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Abstract—Automated polyp detection in colonoscopy videos
has been demonstrated to be a promising way for colorectal
cancer (CRC) prevention and diagnosis. Traditional manual
screening is time-consuming, operator-dependent and error-
prone; hence, automated detection approach is highly demanded
in clinical practice. However, automated polyp detection is very
challenging due to high intra-class variations in polyp size, color,
shape and texture and low inter-class variations between polyps
and hard mimics. In this paper, we propose a novel offline and
online 3D deep learning integration framework by leveraging
the 3D fully convolutional network (3D-FCN) to tackle this
challenging problem. Compared with previous methods employ-
ing hand-crafted features or 2D-CNNs, the 3D-FCN is capable
of learning more representative spatio-temporal features from
colonoscopy videos, and hence has more powerful discrimination
capability. More importantly, we propose a novel online learning
scheme to deal with the problem of limited training data by
harnessing the specific information of an input video in the
learning process. We integrate offline and online learning to
effectively reduce the number of false positives generated by the
offline network and further improve the detection performance.
Extensive experiments on the dataset of MICCAI 2015 Challenge
on Polyp Detection demonstrated the better performance of our
method when compared with other competitors.

Index Terms—Automated polyp detection, colonoscopy video,
computer aided diagnosis, convolutional neural networks, deep
learning

I. INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of
cancer death in the United States and is estimated to have
caused 49,190 deaths in 2016 according to American Cancer
Society [1]. Since adenomatous polyps (adenocarcinomas)
are most likely to develop into CRC, early and accurate
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Fig. 1. The illustration of variations of polyps (green and red circles represent
polyps and hard mimics). From the top to the bottom rows: the large color
variation of the same polyp; the large size variation of the same polyp; the
large shape variation among different polyps and low inter-class variation
between polyps and hard mimics, respectively.

detection of polyps from optical colonoscopy videos is of
great significance for prevention and timely treatment of CRC.
However, manual screening not only is laborious and time-
consuming, but also heavily relies on clinical experience. It
easily suffers from miss detection, which has been reported
to be as high as 25% [2]. Missed polyps can lead to the
late diagnosis of colon cancer with a low survival rate [3].
Hence, automated detection methods are highly desirable in
clinical practice. However, automated detection of polyps from
colonoscopy videos is very challenging due to high intra-class
variations in polyp size, color, shape, texture and location
as well as the low inter-class variations between polyps and
hard mimics (e.g. colon walls, specular spots and air bubbles).
Fig. 1 shows several examples of polyps and their mimics from
colonoscopy videos.

A. Related Work

Over the past few years, considerable efforts have been
dedicated to developing efficient and robust approaches to
automated polyp detection from colonoscopy videos. Most of
these works detected polyps from general optical colonoscopy
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(OC) images while there were also some works detecting
polyps from narrow-band imaging (NBI) colonoscopy data [4].

Some previous studies utilized polyps’ color and texture
information to design hand-crafted descriptors [5], [6], [7],
[8]. For example, Karkanis et al. [5] employed color wavelet
texture features as descriptors and combined sliding win-
dow strategy to detect polyps in colonoscopy images. Later,
researchers proposed to utilize shape, intensity, edge and
spatio-temporal features for automated polyp detection. For
examples, Hwang et al. [9] adopted elliptical shape features to
detect the presence of polyps; Bernal et al. [10], [11] presented
a polyp region descriptor based on the depth of a valleys image
and developed a region growing approach to locate polyps
in colonoscopy images; Wang et al. [12], [13] utilized edge
cross-section profiles for automated detection of protruding
polyps; Ganz et al. [4] proposed an automated method to
detect polyps in NBI colonoscopy data based on shape of
polyps; Park et al. [14] employed the spatio-temporal features
with the conditional random field model for automated polyp
detection. Some methods combining two or more features
have also been proposed to improve the detection perfor-
mance [15], [16]. Tajbakhsh et al. [16] integrated the global
geometric constraints and local intensity variation patterns
to detect polyps. Although considerable advancements have
been achieved, these methods still suffer from a low detection
accuracy. The main reason is that the representation capability
of hand-crafted features is quite limited to deal with the high
intra-class variations of polyps and low inter-class variations
between polyps and hard mimics.

Recently, deep convolutional neural networks (CNNs) with
hierarchical feature learning capability trained on a large
amount of training dataset have demonstrated state-of-the-art
performance in many medical image analysis tasks, including
classification [17], [18], [19], object detection [20], [21], [22],
[23] and segmentation [24], [25], [26], [27], [28], [29]. As for
automated polyp detection, some researchers also attempted to
employ CNNs to handle this challenging task. For example,
Tajbakhsh et al. [30] proposed a 2D-CNN method for polyp
detection through taking the candidates selected by low-level
hand-crafted features as input and utilizing an ensemble of
2D-CNNs to learn color, shape and temporal features of
polyps. However, this method learned spatial and temporal
features with different networks, which may somehow limit its
discrimination capability. In this case, the rich spatio-temporal
features of colonoscopy videos were not fully explored and
harnessed.

