1	
2	Energy Upcycle in Anaerobic Treatment: Ammonium, Methane, and
3	Carbon Dioxide Reformation through a Hybrid Electrodeionization-
4	Solid Oxide Fuel Cell System
5	
6	
7	Linji Xu ^{1,2} , Feifei Dong ³ , Huichuan Zhuang ¹ , Wei He ³ , Meng Ni ^{2,3} , Shien-Ping Feng ⁴ , Po-Heng Lee ^{1,2*}
8	
9	
10	
11	1 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
12	Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
13	² Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University,
14	Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
15	³ Department of Building and Real Estate, The Hong Kong Polytechnic University,
16	Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
17	⁴ Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
18	*Corresponding author: phlee@polyu.edu.hk; phone: +852-2766-6067; fax: +852 2334 6389
19	
20	

22 ABSTRACT

23	To create possibilities for a more sustainable wastewater management, a novel
24	system consisting of electrodeionization (EDI) and solid oxide fuel cells (SOFCs) is
25	proposed in this study. This system is integrated with anaerobic digestion/landfills to
26	capture energy from carbonaceous and nitrogenous pollutants. Both EDI and SOFCs
27	showed good performances. EDI removed 95% and 76% ammonium-nitrogen (NH $_4^+$ -
28	N) from diluted (0.025 M) to concentrated (0.5 M) synthetic ammonium
29	wastewaters, respectively, accompanied by hydrogen production. SOFCs converted
30	the recovered fuels, biogas mixtures of methane and carbon dioxide, to electricity.
31	Under the optimal conditions of EDI (3.0 V applied voltage and 7.5 mm internal
32	electrode distance (IED), and SOFCs (750 °C operating temperature), the system
33	achieved 60% higher net energy output as compared to conventional systems. The
34	estimated energy benefit of this proposed system showed that the net energy
35	balance ratio is enhanced from 1.11 (existing system) to 1.75 (this study) for a local
36	Hong Kong active landfill facility with 10.0 g L^{-1} chemical oxygen demand (COD) and
37	0.21 M NH ₄ ⁺ -N. Additionally, an average of 80% inorganic ions (heavy metals and
38	nutrient elements) can be removed from the raw landfill leachate by EDI cell. The
39	results are successful demonstrations of the upgrades of anaerobic processes for
40	energy extraction from wastewater streams.

1 Introduction

42	Energy extraction from wastewater streams has gained increasing attention to				
43	eliminate environmental threats and offset fossil fuel consumption [1-4]. The most				
44	readily adaptable approaches are anaerobic treatment, e.g., anaerobic digestion (AD)				
45	or landfill, converting wastewater or municipal solid waste into biogas (approximately				
46	60% methane (CH ₄)/ 40% carbon dioxide (CO ₂) volume/volume [v/v]) and				
47	ammonium-rich fermentation broth/leachate (400 mg L^{-1} to 8000 mg L^{-1} NH ₄ ⁺ -N) [5-				
48	8]. Although biogas is well established as a fuel for electricity generation via				
49	combined heat and power (CHP) or cogeneration with gas engines [9-11], the				
50	electricity conversion efficiency is usually limited to around 30% [12, 13]. Moreover,				
51	ammonium-rich wastewater, discharged without proper treatment, brings severe				
52	environmental impacts [14-17]. Further improvements and updates are hence				
53	necessary and urgent.				
54					
55	Conventionally, NH_4^+ -N in fermentation broth/leachate can be removed through				
56	adding an alkali to raise the pH level over its pK_a value (9.25) followed by				
57	physicochemical methods such as microwave radiation, air stripping (AS), and				
58	heating [18-22]. Biological nitrogen removal processes such as nitrification-				
59	denitrification, nitrification shortcut, and anaerobic ammonium oxidation have also				
60	been applied [21, 23]. These approaches require expensive chemicals and consume				
61	intensive energy [18-22]. Ammonia (NH $_3$) can be used as an alternative fuel to				
62	hydrogen (H ₂) [24]. Upon decomposition, NH_3 produces two harmless gases (nitrogen				

63	$[N_2]$ and H_2), and simultaneously releases 320 kJ mol ⁻¹ chemical energy. Theoretically,			
64	this process produces approximately 10% more energy than H_2 oxidation (285 kJ mol ⁻			
65	¹) [25-27]. Since NH ₃ has special properties (incombustibility, incomplete			
66	decomposition, toxicity, and solubility), its energy potential has not been highly			
67	recognized yet [28, 29]. For wastewater in which NH_3 exists in the form of NH_4^+ ion,			
68	the low conversion efficiency from NH_4^+ ion to NH_3 gas, high cost, and NO_x emissions			
69	also reduce the motivation to explore its energy potential [30].			
70				
71	SOFC is a promising energy conversion technology. It is capable of electrochemical			
72	converting a variety of gas fuels (H_2 , NH_3 , CH_4 and other hydrocarbon compounds)			
73	into electricity. Also, it has an energy conversion efficiency as high as 50% [31, 32].			
74	The upper right-hand panel of Fig. 1 illustrates the power generation mechanism of			
75	SOFCs. (I) When CH_4 is fuel, it reforms with H_2O or CO_2 and produces H_2 and CO at			
76	the anode under the high-temperature condition. (II) These reformed gases react			
77	with oxygen ions (O ²⁻) and produce CO ₂ and H ₂ O, and release electrons (e ⁻). (III) The			
78	released electrons flow through the external circuit and they are collected by the			
79	current collector to produce electrical power. (IV) Once electrons reach the cathode,			
80	they are accepted by O_2 molecule and O^{2-} ions are produced again. In this cycle, O_2			
81	and gas fuels are consumed for electricity generation.			
82				
83	SOFCs have some advantages for gas production from wastewater. As SOFCs generate			

84 electrical power in a straightforward way through electrochemical reactions and does

85	not go through thermodynamic cycles, its power generation efficiency is not limited
86	by the Carnot efficiency [33]. Although carbon deposition is an issue for SOFCs fed
87	with pure CH_4 , this issue might be solved for biogas because its reformation with H_2O
88	or CO_2 generates gases instead of solid carbon [34-36]. As such, biogas is potentially a
89	good fuel for power generation systems using SOFCs [37]. Another potential fuel for
90	SOFCs is NH_3 gas. When NH_3 is fed into SOFCs, it is thermally decomposed into N_2 and
91	H_2 . Subsequently, H_2 goes through the same reaction process with other gas fuels
92	[38]. Studies have found that carbon deposition can be prevented by adding NH_3 to
93	CH₄ as well [31, 39]. Therefore, this novel system of integrating SOFCs with AD and
94	landfill facilities is proposed to convert NH_3 and biogas into electrical power for
95	simultaneous pollution control.

