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Robust Airline Crew Scheduling with Flight Flying Time Variability 

Abstract: The crew pairing problem is one of the most important but challenging tasks for commercial 

airlines. However, the operation environment of the aviation industry is highly volatile with diverse 

uncertainties. Flight flying time variability is an important disruption that usually causes deviations of flight 

departure/arrival times from the schedule. Traditional crew pairing frameworks without considering flight 

flying time variability can generate pairings that are fragile to flight delays. However, the impact of flight 

flying time variability on crew pairings is under-explored. In this paper, we propose two robustness 

enhancement strategies based on the consideration of flight flying time variability (i.e., encouraging 

deviation-affected-free flights and discouraging deviation-affected flights). Besides, two robustness 

measurements are developed to construct two novel robust crew pairing models. One is time based while 

the other is number based. A customized column generation based solution algorithm is proposed. 

Computational experiments based on real flight schedules show that our new models can greatly enhance 

solution robustness (e.g., 49.1% more deviation-buffer time) at a price of an acceptable increase in operating 

costs (e.g., 9.7%) compared with the traditional model. Besides, extreme-delay flights can be completely 

avoided in the proposed models. Moreover, the solutions obtained from the time-based model show higher 

resistance against the disruption of flight flying time variability with a lower operating cost than the number-

based model. 

Keywords: Airline crew pairing; Robust scheduling; Flying time variability; Column generation 

1. Introduction

The aviation industry is crucial for the global economy by facilitating passenger and cargo transportation 

all over the world (Button et al., 2019; Choi et al., 2019; Ng et al., 2017; Qin et al., 2019; Wen et al., 2019). 

According to International Air Transport Association (IATA), 4.3 billion passengers travelled through air in 

2018, and the air passenger traffic is predicted to double in the next two decades1. Meanwhile, the aviation 

industry is characterized with intensive market competition and high operating costs. Therefore, improving 

the quality of operational decisions is of great importance for modern airlines to survive in the furiously 

competitive market (Bock et al., 2020; Sheng et al., 2019; Sun et al., 2020a; Wang & Wang, 2019). Due to 

the large problem scale and high problem complexity, the airline operational scheduling problem is usually 

divided into four sub-problems (Şafak et al., 2018). They are flight scheduling, fleet assignment, aircraft 

maintenance routing, and crew scheduling. Among them, crew scheduling has attracted increasing attention 

from both the industry and the academia as crew costs have become the second highest expenditure for 

1 https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2019.pdf. Retrieved on 10 Sept. 
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airlines, just after fuel costs. It is believed that even a small improvement in crew schedules can bring a 

remarkable cost saving (Chung et al., 2017; Ng et al., 2020; Wen et al., 2020). Crew scheduling is conducted 

by sequentially solving a crew pairing problem (CPP) and a crew assignment problem (CAP). The CPP is 

to construct sufficient anonymous pairings to cover all the scheduled flights with a minimum cost, while 

the CAP is to connect the pairings generated in the CPP to form monthly schedules to be assigned to specific 

crew members. Authorities, labor unions, and airlines usually impose diverse strict working rules and 

regulations on airline crew members, like the maximum time away from base and minimum flight 

connection times. 

Although the air transportation industry is becoming increasingly essential for the world economy, the 

industry is challenged by various uncertainties in the operating environment, such as bad weather, airport 

congestion, mechanical failures, and crew absence. Accordingly, flights always deviate from the scheduled 

departure and arrival times. Flight delays and cancellations are commonly seen nowadays. According to 

Bureau of Transportation Statistics of United States Department of Transportation, the flight on-time rate 

was below 85% since the year of 2011, while the flight delay rate even grew to 24.53% in 20142. It is 

reported that the cost related to disruptions for airlines reaches 25 to 35 billion USD each year. If we take 

the costs for other entities like passengers into account, this number goes up to 60 billion USD3. Regarding 

airline crew scheduling, as crew schedules are constructed based on pre-determined flight schedules with 

the aim of cost minimization, the constructed schedule plans are fragile and sensitive to disruptions. The 

gap between the planned schedules and the real operations for crew members can lead to huge negative 

impacts to airlines (e.g., catering services and lodging) and passengers (e.g., inconvenience) (Chung et al., 

2015). Therefore, it is of great importance to build airline crew schedules with disruption considerations. 

According to the implementation stage, the disruption management operations for airline scheduling 

are divided into two categories: recovery planning and robust planning (Clausen et al., 2010). Recovery 

planning refers to the re-scheduling of the original plan if a disruption occurs. The result of the recovery 

planning process can be the re-timing or cancellation of flights, reassigning standby crew members, or re-

accommodating passengers. On the other hand, robust planning is to integrate the possible occurrence of 

disruptions into the decision framework in the planning phase, with the aim of producing schedules that are 

capable to remain feasible and less vulnerable in disrupted environments. Buffer time is a common and 

useful approach to help scheduled activities cover unexpected events. However, increasing buffer time will 

inevitably lead to a reduced utilization of airline resources (like aircraft and crew members). Accordingly, 

it is essential to balance the robustness and operating costs of airline schedules.  

Among various uncertainties, variations in flight flying time (which is mainly caused by different 

                                                        
2 https://www.transtats.bts.gov/HomeDrillChart.asp. Retrieved on 11 Sept 2020. 
3 https://digitaltravelapac.wbresearch.com/blog/4-travel-disruptions-affecting-otas-airlines. Retrieved on 12 Sept 2020. 

https://www.transtats.bts.gov/HomeDrillChart.asp
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cruise speeds) are commonly seen and have become increasingly important for the aviation industry. In the 

domain of Air Traffic Management, the adjustment of flight cruise speed serves several purposes such as 

conflicts reduction and noise abatement (Delgado & Prats, 2009). For example, data analytics on historical 

flight data demonstrates that an aircraft may speed up if it encounters a delayed departure, in order to 

alleviate the delay of the flight arrival (Sun et al., 2020b). Previous research also shows that speed 

fluctuation is a crucial consideration in aircraft fuel management (Khan et al., 2019a; Khan et al., 2019b; 

Wang et al., 2020). Moreover, various uncertainties related to flights, weather conditions (e.g., unexpectedly 

strong headwinds), traffic control and navigational error, airport congestions, etc., make flight flying time 

variation inevitable (Delgado & Prats, 2013). Accordingly, the actual flying time of scheduled flights keeps 

varying from time to time, which further leads to deviations in flight arrivals and flight departures. 

In our study, we consider flight flying time as the source of disruption, and our objective is to alleviate 

the impact of flight flying time variability on the generated crew schedules. To be specific, we propose two 

novel robustness enhancement strategies based on the flying time variability and flight departure/arrival 

interdependency constructed by Sun et al. (2020b). The first strategy is to encourage flights that will not be 

affected by the expected arrival delay of the preceding flight, while the second strategy is to discourage 

flights that will be influenced by the expected arrival delay of the preceding flight. Regarding each 

robustness strategy, we also propose two different measures: number-based measure and time-based 

measure. A customized column generation based solution algorithm is proposed to solve the developed two 

novel robust crew pairing models (namely the Robust Crew Pairing Model with Number-based Measure 

(RCPN) and the Robust Crew Pairing Model with Time-based Measure (RCPT)). Computational 

experiments based on real flight schedules show that our new models can greatly enhance the robustness 

of pairing solutions at a price of an acceptable increase in basic operating costs compared with the 

traditional model without considering flight flying time variability in pairing generation. Moreover, both 

RCPN and RCPT can completely avoid extreme-delay cases, while the traditional model generates many 

extreme-delay flights. Regarding the comparison between RCPN and RCPT, it is found that RCPT can 

generate an average of 60.3% more deviation-buffer time, while consumes 3.8% less operating costs than 

RCPN. Besides, we reveal that although RCPT applies a time-based measure, it achieves satisfactory and 

more stable performances in terms of the number-based measure than RCPN. Therefore, the solutions 

obtained from RCPT show higher resistance against the disruption of flight flying time variability with a 

lower operating cost than RCPN. 

Contributions 

To the best of our knowledge, this research is the first study proposing crew pairing robustness 

enhancement strategies based on the consideration of flight flying time variability in the airline crew 

scheduling literature. The newly proposed time-based and number-based robustness measures are novel. 
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The constructed new robust crew pairing models are proved to achieve great robustness enhancement with 

an acceptable increase in basic operating costs through computational experiments based on real-world 

collected flight schedules. Our study thus demonstrates the importance of considering the flight flying time 

variability led by the fluctuating cruise speed, which has become a common disruption source in the air 

transportation industry, during the planning stage of airlines. In order to solve the proposed robust crew 

pairing models, a column generation based solution methodology which constructs customized sub-

problems by the novel robustness-related costs is established. 

The rest of the paper is structured as below. First, Section 2 reviews the existing literature. The problem 

definition is introduced in Section 3. Next, Section 4 demonstrates the proposed robust crew pairing model. 

The solution approach is illustrated in Section 5, while Section 6 carries out computational experiments. At 

last, Section 7 makes conclusion for this work. 

 

2. Literature Review  

In this section, we review the related literature from two aspects: Airline crew pairing problems and robust 

airline crew pairing problems.  