While deep CNNs have achieved remarkable gains in med-
ical image analysis tasks, most works focus on harnessing
2D-CNN to solve 2D image analysis problems. Recently,
some researchers have proposed to employ 3D-CNN to deal
with detection and segmentation tasks in volumetric medical
data [31], [32], [33], [34]. These works demonstrated that 3D-
CNN can achieve better performance than 2D-CNN and its
variants when processing 3D medical data, as it can generate
more discriminative features by taking full advantages of 3D
spatial information. These works motivate us to explore the
feasibility of 3D-CNN in endoscopic video processing, where
we think it has great potential to generate representative spatio-

temporal features for better outcomes. Actually, 3D-CNN
has been proposed to recognize human actions from natural
videos [35], [36], but we still face challenges to leverage it in
medical video processing. One of the main concerns is that,
compared to the large amount of training data for natural video
processing tasks, the training data for medical applications are
usually quite limited.

B. Our Contributions
In this paper, we propose an effective 3D fully convolu-

tional network (3D-FCN) incorporated with a novel online
and offline integration strategy for automated detection of
polyps from colonoscopy videos. Different from the work
reported in [30], our method learns spatio-temporal features
simultaneously within a 3D-CNN framework to tackle the high
intra-class and low inter-class variations of polyps. Besides,
we further accelerate the detection progress by converting
3D-CNN into 3D-FCN without resorting to traditional time-
consuming region proposal methods (e.g., sliding windows).
More importantly, we propose a novel online learning scheme
to deal with the problem of limited training data by integrating
the specific information of an input video. By adaptively
tuning the online network according to the specific testing
video, this scheme can significantly reduce the number of
polyp-like false positives. We evaluated our method on an
open challenge dataset of MICCAI 2015 Challenge on Polyp
Detection. Experimental results demonstrated that our method
can achieve better performance than other competitors.

Our main contributions can be summarized as follows.
1) We propose an effective 3D-FCN to learn spatio-

temporal feature representations for polyp detection
from colonoscopy videos. Compared with previous
methods based on hand-crafted features and 2D-CNNs,
our method can more effectively tackle the large intra-
class and low inter-class variations of polyps.

2) We propose a novel integrated framework with online
and offline 3D representation learning to reduce the
number of false positives and further improve the dis-
crimination capability of our method for a specific video.
This fusion learning strategy can remedy the deficiency
of traditional CNNs in specificity caused by limited
training data and improve their ability to handle cases
with large variations.

3) Our method achieved the highest F1 and F2 score on
the open challenge dataset of MICCAI 2015 Challenge
on Polyp Detection.

The remainder of this paper is organized as follows. In
Section II, we introduce the proposed 3D-FCN and the on-
line learning scheme in detail. The experimental results are
reported in Section III. We discussed some important issues
relevant to this work in Section IV and conclusions are drawn
in Section V.

II. METHOD

Fig. 2 shows the flowchart of the proposed framework,
which integrates offline and online 3D representation learn-
ing by leveraging the 3D fully convolutional network (3D-
FCN). An offline 3D-FCN (referred as offline-3D-Net) is first
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Fig. 2. The flowchart of the proposed online and offline 3D deep learning framework for automated polyp detection.

developed and exploited for learning spatio-temporal features
from the training samples extracted from colonoscopy videos.
Then, we incorporate an online-3D-Net, which is incremen-
tally updated in the detection process for each input video,
to effectively remove false positives generated by the offline-
3D-Net. Finally, we fuse the outputs of these two networks to
obtain the detection results.

A. 3D Fully Convolutional Networks

1) 3D Convolutional Neural Networks: While previous
works on polyp detection pay more attention to the spatial
features of polyps, we think the temporal information in
colonoscopy videos also provides important clues for auto-
mated detection methods. Considering 3D-CNN can better
encode spatio-temporal information in videos [36], we explore
3D-CNN to learn spatio-temporal features from colonoscopy
videos for automated polyp detection. To the best of our
knowledge, we are the first to employ 3D-CNN for endoscopic
video analysis.

Typically, a 3D-CNN consists of 3D convolutional lay-
ers, 3D pooling layers, fully-connected layers and softmax
layers. The 3D convolution and 3D pooling operations are
performed in spatial and temporal dimensions. In addition,
the outputs of 3D convolution and pooling are 3D feature
volumes when the input is a video clip. In contrast, the outputs
of 2D convolution and pooling are 2D feature maps even
though the input is a video clip (taking multiple frames as
multi-channels). To the end, 2D-CNN severely disregards the
temporal information of colonoscopy videos through these
2D convolution and pooling operations. On the other hand,
3D-CNN can sufficiently preserve the temporal information
of colonoscopy videos when extracting hierarchical features,
hence it can effectively distinguish polyps from hard mimics
such as specular spots and air bubbles [30] by taking full
advantage of spatio-temporal information.

2) 3D Fully Convolutional Networks for Detection: By
leveraging the representative spatio-temporal features learned
from 3D-CNN, we can locate polyps from colonoscopy videos
with sliding windows scheme through feeding cropped video

Test video clip

Probability map

Sub-windows

3D-FCN

Fig. 3. The illustration of 3D-FCN which can generate the classification
results of sub-windows within in one single forward propagation. Different
boxes represent different sub-windows (overlapping cropped samples) and the
size of the windows is the size of receptive field of 3D-FCN. Note that the
size of probability map is smaller than that of the test video clip.

sub-volumes into the 3D-CNN. However, this scheme is quite
computationally expensive as thousands of candidate samples
will be generated due to the high resolution and large frame
number of colonoscopy videos. In addition, the polyps are
sparsely distributed in the whole videos (most frames have
only one or no polyps), making this traditional scheme ineffi-
cient and not applicable in clinical practice.