The main issue with this system is that the aqueous NH₄⁺ in fermentation 97 broth/leachate requires an additional conversion step to NH₃ gas so as to be fed into 98 99 SOFC. As aforementioned, the existing approaches for NH₃ gas recovery are both 100 uneconomic and environmentally unfriendly[40-42]. Hence, advanced technologies are required. EDI is an attractive technology because it has an excellent selectivity for 101 102 target ion. Ion migration is driven by electric potential gradients rather than by 103 physical pressure [43, 44]. As shown in the bottom right panel of Fig. 1, directional movement leads to accumulation of target ions such that the concentrated ions can 104 be harvested with low energy consumption. As Mondor et al. reported, EDI has been 105 used to produce fertilizers from swine manure with 1.0 kWh kg⁻¹ NH₃ energy input, 106

107	saving 1.8 kWh kg ⁻¹ NH ₃ compared to 2.8 kWh kg ⁻¹ NH ₃ required for AS [45].					
108	Moreover, the applied voltage leads to water splitting. The generated H_2 in the					
109	cathode is an additional fuel for SOFCs [46], while hydroxide (OH ⁻) creates an alkaline					
110	condition and promotes the transformation from NH_4^+ into NH_3 . Consequently, the					
111	dosage of alkaline can be reduced, and more energy can be captured.					
112						
113	Compared to other energy conversion processes, this proposed system could yield					
114	theoretical energy output. For example, Scherson et al. recently reported that					
115	coupled aerobic–anoxic nitrous decomposition operation (CANDO) for NH_4^+					
116	wastewater treatment could yield a more powerful oxidant (N_2O) than O_2 because it					
117	released an additional energy of 82 kJ mol $^{-1}$ from N_2O to N_2 (Eq. 1) [23]. One mole of					
118	CH_4 combusted with 4 moles of N_2O releases -1219 kJ mol ⁻¹ (Eq. 2), approximately					
119	30% more stoichiometric energy than combustion with 2 moles of O_2 (Eq. 3)					
120	$N_2O_{(g)} \rightarrow 0.5O_{2(g)} + N_{2(g)}$ $\Delta H_R^0 = -82 \text{ kJ mol}^{-1}$ (1)					
121	$CH_{4(g)}$ + $4N_2O_{(g)} \rightarrow CO_{2(g)}$ + $2H_2O_{(I)}$ + $4N_{2(g)}$ ΔH_R^0 = -1219 kJ mol ⁻¹ (2)					
122	$CH_{4(g)}+2O_{2(g)}\rightarrow CO_{2(g)}+2H_2O_{(I)}$ $\Delta H_R^0 = -890 \text{ kJ mol}^{-1}$ (3)					
123	In SOFCs, NH_3 releases nearly four times more energy than same stoichiometric N_2O					
124	dissociation (Eq. 1 and Eq. 4). Theoretically, if both CH4 and NH3 serve as fuels, -2125					
125	kJ mol ⁻¹ is released (Eq. 5), which is 906 kJ mol ⁻¹ more energy output than N ₂ O as an					
126	oxidant (Eq.2). This energy potential implies that NH_3 is a promising additional fuel.					
127	Additionally, the H2 generated in EDI releases an extra 285 kJ mol ⁻¹ , if water dialysis					
128	occurs (Eq. (6)).					

129	NH _{3(g)} +0.75O ₂ →0.5N _{2(g)} +1.5H ₂ O _(I) $ΔH_R^0 = -320 \text{ kJ mol}^{-1}$ (4)						
130	$CH_{4(g)}+4NH_{3(g)}+5O_{2(g)}\rightarrow CO_{2(g)}+2N_{2(g)}+8H_2O_{(I)}$ $\Delta H_R^0 = -2125 \text{ kJ mol}^{-1} (5)$						
131	$H_{2(g)}+0.5O_{2(g)} \rightarrow H_2O_{(I)}$ $\Delta H_R^0 = -285 \text{ kJ mol}^{-1}$ (6)						
132							
133	Accordingly, the novel hybrid AD-EDI–SOFC system illustrated in Fig. 1 has potential						
134	to capture more energy from biogas and fermentation broth/leachate. Hopefully this						
135	system provides more sustainable wastewater management for the anaerobic						
136	treatment and landfill processes.						
137							
138	2 Materials and Methods						
139	2.1 EDI Stack						
140	A two-channel EDI reactor (effective volume of each channel 20 mL) was						
141	constructed. The anode and cathode (the bottom right down panel of Fig. 1) were						
142	made of two square Perspex frames with same internal dimensions (6 cm $ imes$ 6 cm $ imes$						
143	0.5 cm), separated by 1 mm-thickness cation exchange membrane (IONSEP [®] AM-C,						
144	Hangzhou Iontech Environmental Technology CO., Ltd, China). The anode electrode is						
145	titanium (Ti) coating platinum (Pt) (4 cm × 4 cm × 1 mm) (Shenzhen 3N Industrial						
146	Equipment CO., Ltd., China), and the cathode is Ti coating iridium ruthenium						
147	molybdenum (Ir-MMO) with same dimensions. After fixing anode and cathode, EDI						
148	stack was sealed by a 2 mm-thick silica sheet and locked by screws. The anode was						
149	fed with synthetic wastewater containing 0.0125 to 0.25 M ammonium sulfate,						
150	$(NH_4)_2SO_4$. The cathode was filled with sodium sulfate, (Na_2SO_4) with same						

151 concentrations as the supporting electrolyte. All batch of tests were carried out at 152 room temperature (25 ± 2 °C). Each set of experiments was set at a series of applied voltages (0.5V to 8.0 V) with 2.0 h per cycle. The variations of the real-time current 153 and voltage were recorded by a Keithley 2700 multimeter (Tektronix, Inc., USA). The 154 electrochemical behaviors of electrodes (Cycle voltammetry, CV) were analyzed using 155 156 an electrochemical working station (CorrWare®, Scribner Associates Inc., USA). After applied voltage optimization, IED was set at 7.5, 15.0, 30.0, 60, and 80.0 mm per 2.0 157 h per cycle under the optimal applied voltage. 158

159

Based on the results of laboratory-scale EDI tests, the semi-continuous tests using a
raw landfill leachate as feed were conducted using a three-channel EDI reactor (Fig.
S1). The leachate was obtained from the West New Territories Landfill (Nim Wan,
Tuen Mun, Hong Kong). The leachate was fed into the middle channel at an influent
rate of 2 mL min⁻¹. The anode and the cathode channels were filled with 0.005 M
hydrogen sulfate (H₂SO₄) and Na₂SO₄, respectively. The generated gases were
collected using gas-sampling bags.

