is used to calculate the flight time 

between airports. The average airfares of airlines used in the model are calculated with the 

actual ticket prices during November 21, 2019 and November 28, 2019. Based on the 

database of aircraft fleets from airlines’ official websites, aircraft size in the dog-bone 

networks is assumed to be [200, 550] seats for the hub-to-hub routes, and [150, 400] seats for 

the hub-to-spoke/spoke-to-hub routes. In the HS network, aircraft size is assumed to be [354, 
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615] seats. The PEK airport is assumed to be subject to capacity constraint with capacity HC  

of 7796 flights per month for both international services between China and Europe and 

domestic services of Chinese aviation market. Passengers’ value of time parameters in the 

travel disutility function, 1 , 2 , and 3 , are respectively $20.5/h, $26.65/h and $20.5/h 

(Hsu and Wen, 2003; Li et al., 2010; Saraswati and Hanaoka, 2014). The coefficient   is set 

to be 0.02 (Takebayashi and Kanafani, 2005). The passengers’ value of time for flight delay 

4  and the airlines’ marginal congestion cost   are assumed to be $40 and $2500, 

respectively (Basso and Zhang, 2008). The marginal cost per passenger a  is chosen as $20 

(Li et al., 2010). The coefficients 0 , 1  and 2  in the equation of marginal cost per flight 

are set to 722, 104 and $0.019 for flights with a travel distance below 5000 km; and 2200, 211 

and $0.0115 for flights with a distance equal to or greater than 5000 km, respectively (Swan 

and Adler, 2006; Alder and Smilowitz, 2007).  

 

Additionally, based on the historical data and empirical data in the previous related studies, 

three demand scenarios, namely the middle level (based on the real data of 2015), the low 

level (80% of the middle level) and the high level (120% of the middle level), are adopted to 

model the seasonal variation in the air travel demand, which are reported in Table 7. The 

solution algorithms were coded in Matlab and run on a Thinkpad X1 computer with an Inter® 

Core ™ i5 CPU (2.4-GHz) and 8 GB of RAM. 

 

Table 1 14 Chinese airports considered. 

No. Airports Code 
1 Beijing Capital Airport PEK 
2 Shanghai Pudong Airport PVG 
3 Guangzhou Baiyun Airport CAN 
4 Chengdu Shuangliu Airport CTU 
5 Kunming Changshui Airport KMG 
6 Shanghai Hongqiao Airport SHA 
7 Xian Xianyang Airport XIY 
8 Chongqing Jiangbei Airport CKG 
9 Hangzhou Xiaoshan Airport HGH 
10 Nanjing Lukou Airport NKG 
11 Xiamen Gaoqi Airport XMN 
12 Wuhan Tianhe Airport WUH 
13 Shenyang Taoxian Airport SHE 
14 Fuzhou Changle Airport FOC 
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Table 2 10 European airports considered. 

NO. Airports Code 
1 London Heathrow Airport LHR 
2 Paris Charles de Gaulle Airport CDG 
3 Amsterdam Schiphol Airport AMS 
4 Frankfurt Airport FRA 
5 Istanbul Ataturk Airport IST 
6 Madrid Barajas Airport MAD 
7 Barcelona El Prat Airport BCN 
8 München Airport MUC 
9 Rome Fiumicino Airport FCO 
10 Milan Malpensa Airport MXP 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Geographical locations of Chinese and European airports considered. 
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Table 3 OD demand matrix for the China-Europe inter-continental aviation market (passengers/month). 

          Destination 
Origin 

LHR CDG MXP MUC FCO AMS IST BCN MAD FRA 

PVG 16964 15034 7381 6186 4786 4632 4978 4358 3374 14988 

CAN 3099 3599 796 410 829 1178 2855 657 717 1127 

WUH 615 1371 112 92 152 140 121 47 80 288 

SHE 461 575 184 794 140 170 48 108 61 688 

CKG 589 544 297 121 405 108 119 102 186 274 

HGH 405 530 336 100 276 774 174 478 818 192 

NKG 455 341 118 206 91 113 44 64 97 2323 

XMN 1221 467 353 112 567 1153 73 231 540 432 

XIY 486 794 113 105 120 100 80 34 59 249 

KMG 265 976 76 49 139 104 28 36 50 217 

CTU 1755 1857 508 242 524 1161 508 210 293 1660 

PEK 16396 15386 5103 5642 4520 4883 4113 3147 3348 9576 
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Table 4 OD demand matrix for the Chinese domestic aviation market (passengers/month). 

        Destination 
Origin 

PEK PVG CAN CTU KMG XIY CKG HGH NKG XMN WUH SHE 

PEK 0 279256 162147 193294 95887 96102 89166 89267 35940 95821 54377 38615 

PVG 278260 0 192231 122964 78686 105909 100698 0 1858 177357 65422 80421 

CAN 161918 190894 0 107833 63944 66876 88491 88132 70512 58658 37194 26447 

CTU 193470 123606 108087 0 61222 45105 6 42303 34806 29613 28964 6617 

KMG 96359 78981 64094 61253 0 58251 67861 37245 35725 40152 45578 4505 

XIY 94959 106709 66977 45447 58224 0 38419 58941 34580 32121 22683 17248 

CKG 89230 100852 89822 7 67920 38447 0 46875 38670 44035 19054 5987 

HGH 89259 0 88259 42263 37214 58997 46859 0 0 38872 21800 27985 

NKG 35934 1853 70627 34766 35714 34561 38724 0 0 61931 14 21311 

XMN 95964 177544 58875 29532 40157 32163 43987 38814 61902 0 58725 8796 

WUH 54410 65426 37206 28920 45525 22538 19088 21804 13 58833 0 15695 

SHE 38459 80266 26417 6636 4491 17311 5984 27943 21300 8785 15689 0 
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Table 5 OD demand matrix for the European domestic aviation market (passengers/month). 