In this regard, we convert 3D-CNN to 3D fully convolu-
tional network (3D-FCN) for fast detection by borrowing the
fully convolutional concept in [37]. By converting the fully-
connected layers in the 3D-CNN into convolutional layers,
we obtain a 3D-FCN, which can take arbitrary-sized video
clips as input and output corresponding probability maps .
Compared with the sliding window scheme which repeatedly
crops overlapping samples, our 3D-FCN can produce a prob-
ability map within one singe forward process. Each value in
this probability map can be regarded as the network output
of one sub-window (with same size of receptive field of 3D-
FCN) in the original input video clips. Fig. 3 illustrates this
process. Therefore, the 3D-FCN is inherently an accelerated
variant of the traditional sliding window scheme. Note that due
to the limitation of GPU memory, we input video clips with a
specific length (16 frames in our experiments) instead of the
whole video to the proposed 3D-FCN, and get one probability
map within one single forward propagation. Our method is
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quite different from the traditional sliding window method.
In a sliding window approach, we need to repeatedly crop
overlapping sub-volumes from one video clip and feed them
to 3D-CNN to get the complete probability map of this video
clip. While for our 3D-FCN, we only need to feed the whole
video clip into the 3D-FCN and get the probability map of
the whole video clip within a forward propagation directly. To
the end, our method can reduce the redundant computations
and accelerate detection compared to the traditional sliding
window approach.

Due to the existence of down-sampling operations within
the 3D-FCN, the dimensions of probability maps are reduced
compared to the original input size and we need to deter-
mine the corresponding window location for each probability
value. Supposing the spatial receptive field (the region in the
original input video clip that influences the output probability
value [38]) of the 3D-FCN is rw × rh , the spatial down-
sampling stride is sw × sh (the cumulative product of strides
in convolutional and pooling layers; it is also the stride of
sub-windows) and the spatial dimensions of input video clips
are w×h, the sizes of output probability maps (wp×hp) can
be calculated as:

wp = dw − rw
sw

e+ 1,

hp = dh− rh
sh
e+ 1. (1)

We inverse the above equations to get the following index
mapping equations:

x = drw
2
e+ sw ∗ (xp − 1),

y = drh
2
e+ sh ∗ (yp − 1), (2)

where (xp, yp) and (x, y) represent the probability map index
and the center location of the corresponding sub-window,
respectively.

In order to detect polyps in the frame It (the tth frame of
a colonoscopy video), we first extract the neighboring frames
centered at It to form a video clip with 16 frames and then
feed the video clip into the proposed 3D-FCN to acquire a
probability map. Finally we figure out the polyp locations by
mapping the positions with probabilities above a threshold (0.8
in our experiments) in the probability map back to the input
space according to Eq. (2).

B. Offline Representation Learning

1) Architecture of Offline 3D-FCN: The architecture of our
proposed 3D-FCN used in offline representation learning is
illustrated in Table I. Note that we here use a video clip with
size of 102× 102× 16× 3 (width×height×length×channel)
as an illustration, but the 3D-FCN can take arbitrary-sized
video clips as input. Previous studies [39], [40] have shown
that small convolution kernels are more effective compared
to the counterpart of large kernels with more discrimination
capability while less computation parameters. For example, a
stack of three 3×3×3 convolutional kernels has an effective
receptive field of 7×7×7 but the stacked layers incorporate
three non-linear rectification layers instead of a single one,

which makes the decision function more discriminative [39];
assuming that both the input and output of the three-layer
3×3×3 convolution stack have C channels, the three-layer
stack has 3× (33C2) = 81C2 weights while the single 7×7×7
convolution kernel requires 73C2 = 343C2 parameters. Hence
stacked small kernels have less parameters and are more
computationally efficient. We introduce this finding in our
implementation of 3D convolutional networks by using small
convolution kernels with size of 3×3×3 (spatial width×spatial
height×temporal depth) in convolutional layers.

Overall, our network consists of 6 conventional convolu-
tional layers (Conv) with size of 3×3×3 and each of them is
followed by a rectified linear unit (ReLU) [41] as an activation
function. We also add 4 max-pooling layers (Pool) between
these convolutional layers to increase the receptive field and
reduce the feature volume size. After each pooling layer,
we double the number of feature volumes to preserve the
necessary information. There are 2 converted convolutional
layers (Conv5 and Conv6) followed by layer Pool4. These
two convolutional layers are converted from fully-connected
layers and can allow our network to take arbitrary-sized input.

TABLE I
THE ARCHITECTURE OF THE PROPOSED OFFLINE 3D-FCN (ARCH I).

Layer Feature maps Kernel size Stride

Input 102×102×16×3 - -
Conv1a 100×100×14×64 3×3×3 1×1×1
Pool1 50×50×14×64 2×2×1 2×2×1
Conv2a 48×48×12×128 3×3×3 1×1×1
Pool2 24×24×12×128 2×2×1 2×2×1
Conv3a 22×22×10×256 3×3×3 1×1×1
Conv3b 20×20×8×256 3×3×3 1×1×1
Pool3 10×10×8×256 2×2×1 2×2×1
Conv4a 8×8×6×512 3×3×3 1×1×1
Conv4b 6×6×4×512 3×3×3 1×1×1
Pool4 3×3×2×512 2×2×2 2×2×2
Conv5 1×1×1×1024 3×3×2 1×1×1
Conv6 1×1×1×2 1×1×1 1×1×1

Note: Conv5 and Conv6 are converted from fully-connected layers.