167

168 2.2 Button-type Solid Oxide Fuel Cells

169 Three-layer button SOFC reactors were constructed to be electricity generation units. 170 Single cell with an anode-supported, thin-film dual-layer electrolyte configuration was 171 prepared via a tape casting process, spray deposition and subsequent high-172 temperature sintering. The diameter was 1.0 cm and the active area was 0.48 cm². The 173 fuel cells tested in this study consisted of NiO+ $(ZrO_2)_{0.92}(Y_2O_3)_{0.08}$ (YSZ, NiO:YSZ = 6:4 anode, YSZ electrolyte, Sm_{0.2}Ce_{0.8}O_{1.9} (SDC) interlayer and 174 by weight) 175 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) cathode. BSCF has been recently used as a benchmark cathode material for SOFC, due to its better electrochemical activity over that of LSM 176 and LSCF [47]. BSCF and SDC powders were synthesized using a combined EDTA-177 178 citrate complexing sol-gel process [48]. NiO and YSZ are commercial products obtained from Chengdu Shudu Nano-Science Co., Ltd., and Tosoh, respectively. The 179 details for preparing anode substrates NiO+YSZ through the tape casting process are 180 available in the literature [49]. 181

182

The fabrication of electrode and electrolyte includes several steps. First, the YSZ|SDC 183 double electrolyte layers were constructed using a wet powder spraying technique. 184 The YSZ suspension was sprayed onto the anode substrate using a spraying gun 185 followed by calcination at 1400 °C for 5 h, and the procedure was subsequently 186 repeated for the SDC suspension (buffering layer) deposited onto the thick YSZ surface 187 [50]. The resultant three-layered pellets were then calcined at 1350 °C for 5 h in air. 188 Finally, BSCF slurry was sprayed onto the surface of the SDC interlayer and fired at 189 190 1000 °C for 2 h in air to function as the cathode layer.

191

The current–voltage curves of the button fuel cells operated at 550–750 °C were obtained using a Keithley 2420 source meter (Tektronix, Inc., USA) based on a fourprobe configuration. During the test, H_2 , NH_3 – H_2 , CH_4 – CO_2 gas mixtures and a biogas

195 generated from a laboratory-scale digester were fed into the anode chamber at a flow 196 rate of 100 ml min⁻¹ with ambient air serving as the oxidant gas in the cathode 197 chamber. Biogas with a composition of 68% CH_4 and 32% CO_2 (v/v) was obtained in 198 the laboratory from a semi-continuous AD reactor fed with local sewage sludge (S1).

199

200 2.3 Chemical Analysis

NH4⁺-N was measured using the Berthelot method, and NH3 was absorbed by 1 M 201 202 H₂SO₄, then detected with the same approach. Nitrite, nitrate, phosphate, and sulfate were measured according to standard methods [51]. Total nitrogen was 203 204 analyzed with 720 °C catalytic thermal decomposition/chemiluminescence methods using TOC-L analyzers (TOC-LCSH/CPH, Shimadzu). H₂ was determined by gas 205 chromatography (Agilent 4890D; J&W Scientific, USA) using a HP-MoleSieve column 206 (30 m × 0.53 mm × 50 m) [52]; Helium gas served as the carrier gas and was injected 207 208 at a rate of 6 mL min⁻¹. The temperatures of the injection port, column, and the thermal conductivity detector were 200 °C, 35 °C, and 200 °C, respectively. Samples 209 (200 µL) were injected by micro syringes (Shanghai Anting Scientific., China). The 210 211 determination of heavy-metal ions was conducted using an Agilent 7500cx ICP-MS (Agilent Technologies, Santa Clara, CA, USA) [53]. The detailed measurements and 212 analyses are available in the supporting material (S1 and Eq. S1 and Eq. S2). 213 214

215 2.4 Calculation

216 Energy balance ratio (EBR)

The EBR is the energy input to output as expressed by Eq. 7 to evaluate the efficiency of the EDI–SOFC system.

$$EBR = \frac{W_{out} \times r}{W_{in}} \quad (7)$$

where W_{out} is the enthalpy of CH₄, NH₃ and H₂, respectively; *r* is the electricity conversion efficiency of SOFCs; and W_{in} is the energy consumption.

222

223 *W*_{in} is calculated as follows:

224
$$W_{in} = \sum (\Delta W) = \sum (I \times \varphi_{ap} \times dt)$$
(8)

225
$$W_{in} = Q \times \varphi_{ap}$$
 (9)

$$Q = I \times t = \int i \times dt \qquad (10)$$

where ϕ_{ap} is the applied voltage; Q is the electric quantity; $W_{out} = m_i \times \Delta H$,

228 m_j is the mass of fuels, and ΔH is enthalpy.

229

230 **3 Results**

231 3.1 Ammonium Deionization

232 Optimizations of applied voltage, internal electrode distance and NH₄⁺ concentration

- in the EDI were investigated through adjustments of applied voltage (0.5–8.0 V), IED
- 234 (7.5–80 mm), and influent NH_4^+ concentrations (0.025–0.5 M) (Fig. 2 and Table 1).
- The deionization efficiency of NH_3 increases linearly with an increase in applied
- voltage, and reaches a maximum value of 80% at 8.0 V. The corresponding EBR,
- 237 based on the recoveries of NH_3 and H_2 , are 1.67 and 0.86 at 3.0 V and 8.0 V,
- respectively, when the IED is 15 mm (Fig. 2a), indicating that 3.0 V is the optimal

voltage. This result is lower than the voltage of 17.5 V reported previously [54].

240

241	At this applied voltage, as the IED narrowed from 15 mm to 7.5 mm, the deionization
242	efficiencies of NH_3 and EBR reciprocally increases from 64.8% and 1.67 to 84.8% and
243	1.99, respectively. However, when the IED is expanded to 60 mm the deionization
244	efficiencies of NH $_3$ and EBR decrease to 12% and 1.09, respectively, (Fig. 2b). This
245	variation of NH_4^+ deionization efficiency signifies that the influence of the internal
246	electrode length is much more important than that of the applied voltage, which can
247	be verified by Stock's model [55, 56]. Regarding the effects of ions, the drift velocity
248	has a positive correlation with applied voltage but a negative relationship with the
249	electrode distance. More details are available in the supporting information (S2, Eq.
250	S3, and Figs. S2a and S2b). The deionization rate at the optimal applied voltage and
251	IED increases to 80 mM d ⁻¹ within 0.5 h but drops to 20 mM d ⁻¹ at 2.0 h, indicating
252	that deionization efficiency does not increase with extended operating time (Fig.
253	S2c). This effect is likely to be related to Donnan equilibrium, where ion migration
254	comes to a stop as the concentration gradient narrows [57, 58].

255

256 **3.2 Ammonium Dissociation**

An interesting observation was the formation of N_2 at the cathode instead of the commonly-reported anode. In this regard, we investigated the mass balance of total nitrogen and electrode behaviors (Fig. 3). The nitrogen compounds (NH_4^+ , NH_3 , and N_2) were detected while the other compounds were not detected due to below