 

2.1 Airline crew pairing problems 

Due to the high operating costs, the airline crew pairing problem has been studied extensively in recent 

years (Parmentier & Meunier, 2019; Sun et al., 2020b). The CPP is generally formulated as a set covering 

problem or a set partitioning problem. Recently, a polynomial-sized nonlinear model is also applied to 

model the daily crew pairing problem which can be linearized by the reformulation-linearization technique 

(Haouari et al., 2019). Generally, there are millions or even billions of possible pairings for a weekly flight 

schedule with thousands of flights, which is common for commercial airlines nowadays. Therefore, column 

generation is widely applied in solving the large-scale airline crew pairing problem both in the academia 

and in the industry since 1980s (Desaulniers et al., 1997; Lavoie et al., 1988).  

Recently, Quesnel et al. (2019) integrate the language considerations into the CPP to better satisfy the 

requirements of the CAP, and construct a new CPP variant named as the CPP with language constraints 

(CPPLC). In Quesnel et al. (2019), an efficient partial pricing technique is proposed to deal with the large 

number of sub-problems. Computational experiments based on real flight schedules show that the pairings 

generated from the proposed CPPLC can reduce the language requirement violation in the CAP by 61%-

96% compared with those derived from the traditional CPP (Quesnel et al., 2019). Similarly, Wen et al. 

(2020) consider the manpower availability restriction for each class of cabin crews in the stage of CPP to 

alleviate the shortcoming of the rigid separated airline crew scheduling approach (i.e., the sequential CPP 

and CAP). In Saddoune et al. (2012), the airline pilot scheduling problem is solved in a single step. 
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Saddoune et al. (2012) show that the single step crew scheduling can result in a 3.37% reduction in operating 

costs compared with the sequential approach. However, the problem scale and complexity increase 

intensively. 

On the other hand, some research tries to enhance the optimization efficiency for airlines by integrating 

various stages of airline scheduling into a single decision framework (Papadakos, 2009; Ruther et al., 2017). 

For example, Cacchiani and Salazar-González (2017) solve a fleet assignment, aircraft routing, and crew 

pairing integrated problem for a regional airline, with the objective of minimizing the weighted sum of the 

number of crew pairings, the waiting times of crew members between consecutive flights, and the number 

of aircraft routes. In a similar study, Shao et al. (2017) construct a Benders decomposition approach together 

with several acceleration techniques to handle an integrated airline scheduling problem, to derive fleet 

assignments, aircraft routing plans, and crew pairings at the same time. Besides, Özener et al. (2017) study 

an integrated scheduling problem for an European Airline by simultaneously considering the fleet 

assignment and crew pairing problem with the aim of maximizing the total profit of the airline.  

 

2.2 Robust airline crew pairing problems 

Although optimization models aim to improve airline profitability by generating more efficient and cost-

effective schedules, these schedules may be susceptible to unforeseen disruptions or irregular operations, 

such as extreme weather, airport congestion or propagated delays. To recover from these unexpected 

situations, recovery actions may be adopted, such as flight delay or cancellation, crew swapping, and crew 

deadheads. However, these activities can be expensive and time-consuming, and even hurt the brand image 

of the airline. Therefore, it has become increasingly popular to establish robust schedules with the aim of 

reducing the sensitivity of the planned schedules to minor or major disruptions. Generally, the robust airline 

crew pairing problem is categorized into non-integrated robust planning and integrated robust planning 

problems (Chung et al., 2015).  

For the first category, researchers focus on improving the robustness of crew pairings. For example, 

Sun et al. (2020b) propose a data-driven bicriteria robust crew pairing model, in which the flying time 

variability and flight departure/arrival interdependency are formulated. With this interdependency, the 

difference between the scheduled departure/arrival times and the expected departure/arrival times can be 

obtained. Accordingly, the robustness of the crew pairing solutions can be enhanced by minimizing the 

obtained differences. Computational experiments based on real flight schedules show that the data-driven 

bicriteria robust crew pairing model can greatly improve the reliability of solutions without sacrificing 

much basic operating costs (Sun et al., 2020b). Tekiner et al. (2009) consider a special disruption which 

comes from the fact that airlines sometimes add flights during operations. To deal with this uncommon 

disruption, Tekiner et al. (2009) propose a model that can accommodate additional flights without affecting 
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others, while controlling the increased crew cost at a user-specified level. A similar study can be found in 

Muter et al. (2013). Most recently, Antunes et al. (2019) present a robust crew pairing model without the 

requirement of knowing the details of the underlying delay disruptions. The linearity of the constraints and 

objective function are retained so that the robust crew pairing model can be solved by commercial solvers. 

Regarding the second category, the aircraft routing problem is usually considered with the crew pairing 

problem simultaneously to enhance the solution robustness. Dunbar et al. (2012) point out that the 

sequential scheduling approach fails to account for the dependencies between different scheduling stages 

(e.g., aircraft routing, crew scheduling). Therefore, Dunbar et al. (2012) propose a new robust aircraft and 

crew integrated scheduling model which can accurately calculate and minimize the overall propagated delay. 

Later, Dunbar et al. (2014) extend the robust model of Dunbar et al. (2012) by proposing two new delay 

propagation reduction algorithms via the incorporation of stochastic delay information. Similarly, Weide et 

al. (2010) aim to improve the airline schedule robustness against typical stochastic variability in airline 

operations by considering the aircraft routing problem with two types of airline crew pairing problems 

(including the cabin crew pairing problem and the cockpit crew pairing problem).  

 

 

2.3 Research gaps 

From the review presented above, it is seen that the impact of flight flying time variability is studied rather 

less in the crew pairing literature. However, Sun et al. (2020b) have shown that flight flying time is a random 

variable which is directly affected by the departure time of the flight, while the flying time variation further 

affects flight arrival and the departure of the next flight, causing propagated delay effects. Therefore, it is 

valuable and important to integrate these considerations (i.e., flight flying time variability and the related 

flight departure/arrival interdependency) into the crew pairing framework to enhance the solution 

robustness. Our study is mostly related to Sun et al. (2020b). However, in Sun et al. (2020b), the crew 

pairing robustness is represented by the minimization of the expected differences between the actual flight 

schedule and the scheduled plan for air crews. Although the total expected arrival/departure time deviation 

can be minimized, the number of departure-delayed flights or the level of departure delay is not considered 

in Sun et al. (2020b). Through our discussion with the managers from a major Hong Kong airline, it is 

known that airlines are eager to minimize the number of departure-delayed flights or the level of departure 

delays of affected flights (i.e., delay time length). For example, one flight with a two-hour delay is definitely 

different from four flights with a half-hour delay each. Therefore, in the current study, we propose two 

novel robustness strategies, with one encouraging the occurrence of flights that will not be affected by the 

expected arrival delay of the preceding flight, while the other discouraging the occurrence of flights that 

will be affected. More importantly, the specific levels of the delays and non-delays (i.e., number of flights 

or the time length) are considered to provide more insightful guidelines for airlines, which is new to the 
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literature. 

 

3. Problem Description 

This section defines the problem to be studied, constructs the duty-based flight network used for pairing 

generation, and introduces flying time variability and flight departure-arrival interdependency. 

 

3.1 Definitions and regulations 

The robust airline crew pairing problem aims to determine sufficient legal pairings to cover all flights’ 

requirements that are robust to disruptions with the minimum cost, while satisfying all the regulations 

imposed by authorities, labor unions, and airlines. A duty consists of a sequence of flights connected by sits 

(also named as transits or connections), while the duty period refers to the elapsed time of a duty. A feasible 

pairing is a sequence of duties (separated by rests) operated by the same crew member, starting from and 

ending at the home base, and satisfies diverse rules and regulations. The elapsed time of a pairing is the 

time away from base (TAFB). 

Authorities, labor unions, and airlines have imposed various rigorous rules and regulations on air crews, 

in order to ensure the safety level of air transportation. In the pairing construction of this study, we consider 

the following rules according to the practical operations of a major Hong Kong airline and CAD 3714. First 

of all, two flights can be connected (i.e., one flight is the immediate following flight for another flight) only 

if there is a legal sit time between the two flights, while the arrival airport of the former flight is the departure 

airport of the latter flight. The maximum sit time (Maxsit) is 240 minutes, while the minimum (Minsit) is 30 

minutes. Second, a briefing before a duty and a debriefing after a duty are compulsory. Third, the legal 

duration of a duty varies based on the local starting time of the first flight and the number of flights in the 

duty, as summarized in Table 1. Maximum three flights are allowed for a duty. Fourth, a rest lasting from 

720 minutes to 2160 minutes is required between two duties if the period of the former duty is no longer 

than 12 hours. Otherwise, an 840-minute rest is the minimum requirement. Last, maximum five duties, 

twelve flights, and 7200 minutes of TAFB are allowed for a pairing. 

Table 1. Maximum duty periods (in hours). 

Local starting time of the first flight of the duty 
Number of flight legs in the duty 

1 2 3 

07:00-07:59 13 12.25 11.5 

08:00-12:59 14 13.25 12.5 

13:00-17:59 13 12.25 11.5 

18:00-21:59 12 11.25 10.5 

22:00-06:59 11 10.25 9.5 

                                                        
4 CAD 371: The Avoidance of Fatigue in Aircrews published by the Civil Aviation Department of the Government of the HKSAR. 
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3.2 Duty-based flight network 

We use F to represent the set of flights to be scheduled which is indexed by j, and P to stand for the set of 

potential pairings in the duty-based flight network which is indexed by p. In this work, we apply the duty-

based flight network for pairing generation to enhance optimization efficiency as some working regulations 

have already been satisfied in the network construction process (Vance et al., 1997). An example of the 

duty-based flight network is shown in Figure 1. The acyclic duty-based network is denoted as 𝐺 = (𝑁, 𝐴). 