2) Offline Model Training: We train the offline 3D-FCN
(offline-3D-Net) using the cropped sub-volumes. As the
ground truth of training colonoscopy videos are pixel-level
annotated polyp masks, we use the following strategy to
construct offline training samples. Given a polyp mask, we first
calculate the centroid of this mask as the polyp location. Then
a positive training sub-volume with size of 102×102×16×3
(the 3D-FCN will output one probability value) is cropped
centered at the calculated polyp location. And the negative
training sub-volumes are randomly cropped in the colonoscopy
videos with no overlap with the positive training sub-volumes.

Training a deep CNN from scratch, i.e., the weights of net-
works are randomly initialized, is difficult because this manner
requires a large amount of training samples. In addition,
we need more data when training 3D networks because 3D
networks have more parameters than 2D networks. However,
the insufficiency of training data is a well-known problem
of harnessing deep learning techniques in medical image
computing. For example, there are only 10 videos containing
polyps in our training data (see Section III-A for more detail).
The limited training dataset would easily lead to overfitting
problem when training deep networks. In order to partly tackle
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the insufficiency of training data, we use the transfer learning
technique [20] following previous works [18], [20], [21].
Specifically, we employ a pre-trained network [36] (trained
on a large-scale video data Sport-1M [42], which contains 1.1
million sports videos) to initialize the weights of our 3D-FCN.
Next we fine-tune our network with backpropagation method
using the training sub-volumes.

C. Online Representation Learning and Model Fusion

By harnessing the spatio-temporal feature representations
from colonoscopy videos, the offline-3D-Net can achieve good
performance on polyp detection. However, due to the large
variations across different videos, the offline-3D-Net trained
in limited video clips may still output some polyp-like false
positives. In our experiments, we observe that these polyp-
like false positives are video-specific; the false positives in
the same video are similar but the false positives in different
videos are different. In this case, if the network can learn
to discriminate specific false positives from each video, it can
efficiently improve the precision performance. Based on above
observation and consideration, we propose an online repre-
sentation learning scheme to further improve the detection
performance. More specifically, we train a specific online net-
work (referred as online-3D-Net) for each testing video with
online extracted samples from this video. This scheme can
compensate the offline-3D-Net’s inadequacy in discrimination
capability caused by the gap between the large variations of
polyps across different videos and the limited training dataset.
Through online representation learning regarding a specific
video, the online-3D-Net can leverage the specific information
derived from this video and thus reduce the number of false
positives.

1) Online Sample Selection: The key step of online repre-
sentation learning is the selection of training samples, which
should be representative for training online-3D-Net to enhance
its capability of distinguishing polyps from hard mimics. We
extract the online samples according to the results obtained
from the offline network. When extracting the online training
samples centered at It, we first generate three probability maps
P t−1
ij , P tij and P t+1

ij using offline-3D-Net and the video clips
centered at frame It−1, It and It+1. Then we compare the
three probability maps with a probability threshold Po and
obtain the positive (∀τ ∈ {t − 1, t, t + 1}, P τij > Po) and
negative (∃τ ∈ {t − 1, t, t + 1}, Po − 0.2 < P τij ≤ Po)
probability indexes (i, j). Next, the positive and negative
positions corresponding to positive and negative indexes are
localized based on Eq. (2). Finally, we extract the positive
training samples from the localized positive positions while
the negative samples consist of two parts: the samples selected
from the localized negative positions and the samples drawn
randomly without overlapping with the extracted positive
samples. As the first part of negative samples have relative
high probability values, adding these hard negative samples
can enhance online model’s capability of distinguishing polyps
from polyp-like false positives. We employ the above strategy
to extract online training samples from each frame of this
video. The parameter Po can be used to adjust the number of

Fig. 4. Examples of extracted online training samples. The blue and red
crosses represent positive and negative samples, respectively.

positive and negative training samples and we set it through
cross-validation using the 10 colonoscopy videos containing
polyps in our experiments. We show some extracted training
samples for training the online-3D-Net in Fig. 4. It is observed
that our online selection strategy can effectively extract polyp-
like false positives as negative samples and hence can improve
the capability of the online model to combat the hard mimics
of polyps.

2) Online Model Learning: The online model is also im-
plemented based on 3D-FCN and adopts the same architecture
as the offline network. Considering the limited online training
samples, we train the online network based on the offline
network instead of training it from scratch. We use the weights
of offline-3D-Net to initialize each online-3D-Net’s weights
and update its weights with backpropagation using online
training samples extracted from this video. The online update
is performed incrementally and in 60 frames interval using
training samples extracted from previous frames. Note that
only the last three convolutional layers of the online network
are updated while the weights of previous convolutional layers
are fixed throughout online model updating. This scheme is
not only computationally efficient, but can avoid overfitting
by fixing the video-independent spatio-temporal features ex-
tracted from previous convolutional layers.