Destination 
 

Origin 
LHR CDG AMS FRA IST MAD BCN MUC FCO MXP 

LHR 0 21772 36986 32840 18421 28154 18533 33243 23666 6216 

CDG 21952 0 13807 13639 17391 28826 34244 20844 22644 27113 

AMS 39123 12495 0 7970 14807 18830 33840 16067 25107 16212 

FRA 32375 12187 8077 0 15987 14249 21820 13888 10724 3034 

IST 19244 17798 15336 16519 0 5199 5056 9874 6299 5736 

MAD 22420 29412 18661 14526 5010 0 58953 14170 13951 10909 

BCN 19738 34614 33970 22307 5052 57670 0 19255 36961 25509 

MUC 32218 19798 16098 13149 10113 14099 18991 0 17993 9485 

FCO 22487 21517 24161 10872 5950 14295 36552 17538 0 5958 

MXP 6568 26084 15958 2764 5412 12254 24510 9912 7871 0 
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Table 6 The calibrated demand dispersion factors w   for all OD pairs (×10-3). 

 PEK PVG CAN CTU KMG XIY CKG HGH NKG XMN WUH SHE LHR CDG AMS FRA IST MAD BCN MUC FCO MXP 

PEK 0 1.511 0.987 1.309 1.007 1.410 1.511 1.410 1.813 1.108 1.410 1.612 0.272 0.232 0.232 0.252 0.242 0.242 0.232 0.242 0.272 0.181 

PVG 1.511 0 2.014 1.511 1.309 2.115 1.712 0 1.007 2.317 1.712 2.216 0.222 0.252 0.212 0.272 0.262 0.242 0.262 0.282 0.262 0.262 

CAN 0.987 2.014 0 2.317 2.619 2.518 2.518 2.619 3.928 2.518 2.317 1.108 0.191 0.181 0.171 0.181 0.191 0.181 0.181 0.181 0.181 0.181 

CTU 1.309 1.511 2.317 0 1.712 2.216 0 1.410 1.410 1.511 2.216 1.108 0.232 0.181 0.212 0.201 0.222 0.191 0.222 0.212 0.201 0.242 

KMG 1.007 1.309 2.619 1.712 0 2.317 4.029 1.410 1.712 1.410 1.813 0.705 0.181 0.171 0.171 0.111 0.111 0.181 0.181 0.111 0.181 0.171 

XIY 1.410 2.115 2.518 2.216 2.317 0 4.900 2.417 2.719 1.511 2.216 1.712 0.201 0.171 0.181 0.111 0.121 0.181 0.171 0.121 0.181 0.171 

CKG 1.511 1.712 2.518 0 4.029 4.900 0 2.014 2.317 1.813 2.014 1.108 0.212 0.181 0.191 0.140 0.141 0.191 0.171 0.141 0.181 0.171 

HGH 1.410 0 2.518 1.410 1.410 2.417 2.014 0 0 3.525 2.921 2.014 0.191 0.181 0.181 0.111 0.141 0.181 0.181 0.111 0.191 0.181 

NKG 1.813 1.007 3.928 1.410 1.712 2.719 2.317 0 0 2.921 0 2.216 0.212 0.171 0.171 0.181 0.181 0.181 0.191 0.191 0.191 0.191 

XMN 1.108 2.317 2.518 1.511 1.410 1.511 1.813 3.525 2.921 0 3.223 1.209 0.161 0.131 0.181 0.111 0.080 0.111 0.171 0.121 0.151 0.131 

WUH 1.410 1.712 2.400 2.216 1.813 2.216 2.014 2.921 0 3.223 0 1.813 0.191 0.181 0.171 0.151 0.151 0.181 0.181 0.151 0.181 0.181 

SHE 1.612 2.216 1.108 1.108 0.705 1.712 1.108 2.014 2.216 1.209 1.813 0 0.222 0.141 0.151 0.181 0.181 0.161 0.161 0.181 0.161 0.191 

LHR 0.272 0.212 0.191 0.232 0.181 0.201 0.212 0.191 0.212 0.161 0.201 0.222 0 0.705 0.806 0.705 0.504 0.604 0.604 0.604 0.604 0.604 

CDG 0.232 0.252 0.201 0.191 0.171 0.171 0.191 0.191 0.181 0.131 0.191 0.151 0.705 0 0.604 0.604 0.504 0.705 0.906 0.705 0.806 0.705 

AMS 0.232 0.212 0.161 0.212 0.111 0.131 0.191 0.171 0.171 0.201 0.201 0.141 0.725 0.604 0 0.806 0.604 0.705 0.705 0.906 0.806 0.705 

FRA 0.252 0.262 0.201 0.212 0.111 0.106 0.201 0.201 0.191 0.111 0.222 0.191 0.705 0.604 0.806 0 0.604 0.705 0.705 0.604 0.504 0.504 

IST 0.242 0.252 0.191 0.222 0.111 0.121 0.201 0.201 0.191 0.081 0.222 0.201 0.504 0.504 0.705 0.604 0 0.403 0.408 0.705 0.614 0.604 

MAD 0.232 0.232 0.181 0.191 0.181 0.181 0.212 0.201 0.191 0.111 0.212 0.161 0.604 0.705 0.806 0.705 0.403 0 0.705 0.604 0.705 0.604 

BCN 0.222 0.252 0.191 0.222 0.181 0.171 0.212 0.201 0.201 0.171 0.222 0.161 0.604 0.906 0.856 0.705 0.453 0.705 0 0.806 0.806 0.906 

MUC 0.242 0.272 0.201 0.222 0.111 0.121 0.201 0.222 0.201 0.121 0.252 0.201 0.604 0.705 0.906 0.604 0.705 0.604 0.806 0 0.806 0.705 

FCO 0.262 0.252 0.181 0.212 0.181 0.181 0.201 0.201 0.201 0.141 0.222 0.171 0.604 0.806 0.806 0.504 0.609 0.705 0.806 0.806 0 0.554 

MXP 0.181 0.252 0.191 0.242 0.171 0.171 0.191 0.201 0.201 0.141 0.222 0.191 0.604 0.705 0.705 0.504 0.604 0.604 0.906 0.705 0.554 0 
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Table 7 Three demand scenarios. 