261	detection levels of 0.2 ng L ⁻¹ . As shown in Fig 3a, approximately 60%, 30%, and 10%
262	of nitrogen exist in the forms of NH_4^+ , NH_3 , and N_2 for synthetic wastewater. Fig. 3a
263	also shows the nitrogen compounds of raw landfill leachate. 87.5%, 1.7%, and 0.38%
264	of nitrogen exist in the forms of NH_4^+ , NH_3 , and N_2 , respectively. The conversion
265	efficiency of NH_4^+ to NH_3 for synthetic wastewater is higher than that for raw landfill
266	leachate, which is attributed to the complex constitution of the raw landfill leachate.
267	In addition, since ions differ in their properties of size, valence, diffusion coefficient,
268	and conductivity, they exhibit different migration kinetics. For example, the mobility
269	order of H ⁺ , K ⁺ , NH ₄ ⁺ and Na ⁺ is H ⁺ > K ⁺ > Na ⁺ > NH ₄ ⁺ [59].
270	
271	N_2 formation may be related to NH_3 reduction. To prove this hypothesis, we carried
272	out CV tests at a scanning rate of 0.5 to 10 mV s ⁻¹ in the range of 0–1.5 V using
273	Ag/AgCl as the reference electrode (Fig. 3b). Only a reduction peak at around 0.3 V is
274	observed on each CV curve, indicating the possible electrochemical dissociation of
275	NH4 ⁺ . However, to date, this phenomenon has not received much scientific
276	attention. Only a few references describe this phenomenon. As reported by Simons
277	et al., the mechanism of NH_4^+ dissociation is a two-step process (Eq. 12 and Eq. 13),
278	and its main products are H_2 and NH_3 , accompanied by a small amount of N_2 [60].
279	The second step is strictly dependent on the concentration of aqueous NH_3 . It is
280	known that the concentration of $NH_{3(aq)}$ is determined by the kinetics of the
281	following equilibrium reaction (Eq. 14).

 $NH_4^+ \leftrightarrow NH_3 + 0.5H_2 \quad (12)$

$$\mathsf{NH}_3 \leftrightarrow \mathsf{0.5N}_2 + \mathsf{1.5H}_2 \qquad (13)$$

284
$$NH_4^+ + OH^- \leftrightarrow NH_3 \cdot H_2O \leftrightarrow NH_3 + H_2O$$
 (14)

The increasing NH_4^+ concentration and OH^- ion generation promote the shift in

equilibrium favoring NH_3 production. The reduction of NH_3 to N_2 and H_2 might occur,

when $NH_{3(aq)}$ reaches a certain concentration. NH_4^+ dissociation through the EDI

favorably contributes to NH₃ and H₂ yields.

289

290 3.3 SOFC Performances

291 3.3.1 Polarization curves of ammonia-hydrogen as fuel

To maximize the energy output, the performance of SOFCs was studied with pure H₂ at 100.0 mL min⁻¹, operating temperatures of 550–750 °C. The polarization curves show that an open circuit voltage value (OCV) of 1.134 V is obtained at 750 °C (Fig. S3). This operation approaches closest to the Nernst potential of 1.23 V, indicating solid electrolytes and gas-tight sealing [61].

297

At 750 °C with H₂ from 20% to 60% by volume (v/v) of NH₃ in the NH₃–H₂ stream, SOFC achieves an OCV of 1.056–1.085 V, slightly lower than that obtained from pure H₂ (Fig. 4a). This trend caused by lower H₂ partial pressure in NH₃–H₂ is consistent with the results of the theoretical simulation performed by Meng et al. [62]. The peak power density declines from 1194 mW cm⁻² at 20% NH₃ to 1018 mW cm⁻² at 60% NH₃. This phenomenon might be related to insufficient H₂ supply from NH₃ decomposition. Along with the increase in NH₃ concentration, the incomplete decomposition of NH₃ easily occurs, as reported by Denver [63]. In addition, ammonia decomposition is an
endothermic process. High concentration NH₃ absorbs too much thermal energy so
that the local temperature declines, thereby, the electrochemical reaction rate
decreases [64]. The above results can be further explained by the mechanism of NH₃
decomposition (S3 and Eq. S4 to Eq. S6). NO_x were not detected in the off-gas, as
expected from reported findings [65, 66].

311

312 3.3.2 Polarization curves of methane-carbon dioxide and biogas

With 20%, 40%, 60%, and 80% (v/v) CH₄ in CH₄–CO₂, an increasing trend of OCV value 313 (from ~1 V to ~1.17 V) with an increase of CH₄ was obtained. The slight drop of OCV at 314 80% CH₄ may be ascribed to the effect of experimental error. Nevertheless, this 315 increasing trend of OCV value (~1 V to ~1.17 V) approaches the theoretical value, 316 indicating a dense electrolyte and decent sealing of SOFC during the testing. For the 317 318 CH₄–CO₂ mixture in the stability test, apparent carbon deposition was not observed. This result may be related to CH₄ reformation that has been reported elsewhere [67-319 69]. The mechanism of methane reformation is discussed in the supporting material 320 321 (S3 and Eq. S7 to Eq. S9). Using biogas (about 70% CH₄) produced from our laboratoryscale AD reactor as the fuel, about 900 mW cm⁻² peak power density is obtained (Fig. 322 4c), which is close to the results of the 60% CH₄ and 40% CO₂ mixture. SOFC has been 323 estimated to obtain over 50% energy conversion efficiency, and even close to 80% for 324 CHP applications [70, 71]. From our experimental results of NH₃-H₂, CH₄-CO₂, it is 325 believed that EDI-SOFC is feasible for power generation from biogas and extracted 326

327 NH₃-N from fermentation broth/leachate.

328

329 3.4 Energy Balance Evaluation of the EDI–SOFC System

The energy balance of EDI-SOFC was investigated for various NH_4^+ -N contents (0.025) 330 331 to 0.5 M) under the optimal conditions obtained previously. EBR value varies with the 332 increase in NH₄⁺-N content in synthetic wastewater (Table 1). When the influent NH₄⁺⁻ N content is lower than 0.1 M, the EBR is below 1.0, indicating a need for external 333 334 energy input. As NH₄⁺-N increases to 0.25 M, the EBR approaches 1.20, demonstrating 20% of net energy output. An optimal EBR of 1.20 is achieved at 0.25 M of NH₄⁺-N. 335 Collectively, it is observed that EBR value increases as NH₄⁺-N increases from 0.025 to 336 0.25 M and decreases once NH_4^+ -N reaches 0.50 M. When NH_4^+ -N increases from 337 0.025 M to 0.1 M, due to the changes of conductivity, the current increases. As a result, 338 339 both energy input and H_2 and NH_3 recovery increase. However, the chemical energy 340 potential of recovered NH₃ and H_2 is not significantly enhanced, and thus its energy input is higher than the energy output. As NH₄⁺-N further increases over 0.25 M, the 341 342 chemical energy potential of recovered NH_3 and H_2 compensates for the energy input. However, the energy input increases significantly at 0.5 M NH₄⁺-N, probably due to the 343 increase of current and electric resistances. Taken together, the EDI–SOFC system is 344 most economically feasible for medium to high NH₄⁺-N containing waste streams. 345 346 To examine the commercial application of this system, the energy potential was estimated using a local raw landfill leachate in Hong Kong. Table S1 summarizes the 347

348 characteristics of raw landfill leachate. It contains high NH₄⁺-N concentration (0.21 M).

As shown in Table 1, 98% of NH₄⁺ is removed via the semi-continues EDI stack. The theoretical calculation shows that the EBR approaches 1.76. These results signify that the EDI–SOFC system has an economic strategy for sustainable landfill leachate management.