3) Model Fusion: As we mentioned above, the main pur-
pose of online network is to remove the specific polyp-
like false positives detected by offline network and further
improve the detection performance. To do this, we combine
the outputs of offline network and online network to get final
polyp detection results. Note that in online sample selection
process, the probability maps generated by offline-3D-Net may
not be correct if the training samples are contaminated by
noise examples (though not common as observed from our
experiments). In order to make our model more robust, we set
a threshold Ts to bound the influence from online-3D-Net and
calculate the final probability Pij as:

Pij =

{
P off

ij +P
on
ij

2 |P on
ij − P off

ij | ≤ Ts
P off
ij |P on

ij − P off
ij | > Ts

(3)

where P off
ij and P on

ij (i and j are the indexes of the probability
maps) are the predicted probabilities of offline-3D-Net and
online-3D-Net, respectively. If the absolute difference between
these two outputs is greater than Ts, the online output is dis-
carded and we only use the offline network result; otherwise,
we use the average result as the final prediction. The Ts is set
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as 0.3 in our experiments through cross-validation using the
10 colonoscopy videos containing polyps.

4) Complete Detection Flow of Our Method: We first
train an offline-3D-Net using all the training sub-volumes and
initialize an online-3D-FCN with the same weights of offline-
3D-FCN for each testing video. Next we process the testing
videos frame-by-frame by generating probability maps for
each frame. When processing frame It, we extract a video clip
with 16 frames (from It−7 to It+8) and feed this video clips to
offline-3D-Net and online-3D-Net to generate the offline and
online probability maps. We fuse these two probability maps
using Eq. 3 and generate the polyp locations using the steps
described in Section II-A2. At the same time, we extract the
online training samples and update the online-3D-FCN using
the strategies in Section II-C1 and II-C2.

D. System Implementation

The proposed framework was implemented with C++ and
Matlab under the open source deep learning library of Caffe
[43] using a standard PC with a 2.60GHz Intel(R) Xeon(R)
E5-2650 CPU and a NVIDIA GeForce GTX TITAN X GPU.
The offline network was trained with standard backpropagation
using stochastic gradient descend method (batch size=16,
momentum=0.9, weight decay=0.005, the learning rate was set
as 0.0005 initially and decreased by a factor of 10 every 4000
iterations). We updated the online network for 50 iterations
with the same batch size, momentum and weight decay with
the offline network, but set the learning rate for the last three
convolutional layers as 0.001 for fast learning the specific
information from testing videos. The parameter Po in online
sample selection was set as 0.8. Generally, it took 0.25
seconds to process one frame only using offline model; it took
1.23 seconds to process one frame using fusion model and
about half of the time was spent in online network updating
procedure.

III. EXPERIMENTS AND RESULTS

A. Dataset and Preprocessing

We evaluated our method on the Asu-Mayo Clinic Polyp
Database [16] of MICCAI 2015 Challenge on Polyp Detec-
tion 1. The dataset consists of videos with various frames
and the videos are selected to display maximum variations in
colonoscopy procedures (e.g., polyp variations, different reso-
lutions, different detection strategies, existence of instruments
information). The training dataset contains 20 colonoscopy
videos with pixel-level annotated polyp masks in each frame.
Among them, 10 videos have polyps inside and the other 10
videos have no polyp. There are totally 3799 frames with
polyps. For the videos with polyps, each video contains a
unique polyp. But this unique polyp disappears in most of
frames and shows the maximum variations in different size,
location, view and light. The testing dataset contains 18 videos
with ground truth held out by the challenge organizers for
independent evaluation.

1https://grand-challenge.org/site/polyp/

Due to the different resolutions of colonoscopy videos,
we first resized all videos into fixed dimensions with spatial
size of 570×320 before processing. We did not use padding
in the 3D-FCN and the size of generated probability map
was 31×15. Because probability values in the boundary of
generated probability maps indicated the probabilities of the
polyps in the corner of original colonoscopys, we did not
do special processing of the pixels at the frame boundaries
although a polyp may be located at the corner. To increase
robustness and reduce overfitting, we utilized the strategy of
data augmentation to enlarge the training dataset when training
offline network. The augmentation operations, including rota-
tion (rotating 90, 180, 270 degrees in the spatial plane) and
translation (shifting the polyp locations by uniformly sampling
values: ∆s∼ (−10, 10) in the spatial plane and ∆t∼ (−3, 3)
in the temporal plane), were performed on extracted training
sub-volumes. After data augmentation, we got about 85,000
positive training samples and we also extracted the same
number negative training samples to train the offline-3D-Net.

B. Evaluation Metrics

We employed Precision (P) and Recall (R) to quantitatively
evaluate the performance of our proposed polyp detection
method. As low precision with high recall leads to heavy
burdens for clinicians and low recall with high precision may
result in late diagnosis of colon cancer, we also employed F1
score and F2 score to balance these two metrics. The above
four metrics are defined as:

F1 =
2PR

P +R
,F2 =

5PR

4P +R
,

P =
Ntp

Ntp +Nfp
, R =

Ntp
Ntp +Nfn

, (4)

where Ntp, Nfp and Nfn denote the number of true positives
(TP), false positives (FP) and false negatives (FN), respec-
tively. Note that all the metrics are defined on polyp-level. A
provided polyp detection is considered as a true positive if it
falls inside the polyp masks; otherwise it is regarded as a false
positive. A false negative is a polyp that has not been detected
by the automated method.