𝑁 represents the set of nodes (including a source node, a sink node, and duty nodes), while 𝐴 is the set of 

arcs in the network. A source node (s) and a sink node (k) are used to stand for the home base. An example 

duty is illustrated in the upper right corner of Figure 1. As we can see, a duty (𝑑) is composed of a sequence 

of flights connected by sit arcs. Accordingly, we denote the set of sit arcs in duty d by 𝑆𝐴𝑑, while the set of 

flights contained in duty d by 𝐹𝑑. All possible duties are constructed according to the rules and regulations. 

Duties are connected by rests in the network. All duties starting from the home base link with the source 

node by a starting arc, while all duties ending at the home base connect with the sink node by an ending 

arc. The sets of starting arcs and ending arcs are denoted by 𝐴𝑠 and 𝐴𝑒, respectively. For the duties that do 

not start from the home base, a deadhead starting arc is used to link the home base (s) with the duty. Similarly, 

for the duties that do not end at the home base, a deadhead ending arc is used to link the duty with the home 

base (k). We use 𝐴𝑑𝑠  and 𝐴𝑑𝑒  to denote the sets of deadhead starting arcs and deadhead ending arcs, 

respectively. A legal pairing refers to a resource-feasible s-t path in the constructed duty-based network. 

The set of all arcs contained in Pairing p is represented by 𝐴𝑝.  

 

Figure 1. An example of the duty-based flight network. 

 

3.3 Flying time variability & flight departure-arrival interdependency  

Although each flight in the flight schedule is assigned a departure time, an arrival time, together with the 

flying time, the real flight flying times vary significantly. As discussed, airlines and pilots may control the 
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flight cruise speed to adjust the flying time. For example, if a flight departs late from an airport at a peak 

time, the aircraft can fly at a higher speed to reduce the impact of the late departure on its arrival. If a flight 

arrives at the destination airport in peak times, the total flying time will increase greatly. There are many 

other important factors that affect the real flying time, like weather conditions, traffic control, and 

navigational error. For example, if a flight encounters a strong headwind in the first half of the journey, the 

pilot may speed up in the second half of the trip. Considering the random nature of flight schedules, 

academia has been devoted to discovering the relationship among flight departure times, flying times, and 

arrival times, with the aim of improving the decision making for the important but volatile air transportation 

industry. A recent study by Chung et al. (2017) has revealed that flight arrival times are significantly affected 

by flight departure times. A related work by Sun et al. (2020b) further uncovers that flight flying times are 

actually dependent on the real departure time of the flight through analytics on 2-year real historical flight 

data provided by a major Hong Kong airline. A heteroscedastic regression model successfully predicts the 

structure of flight flying times by characterizing the influence of flight departure time on the mean and 

variance of the actual flying time. Based on the identified flight flying time structure, the expected arrival 

and departure times of consecutive flights can be modelled mathematically in Sun et al. (2020b). In our 

work, we build a novel robust crew pairing model which is resistant against potential flight delays based 

on the flight departure-arrival interdependency as well as the departure-dependent flight flying time 

variability developed by Sun et al. (2020b) (see Section 4). Note that to make the problem tractable, 

regarding the flight (departure-dependent) flying time variability, we only consider its impact on the 

expected arrival time of the immediate subsequent flight, without the propagated impact on the other latter 

flights in the pairing. Next, the flight expected arrival time based on the departure-dependent flying time is 

introduced. 

We use 𝑎𝑟𝑟(𝑗) and 𝑑𝑒𝑝(𝑗) to represent the actual arrival and departure times of Flight j, respectively, 

while 𝑎𝑟𝑟𝑠(𝑗) and 𝑑𝑒𝑝𝑠(𝑗) to denote the scheduled arrival and departure times of Flight j, respectively. 

𝐹𝑇𝑗(𝑑𝑒𝑝(𝑗)) stands for the real flying time of Flight j, which is dependent on the actual departure time of 

𝑑𝑒𝑝(𝑗). 𝐸[(∙)] denotes the expect value. 𝑀𝑖𝑛𝑠𝑖𝑡/𝑀𝑎𝑥𝑠𝑖𝑡 is the minimum/maximum legal sit time between 

two consecutive flights. According to Sun et al. (2020b), most of the flight regular uncertainties can be 

approximated by Normal distribution. Therefore, the flight flying time is modelled as a Normal distribution 

with the mean of 𝜇𝑗(𝑑𝑒𝑝(𝑗)) and standard deviation of 𝜎𝑗(𝑑𝑒𝑝(𝑗)) which depends on the actual departure 

time of the flight, 𝑑𝑒𝑝(𝑗). Therefore, 𝑎𝑟𝑟(𝑗) and 𝐸[𝑎𝑟𝑟(𝑗)] can be formulated as in Eq. (1) and Eq. (2) in 

the following.  

𝑎𝑟𝑟(𝑗) = 𝑑𝑒𝑝(𝑗) + 𝐹𝑇𝑗(𝑑𝑒𝑝(𝑗)) (1) 

𝐸[𝑎𝑟𝑟(𝑗)] = 𝐸[𝑑𝑒𝑝(𝑗)] + 𝜇𝑗(𝐸[𝑑𝑒𝑝(𝑗)]) (2) 
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Using Eq. (2), we can obtain the expected arrival time of Flight j by considering flight flying time 

variability. The actual departure time of the next flight (i.e., Flight j+1) is dependent on the arrival of the 

immediate preceding flight (i.e., Flight j)5, as shown in Eq. (3). The first part in the max {} of Eq. (3) 

represents the scheduled departure time of Flight j+1, while the second part represents the earliest legal 

departure time for Flight j+1 based on the real arrival of its previous flight (i.e., Flight j).  

𝑑𝑒𝑝(𝑗 + 1) = 𝑀𝑎𝑥{𝑑𝑒𝑝𝑠(𝑗 + 1), 𝑎𝑟𝑟(𝑗) + 𝑀𝑖𝑛𝑠𝑖𝑡} (3) 

Therefore, with 𝐸[𝑎𝑟𝑟(𝑗)] , we are able to judge whether the following flight (i.e., Flight j+1) is 

expected to depart on time or not. That is, the status of a flight is affected by its previous flight(s). 

 

Figure 2. An example of the impact of flight flying time variability on crew pairing. 

 

Following Sun et al. (2020b), we assume that the aircraft is always available for each flight to exclude 

the impact of aircraft disruptions. Besides, every first flight leg of a duty (Flight 𝑗𝑠
𝑑) departs on time. That 

is, 𝑑𝑒𝑝(𝑗𝑠
𝑑) = 𝑑𝑒𝑝𝑠(𝑗𝑠

𝑑). Besides, the arrivals before the scheduled arrival time point are regarded as arrival 

on time. Figure 2 shows an example of the impact of flight flying time variability on crew pairing. The 

duty in Figure 2 involves three consecutive flights. They are F1, F2, and F3. The actual departure time for 

F1 is its scheduled departure time (i.e., 𝑑𝑒𝑝(1) = 𝑑𝑒𝑝𝑠(1)). Due to the variation in flight flying time, the 

expected arrival time of F1 is later than the scheduled time (i.e., 𝐸[𝑎𝑟𝑟(1)] = 𝑑𝑒𝑝𝑠(1) + 𝜇1(𝑑𝑒𝑝𝑠(1)) >

𝑎𝑟𝑟𝑠(1)). Base on 𝐸[𝑎𝑟𝑟(1)], according to Eq. (3), it is identified that the departure of F2 is delayed (i.e., 

𝐸[𝑎𝑟𝑟(1)] + 𝑀𝑖𝑛𝑠𝑖𝑡 > 𝑑𝑒𝑝𝑠(2), 𝑑𝑒𝑝(2) > 𝑑𝑒𝑝𝑠(2)). Then, applying Eq. (2), it is found that the expected 

arrival of F2 is also later than scheduled. For F3, although its immediate preceding flight (F2) encounters 

both departure and arrival delays, it can depart on time as suggested by Eq. (3) (i.e., 𝐸[𝑎𝑟𝑟(2)] + 𝑀𝑖𝑛𝑠𝑖𝑡 ≤

𝑑𝑒𝑝𝑠(3), 𝑑𝑒𝑝(3) = 𝑑𝑒𝑝𝑠(3)). However, due to flight flying time variability, F3 is also expected to arrive 

late at its destination. As we can see from Figure 2, if we only apply the scheduled departure/arrival times 

                                                        
5 Note that Flight 𝑗− denotes the immediate preceding flight of Flight j. 
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for the flights on the schedule without considering flight flying time variability in the pairing generation 

process, crews can easily encounter flight delays. 

 

4. A Robust Crew Pairing Model  

This section proposes two novel robust crew pairing models with the consideration of flight flying time 

variability and flight departure-arrival interdependency as discussed in Section 3.3. As departure delays 

cause stress, anxiety and anger among passengers and increase costs for airlines due to extra food and 

lodging6, in this study, our focus is to enhance the robustness of flights in the constructed pairings against 

departure delays. Accordingly, two novel robustness enhancement strategies are developed. In Section 4.1, 

we introduce the robustness concept proposed in this work, based on which we will then construct novel 

robust crew pairing models in Section 4.2. 