353

354 Table 2 summarizes the potential benefits of the EDI–SOFC system considering oxygen demand, sludge production, and EBR. Compared to conventional nitrification-355 denitrification [72], nitrification-anammox [73], and CANDO [74]. The EDI has 18.7-356 50% less sludge yield, no oxygen demand, and 55.9–80.5% less energy consumption 357 despite requiring an energy consumption of 2.32 kWh kg⁻¹-NH₃. Moreover, the Hong 358 Kong West New Territories Landfill was studied to evaluate the integration of the EDI-359 360 SOFC system fully. The plant's capacity, biogas yield, and raw leachate properties and its techno-economic evaluation are summarized in Table S1, Fig. 5 and Table S2. The 361 362 AS-CHP and EDI-SOFC system integrated with the existing plant generates 3.46×10^5 and 4.02×10^5 MWh per year. Regarding the energy inputs, AS-CHP requires 3.29×10^5 363 MWh per year for NH₃ treatment, while the EDI-SOFC generates 1.0 × 10⁵ MWh per 364 year for NH₃ recovery. Consequently, the EBR can be increased from 1.11 and 1.75, if 365 EDI-SOFC replaces AS-CHP. This result indicates that the EDI-SOFC system can yield 366 about 60% more electricity than the existing system. Additionally, there is 4.04×10^5 367 368 MWh energy that goes uncaptured per year. With the incorporation of the EDI-SOFC system, it is believed that more energy can be harvested from landfills. 369

370

371 3.5 Other Inorganic Ion Removal

372 Aside from NH₄⁺ ion, landfill leachate also contains a significant portion of other inorganic ions. Some of them (K^+ , Ca^{2+} , Na^+ , NO_3^- , PO_4^{3-} , etc.) can be used as fertilizers. 373 Others (Cl⁻, Zn²⁺, Cu²⁺, Pb⁺, Cr³⁺, etc.) must be removed prior to leachate discharge. Our 374 results show that the conductivity and salinity of the landfill leachate decrease from 375 88.2 mS cm⁻¹ and 7.85% to 2.26 mS cm⁻¹ and 0.1%, respectively. EDI has over 80% 376 removal efficacy of cations and high kinetic deionization in K⁺, NO₃⁻, and PO₄³⁻ (Table 377 378 3, Fig. 6, and Fig. S4). Additionally, most of the detected metal ions have larger mobility over NH₄⁺ (Fig. 6) due to their smaller ion radii and larger valences [75], suggesting that 379 further separation needs to be considered. 380

381

382 4 Discussion

383 4.1 Increasing Selective Transfer of Ammonium

384 Under direct current conditions, the flux of ions in an EDI stack is determined by diffusion and electromigration as described by the Nernst-Planck equation [76]. The 385 concentration-driven process is dependent on the diffusion coefficients of the ions in 386 the solution and the membrane. And electromigration is related to the valence, 387 concentration, and diffusion coefficient, as well as the strength of the electrical field 388 [22, 77]. The positive correlation between NH₄⁺ drift velocity and the applied voltage 389 390 is shown in Fig. S2a. Theoretically, the drift velocity of NH₄⁺ can be increased through applying higher voltage. However, this resulted in an opposite effect on the current 391 efficiency of NH4⁺ migration (Table S3). These results indicate that optimal NH4⁺-N 392

deionization can be accomplished at a reasonable range of applied voltage, increasing
NH4⁺-N loading and increasing anode flow [22, 78].

395

396 4.2 Creating a Self-Extracting and Purifying Process for Ammonia

397

398 Electricity generation of SOFC is associated with NH4 deionization efficiency. Although the EDI batch tests obtain a 30% extraction efficiency, around 60% NH₄⁺-N still persist 399 400 in the liquid phase (Fig. 3a). Increasing NH3 extraction efficiency can be completed in EDI where the alkaline condition (pH > 12) can promote NH₃ evolution. When coupled 401 to AD or landfills, biogas can be served as a stripping gas for NH_3 and H_2 collection. 402 Also, biogas usually contains small amounts of noxious H₂S gas. When biogas flows 403 into the cathode, H₂S is absorbed by OH⁻, and thus it is desulfurized to a harmless 404 compound. Finally, biogas, NH_3 and H_2 can be harvested together using only one 405 406 collector. In this manner, biogas, NH_3 and H_2 production from AD/landfills can be collected without the need for AS and at reduced chemical dosage, lowering the 407 operation cost [79]. Even though the experimental tests have not yet been conducted, 408 this concept is an impetus for us to move forward towards capturing more sustainable 409 energy from wastewater streams through AD/landfill coupled EDI–SOFC system. 410

411 **5 Conclusions**

This study successfully demonstrated the upgrades of anaerobic processes for energy potential extraction from both carbonaceous and nitrogenous pollutants in the EDI-SOFC system. EDI removed 95% and 76% nitrogen from diluted (0.025 M) concentrated

415	(0.5 M) synthetic NH4 wastewaters, respectively. SOFCs displayed its adaptability with
416	NH_3 , H_2 , and biogas. The case study of the landfill plant demonstrates that energy
417	benefit is upgraded from 1.11 (existing system) to 1.75 (this study) with this EDI-SOFC
418	system. Additionally, an average of 80% inorganic ions (heavy metals and nutrient
419	elements) was removed from raw landfill leachate by EDI stack.

421 Acknowledgments

- 422 The authors wish to acknowledge financial support from the Blue-Sky Scheme Fund
- 423 of the Research Institute for Sustainable Urban Development, the Hong Kong
- 424 Polytechnic University (1-ZVBF) and the Early Career Scheme (ECS) Fund (539213)
- 425 and Collaborative Research Fund (C7044-14G) of the Research Grants Council (RGC).

Graphic for Manuscript

467		
	Notation	
	EDI	Electrodeionization
	SOFC	Solid oxide fuel cells
	COD	Chemical oxygen demand
	СНР	Combined heat and power
	AS	Air stripping
	IED	Internal electrode distance
	EBR	Energy balance ratio
468		

470 Ta	able 1 Energy	benefits from different	concentrations of amn	nonium wastewater thro	ough the EDI–SOFC system*
--------	---------------	-------------------------	-----------------------	------------------------	---------------------------

Experiment	NH4 ⁺ -N Concentration	Deionization - % ·	Treatment Capacity	Operating Period	Energy Recovery	Energy Input	Net Energy Revenue	Energy Balance
	Μ		m ³ d ⁻¹	hr		kJ m ⁻³ d ⁻¹		Kalio
Batch	0.025	95	0.00024	2	45,853.1	92,584.2	-46731.1	0.50
	0.05	92	0.00024	2	70,493.6	93,649.8	-23156.3	0.75
	0.10	87	0.00024	2	87,117.7	114,604.0	-27486.3	0.76
	0.25	83	0.00024	2	134,437.9	112,441.9	21996.0	1.20
	0.50	76	0.00024	2	185,549.8	163,890.2	21659.6	1.13
Semi-continuous	0.21	98	0.00288	0.16	71,391.2	40,578.7	30,812.5	1.76

471 * The detailed calculation is available in the supporting information.