C. Analysis of 3D-FCN

We investigated several different architectures of 3D-FCN to
empirically identify a good architecture. Besides the proposed
architecture above (Arch I in Table I), we also trained 3D-FCN
with large convolution kernels and different receptive fields
(Arch II in Table III and Arch III in Table IV). The Arch II
and Arch III both employed large convolutional kernels with
size of 5×5×5 and Arch III had a different receptive field of
92×92×16×3. Table II shows the detection performance of
offline model with different architectures. Note that all of these
networks were trained from scratch for fair comparison. We
can observe that the Arch I has better performance than Arch
II and Arch III, which demonstrates that smaller convolution
kernels are more efficient than larger convolution kernels.

https://grand-challenge.org/site/polyp/
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TABLE II
THE DETECTION PERFORMANCE OF OFFLINE MODEL WITH DIFFERENT ARCHITECTURES.

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

Arch I 2289 1972 2024 53.7 53.0 53.4 53.2
Arch II 2203 3433 2110 39.1 51.1 44.3 48.1
Arch III 2005 1999 2308 50.1 46.5 48.2 47.1

TABLE V
RESULTS OF POLYP DETECTION ON ASU-MAYO DATASET USING THE PROPOSED FUSION MODEL AND THE OFFLINE NETWORK.

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

Offline-3D-Net 3053 835 1260 78.5 70.8 74.5 72.2
Fusion model 3062 414 1251 88.1 71.0 78.6 73.9

TABLE III
THE ARCHITECTURE OF DIFFERENT 3D-FCN (ARCH II).

Layer Feature maps Kernel size Stride

Input 102×102×16×3 - -
Conv1a 100×100×14×64 3×3×3 1×1×1
Pool1 50×50×14×64 2×2×1 2×2×1
Conv2a 48×48×12×128 3×3×3 1×1×1
Pool2 24×24×12×128 2×2×1 2×2×1
Conv3a 20×20×8×256 5×5×5 1×1×1
Pool3 10×10×8×256 2×2×1 2×2×1
Conv4a 6×6×4×512 5×5×5 1×1×1
Pool4 3×3×2×512 2×2×2 2×2×2
Conv5 1×1×1×1024 3×3×2 1×1×1
Conv6 1×1×1×2 1×1×1 1×1×1

TABLE IV
THE ARCHITECTURE OF DIFFERENT 3D-FCN (ARCH III).

Layer Feature maps Kernel size Stride

Input 92×92×16×3 - -
Conv1a 88×88×14×64 5×5×3 1×1×1
Pool1 44×44×14×64 2×2×1 2×2×1
Conv2a 40×40×12×128 5×5×3 1×1×1
Pool2 20×20×12×128 2×2×1 2×2×1
Conv3a 16×16×8×256 5×5×5 1×1×1
Pool3 8×8×8×256 2×2×1 2×2×1
Conv4a 4×4×4×512 5×5×5 1×1×1
Pool4 2×2×2×512 2×2×2 2×2×2
Conv5 1×1×1×1024 2×2×2 1×1×1
Conv6 1×1×1×2 1×1×1 1×1×1

D. Analysis of Offline and Online Learning

Fig. 5 shows some typical polyp detection results. In order
to diagnose the role of the online representation learning, we
show the detection results of both the fusion model and the
offline network without integrating the online learning scheme.
From the results shown in the first row of Fig. 5, we can see
that both the proposed fusion model and the offline network
can accurately single out polyps with variations in shape, color
and texture from colonoscopy videos. The results highlight that
the proposed 3D-FCN can tackle the large variations of polyps
by exploring discriminative spatio-temporal feature representa-
tions. The second row presents some different detection results
between the fusion model and the offline model. From these
results, we can observe that the fusion model successfully
removes some polyp-like false positives detected by the offline
network. In addition, the fusion model integrating online and
offline representation learning can even detect the polyps that

Fig. 5. Examples of polyp detection results. Blue and purple circles represent
detection results of the fusion model and the offline network, respectively.

are neglected by the offline network. These results demonstrate
the effectiveness of the online learning strategy aiming at
dynamically learning and exploiting the specific features of
the input video in order to improve the detection performance.

We further quantitatively analyze the detection performance
of the offline network and the fusion model on the challenge
dataset. The results are listed in Table V. It is observed that,
our fusion model reduces around half number of false positives
(414 vs. 835) compared to the offline model and hence
significantly improves the precision (88.1% vs. 78.5%). The
results corroborate that the online representation learning can
efficiently reduce the polyp-like false positives generated by
the offline network through leveraging the specific information
extracted from the input testing video. In addition, the fusion
model also detects more true positives than the offline-3D-
Net and improves recall to some extent. Overall, the fusion
model integrating offline and online representation learning
achieves better performance on all four metrics than the
offline network, which evidences the integration of the online
and offline representation learning can greatly improve the
detection performance. But due to the online model updating
and the need of generating two probability maps, the fusion
model has longer processing time than offline model.

E. Comparison with Other Methods

We compare the proposed polyp detection method with sev-
eral other methods participating the challenge. The results are
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TABLE VI
RESULTS OF POLYP DETECTION ON ASU-MAYO DATASET FROM DIFFERENT METHODS.