 

 
Figure 3. A typical duty. 

 

 

4.1 Crew pairing robustness  

First of all, we illustrate our strategies of robustness enhancement. Figure 3 shows a typical duty which 

consists of two flights between City 1 and City 2. The scheduled departure time of F2 falls in the legal sit 

time range regarding its immediate preceding flight (F1) (i.e., [Minsit, Maxsit]). According to the schedule, 

a crew member will operate F2 after the work on F1. If no disruption occurs, the two flights will be operated 

sequentially as scheduled. 

However, as discussed, the real flying time of a flight varies according to the actual departure time 

together with many other factors. The actual flight arrival thus may deviate from the scheduled time point, 

which will further affect the departure of the next flight in the duty. Let’s take a look at Figure 4. F1 arrives 

late at City 2. The scheduled departure time of the next flight (i.e., F2) is not in the legal sit time range for 

                                                        
6 https://www.trefis.com/stock/dal/articles/375013/what-is-the-impact-of-flight-delays/2016-08-31 retrieved on 02 Sept 2020. 

https://www.trefis.com/stock/dal/articles/375013/what-is-the-impact-of-flight-delays/2016-08-31
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the actual F1. Accordingly, F2 will encounter a departure delay, and the earliest departure time of F2 is at 

the beginning of the legal sit time range for the actual F1. As illustrated by Figure 4, if the flight flying 

time variability is not considered, the constructed crew pairing is fragile where the deviations of previous 

flights can easily lead to departure delays for later flights. 

 
Figure 4. Delayed F1 and disrupted F2. 

 

Due to the diverse uncertainties and volatilities in the aviation industry, it is difficult to predict the real 

departure time, flying time, and arrival time for each individual flight in the future. However, through data 

analytics, the expected arrival time of a flight can be formulated mathematically by considering flight flying 

time variability (see Section 3.3), based on which we can enhance the robustness of crew pairings to some 

extent. The main strategies are to (i) encourage flights that will not be affected by the expected arrival delay 

of the preceding flight, and (ii) discourage flights that will be influenced by the expected arrival delay of 

the preceding flight.  

A simple example for strategy (i) is demonstrated in Figure 5. In this example, F1 is expected to 

encounter an arrival delay. After F1, the next flight that crews will operate is F3, whose scheduled departure 

time is exactly located in the overlap of the legal sit time range for the scheduled F1 and the expected 

arrival-late F1. Therefore, F3 can depart on time as scheduled even when its preceding flight (i.e., F1) is 

expected to arrive late. By constructing more flights like the example F3 as shown in Figure 5, the 

constructed crew pairing plan can be more robust against disruptions. In the following, flights like F3 in 

this example are called as deviation-affected-free flights. The length of the legal sit time range overlap for 

the scheduled and expected arrival of Flight j (i.e., 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑗)) is calculated by Eq. (4).  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑗) = 𝑎𝑟𝑟𝑠(𝑗) + 𝑀𝑎𝑥𝑠𝑖𝑡 − 𝐸[𝑎𝑟𝑟(𝑗)] − 𝑀𝑖𝑛𝑠𝑖𝑡 (4) 

 

Strategy (ii) is explained by using Figure 6. In this example, F1 is expected to arrive late at its 

destination which is followed by F4. The scheduled departure time of F4 is not in the legal sit time range 
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for the expected arrival-late F1. Therefore, F4 is not allowed to depart until the minimum legal sit time for 

the expected arrival-late F1 is reached. That is, F4 encounters a departure delay due to the arrival delay of 

its preceding flight. In the following, flights like F4 are called deviation-affected flights. 

 

Figure 5. Strategy (i) for robustness. 

 

 

Figure 6. Strategy (ii) for robustness. 
 

For the remaining flights in the duty which are not shown in Figure 5 and Figure 6, the same rule will 

be applied to judge whether the flight is a deviation-affected-free or deviation-affected flight. We utilize 

Figure 7 to show a full duty with the consideration of flight flying time variability that involves two 

categories of flights (i.e., deviation-affected-free flights and deviation-affected flights). 

Note that if the legal sit time range for the expected arrival of a flight and that for the scheduled arrival 

of this flight do not have an overlap. That is, the flight is expected to arrive at its destination with a delay 

more than 210 minutes (as Maxsit - Minsit=210), we consider this flight is in an extreme-delay case. Figure 
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8 shows an example. In this example, the minimum legal sit time for the expected arrival-late F1 is beyond 

the legal sit time range for the scheduled F1. Therefore, the expected earliest departure time for F5 is at the 

beginning of the legal sit time range for the expected arrival-late F1. If this extreme case happens, a very 

big penalty cost (𝜗) will be generated. Actually, this extreme case will occur with a very small probability. 

This is because a delay longer than three hours is regarded as a severe disruption which cannot be handled 

by proactive planning (Ionescu et al., 2016). 

 

Figure 7. An example of a full duty with flying time variability. 

 

 
Figure 8. An example with an extreme-delay case. 

 

As the status of a flight depends on its preceding flight (i.e., the departure time, the departure-

dependent flight flying time), the expected arrival time of the flight may vary in different potential pairings, 

which shall be calculated along with the pairing construction process. One flight may be a deviation-

affected-free flight in one pairing, while be a deviation-affected flight if it is covered by another pairing. To 



15 

 

enhance the robustness of crew pairing solutions, it is important to discourage the occurrence of deviation-

affected flights, while construct more deviation-affected-free flights. The objective of this study is to 

construct a set of pairings with the minimum basic operating cost and the maximum robustness. 

 

4.2 Mathematical model 

Based on the robustness enhancement strategies proposed in Section 4.1, we then construct the 

mathematical model for the robust crew pairing problem. The crew pairing problem is generally modelled 

as a set-covering or set-partitioning problem. The objective is to determine a set of legal pairings (𝑝 ∈ 𝑃) 

with the minimum total costs, while the constraint is to ensure that each flight is covered by (at least) one 

pairing, as formulated in Eq. (5) to Eq. (7). 

Crew pairing 

problem (CPP) 

𝑚𝑖𝑛 ∑ 𝑐𝑝𝑥𝑝𝑝∈𝑃 , (5) 

𝑠. 𝑡.   ∑ 𝑎𝑝𝑗 ∙ 𝑥𝑝𝑝∈𝑃 ≥ 1, ∀𝑗 ∈ 𝐹, (6) 

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝑃. (7) 

𝑐𝑝 is the cost of Pairing 𝑝. 𝑎𝑝𝑗 represents whether Pairing 𝑝 contains Flight j. When 𝑎𝑝𝑗 = 1, Flight j 

is covered by Pairing 𝑝; Otherwise, 𝑎𝑝𝑗 = 0. The decision variable, 𝑥𝑝, is equal to 1 if Pairing 𝑝 is selected 

in the final solution, and 0 otherwise. In the following Section 4.2.1, we will first introduce the traditional 

basic operating cost for crew pairings (𝑐𝑝
𝑜), followed by our proposed robustness-related costs (𝑐𝑝

𝑟𝑏). Then, 

the robust model is shown in Section 4.2.2. 

 

4.2.1 Costs 

We consider a bi-criteria model which integrates the minimization of basic operating costs (𝑐𝑝
𝑜) and the 

minimization of robustness-related costs (𝑐𝑝
𝑟𝑏). 

 

4.2.1.1 Basic operating costs 

Traditionally, only the basic operating costs for crews are considered in the crew pairing framework. For a 

pairing, its basic operating cost consists of a fixed component (K) and arc-related costs7. Arcs in a pairing 

can be further divided into duty arcs (𝑑−, 𝑑), (deadhead) starting arcs (𝑠, 𝑑), and (deadhead) ending arcs 

(𝑑, 𝑘 ). For duty arcs, the arc-related cost (𝑡𝑑−,𝑑 , Eq. (8)) is composed of waiting cost during flight 

connections (𝑐𝑑−,𝑑
𝑤 , Eq. (11)), rest cost (𝑐𝑑−,𝑑

𝑟 , Eq. (13)), and pairing minimum duty guaranteed cost (PMDG) 

(𝑐𝑑−,𝑑
𝐷 , Eq. (14)). Specifically, the waiting cost during flight connections is a function (𝑔𝑗−(∙)) dependent 

on the flight connection time (𝛿𝑗−,𝑗). Similarly, the rest cost is a function (𝑙𝑑−(∙)) dependent on the rest 

                                                        
7 In this work, we model the basic cost for pairings by arcs. 
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period between two duties (𝛿𝑑−,𝑑). For the detailed functions for 𝑔𝑗−(∙) and 𝑙𝑑−(∙), readers are referred to 

Saddoune et al. (2013) and Chung et al. (2017). The PMDG cost is applied to force the algorithm to form 

longer duties. That is, if the duty credit flying time (𝑣𝑑) is shorter than a threshold (𝑉𝑚𝑖𝑛), a unit PMDG 

cost (v) will be incurred. For (deadhead) starting arcs (𝑠, 𝑑), the arc-related cost (𝑡𝑠,𝑑, Eq. (9)) consists of 

waiting cost during flight connections (𝑐𝑠,𝑑
𝑤 , Eq. (12)), pairing minimum duty guaranteed cost (PMDG) (𝑐𝑠,𝑑

𝐷 , 

Eq. (15)), and deadhead cost (𝑐𝑠,𝑑
ℎ , Eq. (16) if this arc is deadhead and Eq. (17) otherwise). For (deadhead) 

ending arcs (𝑑, 𝑘), the arc-related cost (𝑡𝑑,𝑘, Eq. (10)) only involves the deadhead cost (𝑐𝑑,𝑘
ℎ , Eq. (18) if this 

arc is deadhead and Eq. (19) otherwise). Note that the deadhead cost is fixed as 𝛽  for each deadhead 

(starting or ending) arc. 