476	3.47 mole	e of biodegradable	e COD (a	biodegrad	able COD	/N ratio d	of 7.9), typical of U.S. m	nedium strer	ngth wastewater [80, 81	.].
	Sludge	Oxygen Energy Sources				Eporgy Potontial*	Energy	Enorgy Palanco		
Processes	Yield	Requirement	CH ₄	N_2O	NH_3	H_2	Lifergy i otentiai	Input ^{**}		Reference
-	g		mol		kJ		- Katio			
Nitrification-	26.0	52	0.85	_	_	_	753	219.2	3 / 3	[83]
Denitrification	20.0	52	0.05				735	213.2	5.+5	[02]
Nitrification-	18 3	42	1 29	_	_	_	1142	176 9	6.45	[73]
Anammox***	10.5	72	1.25				1172	170.5	0.+3	[/3]
CANDO	15.8	42	1.29	0.58	-	-	1186	176.9	6.70	[83]
EDI–SOFC	13.3	-	1.80	-	0.80	1.86	2388	113.6	21.02	This study

Table 2 Comparisons of ammonium removal/recovery processes integrated with anaerobic treatment per removal of 1 mole of NH₄⁺ with

^{*}Estimated according to ΔH_R^0 of Eq.1 to Eq. 6.

475

478 $*^{*1.17}$ kWh kg⁻¹-O₂ for aeration[84], and 2.32 kWh kg⁻¹-NH₃ for recovery (this study)

479 *** anammox: anaerobic ammonium oxidation

480	Table 3 Ions removal from the raw lar	dfill leachate through the semi-continuous EDI
-00		ann leachate through the serie continuous EDI

Pollutants	Raw Landfill Leachate	EDI Effluent	Removal Efficiency	
	mg L ⁻¹	(%)		
PO4 ³⁻	414	20.6	95.02	
NO₂⁻-N	1.4	0.56	96.14	
NO₃⁻-N	104	8.5	83.65	
SO4 ²⁻	319	112.5	64.73	
NH_4^+	2956.6	61.5	98.97	
Ag	0.24	0.02	92.59	
Al	1.53	0.69	54.52	
As	0.27	0.02	91.81	
Ва	0.08	0.01	90.00	
Ca	25.34	2.71	89.32	
Со	0.10	0.02	84.31	
Cr	0.79	0.02	96.97	
Cu	0.05	0.00	89.71	
Fe	2.13	0.08	96.07	
К	884.38	1.87	99.79	
Mg	60.11	2.33	96.12	
Ni	0.39	0.03	92.83	
Pb	0.14	0.02	85.71	
Sb	0.04	0.00	94.44	
Se	0.04	0.03	20.00	
Sr	0.15	0.03	77.63	
Zn	1.41	0.04	97.23	

reactor

492 **REFERENCES**

- 493 [1] T. Abbasi, S. Tauseef, S. Abbasi. Anaerobic digestion for global warming control and energy
 494 generation: An overview. Renew Sust Energ Rev. 16 (2012) 3228-42.
- 495 [2] D.O. Hall, G.W. Barnard, P. Moss. Biomass for energy in the developing countries: current role,496 potential, problems, prospects. Elsevier2013.
- 497 [3] J. Frijns, J. Hofman, M. Nederlof. The potential of (waste) water as energy carrier. Energy Conversion498 and Management. 65 (2013) 357-63.
- [4] J. Song, W. Yang, Z. Li, Y. Higano, X.e. Wang. Discovering the energy, economic and environmental
 potentials of urban wastes: An input–output model for a metropolis case. Energy Conversion and
 Management. 114 (2016) 168-79.
- 502 [5] P. Jain, J.T. Powell, J.L. Smith, T.G. Townsend, T. Tolaymat. Life-cycle inventory and impact evaluation
 503 of mining municipal solid waste landfills. Environ Sci Technol. 48 (2014) 2920-7.
- [6] M.R. Daelman, E.M. van Voorthuizen, U.G. van Dongen, E.I. Volcke, M.C. van Loosdrecht. Methane
 emission during municipal wastewater treatment. Water Res 46 (2012) 3657-70.
- 506 [7] O.P. Karthikeyan, C. Visvanathan. Bio-energy recovery from high-solid organic substrates by dry 507 anaerobic bio-conversion processes: A review. Rev Environ Sci Biotechnol. 12 (2013) 257-84.
- 508 [8] M. Raboni, V. Torretta, P. Viotti, G. Urbini. Experimental plant for the physical-chemical treatment of
 509 groundwater polluted by municipal solid waste (MSW) leachate, with ammonia recovery. Rev Ambient
 510 Água. 8 (2013) 22-32.
- 511 [9] M. Lantz. The economic performance of combined heat and power from biogas produced from 512 manure in Sweden: A comparison of different CHP technologies. Appl Energ. 98 (2012) 502-11.
- 513 [10] S. Wongchanapai, H. Iwai, M. Saito, H. Yoshida. Performance evaluation of a direct-biogas solid
 514 oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system. J Power
 515 Sources. 223 (2013) 9-17.
- 516 [11] E. León, M. Martín. Optimal production of power in a combined cycle from manure based biogas.
 517 Energy Conversion and Management. 114 (2016) 89-99.
- 518 [12] A. Bogusch, R.T. Grubbs. Austin Water Utility's Hornsby Bend Biogas-to-Energy CHP Project– 519 Commissioning and startup. J Water Pollut Control Fed 2014 (2014) 1-14.
- [13] N. de Arespacochaga, C. Valderrama, C. Peregrina, A. Hornero, L. Bouchy, J. Cortina. On-site
 cogeneration with sewage biogas via high-temperature fuel cells: Benchmarking against other options
 based on industrial-scale data. Fuel Process Technol 138 (2015) 654-62.
- 523 [14] D. Wu, R. Wang. Combined cooling, heating and power: a review. Prog Energy Combust Sci. 32524 (2006) 459-95.
- 525 [15] G. Venkatesh, R.A. Elmi. Economic-environmental analysis of handling biogas from sewage sludge
- digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP
 in Oslo (Norway). Energy. 58 (2013) 220-35.
- [16] A.L. Smith, L.B. Stadler, L. Cao, N.G. Love, L. Raskin, S.J. Skerlos. Navigating wastewater energy
 recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional
 treatment systems with anaerobic digestion. Environ Sci Technol. 48 (2014) 5972-81.
- [17] P. McKendry. Energy production from biomass (Part 2): Conversion technologies. Bioresour Technol
 83 (2002) 47-54.
- 533 [18] L. Lin, S. Yuan, J. Chen, Z. Xu, X. Lu. Removal of ammonia nitrogen in wastewater by microwave
- 534 radiation. J Hazard Mater 161 (2009) 1063-8.