Demand scenario OD demand Probability 

Low demand 80% of the medium demand 33% 

Medium demand 
Average monthly actual OD demand of 

Year 2015 
50% 

High demand 120% of the medium demand 17% 

 

4.2. Analysis of results 

In order to evaluate the effects of introducing new gateway airports on the aviation system, 

the concept of social welfare is used and defined as the sum of consumer surplus and producer 

surplus (i.e., airlines’ profits). According to Williams (1977) and Evans (1987), the consumer 

surplus represents the net benefits received by passengers. The consumer surplus CS   under 

demand scenario   is specified as 

 
0

(y)d
wQ

w w w w
w W

CS y Q Q


    



     , (25) 

where ( )w
   is the inverse of demand function wQ  in Eq. (8). The first term on the 

right-hand side of Eq. (25) is the total willingness to pay of all the passengers and the second 

term is the total travel costs. 

 

Note that the inverse demand function ( )w
   can be obtained, in terms of Eq. (8), as follows 
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Combining Eqs. (25) and (26), the system’s consumer surplus CS   under demand scenario 

  can be rewritten as 
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The total social welfare Z   under demand scenario   is thus defined as 

Z w
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  ,  (28) 
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where { }k
  is determined by airlines’ profit maximization model (13) - (15).  

 

In order to look at the effects of stochastic fluctuation in passenger demand on the 

stakeholders’ decisions and the aviation system performance, we compare the results with 

deterministic OD demand and stochastic OD demand, which are discussed as follows. 

 

4.2.1. The results with deterministic OD demand 

For the deterministic case, the data of actual realized OD demand in 2015 are adopted for the 

China-Europe aviation market and the Chinese and European domestic aviation markets, 

meaning that there is only one demand scenario. Assuming that Air China is planning to 

develop one more international gateway hub in addition to Beijing airport in China among 

three candidate airports (airports of Chengdu, Kunming and Xi’an).  

 

Table 8 shows the results generated by various gateway schemes with actual OD passenger 

demand of Year 2015, including the profits of all airline alliances, the profit of the Emirates 

Airlines operating the HS network, the resultant market demand, total number of flights per 

month in the PEK airport, and the total social welfare of the whole aviation system. It can be 

seen that Chengdu is the best choice for the additional gateway hub for the dog-bone network 

of the Air China-Lufthansa alliance, leading to the highest total profit of $340.088 million per 

month. Xi’an is the worst choice with the lowest total profit of $339.301 million per month. 

The scheme with Chengdu airport as the gateway hub can also lead to the highest total social 

welfare of $9.885 billion per month and the highest passenger demand of the whole aviation 

system (9951353 passengers per month). These results are consistent with the fact that the 

Chengdu Shuangliu Airport (CTU) was ranked the fourth among all the Chinese airports in 

terms of the actual passenger throughputs of Year 2015. 

 

Table 8 Results with different gateway schemes for actual demand of Year 2015. 

Model solution Base case Chengdu Kunming Xi’an 
Total profit of the Air China-Lufthansa 

alliance (million $/month) 
327.656 340.088 339.639 339.301 

Total profit of the China Southern-British 
Airways alliance (million $/month) 

213.148 210.364 207.334 207.339 

Total profit of the China Eastern-Air France 
alliance (million $/month) 

367.886 372.642 372.254 371.970 

Profit of the Emirates Airlines 
 (million $/month) 

121.092 114.090 114.311 115.197 

Total resultant demand of the aviation system 9943596 9951353 9945443 9946226 
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(passengers/month) 
Resultant demand of inter-continental market 

(passengers/month) 
414485 415030 414773 414750 

Resultant demand of domestic markets 
(passengers/month) 

9529111 9536323 9530670 9531476 

Total number of flights at PEK airport 
(flights/month) 

7875 7273 7643 7636 

Total social welfare (billion $/month) 9.870 9.885 9.876 9.877 
 

It can also be seen in Table 8 that introducing an extra gateway airport (either in Chengdu, 

Kunming or Xi’an) would lead to an increased social welfare and an increased number of air 

passengers in the China-Europe inter-continental aviation market and in the domestic aviation 

markets. However, the changes in the profits of airlines are different. Specifically, after 

introducing an additional gateway airport, the profits for both the Air China-Lufthansa 

alliance and the China Eastern-Air France alliance would increase, whereas the profits of the 

Emirates Airlines and China Southern-British Airways alliance would decrease, compared to 

the base case.  

 

Table 9 Market shares with different gateway schemes for actual demand of Year 2015. 