 

Arc-related 

basic operating 

cost 

𝑡𝑑−,𝑑 = 𝑐𝑑−,𝑑
𝑤 + 𝑐𝑑−,𝑑

𝑟 + 𝑐𝑑−,𝑑
𝐷 , ∀(𝑑−, 𝑑) ∈ {𝐴 − 𝐴𝑒 − 𝐴𝑑𝑒 − 𝐴𝑠 − 𝐴𝑑𝑠}, (8) 

𝑡𝑠,𝑑 = 𝑐𝑠,𝑑
𝑤 + 𝑐𝑠,𝑑

𝐷 + 𝑐𝑠,𝑑
ℎ , ∀(𝑠, 𝑑) ∈ {𝐴𝑠 + 𝐴𝑑𝑠}, (9) 

𝑡𝑑,𝑘 = 𝑐𝑑,𝑘
ℎ , ∀(𝑑, 𝑘) ∈ {𝐴𝑒 + 𝐴𝑑𝑒}, (10) 

Waiting cost 

𝑐𝑑−,𝑑
𝑤 = ∑ 𝑔𝑗−(𝛿𝑗−,𝑗),(𝑗−,𝑗)∈𝑆𝐴𝑑   ∀(𝑑−, 𝑑) ∈ {𝐴 − 𝐴𝑒 − 𝐴𝑑𝑒 − 𝐴𝑠 − 𝐴𝑑𝑠},  (11) 

𝑐𝑠,𝑑
𝑤 = ∑ 𝑔𝑗−(𝛿𝑗−,𝑗),(𝑗−,𝑗)∈𝑆𝐴𝑑   ∀(𝑠, 𝑑) ∈ {𝐴𝑠 + 𝐴𝑑𝑠}, (12) 

Rest cost 𝑐𝑑−,𝑑
𝑟 = 𝑙𝑑−(𝛿𝑑−,𝑑), ∀(𝑑−, 𝑑) ∈ {𝐴 − 𝐴𝑒 − 𝐴𝑑𝑒 − 𝐴𝑠 − 𝐴𝑑𝑠}, (13) 

PMDG cost 
𝑐𝑑−,𝑑

𝐷 = 𝑣 ∗ max{0, (𝑉𝑚𝑖𝑛 − 𝑣𝑑)} , ∀(𝑑−, 𝑑) ∈ {𝐴 − 𝐴𝑒 − 𝐴𝑑𝑒 − 𝐴𝑠 − 𝐴𝑑𝑠},   (14) 

𝑐𝑠,𝑑
𝐷 = 𝑣 ∗ max{0, (𝑉𝑚𝑖𝑛 − 𝑣𝑑)} , ∀(𝑠, 𝑑) ∈ {𝐴𝑠 + 𝐴𝑑𝑠}, (15) 

Deadhead cost 

𝑐𝑠,𝑑
ℎ = 𝛽, ∀(𝑠, 𝑑) ∈ 𝐴𝑑𝑠, (16) 

𝑐𝑠,𝑑
ℎ = 0, ∀(𝑠, 𝑑) ∈ 𝐴𝑠, (17) 

𝑐𝑑,𝑘
ℎ = 𝛽, ∀(𝑑, 𝑘) ∈ 𝐴𝑑𝑒 , (18) 

𝑐𝑑,𝑘
ℎ = 0, ∀(𝑑, 𝑘) ∈ 𝐴𝑒 . (19) 

 

In summary, if we denote the arcs in Pairing 𝑝 by (𝑛𝑝
−, 𝑛𝑝) ∈ 𝐴𝑝 which includes a (deadhead) starting 

arc, duty arcs, and a (deadhead) ending arc, the total basic operating cost for this pairing 𝑐𝑝
𝑜  can be 

formulated as in Eq. (20). 

𝑐𝑝
𝑜 = 𝐾 + ∑ 𝑡𝑛𝑝

−,𝑛𝑝

(𝑛𝑝
−,𝑛𝑝)∈𝐴𝑝

 
(20) 
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4.2.1.2 Robustness-related costs 

As we discussed, if flight flying time variability and flight departure/arrival interdependency are not 

considered, the crew pairings generated according to the scheduled departure/arrival times may encounter 

propagated disruptions along the itinerary. Therefore, in this section, we propose novel robustness 

objectives according to the two strategies proposed in Section 4.1. Specifically, along pairing construction, 

the expected flight arrival times are calculated based on flying time variability, and the departure time of 

the next flight is then obtained (as presented in Section 3.3). Accordingly, the undelay-bonus (𝑏𝑛𝑝
𝑟𝑏) and 

delay-cost (𝑑𝑐𝑝
𝑟𝑏) can be formulated, and the robustness-related cost (𝑐𝑝

𝑟𝑏) is equal to delay-cost (𝑑𝑐𝑝
𝑟𝑏) 

minus undelay-bonus ( 𝑏𝑛𝑝
𝑟𝑏 ). The cost formulation for strategy (i) and strategy (ii) are introduced 

sequentially in the following. 

Strategy (i): The purpose here is to encourage the occurrence of deviation-affected-free flights in the 

pairings generated. Therefore, a undelay-bonus (𝑏𝑛𝑝
𝑟𝑏) is given to Pairing p if it contains deviation-affected-

free flights. Let 𝐹𝑝 represent the set of flights contained in Pairing p, and 𝐹𝑑𝑎𝑓
𝑝

 denote the set of deviation-

affected-free flights in Pairing p. Flight j (𝑗 ∈ 𝐹𝑝) belong to 𝐹𝑑𝑎𝑓
𝑝

 if 𝐸[𝑎𝑟𝑟(𝑗−)] + 𝑀𝑖𝑛𝑠𝑖𝑡 ≤ 𝑑𝑒𝑝𝑠(𝑗) ≤

𝑎𝑟𝑟𝑠(𝑗−) + 𝑀𝑎𝑥𝑠𝑖𝑡. Here, we have two ways to enhance the occurrence of deviation-affected-free flights. 

They are: (a) Maximize the number of deviation-affected-free flights (Number-based measure); (b) 

Maximize the total deviation-buffer time length of deviation-affected-free flights (Time-based measure). 

The total number of deviation-affected-free flights in Pairing p equals to |𝐹𝑑𝑎𝑓
𝑝

|. Note that the symbol “| |” 

here stands for the size of a set. The deviation-buffer time (𝐵𝑢𝑓𝑓𝑒𝑟(𝑗)) refers to the time difference between 

the scheduled departure time of a flight with the sum of the expected arrival time of its preceding flight 

with Minsit, which is equivalent to Eq. (21). Accordingly, the total deviation-buffer time for Pairing p is 

∑ 𝐵𝑢𝑓𝑓𝑒𝑟(𝑗)𝑗∈𝐹𝑑𝑎𝑓
𝑝 . 

𝐵𝑢𝑓𝑓𝑒𝑟(𝑗) = 𝑑𝑒𝑝𝑠(𝑗) − 𝐸[𝑎𝑟𝑟(𝑗−)] − 𝑀𝑖𝑛𝑠𝑖𝑡 (21) 

In a word, 𝑏𝑛𝑝
𝑟𝑏 is in the form of Eq. (22) if the Number-based measure is used, and Eq. (23) if the 

Time-based measure is applied.  

𝑏𝑛𝑝
𝑟𝑏 = |𝐹𝑑𝑎𝑓

𝑝
| (22) 

𝑏𝑛𝑝
𝑟𝑏 = ∑ 𝐵𝑢𝑓𝑓𝑒𝑟(𝑗)

𝑗∈𝐹𝑑𝑎𝑓
𝑝

 
(23) 

Strategy (ii): The aim here is to discourage the occurrence of deviation-affected flights in the pairings 

generated. Therefore, a delay-cost (𝑏𝑛𝑝
𝑟𝑏) is given to Pairing p if it contains deviation-affected flights. Let 

𝐹𝑑𝑎
𝑝

 denote the set of deviation-affected flights in Pairing p. Flight j (𝑗 ∈ 𝐹𝑝) belongs to 𝐹𝑑𝑎
𝑝

 if 𝑎𝑟𝑟𝑠(𝑗−) +

𝑀𝑖𝑛𝑠𝑖𝑡 ≤ 𝑑𝑒𝑝𝑠(𝑗) < 𝐸[𝑎𝑟𝑟(𝑗−)] + 𝑀𝑖𝑛𝑠𝑖𝑡 . Here, similar to strategy (i), we also have two methods to 
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discourage the occurrence of deviation-affected flights. They are: (a) Minimize the number of deviation-

affected flights (Number-based measure); (b) Minimize the total deviation-delay time length of deviation-

affected flights (Time-based measure). The total number of deviation-affected flights in Pairing p equals to 

|𝐹𝑑𝑎
𝑝

|. For deviation-affected Flight j, the deviation-delay time (𝐷𝑒𝑣𝑑𝑒𝑙𝑎𝑦(𝑗)) refers to the time difference 

between the sum of the expected arrival time of its preceding flight with Minsit minus the scheduled 

departure time of Flight j, which is equivalent to Eq. (24). Accordingly, the total deviation-delay time for 

Pairing p is ∑ 𝐷𝑒𝑣𝑑𝑒𝑙𝑎𝑦(𝑗)𝑗∈𝐹𝑑𝑎
𝑝 . 