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

PLS 1594 10103 2719 13.6 36.9 19.9 27.5
CVC-CLINIC [11] 1578 3456 2735 31.3 36.6 33.8 35.4
OUS 2222 229 2091 90.6 51.5 65.7 56.4
ASU [16], [30] 2636 184 1677 93.5 61.1 73.9 65.7
CUMED 3081 769 1232 80.0 71.4 75.5 73.0
Fusion model (ours) 3062 414 1251 88.1 71.0 78.6 73.9

shown in Table VI2. The teams CVC-CLINIC [11] and PLS
used hand-crafted features to locate polyps, while the teams
CUMED and OUS employed 2D-CNN based approaches to
automatically learn features from the training videos and then
detected polyps. While the OUS team employed the tradi-
tional sliding windows strategy, the CUMED team adopted
a segmentation-based strategy, where they first used a 2D-
CNN to segment polyps in each frame and then located polyps
based on the segmentation masks. The ASU team utilized a
hybrid approach which integrates hand-crafted features and
CNN based features [16], [30] . They first generated a set
of polyp candidates using hand-crafted geometric features
and then applied an ensemble of 2D-CNNs to classify each
candidates.

We have three major observations from the results shown
in Table VI. First, all the CNN based methods achieve better
performance than the methods based on hand-crafted features,
suggesting that the high-level features learned from CNN are
more discriminative than the hand-crafted features. Second,
the proposed method achieves the best performance on both
F1 score and F2 score among all methods. The results further
demonstrate the effectiveness of the proposed fusion strat-
egy integrating online and offline representation learning in
dealing with large variations of polyps and compensating the
discrimination deficiency of offline models caused by limited
specificity. Third, after carefully studying the results, we find
that our proposed method has a better trade-off between
precision and recall than 2D-CNN based methods. Our method
achieves much higher recall performance, surpassing ASU
and OUS by a large margin (about 10% and 20%) but our
precision is lower than theirs. The higher precisions may be
because the ASU team first used global geometric features to
generate candidates with removing most of polyp-like false
positives while OUS team set a high probability threshold for
the final classification. However, as a trade-off, these schemes
may increase the false negative and lead to a lower recall. On
the other hand, our method outperforms the CUMED team
by a large margin in term of precision (about 8%) while still
achieving competitive recall performance (71.0% vs. 71.4%).
Note that, in clinical practice, the balance between precision
and recall of an automated detection approach is quite impor-
tant. While low precision may increase doctors’ workload for
re-checking, low recall may cause mis-diagnosis or delay in
diagnosis that prevents the early or timely treatment. This is
why the challenge ranks the participants based on F1 score

2The challenge result can be found in https://polyp.grand-challenge.org/
results/

and F2 score. Overall, the challenge results demonstrate the
discrimination capability of the proposed 3D-FCN and the
effectiveness of the offline and online integration scheme in
improving the detection performance.

We further compare the proposed methods with other meth-
ods on two subsets of the ASU-Mayo dataset: 1) a subset
including videos with at least one frame containing polyp,
and 2) a subset including videos with every frame containing
polyp. While the first subset is composed of the most common
cases in clinical practice, the videos in the second subset can
be used to confirm the diagnosis and assist the subsequent
interventions such as endometrial ablation. The results are
shown in Table VII. The results of subset 1 are quite similar
with the results reported in Table VI, where our method
achieves the highest F1 and F2 score among all methods.
As for the subset 2, we achieves 0 false positive and 100%
precision, outperforming other methods by a large margin.
This is attributed to that our method takes advantage of both
spatial and temporal features extracted by the proposed 3D-
FCN; the temporal features are quite important to detect polyps
in a series of consecutive frames. The high precision on such a
subset demonstrates the potential of the proposed method to be
applied in computer-assisted interventions, where the proposed
method can help detect and track the polyps for more precise
operations. Moreover, our method can detect the polyp at least
in one frame for all videos with polyps and thus has a relatively
low miss-rate of individual polyp.

IV. DISCUSSION

One of the main challenges for automated detection of
polyps from colonoscopy videos lies in that there are a lot
hard mimics in colonoscopy videos, such as bubbles, fecal
content and specular spots. These hard mimics can seriously
hinder the detection performance. A straightforward thought
is to use some preprocessing methods to remove some of
these hard mimics. However, these polyp mimics are very
irregular and vary greatly in different colonoscopy videos; it
is hard to use simple prepocessing methods to eliminate them.
We have considered including them into the negative training
samples to improve the performance of our method. However,
this scheme needs us to manually annotate the positions of
these mimics, which is out of the scope of this challenge
because it needs extra labels. We therefore propose the online
and offline representation learning integrated framework to
reduce the influence of hard mimics through the online sample
selection and online training. While the proposed integrated
framework can achieve good results for discriminating hard

https://polyp.grand-challenge.org/results/
https://polyp.grand-challenge.org/results/
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TABLE VII
RESULTS OF POLYP DETECTION ON SUB-DATASETS SELECTED FROM ASU-MAYO DATASET.