- [19] K. Cheung, L. Chu, M. Wong. Ammonia stripping as a pretreatment for landfill leachate. Water Air
 Soil Poll. 94 (1997) 209-21.
- 537 [20] A. Serna-Maza, S. Heaven, C.J. Banks. Biogas stripping of ammonia from fresh digestate from a food
 538 waste digester. Bioresour Technol 190 (2015) 66-75.
- 539 [21] S. Hussain, H.A. Aziz, M.H. Isa, M.N. Adlan, F.A.H. Asaari. Physico-chemical method for ammonia

removal from synthetic wastewater using limestone and GAC in batch and column studies. BioresourTechnol 98 (2007) 874-80.

542 [22] J. Desloover, A. Abate Woldeyohannis, W. Verstraete, N. Boon, K. Rabaey. Electrochemical resource

- recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environ Sci Technol.46 (2012) 12209-16.
- [23] Y.D. Scherson, G.F. Wells, S.-G. Woo, J. Lee, J. Park, B.J. Cantwell, et al. Nitrogen removal with energy
 recovery through N 2 O decomposition. Energ Environ Sci. 6 (2013) 241-8.
- 547 [24] A. Klerke, Christensen, C. H., Nørskov, J. K., & Vegge, T. Ammonia for hydrogen storage: Challenges
 548 and opportunities. J Mater Chem (2008) 18(20), 2304-10.
- 549 [25] F. Schüth, R. Palkovits, R. Schlögl, D.S. Su. Ammonia as a possible element in an energy 550 infrastructure: catalysts for ammonia decomposition. Energ Environ Sci. 5 (2012) 6278-89.
- [26] L. Green. An ammonia energy vector for the hydrogen economy. Int J Hydrogen Energy. 7 (1982)355-9.
- 553 [27] P.W. Atkins, J. de Paula. Physikalische chemie. John Wiley & Sons2013.
- [28] R. Lan, S. Tao, J.T. Irvine. A direct urea fuel cell: Power from fertiliser and waste. Energ Environ Sci.
 3 (2010) 438-41.
- [29] B. Schartel, U. Braun, U. Schwarz, S. Reinemann. Fire retardancy of polypropylene/flax blends.
 Polymer. 44 (2003) 6241-50.
- [30] J.H. Ahn, S. Kim, H. Park, B. Rahm, K. Pagilla, K. Chandran. N2O emissions from activated sludge
 processes, 2008–2009: Results of a national monitoring survey in the United States. Environ Sci Technol.
 44 (2010) 4505-11.
- 561[31] W. Wang, R. Ran, C. Su, Y. Guo, D. Farrusseng, Z. Shao. Ammonia-mediated suppression of coke562formation in direct-methane solid oxide fuel cells with nickel-based anodes. J Power Sources. 240 (2013)
- 563 232-40.
- 564 [32] F. Siavashi, M. Saidi, M.R. Rahimpour. Purge gas recovery of ammonia synthesis plant by integrated
 565 configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell as a novel
 566 technology. J Power Sources. 267 (2014) 104-16.
- [33] H. Tsukuda, A. Notomi, N. Histatome. Application of plasma spraying to tubular-type solid oxide fuel
 cells production. J Therm Spray Technol. 9 (2000) 364-8.
- 569 [34] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, M. Jarvinen. Small-scale biogas-SOFC plant:

technical analysis and assessment of different fuel reforming options. Energy Fuels. 28 (2014) 4216-32.

- [35] A. Lanzini, P. Leone. Experimental investigation of direct internal reforming of biogas in solid oxide
 fuel cells. Int J Hydrogen Energy. 35 (2010) 2463-76.
- [36] V. Chiodo, A. Galvagno, A. Lanzini, D. Papurello, F. Urbani, M. Santarelli, et al. Biogas reforming
 process investigation for SOFC application. Energy Convers Manage. 98 (2015) 252-8.
- 575 [37] J. Ma, C. Jiang, P.A. Connor, M. Cassidy, J.T. Irvine. Highly efficient, coking-resistant SOFCs for energy
- 576 conversion using biogas fuels. Journal of Materials Chemistry A. 3 (2015) 19068-76.
- 577 [38] A.B. Stambouli, E. Traversa. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and
- 578 efficient source of energy. Renew Sust Energ Rev. 6 (2002) 433-55.

- [39] Y. Lin, R. Ran, Y. Guo, W. Zhou, R. Cai, J. Wang, et al. Proton-conducting fuel cells operating on
 hydrogen, ammonia and hydrazine at intermediate temperatures. Int J Hydrogen Energy. 35 (2010)
 2637-42.
- [40] E. Idelovitch, M. Michail. Nitrogen removal by free ammonia stripping from high pH ponds. J Water
 Pollut Control Fed (1981) 1391-401.
- [41] L. Zhang, Y.-W. Lee, D. Jahng. Ammonia stripping for enhanced biomethanization of piggery
 wastewater. J Hazard Mater 199 (2012) 36-42.
- [42] H.U. Cho, S.K. Park, J.H. Ha, J.M. Park. An innovative sewage sludge reduction by using a combined
 mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge
 recirculation. J Environ Manage 129 (2013) 274-82.
- [43] M. Parmar, L.S. Thakur. Heavy metal Cu, Ni and Zn: Toxicity, health hazards and their removal
 techniques by low cost adsorbents: A short overview. Int J Plant Anim Environ Sci. (2013) 3(), 143-57.
- 591 [44] S. Srivastava, P. Goyal. Novel biomaterials: Decontamination of toxic metals from wastewater.592 Springer Science & Business Media.2010.
- 593 [45] M. Mondor, L. Masse, D. Ippersiel, F. Lamarche, D.I. Masse. Use of electrodialysis and reverse 594 osmosis for the recovery and concentration of ammonia from swine manure. Bioresour Technol 99 595 (2008) 7363-8.
- 596 [46] M. Mehanna, P.D. Kiely, D.F. Call, B.E. Logan. Microbial electrodialysis cell for simultaneous water
 597 desalination and hydrogen gas production. Environ Sci Technol. 44 (2010) 9578-83.
- 598 [47] Y.-M. Kim, P. Kim-Lohsoontorn, S.-W. Baek, J. Bae. Electrochemical performance of unsintered Ba 599 0.5 Sr 0.5 Co 0.8 Fe 0.2 O $3-\delta$, La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O $3-\delta$, and La 0.8 Sr 0.2 MnO $3-\delta$ cathodes 600 for metal-supported solid oxide fuel cells. International Journal of Hydrogen Energy. 36 (2011) 3138-46.
- [48] D. Heidari, S. Javadpour, S.H. Chan. Optimization of BSCF-SDC composite air electrode for
 intermediate temperature solid oxide electrolyzer cell. Energy Conversion and Management. 136 (2017)
 78-84.
- [49] W. Zhou, L. Ge, Z.-G. Chen, F. Liang, H.-Y. Xu, J. Motuzas, et al. Amorphous iron oxide decorated 3D
 heterostructured electrode for highly efficient oxygen reduction. Chemistry of Materials. 23 (2011)
 4193-8.
- 607 [50] F. Dong, Y. Chen, D. Chen, Z. Shao. Surprisingly high activity for oxygen reduction reaction of
 608 selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: A case study of
 609 cobalt-free BaFeO3-δ. ACS Appl Mater Interfaces. 6 (2014) 11180-9.
- 610 [51] E.W. Rice, R.B. Baird, A.D. Eaton, L. Clesceri. Standard methods for the examination of water and
 611 wastewater. American Public Health Association, Washington, DC. (2012).
- 612 [52] S. Ramió-Pujol, R. Ganigué, L. Bañeras, J. Colprim. Incubation at 25 Celsius prevents acid crash and
- enhances alcohol production in Clostridium carboxidivorans P7. Bioresource Technol. 192 (2015) 296-303.
- 615 [53] B. Dai, M. Cao, G. Fang, B. Liu, X. Dong, M. Pan, et al. Schiff base-chitosan grafted multiwalled 616 carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-
- 617 MS. J Hazard Mat. 219 (2012) 103-10.
- 618 [54] D. Ippersiel, M. Mondor, F. Lamarche, F. Tremblay, J. Dubreuil, L. Masse. Nitrogen potential recovery
- and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J
- 620 Environ Manage. 95 (2012) S165-S9.
- 621 [55] D.J. Griffiths, R. College. Introduction to electrodynamics. Prentice Hall Upper Saddle River, NJ1999.
- 622 [56] X. Chen, Y. Tang, S. Wang, Y. Song, F. Tang, X. Wu. Field-amplified sample injection in capillary