𝐷𝑒𝑣𝑑𝑒𝑙𝑎𝑦(𝑗) = 𝐸[𝑎𝑟𝑟(𝑗−)] + 𝑀𝑖𝑛𝑠𝑖𝑡 − 𝑑𝑒𝑝𝑠(𝑗) (24) 

In a word, 𝑑𝑐𝑝
𝑟𝑏 is in the form of Eq. (25) if the Number-based measure is used, and Eq. (26) if the 

Time-based measure is applied.  

𝑑𝑐𝑝
𝑟𝑏 = |𝐹𝑑𝑎

𝑝
| (25) 

𝑑𝑐𝑝
𝑟𝑏 = ∑ 𝐷𝑒𝑣𝑑𝑒𝑙𝑎𝑦(𝑗)

𝑗∈𝐹𝑑𝑎
𝑝

 
(26) 

Consequently, the total robustness-related costs (𝑐𝑝
𝑟𝑏) for Pairing p is then equal to delay-cost (𝑑𝑐𝑝

𝑟𝑏) 

minus undelay-bonus (𝑏𝑛𝑝
𝑟𝑏), as modelled in Eq. (27). 

𝑐𝑝
𝑟𝑏 = 𝑑𝑐𝑝

𝑟𝑏 − 𝑏𝑛𝑝
𝑟𝑏 (27) 

 

4.2.2 Model 

With the constructed cost functions, we can derive the mathematical model for the robust crew pairing 

problem. Note that the units for the basic operating cost and robustness-related cost are not the same. 

Therefore, it is necessary to normalize the two costs. We use the symbol “ ̂ ” to represent the normalized 

value. The normalization function is 𝑧̂ =
𝑧−𝑧

𝑧−𝑧
, where 𝑧 is the minimum value of 𝑧, while 𝑧 is the maximum 

value of 𝑧. Note that for any constructed Pairing p, if 𝐸[𝑎𝑟𝑟(𝑗)] + 𝑀𝑖𝑛𝑠𝑖𝑡 > 𝑎𝑟𝑟𝑠(𝑗) + 𝑀𝑎𝑥𝑠𝑖𝑡 (∀𝑗 ∈ 𝐹𝑝), 

an extreme-delay case happens. A very big penalty cost (𝜗) will be assigned to this pairing. Let ℵ𝑝 = 1 

represents that Pairing p involves extreme-delay cases, and ℵ𝑝 = 0 otherwise. Therefore, the extreme-delay 

penalty cost is ℵ𝑝 ∙ 𝜗. The total cost for Pairing p (𝑐𝑝) is then equal to the normalized basic operating cost 

(𝑐𝑝
𝑜̂) plus the normalized robustness-related cost (𝑐𝑝

𝑟𝑏̂) plus the extreme-delay penalty cost (ℵ𝑝 ∙ 𝜗), as shown 

in Eq. (28). We use 𝑤1 and 𝑤2 (𝑤1 + 𝑤2 = 1) to represent the weights for the basic operating cost and 

robustness-related cost, respectively. 

𝑐𝑝 = 𝑤1𝑐𝑝
𝑜̂ + 𝑤2𝑐𝑝

𝑟𝑏̂ + ℵ𝑝 ∙ 𝜗 (28) 

Therefore, if the Number-based robustness measure is applied, the Robust Crew Pairing Model with 

Number-based Measure (named as RCPN) can be formulated in Eq. (29) to Eq. (31).  
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RCPN 

𝑚𝑖𝑛 ∑ {𝑤1(𝐾 + ∑ 𝑡𝑛𝑝
−,𝑛𝑝(𝑛𝑝

−,𝑛𝑝)∈𝐴𝑝
)̂ + 𝑤2(|𝐹𝑑𝑎

𝑝
| − |𝐹𝑑𝑎𝑓

𝑝
|)̂ + ℵ𝑝 ∙ 𝜗} ∙ 𝑥𝑝𝑝∈𝑃 , (29) 

𝑠. 𝑡.   ∑ 𝑎𝑝𝑗 ∙ 𝑥𝑝𝑝∈𝑃 ≥ 1, ∀𝑗 ∈ 𝐹, (30) 

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝑃. (31) 

On the other hand, if the Time-based robustness measure is utilized, the Robust Crew Pairing Model 

with Time-based Measure (named as RCPT) is presented in Eq. (32) to Eq. (34).  

RCPT 

𝑚𝑖𝑛 ∑ {𝑤1(𝐾 + ∑ 𝑡𝑛𝑝
−,𝑛𝑝(𝑛𝑝

−,𝑛𝑝)∈𝐴𝑝
)̂ + 𝑤1(∑ 𝐷𝑒𝑣𝑑𝑒𝑙𝑎𝑦(𝑗)𝑗∈𝐹𝑑𝑎

𝑝 − ∑ 𝐵𝑢𝑓𝑓𝑒𝑟(𝑗)𝑗∈𝐹𝑑𝑎𝑓
𝑝 )̂ +𝑝∈𝑃

ℵ𝑝 ∙ 𝜗} ∙ 𝑥𝑝, 

(32) 

𝑠. 𝑡.   ∑ 𝑎𝑝𝑗 ∙ 𝑥𝑝𝑝∈𝑃 ≥ 1, ∀𝑗 ∈ 𝐹, (33) 

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝑃. (34) 

To be specific, 𝑡𝑛𝑝
−,𝑛𝑝

 is determined by Eq. (8) to Eq. (19), 𝐵𝑢𝑓𝑓𝑒𝑟(𝑗) is defined by Eq. (21), while 

𝐷𝑒𝑣𝑑𝑒𝑙𝑎𝑦(𝑗) is decided by Eq. (24).  

 

 

 

5. Solution Approach  

In this work, we build a column-generation based solution algorithm to solve the proposed robust crew 

pairing models. Column generation is a continuous optimization technique to deal with large-scale linear 

programming problems, without explicitly considering the whole solution pool. Using column generation, 

the CPP is divided into a restricted master problem and a sub-problem, which are demonstrated in Sections 

5.1 and 5.2, respectively.  

 

5.1 Restricted master problem  

The restricted master problem (RMP) is the linear relaxation of the CPP with a limited number of feasible 

pairings. We initialize the solution pool by forming a pairing for each duty (deadhead arcs are used if the 

duty does not start from or end at the home base). The RMP is solved iteratively to optimality, and the dual 

prices derived in each iteration are transferred to the sub-problem, in order to identify better pairings which 

can be used to update the pairing pool of the RMP. The whole column generation terminates if no better 

pairings could be found. Mixed integer programming technique is then used to obtain integer solutions. 

 

5.2 Sub-problem  

The sub-problem is usually formulated as a resource-constrained shortest path problem to identify 

promising pairings from the whole solution pool. Promising pairings refer to those with negative reduced 

costs that can further lower down the objective value of the robust crew pairing model. Therefore, the 
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purpose of the sub-problem is to identify the pairing with the most negative cost (i.e., reduced cost). That 

is, to solve a shortest path problem in the duty-based flight network with resource constraints. Resources in 

the crew pairing problem are usually related to rules and regulations, like the maximum time away from 

base and the maximum number of flights in a pairing. A pairing is feasible only when all rules and 

regulations are satisfied. The identified better pairing is then added to the solution pool of the RMP, and the 

next iteration starts. If no better pairings (i.e., no paths are with negative costs) can be identified, the 

algorithm ends. Let 𝜋𝑗 represent the dual price for the jth row (Flight f) of the flight coverage constraint (i.e., 

Eq. (30) in RCPN or Eq. (33) in RCPT). The reduced cost of decision variable 𝑥𝑝 (Pairing or Path p) is 

formulated in Eq. (35). Note that 𝑐𝑝̅ stands for the reduced cost for 𝑥𝑝, and 𝑐𝑝 is defined in Eq. (28). In 

RCPN, 𝑐𝑝 = 𝑤1(𝐾 + ∑ 𝑡𝑛𝑝
−,𝑛𝑝(𝑛𝑝

−,𝑛𝑝)∈𝐴𝑝
)̂ + 𝑤2(|𝐹𝑑𝑎

𝑝
| − |𝐹𝑑𝑎𝑓

𝑝
|)̂ + ℵ𝑝 ∙ 𝜗 , while in RCPT, 𝑐𝑝 =

𝑤1(𝐾 + ∑ 𝑡𝑛𝑝
−,𝑛𝑝(𝑛𝑝

−,𝑛𝑝)∈𝐴𝑝
)̂ + 𝑤1(∑ 𝐷𝑒𝑣𝑑𝑒𝑙𝑎𝑦(𝑗)𝑗∈𝐹𝑑𝑎

𝑝 − ∑ 𝐵𝑢𝑓𝑓𝑒𝑟(𝑗)𝑗∈𝐹𝑑𝑎𝑓
𝑝 )̂ + ℵ𝑝 ∙ 𝜗.  