Airline alliance or 
airline 

Base case Chengdu Kunming Xi’an 
Int. 

market 
Dom. 

markets 
Int. 

market 
Dom. 

markets 
Int. 

market 
Dom. 

markets 
Int. 

market 
Dom. 

markets 

Air China + 
Lufthansa 

11.51% 14.64% 14.80% 14.84% 14.41% 14.97% 14.30% 14.93% 

China Southern + 
British Airways 

9.04% 29.42% 8.89% 28.44% 8.92% 28.33% 8.95% 28.42% 

China Eastern +  
Air France 

0 55.94% 0 56.72% 0 56.70% 0 56.65% 

Emirates Airlines 79.45% 0 76.31% 0 76.67% 0 76.75% 0 

 

Table 9 further shows the market shares under various gateway schemes for the 

inter-continental market and the domestic markets. For the inter-continental market, the 

market share of the Emirates Airlines is always much higher than those of airline alliances 

regardless of the gateway schemes adopted. This may be due to a shorter connection time and 

a lower congestion delay cost of the HS network, which would lead to reduced passenger 

travel disutility, more inter-continental passengers, and more revenue, compared to the airline 

alliances in the dog-bone networks. Moreover, the large passenger volumes in the (Chinese 

and European) domestic markets can also significantly influence the flight services in the 

inter-continental market. When a new gateway airport is developed for the dog-bone network 

of the Air China-Lufthansa alliance, the market shares of both inter-continental and domestic 

markets for the Air China-Lufthansa alliance become larger than those in the base case. On 
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one hand, more gateway airports mean more route choices for the inter-continental journey, 

which can reduce the travel disutility and attract more inter-continental travelers. On the other 

hand, the transfer of the inter-continental passengers from the busy routes to the new ones can 

leave more resources to serve the domestic passengers, thus the market share of the domestic 

market may also increase. For the China Southern-British Airways alliance, the market shares 

of both inter-continental market and domestic market will decrease. Specially, for the China 

Eastern-Air France alliance, the market share of the inter-continental market is zero. Such 

results are mainly due to the fact that we are considering the China-European international 

market only. The geographic location of China Eastern’s hub at Shanghai is ideal for 

east-bound China-American flights but probably the worst choice for western bound 

China-European flights. Indeed, Shanghai has never been a gateway for Chinese traffic 

toward European destinations.  

 

Table 10 indicates the effects of network competition on the total profit of the Air 

China-Lufthansa alliance, the total social welfare, and the resultant demand of the aviation 

system. It can be firstly found that the scheme with Chengdu is always the best choice for the 

Air China-Lufthansa alliance, leading to a total profit of $340.0875 million per month and 

$532.672 million per month, respectively for the situations with and without network 

competition. This scheme can also produce the highest total social welfare and the largest 

passenger demand. Secondly, such network competition can help generate more passenger 

demand and improve the total social welfare. This is intuitive as increased competition 

encourages airlines to improve the qualities of flight service for travelers, and Chengdu is 

geographically located in Western China, ideal for China-European services.  

 

Table 10 Comparison of the results with and without network competition. 

Model solution 

Base case Chengdu Kunming Xi’an 
Only 

dog-bone 
network 

HS vs. 
dog-bone 
network 

Only 
dog-bone 
network 

HS vs. 
dog-bone 
network 

Only 
dog-bone 
network 

HS vs. 
dog-bone 
network 

Only 
dog-bone 
network 

HS vs. 
dog-bone 
network 

Total profit of the 
Air China- 

Lufthansa alliance 
(million $/month) 

482.941 327.656 532.672 340.0875 522.162 339.639 526.298 339.310 

Total social 
welfare 

(billion $/month) 
9.827 9.870 9.876 9.885 9.864 9.876 9.870 9.877 

Resultant demand 
of the system 

(passenger/month) 
9887001 9943596 9914503 9951353 9908988 9945443 9914377 9946226 
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However, it should be noted that although the total resultant demand increases with the 

network competition, the total profit of the Air China-Lufthansa alliance decreases with the 

competition, which are consistent with the market shares in Tables 11 and 12. Tables 11 and 

12 show that aviation network configuration and competition have significant impacts on the 

market shares of airline alliances. For the inter-continental market (see Table 11), the market 

share of the Air China-Lufthansa alliance is always higher than others. Specifically, without 

network competition, the Air China-Lufthansa alliance occupies more than 60% of the 

inter-continental market. However, after introducing the network competition, the market 

share of the Air China-Lufthansa alliance decreases dramatically and thus its profit decreases 

accordingly, implying that the HS network is very competitive for the China-Europe 

inter-continental aviation market. This probably explains why gulf airlines have been quite 

successful in the Asia-Europe routes. For the domestic aviation markets (see Table 12), 

regardless of the network competition, the China Eastern-Air France alliance would have a 

much higher market share than others. However, the changes of airlines’ market shares in the 

domestic market before and after introducing the network competition are trivial, given the 

large size of domestic markets.  

 

Table 11 Comparison of airline alliances’ market shares for the inter-continental market with 

and without network competition. 

Airline alliance 

Base case Chengdu Kunming Xi’an 
Only 

dog-bone 
network 

HS vs. 
dog-none 
network 

Only 
dog-bone 
network 

HS vs. 
dog-none 
network 

Only 
dog-bone 
network 

HS vs. 
dog-none 
network 

Only 
dog-bone 
network 

HS vs. 
dog-none 
network 

Air China + 
Lufthansa 

68.52% 11.51% 76.15% 14.80% 75.45% 14.41% 75.99% 14.30% 

China Southern + 
British Airways 

13.31% 9.04% 11.88% 8.89% 12.00% 8.92% 11.98% 8.95% 

China Eastern  + 
Air France 

18.17% 0 11.97% 0 12.55% 0 12.03% 0 

 

Table 12 Comparison of airline alliances’ market shares for the domestic markets with and 

without network competition. 