Videos with at least one frame containing polyp

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

PLS 328 6953 2321 4.5 12.4 6.6 9.2
CVC-CLINIC [11] 195 1343 2454 12.7 7.4 9.3 8.0
OUS 651 55 1998 92.2 24.6 38.8 28.8
ASU [16], [30] 1218 92 1431 92.9 45.9 61.5 51.1
CUMED 1439 600 1210 70.6 54.3 61.4 57.0
Fusion model 1424 385 1225 78.7 53.8 63.9 57.4

Videos with every frame containing polyp

Method TP FP FN Prec [%] Rec [%] F1 [%] F2 [%]

PLS 1266 3150 398 28.7 76.1 41.6 57.2
CVC-CLINIC [11] 1383 272 281 83.6 83.1 83.3 83.2
OUS 1571 167 93 90.4 94.4 92.3 93.6
ASU [16], [30] 1418 40 246 97.2 85.2 90.8 87.4
CUMED 1642 149 22 91.7 98.7 95.0 97.2
Fusion model 1638 0 26 100 98.4 99.2 98.7

(a) (b) (c)

Fig. 6. Some failure cases of our framework. The red circles represent the
detection results of our method while the blue circles represent the true polyps.

mimics, there are still some failure cases, especially when
there are too many very similar mimics (e.g., colon walls) in
the video, as shown in Fig. 6a. It is worth manually annotating
these mimics and including them into the training samples
to improve the performance. It is also observed that the
image quality (e.g., image blur or overexposed regions) would
influence the detection performance. Fig. 6b and Fig. 6c show
the wrong detections due to the blurry image and overexposed
regions. In the future, we shall investigate to utilize some
image processing techniques (e.g., image deblurring and image
normalization) to further improve the performance.

In recent years, deep convolutional neural networks (CNNs)
have been widely applied in medical image analysis field and
achieved remarkable success in many applications. We find
that most of CNNs in medical image analysis field employ the
architectures in natural image domain [20], [21] or follow the
typical design principles employed in natural image processing
applications (e.g., U-net in [25], DCAN in [26]). We think the
reason is that these network architectures or design principles
are summarized from rich design exploration and experiments;
they are employed by many applications in the natural image
domain and general enough to be extended to the medical
image domain (i.e., colonoscopy videos). In our work, we
also adopt some typical design principles (e.g, harnessing
small convolution kernels, doubling the number of feature
maps at downsampling step) in our network design. Our
experimental results demonstrate the effectiveness of these

design guidelines. It indicates that we can borrow the wisdom
and successful experience in natural image domain for medical
image analysis applications. Note that we do not employ the
upsampling layers in our network. Instead, we use Eq. 2 to
explicitly map the results back to the original locations in
video clips. This is different from original fully convolutional
networks for semantic segmentation tasks [37].

Training a deep 3D-FCN from scratch (i.e., the weights
of networks are randomly initialized) is difficult because it
requires a large amount of training samples. However, the
insufficiency of training data is a well-known challenge of
harnessing deep learning techniques in medical image analysis.
Compared with millions of videos that can be acquired in
natural video analysis tasks (for examples, 0.8M videos in
YFCC100M dataset [44] and 1.1M sport videos in Sport-1M
dataset [42] for detection and classification), we only have 20
training videos in this polyp detection challenge. It is difficult
to solve this problem in many applications due to the high
cost of data acquisition and labeling, not to mention that the
small number of subjects for some rare diseases. In order to
mitigate this problem, we used transfer learning (i.e., fine-
tuning CNN models pre-trained from natural image dataset
to medical image analysis tasks [20]). Most of studies [18],
[20], [21] have demonstrated that transfer learning from the
large scale annotated natural image datasets to medical image
analysis applications has been consistently beneficial despite
the difference between natural image dataset and medical
image dataset. Therefore, we fine-tuned our 3D-FCN from a
pre-trained model on Sport-1M. The big performance margin
of fine-tuning model and randomly initialized model has
demonstrated the effectiveness of fine-tuning.

In this work, we use the spatio-temporal features to auto-
matically detect polyp in colonoscopy videos. Although it is
not ready for the in vivo clinical use due to the processing
time, our method can be further accelerated in the future.
Specifically, we can investigate the following aspects for the
acceleration: 1) using multi-process and multi-GPU techniques
to process the different frames at the same time; 2) leveraging
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some recently proposed model compression techniques, such
as FitNet [45] and XNOR-Net [46], to reduce the computation
time of each frame; 3) adjusting the online model training
scheme to update the online model sample by sample, which
can reduce the time of re-training in online model update.
In addition, there are many other application scenarios for the
proposed method besides the real-time in vivo polyp detection.
For example, our method can provide alarm warnings to the
operators in clinical practice. This alarm could remind doctors
of coming back to re-identify the polyps. Our method can
also be applied to offline processing of colonoscopy videos,
which would help automatic document the operation process
and efficiently construct a knowledge database for training new
clinicians.

V. CONCLUSION

In this paper, we propose a novel online and offline 3D deep
learning integration framework to automatically detect polyps
from colonoscopy videos by leveraging 3D fully convolu-
tional networks. The 3D networks can effectively learn spatio-
temporal feature representations encoding more discrimination
capability than features learned only from spatial information.
More importantly, the fusion model integrating online and
offline representation learning can significantly reduce the
number of false positives and further improve the discrim-
ination capability. Experiments on Asu-Mayo Clinic Polyp
Database demonstrated the performance of our method and we
achieved the best performance on F1 and F2 score metrics. The
proposed fusion learning framework provides a new strategy
to fill the gap between the large variation of testing data
and the limited training data, which is a common challenge
when employing supervised learning methods, especially deep
neural networks, in data-driven medical image analysis tasks.
Future investigations include evaluating our method on more
clinical data and extending it to more detection tasks in
endoscopic videos.
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