𝑐𝑝̅ = 𝑐𝑝 − ∑ 𝑎𝑝𝑗 ∙ 𝜋𝑗

𝑗∈𝐹

 
(35) 

 

6. Computational Experiments 

This section carries out computational experiments to examine the performances of the proposed two novel 

robust crew pairing models (i.e., RCPN and RCPT). Experiments were conducted on a PC with Windows 

7 operation system and Intel (R) Core (TM) i7-4790 @ 3.60 GHz (32 GB RAM). The implementations are 

coded in Java programming language. The RMP is solved using CPLEX Concert Technology in IBM ILOG 

CPLEX Optimization Studio (Version 12.6.3). In the following, Section 6.1 introduces the flight data sets 

used for experiments, while Section 6.2 illustrates the robustness strategies constructed in this work through 

two typical duties generated from an instance. Last, section 6.3 demonstrates the superior performances of 

the proposed models in robustness enhancement. 

 

Table 2. Instance characteristics. 

Instance No. of flights  

Cities 

involved 

Days 

involved 

1 36 7 1 

2 39 4 3 

3 56 4 2 

4 67 7 2 

5 96 7 3 

6 98 7 2 
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6.1 Data sets  

We test the proposed models using a set of instances derived from real flight schedules (Table 2). To be 

specific, six instances with an increasing size are involved, with 36, 39, 56, 67, 96, and 98 flights, 

respectively. Instances 1, 4, 5, and 6 contain routes among 7 cities (i.e., airports) (GUM, HKG, ICN, KIX, 

OKA, SIN, and TPE). Instances 2 and 3 involve 4 cities (i.e., airports) (HKG, ICN, KIX, and TPE). Besides, 

the spans of the instance schedules are from 1 day to 3 days. 

Table 3. Sample duties. 

 

 

6.2 Demonstration of the constructed robustness strategies 

We demonstrate the robustness strategies proposed in this work through two duties identified from Instance 

3. The details of the duties are shown in Error! Reference source not found.. To be specific, Duty 1 (as 

illustrated in Figure 9) from Pairing 65 consists of Flight 7 (HKG-TPE) and Flight 9 (TPE-HKG). 

According to Eq. (2), it is found that Flight 7 is expected to arrive at its destination earlier than the scheduled 

time. As discussed, early arrival is regarded as on-time arrival. Therefore, the legal sit time ranges for the 

scheduled Flight 7 and the expected Flight 7 are the same. Accordingly, the scheduled departure time of 

Flight 9 falls in the overlap of the legal sit time range for the scheduled Flight 7 and the expected Flight 7. 

Therefore, Flight 9 is a deviation-affected-free flight, while the deviation-buffer time for Flight 9 is 4 

minutes. Duty 2 (as illustrated in Figure 10) from Pairing 65 is composed of Flight 37 (HKG-TPE) and 

Flight 38 (TPE-HKG). As calculated, Flight 37 is expected to arrive late at its destination by 128 minutes 

(2h 8m). Unfortunately, the scheduled departure time of Flight 38 is not in the legal sit time range for the 

F9: deviation-affected-free flight 

F7 Scheduled 

departure_HKG

F7 

Scheduled 

arrival_TPE

MinSit 

(30)

MaxSit 

(240)

F9 Scheduled 

departure_TPE

F9 Scheduled 

arrival_HKG

5:10 6:45 7:15 10:45 7:19 9:10

Expected 

departure

Expected 

arrival

MinSit 

(30)

MaxSit 

(240)

5:10
6:23

(early arrival)
7:15 10:45

F38: deviation-affected flight

F37 Scheduled 

departure_HKG

F37 

Scheduled 

arrival_TPE

MinSit 

(30)

MaxSit 

(240)

F38 Scheduled 

departure_TPE

F38 Scheduled 

arrival_HKG

0:01 3:45 4:15 7:45 5:05 8:50

Expected 

departure

Expected 

arrival

MinSit 

(30)

MaxSit 

(240)

0:01 5:53 6:23 9:53

Duty 1 (Pairing 65)

Duty 2 (Pairing 65)
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expected arrival-late Flight 37. Therefore, Flight 38 is a deviation-affected flight which is expected to be 

late for 78 minutes (1h 18m, deviation-delay time).  

 

 

Figure 9. Sample Duty 1 from Pairing 65. 

 

 

Figure 10. Sample Duty 2 from Pairing 65. 

 

6.3 Advantages of the proposed models in robustness enhancement 

After demonstrating our proposed idea of robustness enhancement strategies facilitated by considering 

flight flying time variability, in this part, we compare our constructed novel robust crew pairing models 

(i.e., RCPT and RCPN) with the existing model which is widely used in the literature, to illustrate the 

advantages of our proposed models. Note that the traditional crew pairing model without the consideration 

of solution robustness is named as “Base model” hereafter.  

The solution details of RCPT, RCPN, and Base model are summarized in Table 4 and Table 5. From 

the third column of Table 4, it is reasonable to observe that the number of pairings required to cover all 

flights in the schedule becomes larger when the instance size grows. The second column in Table 5 gives 
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the number of flights that belong to single-flight duties for each instance under each model. As these duties 

only involve one flight, these flights are free from the deviations of its previous flights (actually there is no 

previous flight in the duty). Therefore, we list this number separately. Besides, it should be pointed out that 

the construction of single-flight duty greatly depends on the structure of the considered flight schedule. 

Moreover, we distinguish the normal deviation-affected flights (as shown in the fourth column of Table 5) 

and the extreme-delay flights (as shown in the fifth column of Table 5). In our proposed models, a very 

large penalty cost will be incurred if an extreme-delay case happens. Therefore, in the experiments, the 

proposed RCPT and RCPN avoid the happening of any extreme-delay flight, while the Base model 

generates many. As a result, it is concluded that our proposed models are superior in avoiding extreme-

delay cases, which can significantly benefit commercial airlines. Note that in the last column of Table 4, 

the average delay time is calculated by using the total deviation-affected flights (including both normal and 

extreme cases). Therefore, we can even observe an average deviation-delay time of 543 minutes for Instance 

2 if the Base model is applied. 

Table 4. Solution details (Part I). 

Instance Model 

No. of 
pairings in 

the 
solution 

w1 w2 

Total 
deviation-

buffer 
time 

Average buffer 
time for deviation-

affected-free 
flights  

Total 
deviation-
delay time 

Average 
delay time 
for total 

deviation-
affected 
flights  

1 

RCPT 21 0.5 0.5 2627 202 0 0 

RCPN 24 0.5 0.5 1411 128 0 0 

Base 24 1 0 1379 138 31 31 

2 

RCPT 23 0.5 0.5 877 175 62 62 

RCPN 24 0.5 0.5 567 189 0 0 

Base 22 1 0 718 120 1629 543 

3 

RCPT 35 0.5 0.5 1115 223 63 63 

RCPN 37 0.5 0.5 479 120 0 0 

Base 34 1 0 829 118 414 138 

4 

RCPT 38 0.5 0.5 697 116 78 78 

RCPN 45 0.5 0.5 656 109 78 78 

Base 43 1 0 471 94 670 134 

5 

RCPT 54 0.5 0.5 339 85 39 39 

RCPN 68 0.5 0.5 236 59 39 39 

Base 63 1 0 244 61 825 275 

6 

RCPT 65 0.5 0.5 1876 171 78 78 

RCPN 56 0.5 0.5 1356 136 78 78 

Base 58 1 0 1169 130 1785 255 
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For the weights used in the models, in this section, we set 𝑤1 and 𝑤2 are 0.5, to place equal emphasis 

on the normalized basic operating cost (𝑐𝑝
𝑜̂) and the normalized robustness-related cost (𝑐𝑝

𝑟𝑏̂). On the other 

hand, as robustness measures are not considered in the Base model, the weight for the basic operating cost 

(𝑤1) is equal to 1 for the Base model. The performance comparisons of the three models are summarized 

in Table 6. Note that in the categories of “Basic operating cost”, “Total deviation-buffer time”, and “No. of 

deviation-affected-free flights”, the first column represents the performance comparison of RCPT over 

RCPN, while for the categories of “Total deviation-delay time” and “No. of total deviation-affected flights”, 

the first column represents the performance comparison of RCPN over RCPT. Next, we analyze the 

performances of the proposed RCPT & RCPN, compared with the Base model from different perspectives. 

 

Table 5. Solution details (Part II). 

Instance 

No. of 
flights in 
single-
flight 
duties 

No. of 
deviation-

affected-free 
flights 

No. of 
deviation-
affected 

flights (not 
extreme 
delay) 

No. of 
extreme-

delay flights 

No. of total 
deviation-
affected 
flights  

Basic 
Operating 

Cost  

1 

23 13 0 0 0 3.75E+06 

25 11 0 0 0 3.95E+06 

25 10 1 0 1 3.95E+06 

2 

33 5 1 0 1 3.46E+06 

36 3 0 0 0 3.91E+06 

30 6 2 1 3 3.00E+06 

3 

50 5 1 0 1 6.25E+06 

52 4 0 0 0 6.60E+06 

46 7 1 2 3 5.40E+06 

4 

60 6 1 0 1 9.76E+06 

60 6 1 0 1 9.76E+06 

57 5 3 2 5 8.98E+06 

5 

91 4 1 0 1 1.34E+07 

91 4 1 0 1 1.34E+07 

89 4 1 2 3 1.26E+07 

6 

86 11 1 0 1 1.12E+07 

87 10 1 0 1 1.14E+07 

82 9 1 6 7 9.56E+06 

 

Basic operating cost. The basic operating cost performances of the three models are summarized in 



25 

 

the second to the fourth columns of Table 6. It is reasonable to observe an increase in the monetary 

expenditure for the proposed RCPT and RCPN compared with the Base model, as solution robustness is 

considered in the proposed models, while not for the Base model. The proposed models improve the 

robustness of the pairings generated at a price of an average of 9.7% increase in cost for RCPT, and an 

average of 14.3% increase in cost for RCPN. It is also worthwhile to note that RCPT achieves cost savings 

over RCPN with an average of 3.8%. Besides, it is interesting to see that for Instance 1, RCPT and RCPN 

can even save costs compared with the Base model with an improvement in robustness (which is facilitated 

by an increase in deviation-buffer time & number of deviation-affected-free flights, and a reduction in 

deviation-delay time & number of deviation-affected flights). 