Airline alliance 

Base case Chengdu Kunming Xi’an 
Only 

dog-bone 
network 

HS vs. 
dog-none 
network 

Only 
dog-bone 
network 

HS vs. 
dog-none 
network 

Only 
dog-bone 
network 

HS vs. 
dog-none 
network 

Only 
dog-bone 
network 

HS vs. 
dog-none 
network 

Air China + 
Lufthansa 

15.13% 14.64% 15.29% 14.84% 15.28% 14.97% 15.26% 14.93% 

China Southern + 
British Airways 

29.22% 29.42% 28.21% 28.44% 28.15% 28.33% 28.39% 28.42% 

China Eastern  + 
Air France 

55.65% 55.94% 56.50% 56.72% 56.57% 56.70% 56.35% 56.65% 
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In addition, the introduction of new gateway airport can significantly affect the total number 

of flights landing at and taking off from the PEK hub airport. Specifically, before introducing 

the new gateway airport, all flights served by the Air China-Lufthansa alliance fly the routes 

linking to Beijing, and the total number of flights at the PEK airport is 7875 flights per month 

(see Table 8), which is slightly higher than the maximum number of flights per month that it 

can serve. However, after introducing the new gateway airport, this number decreases to 7273, 

7643, and 7636 for the gateway schemes of Chengdu, Kunming, and Xi’an, respectively. 

According to Tables 8, 10, 11 and 12, it can be found that the development of new gateways 

can alleviate the congestion of saturated hub airports, but not reduce the total passenger 

volume, social welfare and the total profit of airlines. On the contrary, it can improve industry 

surplus although the benefits are not distributed evenly among all stakeholders. 

 

4.2.2. The results with stochastic OD demand 

In order to look at the effects of seasonal variations of passenger demand, three demand 

scenarios are considered. The levels of the demand scenarios and the corresponding 

probability of each scenario are given in Table 7. Similar to the deterministic demand case, 

one more gateway airport in addition to the PEK airport is considered for the dog-bone 

network of the Air China-Lufthansa alliance.  

 

Table 13 Results with different gateway schemes under three demand scenarios. 

Model solution Base case Chengdu Kunming Xi’an 
Total profit of the Air China-Lufthansa alliance at 

the low demand level (million $/month) 
283.180 290.722 289.096 284.905 

Total profit of the Air China-Lufthansa alliance at 
the medium demand level (million $/month) 

327.656 340.088 339.639 339.301 

Total profit of the Air China-Lufthansa alliance at 
the high demand level (million $/month) 

392.006 408.562 400.631 402.435 

Total expected profit of the Air China-Lufthansa 
alliance (million $/month) 

323.918 335.438 333.328 332.083 

Total social welfare of the system at the low 
demand level (billion $/month) 

7.866 7.873 7.870 7.867 

Total social welfare of the system at the medium 
demand level (billion $/month) 

9.870 9.885 9.876 9.877 

Total social welfare of the system at the high 
demand level (billion $/month) 

11.865 11.876 11.872 11.873 

Total expected social welfare of the system (billion 
$/month) 

9.548 9.560 9.553 9.553 

 

Table 13 shows the results of gateway schemes under different demand scenarios. It can be 

noted that the Chengdu gateway scheme is always the best choice for the dog-bone network 

of the Air China-Lufthansa alliance, yielding the highest total profit of $290.722 million per 
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month, $340.088 million per month, and $408.562 million per month under the three demand 

scenarios, respectively. The Chengdu scheme can also lead to the highest total social welfare 

and the largest number of passengers. In addition, Table 13 also shows that from the 

perspective of the expectation of all scenarios (the expected profit of the Air China-Lufthansa 

alliance and expected social welfare), Chengdu is the best choice for the new gateway airport. 

However, it can be noted that the priority ranking of the candidate airports in the alternative 

gateway schemes changes for different demand scenarios. Specifically, for the low and 

medium demand scenarios, Kunming is a better choice than Xi’an in terms of the total profit 

of the Air China-Lufthansa alliance. However, under the high demand scenario, Xi’an 

becomes better than Kunming. This is because when demand is low, the Air China-Lufthansa 

alliance can take advantage of the scale economy effects caused by the large passenger 

volume of Kunming airport to reduce airline’s operating cost and thus increase the profit. 

However, as the passenger demand increases, the gap of the scale economy effects of different 

airports is narrowed. Moreover, compared to Kunming, Xi’an is closer to European airports 

and the majority of the Chinese airports in terms of flight distance. Therefore, choosing Xi’an 

as the new gateway can effectively reduce the passenger travel disutility and attract more 

passengers. Similar observations can be found in terms of the social welfare of the Kunming 

and Xi’an schemes.  

 

The aviation demand has been growing over the recent years. It is thus meaningful to look at 

the effects of the forecasted future demand level on the locations of the new additional 

gateway airports. By the end of Year 2015, the passenger volume of China-Europe 

inter-continental aviation market had increased by 61% over the level of Year 2010, leading to 

an average annual growth rate of about 10%. For Chinese domestic market, the average 

growth rate is about 10% in the past years. For the European domestic market, the average 

growth rate is about 6.1%. Therefore, it is assumed that the demand growth rates for 

China-Europe inter-continental market, Chinese domestic market and European domestic 

market are, respectively, 10%, 10% and 6.1% for the next decade. Then, we obtain that the 

passenger demands in 2025 will be 259%, 259% and 181% of the demand levels in 2015.  

 

We now consider the case of at most three additional gateway airports to be developed in 

China. This leads to seven possible gateway schemes according to constraint (19), namely 

three schemes with only one more gateway airport, three schemes with two more gateway 

airports and one scheme with three more gateway airports in addition to the PEK airport. 
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Table 14 summarizes the optimal gateway schemes in the case of one, two or three more 

gateway airports, respectively. It can be seen that for the demand level of 2025, the scheme of 

Chengdu and Xi’an as additional gateways is the optimal choice in terms of the total profit of 

the Air China-Lufthansa alliance, which is $166.873 million and $27.837 million per month 

higher than those of the Chengdu scheme and the scheme with three new gateways, 

respectively. This means that introducing more gateway airports is not always a good choice 

in terms of airline’s or airline alliance’s profit (in this case, two gateways are better than three 

gateways). It should be pointed out that although the scheme of Chengdu and Xi’an is the best 

choice in terms of the total profit of the Air China-Lufthansa alliance, the scheme of Chengdu, 

Kunming and Xi’an will be best in terms of the resultant passenger demand and the total 

social welfare. This is because more gateway airports imply more route choices for travelers, 

which can facilitate the passengers and thus reduce travel disutility and increase social surplus. 