- 623 electrophoresis with amperometric detection for the ultratrace analysis of diastereomeric ephedrine
- 624 alkaloids. Electrophoresis. 36 (2015) 1953-61.
- [57] P. Biesheuvel, R. Zhao, S. Porada, A. Van der Wal. Theory of membrane capacitive deionization
 including the effect of the electrode pore space. J Colloid Interface Sci 360 (2011) 239-48.
- 627 [58] P. Biesheuvel, A. Van der Wal. Membrane capacitive deionization. J Memb Sci. 346 (2010) 256-62.
- 628 [59] A. Salis, B.W. Ninham. Models and mechanisms of Hofmeister effects in electrolyte solutions, and
- 629 colloid and protein systems revisited. Chem Soc Rev. 43 (2014) 7358-77.
- [60] E. Simons, E. Cairns, D. Surd. The performance of direct ammonia fuel cells. J Electrochem Soc 116(1969) 556-61.
- [61] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng. A high-performance ammonia-fueled SOFC based on
 a YSZ thin-film electrolyte. J Power Sources. 164 (2007) 86-9.
- [62] G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu. Comparative study on the performance of a SDC-based SOFC
 fueled by ammonia and hydrogen. J Power Sources. 173 (2007) 189-93.
- 636 [63] D. Cheddie. Ammonia as a hydrogen source for fuel cells: A review. system. 250 (2012) 400.
- 637 [64] S. Hajimolana, M. Hussain, W. Wan Daud. Comparativestudy on the performance of a tubular solid
- oxide fuel cell fuelled by ammonia and hydrogen. Chemeca 2011: Engineering a Better World: Sydney
 Hilton Hotel, NSW, Australia, 18-21 September 2011. (2011) 2021.
- 640 [65] G.N. Krishnan, P. Jayaweera, J. Perez, M. Hornbostel, J.R. Albritton, R.P. Gupta. Effect of coal 641 contaminants on solid oxide fuel system performance and service life. Sri International2007.
- 642 [66] N.S. Spinner, J.A. Vega, W.E. Mustain. Recent progress in the electrochemical conversion and 643 utilization of CO2. Catal Sci Technol. 2 (2012) 19-28.
- [67] I. Dincer, C.O. Colpan, O. Kizilkan, M.A. Ezan. Progress in clean energy. Springer2015.
- [68] B. Suddhasatwa. Recent trends in fuel cell science and technology. New York, USA, Springerpress2007.
- [69] M. Kuhn, T.W. Napporn. Single-chamber solid oxide fuel cell technology—From its origins to today's
 state of the art. Energies. 3 (2010) 57-134.
- [70] D. Singh, E. Hernández-Pacheco, P.N. Hutton, N. Patel, M.D. Mann. Carbon deposition in an SOFC
 fueled by tar-laden biomass gas: A thermodynamic analysis. J Power Sources. 142 (2005) 194-9.
- [71] Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen. Analysis and optimization of a solid oxide fuel cell and
 intercooled gas turbine (SOFC–ICGT) hybrid cycle. J Power Sources. 132 (2004) 77-85.
- [72] B. Wett. Development and implementation of a robust deammonification process. Water Sci
 Technol 56 (2007) 81-8.
- [73] v. Dongen, L.G.J.M., M. Jetten, M.v. Loosdrecht, M. C.M. The Combined Sharon/Anammox ProcessA Sustainable Method for N-removal from Sludge Water2007.
- [74] S.G. Sommer, M.L. Christensen, T. Schmidt, L.S. Jensen. Animal manure recycling: treatment andmanagement. John Wiley & Sons2013.
- [75] K. Foo, B. Hameed. An overview of landfill leachate treatment via activated carbon adsorption
 process. J Hazard Mat. 171 (2009) 54-60.
- 661 [76] T. Sokalski, P. Lingenfelter, A. Lewenstam. Numerical solution of the coupled Nernst-Planck and
- Poisson equations for liquid junction and ion selective membrane potentials. J Phys Chem B. 107 (2003)2443-52.
- 664 [77] F. Harnisch, R. Warmbier, R. Schneider, U. Schröder. Modeling the ion transfer and polarization of
- ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry. 75 (2009) 136-41.
- 666 [78] M.R. Anouti, J. Jacquemin, P. Porion. Transport properties investigation of aqueous protic ionic

- 667 liquid solutions through conductivity, viscosity, and NMR self-diffusion measurements. J Phys Chem B.
- 668 116 (2012) 4228-38.
- [79] M.Á. de la Rubia, M. Walker, S. Heaven, C.J. Banks, R. Borja. Preliminary trials of in situ ammonia
- 670 stripping from source segregated domestic food waste digestate using biogas: Effect of temperature and
- 671 flow rate. Bioresource Technol. 101 (2010) 9486-92.
- [80] M. Safoniuk. Wastewater engineering: Treatment and reuse. Chem Eng J 111 (2004) 10-2.
- [81] M. Henze. Biological wastewater treatment: Principles, modelling and design. IWA publishing2008.
- 674 [82] Q. Yang, Y. Peng, X. Liu, W. Zeng, T. Mino, H. Satoh. Nitrogen removal via nitrite from municipal
- wastewater at low temperatures using real-time control to optimize nitrifying communities. Environ Sci
 Technol. 41 (2007) 8159-64.
- 677 [83] J. Kim, K. Kim, H. Ye, E. Lee, C. Shin, P.L. McCarty, et al. Anaerobic fluidized bed membrane bioreactor
- 678 for wastewater treatment. Environ Sci Technol. 45 (2010) 576-81.
- [84] A. Fenu, J. Roels, T. Wambecq, K. De Gussem, C. Thoeye, G. De Gueldre, et al. Energy audit of a full
- 680 scale MBR system. Desalination. 262 (2010) 121-8.