Total deviation-buffer time & Total deviation-delay time. As RCPT aims to improve the pairing 

resistance against the deviations of previous flights through assigning buffer time, we can observe a 

remarkable increase in the deviation-buffer time of the solutions generated by RCPT compared with the 

Base model (with an average of 49.1%). However, RCPN performs worse than the Base model by 

generating shorter deviation-buffer time (1.5% less on average). On the other hand, when compared with 

the Base model, RCPN shows slightly better performances than RCPT regarding the reduction of deviation-

delay time. However, the degree of increase in deviation-buffer time achieved by RCPT is far more 

significant than the degree of reduction in deviation-delay time obtained by RCPN when the Base model is 

regarded as a benchmark.  

Table 6. Performance comparisons. 

Inst
ance 

Basic operating cost  
Total deviation-buffer 

time  

Total deviation-delay 

time  

No. of deviation-

affected-free flights  

No. of total deviation-

affected flights  

RCPT/

RCPN 

RCPT

/Base 

RCPN

/Base 

RCPT/

RCPN 

RCPT

/Base 

RCPN

/Base 

RCPN/

RCPT 

RCPT

/Base 

RCPN

/Base 

RCPT/

RCPN 

RCPT

/Base 

RCPN

/Base 

RCPN/

RCPT 

RCPT

/Base 

RCPN

/Base 

1 -5.0% -5.0% 0.0% 86.2% 90.5% 2.3% 0.0% -100.0% -100.0% 18.2% 30.0% 10.0% 0.0% -100.0% -100.0% 

2 -11.4% 15.2% 30.1% 54.7% 22.1% -21.0% -100.0% -96.2% -100.0% 66.7% -16.7% -50.0% -100.0% -66.7% -100.0% 

3 -5.3% 15.8% 22.2% 132.8% 34.5% -42.2% -100.0% -84.8% -100.0% 25.0% -28.6% -42.9% -100.0% -66.7% -100.0% 

4 0.0% 8.7% 8.7% 6.3% 48.0% 39.3% 0.0% -88.4% -88.4% 0.0% 20.0% 20.0% 0.0% -80.0% -80.0% 

5 0.0% 5.8% 5.8% 43.6% 38.9% -3.3% 0.0% -95.3% -95.3% 0.0% 0.0% 0.0% 0.0% -66.7% -66.7% 

6 -1.0% 17.6% 18.8% 38.3% 60.5% 16.0% 0.0% -95.6% -95.6% 10.0% 22.2% 11.1% 0.0% -85.7% -85.7% 

Mean -3.8% 9.7% 14.3% 60.3% 49.1% -1.5% -33.3% -93.4% -96.5% 20.0% 4.5% -8.6% -33.3% -77.6% -88.7% 

 

No. of deviation-affected-free flights & No. of total deviation-affected flights. As RCPN aims to 

improve the pairing robustness through a number-based measure, it is intuitive to witness a great reduction 
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(88.7% on average) in the number of deviation-affected flights of the solutions obtained from RCPN 

compared with the Base model. However, it is also noted that RCPN performs worse than the Base model 

by generating less deviation-affected-free flights (8.6% less on average). On the contrary, RCPT can greatly 

reduce the existence of deviation-affected flights than the Base model by an average of 77.6%, while also 

increase the number of deviation-affected-free flights with a mean of 4.5%. Therefore, it is implied that 

even when judging the solutions by applying the number-based measure, RCPT performs more stable than 

RCPN. 

After comparing the proposed models with the Base model, we then concentrate on the performance 

comparisons of RCPT and RCPN, which is discussed in the following. 

RCPT vs RCPN. As discussed, RCPT improves solution robustness through a time-based measure 

(i.e., maximize deviation-buffer time while minimize deviation-delay time), while RCPN enhances solution 

robustness by a number-based measure (i.e., maximize the number of deviation-affected-free flights while 

minimize the number of deviation-affected flights). Then, the performances of RCPT and RCPN are 

analyzed regarding these two measures.  

First, focusing on the time-base measure, it is reasonable to find that RCPT can generate 60.3% more 

deviation-buffer time than RCPN averagely. Recall that RCPT can also achieve a cost reduction than RCPN 

with an average of 3.8%. Therefore, the solutions obtained from RCPT show higher resistance against 

disruptions with a lower operating cost than RCPN. However, RCPT also incurs longer deviation-delay 

time for Instances 2 & 3 than RCPN. This is because RCPN is able to avoid the occurrence of deviation-

affected flights for these two instances, while RCPT fails. But compared with the much higher deviation-

buffer time produced by RCPT, the slight increase in deviation-delay time becomes acceptable.  

Second, if we focus on the number-based measure, it is surprising to identify that RCPT creates more 

deviation-affected-free flights than RCPN (with an average of 20%), although the emphasis of RCPT is the 

time measure. This is because the maximization of deviation-buffer time leads to the growing occurrence 

of deviation-affected-free flights. In terms of the production of deviation-affected flights, RCPT is also able 

to show the same ability in avoiding deviation-affected flights as RCPN for four instances among the total 

six instances (i.e., Instances 1, 4, 5, and 6). Therefore, it is concluded that although RCPT applies a time-

based measure, it also achieves satisfactory performances in terms of the number-based measure.  

 

7. Concluding Remarks 

The crew pairing problem is crucial for modern airlines. Challenged by diverse uncertainties, it is important 

for airlines to enhance the robustness of their constructed crew pairings. Flight flying time variability is 

commonly seen nowadays, and has become one major source of disruption for airline operational planning. 

However, the impact of flight flying time variability on airline crew pairings is under-investigated. In this 
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paper, we propose two robustness enhancement strategies based on the consideration of flight flying time 

variability. The first strategy is to encourage flights that will not be affected by the expected arrival delay 

of the preceding flight, while the second strategy is to discourage flights that will be influenced by the 

expected arrival delay of the preceding flight. Regarding each robustness strategy, we propose two different 

measures: number-based measure and time-based measure. Accordingly, two novel robust crew pairing 

models, namely the Robust Crew Pairing Model with Number-based Measure (RCPN) and the Robust Crew 

Pairing Model with Time-based Measure (RCPT), are constructed. A customized column generation based 

solution algorithm is proposed to solve the models. Computational experiments based on data sets derived 

from real flight schedules show that our new models can greatly enhance the robustness of pairing solutions 

(e.g., 49.1% more deviation-buffer time) at a price of an acceptable increase in basic operating costs (e.g., 

9.7%) compared with the traditional model without considering flight flying time variability in pairing 

generation. Moreover, both RCPN and RCPT can completely avoid extreme-delay cases, while the 

traditional model generates many extreme-delay flights. Extreme-delay flights cause significant damages 

for the image of airlines. Therefore, our proposed RCPN and RCPT can benefit airlines a lot. In terms of 

the performance comparison between RCPN and RCPT, we find that RCPT can generate an average of 

60.3% more deviation-buffer time, while consumes 3.8% less operating costs than RCPN. Additionally, it 

is revealed that although RCPT applies a time-based measure, when compared with RCPN regarding the 

number-based measure, RCPT achieves satisfactory and more stable performances. Therefore, the solutions 

obtained from RCPT show higher resistance against the disruption of flight flying time variability with a 

lower operating cost than RCPN.  

Managerial implications 

From this study, it is seen that airline crew scheduling departments should carefully consider the impact 

of flight flying time variability on the generated crew pairings, in addition to the basic operating costs. As 

flight flying time variability led by the fluctuating cruise speed has become a common disruption for the 

daily operations of the air transportation industry, failing to integrating the consideration of flight flying 

time variability may produce fragile pairings that are easily disrupted in real practice. Therefore, airlines 

will be benefited from this study by applying the proposed robust crew pairing models with the novel 

robustness enhancement strategies based on the consideration of flight flying time variability (i.e., 

encouraging deviation-affected-free flights and discouraging deviation-affected flights through a number-

based measure and a time-based measure). By utilizing our proposed models, airlines can greatly enhance 

their resistance against flight flying time disruptions in daily operations. 

As for future research, one interesting and valuable direction is to consider the impact of global 

pandemic (e.g., the recent outbreak of COVID-19) on the crew scheduling decisions in the aviation industry 

(Cai & Choi, 2020; Choi, 2020; Govindan et al., 2020; Ivanov, 2020). As the epidemic leads to large-scale 
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flight cancellation and re-scheduling, how to manage air crew resources becomes even more challenging.  
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