It should be noted that in our analysis, the fixed costs of developing these additional hub 

airports are not considered due to lack of such financial information in the public domain. 

 

Table 14 Results with different gateway schemes for forecasted demand of 2025. 

 Candidate gateway schemes Chengdu 
Chengdu + 

Xi’an 
Chengdu + 

Kunming + Xi’an 

Total profit of the Air China-Lufthansa alliance 
(million $/month) 

603.965 770.838 743.001 

Total social welfare (billion $/month) 23.247 23.302 23.307 
Total resultant demand of the system 

(passenger/month) 
24450997 24497848 24498010 

 

4.2.3. Sensitivity analysis of model parameters 

Figs. 4 and 5 show the impact of the airline’s marginal cost imposed by an additional 

passenger a  on the total profit of the Air China-Lufthansa alliance and the total social 

welfare of the system for different gateway schemes, at the actual travel demand level of Year 

2015. As previously stated, the marginal cost a  is the passenger-related costs, including the 

baggage handling cost and costs of meals on board and so on. It can be firstly observed that 

the increase of a  will dramatically reduce the total profit of the Air China-Lufthansa 

alliance (Fig. 4a) and the total social welfare of the system (Fig. 5a). In Fig. 4a, the profit 

curves for the three gateway schemes are very close, meaning that the gap among Air 

China-Lufthansa alliance’s profits with these gateway schemes is very small regardless of the 

value of a . Fig. 4b further shows how the profit difference among different gateway 
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schemes changes with a . For ease of presentation, we denote the Chengdu scheme, the 

Kunming scheme and the Xi’an scheme as scheme 1, scheme 2 and scheme 3, and thus 1-2  

in Fig. 4b represents the curve of profit difference between scheme 1 and scheme 2, and so 

forth. It can be found that the profit difference between the Chengdu and Kunming schemes, 

Chengdu and Xi’an schemes or Kunming and Xi’an schemes is positive, showing that for a 

given value of a , the priority ranking of the three alternative gateway schemes is always 

Chengdu, Kunming and Xi’an. As for the social welfare, the welfare curve with Chengdu 

gateway scheme in Fig. 5a is far above that with Kunming or Xi’an gateway scheme, 

suggesting that the social welfare with the Chengdu gateway scheme is much higher than that 

with Kunming or Xi’an gateway scheme. Fig. 5b further shows the welfare difference curves 

among three gateway schemes. In Fig. 5b, 1-2Z  represents the curve of the welfare 

difference between scheme 1 and scheme 2, and so forth. It can be noted that the welfare 

difference between Kunming and Xi’an schemes is negative. Therefore, although the profit of 

the Air China-Lufthansa alliance with Kunming scheme is higher than that with Xi’an scheme, 

Xi’an scheme is more beneficial for improving the total social welfare than Kunming scheme. 

All these observations show that, in terms of the total profit of the Air China-Lufthansa 

alliance or the total social welfare of the system, Chengdu is superior to Kunming and Xi’an 

as the gateway airport, but either of them is also a good choice. 
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  (a)                                    (b) 

Fig. 4. Effects of airline’s marginal cost parameter a  on: (a) total profit of the Air 

China-Lufthansa alliance; (b) difference of the profit of the Air China-Lufthansa alliance with 

different schemes. 
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Fig. 5. Effects of airline’s marginal cost parameter a  on: (a) total social welfare of the 

system; (b) difference of the total social welfare with different schemes. 

 

Recently, some major hub airports in China become increasingly congested with sustained 

growth in demand and traffic volume. For example, the throughput of the Beijing (PEK) 

airport exceeds 100 million passengers in 2018. However, its design capacity is only 76 

million passengers per year. As a result, the airport congestion becomes increasingly serious. 

In order to ascertain the effects of airport congestion, Fig. 6 illustrates the changes of the total 

profit of the Air China-Lufthansa alliance and the total social welfare of the system with the 

airline’s marginal congestion cost parameter   at the PEK airport. It shows that as   

increases, both the total profit of the Air China-Lufthansa alliance and the total social welfare 

of the system decrease. However, choosing Chengdu as the gateway airport is better than 

choosing the other two airports as the gateway airport in terms of either the total profit of the 

Air China-Lufthansa alliance or the total social welfare. In addition, in terms of the profit of 

the Air China-Lufthansa alliance (Fig. 6a), the priority ranking of the gateway schemes 

(Chengdu, Kunming, and Xi’an) does not change. However, it can be found that in Fig. 6b, 

the Xi’an scheme is better than the Kunming scheme in terms of the total social welfare, 

similar to the effects of a .  
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    (a)                                 (b) 

Fig. 6. Effects of flight’s marginal congestion cost parameter   at PEK hub airport on: (a) 

total profit of the Air China-Lufthansa alliance; (b) total social welfare of the system. 
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(a)                                 (b) 

Fig. 7. Effects of passenger’s value of time for the congestion delay 4  at PEK hub airport 

on: (a) total profit of the Air China-Lufthansa alliance; (b) total social welfare of the system. 

 

Fig. 7 shows the effects of passenger’s value of time 4  for the congestion delay at the PEK 

airport on the total profit of the Air China-Lufthansa alliance and the total social welfare of 

the system. It can be seen that as 4  increases, the total profit and the total social welfare for 

each gateway scheme decrease, but the Chengdu scheme is always superior to the other two 

schemes. The impact of 4  on the total profit of the Air China-Lufthansa alliance and the 

total social welfare of the system for different gateway schemes are different from the impacts 

of a  and  . In Fig. 7a, as the value of 4  is smaller than $45 per passenger, the Kunming 

scheme is better than the Xi’an scheme in terms of the Air China-Lufthansa alliance’s profit, 

but it is reverse for the value of 4  larger than $45 per passenger. Similarly, from the 

perspective of the total social welfare (see Fig. 7b), the change point between the Kunming 
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and Xi’an schemes occurs at the location of 4 =40 . These observations mean that as the 

passengers are not sensitive to the airport congestion (i.e., 4  is small enough), the Kunming 

scheme is better than Xi’an scheme, in terms of the profit or the total social welfare. 

Contrarily, as the passengers are sensitive to the airport congestion (i.e., 4  is high enough), 

Xi’an scheme can attract more passengers, and generates more profit and total social welfare 

than Kunming scheme.  
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      (a)                                 (b) 

Fig. 8. Effects of parameter   on: (a) total profit of the Air China-Lufthansa alliance; (b) 

difference of the profit of the Air China-Lufthansa alliance with different schemes. 
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(a)                                    (b) 

Fig. 9. Effects of parameter   on: (a) total social welfare of the system; (b) difference of the 

total social welfare with different schemes. 

 

Figs. 8 and 9 show how the parameter   influences the profit of the Air China-Lufthansa 

alliance and the total social welfare of the system, respectively. It can be seen that both the 

profit and the social welfare decrease quickly with the increasing value of  regardless of the 
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gateway schemes. This may be due to the fact that a higher value of   leads to a higher 

expected disutility and a lower resultant passenger demand, thereby reducing the profit and 

the social welfare. Figs. 8b and 9b further depict the profit differences and welfare differences 

among three different gateway schemes. It can be noted that the Chengdu scheme is always a 

better choice than other two schemes because the corresponding profit differences and welfare 

differences are positive. Additionally, the higher the value of the parameter  is, the larger 

the difference of the Air China-Lufthansa alliance’s profit or the total social welfare with 

different schemes is. This is because a larger value of   means fewer routes to be chosen by 

passengers and larger demand differences among different travel routes to be obtained. 

However, the profit difference or the welfare difference between the Xi’an and Kunming 

schemes changes from a negative value to a positive value, as the value of  varies from 

0.01 to 0.03. In other words, the Xi’an scheme is better than the Kunming scheme when the 

value of   is high enough, and vice versa.  
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Fig. 10. Effects of parameter   on the profit of the Emirates Airlines. 

 

Finally, we look at how the parameter   influences the profit of the Emirates Airlines, as 

shown in Fig. 10. As stated above, the additional gateway scheme would reduce the profit of 

the Emirates Airlines. It can be further noted in Fig. 10 that the Chengdu scheme has a more 

serious negative effect on the profit of the Emirates Airlines. Besides, as the value of   

increases, the profit of the Emirates Airlines increases, which is different from the profit curve 

of the Air China-Lufthansa alliance and the total social welfare curve (see Figs. 8a and 9a). 
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This is because the higher the value of  is, the larger the difference in the passenger volume 

among alternative travel routes or airlines’ networks is. From Table 9, the market share of the 

Emirates Airlines is always much higher than those of airline alliances regardless of the 

gateway schemes adopted. Therefore, more passengers prefer to choose the Emirates Airlines 

for their journeys rather than other airlines, and such a situation may become more obvious 

for a larger value of  . 

 

5. Concluding remarks and further studies 

Significant changes are taking place in the global aviation industry, as more and more 

countries are liberalizing their skies to promote the aviation industry and the associated 

sectors such as trade, tourism and logistics. To cater for the changes of the aviation industry, 

medium-sized aircraft capable of long-range flights are being introduced. As a result, some 

airlines have incentives to expand their HS networks to serve inter-continental markets that 

have been dominated by dog-bone network operators. Such market dynamics have raised 

some important and intriguing issues to the aviation industry. A proper understanding of the 

best responses of airlines and regulators to such market dynamics is important. For airlines, 

they would seek to optimize and reconfigure their networks in order to strengthen their 

competitiveness. For regulators, a good assessment of the competitive effects can help them 

design related policies, such as aviation liberalization, slot allocation at major airports, and the 

approval of airline alliances or code share agreements. Where needed, additional investments 

may be made to promote the development of new gateway hub airports. However, few studies 

have explicitly addressed the competition between these aviation networks, and thus the 

implications for airline network configurations, government policies, and the resultant 

impacts on passengers are not properly revealed.  

 

This paper aims to provide some insights for better understanding these aforementioned 

questions through developing an integrated model of the locations of additional gateway 

airports and the airline network rivalry (i.e., HS network versus dog-bone network). The 

effects of passenger demand uncertainty due to seasonal demand variations are explicitly 

considered by modeling the OD passenger demand as a discrete distribution with finite 

demand scenarios. A two-stage approach is adopted to model the effects of demand 

uncertainty. In the first stage, the future passenger demand is not observable and thus airlines 

or airline alliances maximize their own expected profits by optimizing the locations of new 
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additional gateway airports from the set of candidate gateway airports pre-specified by the 

regulator. In the second stage, with passenger demand observed and the gateway scheme 

fixed, airlines determine their aircraft sizes and service frequencies to maximize their own 

profits, and air passengers choose routes that minimize their own travel disutility. 

Furthermore, based on the actual data of passenger demand matrix, a maximum likelihood 

method is adopted to calibrate the passenger demand dispersion parameter in the elastic OD 

demand function. The calibrated values of the parameters are then used as inputs of the above 

two-stage stochastic model. Such a model allows the identification of market equilibrium 

when airlines compete with different types of networks, thus that the effects of alternative 

network configurations can be tested and quantified. Such a framework can help airlines 

identify their strength and weakness, and optimize and reconfigure their networks to 

strengthen their competitiveness. It can also help the regulators to evaluate the effects of new 

additional gateway airports in liberalizing markets on the social welfare. 

 

Applying the proposed stochastic model to the China-Europe aviation market (including the 

inter-continental international market and the Chinese and European domestic markets), some 

interesting and meaningful findings are obtained. First, in terms of the profits of 

decision-makers, the priority ranking of candidate airports for new gateway with deterministic 

demand changes with the realized demand scenario. Specifically, in our case, in terms of the 

total profit of the Air China-Lufthansa alliance, the priority ranking of the gateway airport 

schemes is Chengdu, Kunming and Xi’an for a low and a medium demand level (80% and 

100% of the actual passenger demand in 2015). At a high demand level (120% of the 2015 

passenger demand), the priority ranking of the gateway airport schemes becomes Chengdu, 

Xi’an and Kunming. Furthermore, the Chengdu scheme is always better than others regardless 

of the changes of the related parameters (i.e., the marginal passenger cost a , airlines’ 

marginal congestion cost  , passenger’s value of time for the congestion delay 4  and the 

parameter of the logit model  ), while the priority ranking of Kunming and Xi’an will 

change in terms of profit or the total social welfare. Second, as passenger demand grows, the 

number of the optimal gateway airports for the dog-bone aviation network may increase. For 

example, for the forecasted demand of 2025 in this paper, the optimal gateway scheme for the 

Air China-Lufthansa alliance contains two airports, namely Chengdu and Xi’an, leading to 

higher total profit of the Air China-Lufthansa alliance, compared to other gateway schemes. 

Third, if the number of the gateway scheme is given and fixed, the optimal gateway scheme 
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may achieve the highest profit for the decision-marker, total social welfare and the resultant 

demand simultaneously. Otherwise, this may not the case. At the forecasted demand level of 

2025, both total social welfare and the resultant passenger demand for the scheme with 

Chengdu and Xi’an are less than those for the scheme with Chengdu, Kunming and Xi’an. 

Fourth, the pure HS network (i.e., the Emirates Airlines) can lead the inter-continental market 

to have a higher market share than other airline alliances, although the development of the 

new gateway airport may decrease its market share and the profit of the Emirates Airlines. For 

the inter-continental market between China and Europe, the market share of the Air 

China-Lufthansa alliance is higher than that of the China Southern-British Airways alliance or 

China Eastern-Air France alliance, which is reverse for the domestic aviation market. Finally, 

the competition between different kinds of aviation networks can generate more aviation 

passengers and improve the social welfare of the system, although such competition may 

harm the interests of some airlines. 

 

It should be noted that we have modeled the airline competition between airlines operating 

different types of networks in the China-Europe markets. One should be cautious to 

generalize our modeling results to the competition between dog-bone networks and 

inter-continental HS networks in general. In the case of Middle East carriers, their HS 

network is significantly affected by their geographic location as well as small domestic 

market. In other words, this does not necessarily indicate general trade-offs between HS and 

“dog-bone”. Discussion of the strength and weakness of each network type without 

considering the geographic location is misleading, and there is a need to consider 

market-specific characteristics in analysis similar to that used in this study.11 

 

Although we have tried to develop and implement our model carefully and rigorously, some 

simplifying assumptions were introduced, which could limit the accuracy and applicability of 

the modeling results. These are areas that should be cautioned, and may provide research 

opportunities for further extensions. First, we considered a relatively small network with only 

14 Chinese airports and 10 European airports and a handful of airlines or airline alliances in 

the case study. Intuitively, to better control for airline network effects and competition from 

other airlines and alternative routes, it is better to model more airports and airlines. This 

however requires collecting much larger datasets and likely more assumptions on additional 

                                                               
11 We are thankful to an anonymous referee for pointing out this to us. 
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airlines and routes.12 If not done properly, including more airports and airlines could reduce, 

instead of increasing, the accuracy and reliability of the model. In practice, some 

simplifications will have to be made by focusing on specific markets and airlines. Such an 

approach is similar to the “residual demand” assumption that is frequently used in anti-trust 

analysis. It effectively assumes that there will be limited interaction between the 

network/market under investigation and other parts of the network/market. However, there 

has been no clear guidance in the literature what is the proper scope of analysis (i.e., how 

many airports and airlines should be included when analyzing inter-continental markets).  

Second, passengers are assumed to be homogenous in this paper. However, classifying the 

passengers into business and leisure passengers according to income and travel preference 

may further improve the accuracy of the model. Therefore, there is a need to consider the 

heterogeneity of the passengers in a further study. Third, we consider the total profit of airline 

alliance and do not investigate the revenue distribution among allied airlines. Obviously, this 

is an important issue involving whether the collaboration between airlines is successful or not, 

and deserves a further study. Finally, a likely better approach of model calibration is to 

conduct empirical studies on the market first, thus that parameters can be chosen based on 

estimates from the markets being analyzed. This is however a challenging task involving large 

amount of data and careful analysis. More importantly, before the proposed services are 

provided, there may be no data available at all. Developing a better approach for model 

calibration would be a valuable contribution to the literature. Our study is a modest step 

toward obtaining accurate and reliable modeling of aviation networks. More advanced studies 

are needed in this important research field.  
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Similarly, Lufthansa has extensive network and operations between Europe and North America, whereas Air 
China has extensive services to Asia and other destinations that are not currently included in our study. Due to 
network effects, such operations may influence these airlines’ hub operations and costs. To properly and fully 
control the related influences, more data and assumptions are needed. In addition, one also needs to find proper 
treatments on the competition imposed by other airlines serving these extended networks. 
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