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ABSTRACT: 13 

Buildings consume substantial amounts of energy and require sophisticated control strategies to 14 
fulfill occupants’ comfort requirements. In large spaces, various occupancy patterns result in 15 
uneven load distributions, requiring high-resolution occupancy information for sufficient system 16 
control. In recent years, the development of indoor positioning systems (IPS) enabled the 17 
possibility of more scientific and precise occupancy detection systems, leading to better operation 18 
of buildings’ HVAC systems. This paper proposes a demand-driven control system for air 19 
conditioner control in large spaces based on IPS. The proposed system focuses on optimizing the 20 
ventilation rate based on number of occupants and their spatial distribution in an experimental 21 
space. A dual-network (Wi-Fi network and BLE network) indoor positioning system is installed to 22 
collect the occupancy data and guide the operation of Variable-Air-Volume (VAV) boxes. The 23 
energy-saving potential of the proposed system is examined with a computational fluid dynamics 24 
(CFD) model in terms of temperature distribution and energy consumption. This study also 25 
explores the interrelationship between cooling load variation and occupancy pattern under 26 
different control mechanisms. The final results show the proposed system has significant energy-27 
saving potential by avoiding over-cooling in unevenly distributed occupancy conditions.  28 
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Nomenclature 
𝑅𝑆𝑆𝐼 The received signal strength indicator 
𝛼 A constant value when determining 𝑅𝑆𝑆𝐼 
𝑑 The distance between the transmitter and the receiver 
𝑅 The Gaussian random error with zero mean 

𝑅𝑆𝑆𝑅!" The received signal strength of reference points 
𝑠 The index of the signal source 
𝑖 The index of the reference point 
𝑝 The order of distance 
𝜃 The shape factor of the distribution 
𝑟 The rank of the reference point 
𝑃" The probability of the occupant being located close to reference point 𝑖 
𝑡, 𝜏 The index of time 
𝑤(𝑡) The time development of the probability density function after several time steps 
𝑥# , 𝑥$ The vertical zone index at time 𝑡 , 𝜏 
𝑦# , 𝑦$ The horizontal zone index at time 𝑡 , 𝜏 
𝑥" , 𝑦" The vertical and horizontal zone index of reference point 𝑖 
𝑥$," , 𝑦$," The vertical and horizontal zone index of reference point 𝑖 at time 𝜏  
𝑊$(𝑥$, 𝑦$) The transition function of random process 

𝜂 The constant value of probability that occupant remains at the same zone 
𝑇& The temperature of supplied air from VAV box 
𝑇'() The ambient air temperature 
𝑇*+ The indoor temperature in a zone 
𝑇, The air temperature of ventilation 
𝑚* The mass flow rate of infiltration air in a zone 
𝑚, The mass flow rate of ventilation air in a zone  
𝑀- The mass flow rate of air provided by VAV box k 
𝑄 The total heat flux in a room 
𝑧 The index of zone 
𝑄. The total heat flux in a zone 𝑧 
𝑄* The heat gain to zone due to infiltration 
𝑄, The heat gain to zone due to ventilation 
𝑄/ The internal heat gain to zone by occupant, equipment, etc. 
𝑄012 The heat gain to zone due to air flow from adjacent zone, etc. 
𝑄& The heat gain to zone from all surfaces 
𝑁' The number of occupants in the zone 
𝑁3 The number of computers in the zone 
𝑁4 The number of lamps in the zone 
𝑊' The total fixed heat power of one occupant per hour  
𝑊3 The total fixed heat power of one computer per hour 
𝑊4 The total fixed heat power of one lamp per hour 
𝑊. The total fixed heat power in a zone 𝑧 
𝑛5 The ballast consumption coefficient 
𝑛6 The illumination shade insulation coefficient 
𝐶0"7 The specific heat capacity of the air 

 35 
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1. INTRODUCTION 36 

In recent years, energy conservation has become a major objective in every country’s sustainability 37 

efforts. Buildings have been reported as the largest energy consumers in cities [1], such that the 38 

building sector accounts for about 40% of energy use in Europe [2], 28% in China [3], and about 39 

39% in the UK [4].  Among commercial buildings, HVAC systems consume the largest portion of 40 

energy from the grid and account for 48%, 55%, and 52% of energy usage in the US, the UK, and 41 

Spain, respectively [4]. The US Department of Energy (DOE) also highlights HVAC systems as 42 

the major target of building energy efficiency measurements [5]. Therefore, the energy 43 

performance of HVAC systems is the key to improving efficiency in buildings [6]. In commercial 44 

buildings, it is common to find large spaces partially occupied or unoccupied with the HVAC 45 

system running at full capacity for significant periods during the course of a typical business day 46 

[7]. It is frequently observed that some parts of a building’s space are densely occupied, while 47 

other parts are empty. Because of the uneven distribution of occupants, it is common to find that 48 

some zones are over-cooled, while other zones are insufficiently cooled, causing occupants thermal 49 

discomfort. Under these conditions, energy can be significantly wasted, especially within 50 

unoccupied zones. Therefore, it is necessary to implement a more efficient and smarter operating 51 

mode for HVAC systems [8]. Recent studies suggest a lack of accurate occupancy information is 52 

the major source of uncertainty hindering effective HVAC control [9]. Many existing positioning 53 

technologies, such as Radio Frequency Identification (RFID) [10], Ultra-wideband (UWB) [11]. 54 

and Inertia Measurement Units (IMUs) [12,13], count and track occupants inside buildings for 55 

higher positioning accuracy, but these technologies require large initial capital investments, new 56 

infrastructures, and suitable control mechanisms [14]. Normally, the detected occupants’ location 57 

cannot be directly coordinated in HVAC systems due to thermal zone-based control designs [15]. 58 

Therefore, it is necessary to investigate a proper control mechanism for a suitable occupancy 59 

detection system that can identify uneven occupancy in large spaces. Such a control mechanism 60 

would result in sufficient thermal comfort, eliminate energy waste, and promote HVAC operational 61 

efficiency. To bridge such a research gap, this paper proposes a demand-driven control method 62 

based on the spatial distribution of occupants. The spatial distribution of occupants is captured 63 

with a novel IPS that reports the occupied meshes in a continuous large space through coupled Wi-64 

Fi and Bluetooth Low Energy (BLE) networks. With a demand-based control mechanism, the 65 

Variable Air Volume (VAV) HVAC system can adjust its energy consumption based on real demand 66 
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and avoid unnecessary energy waste. 67 

 68 

2. BACKGROUND 69 

2.1 Variable-Air-Volume HVAC System and Demand-Driven Control 70 

Different from conventional Constant Air Volume (CAV) systems, which supply a fixed airflow 71 

rate for given temperatures, a VAV system has multiple VAV boxes that can supply varied airflow 72 

rates at a constant temperature. One major advantage of the VAV system is its precise temperature 73 

control to meet load demand and avoid waste with more flexible air supply amounts. Because of 74 

this, most office buildings are equipped with VAV systems. A VAV terminal unit, also called a VAV 75 

box, is the zone-level flow-control device equipped with a calibrated air damper and an automatic 76 

actuator. The VAV terminal unit normally connects to a local or a centrally controlled system. 77 

Traditionally, the air temperature in a return air duct works as a control signal to adjust air flow 78 

into the room by controlling VAV boxes based on the differential between the measured 79 

temperature at the return duct and the room temperature set point. For large spaces, such as lecture 80 

halls, movie theaters or conference rooms, they normally install multiple, centrally-controlled VAV 81 

terminal units. It is very common to find these large-scale spaces partially occupied or even 82 

unoccupied with the HVAC system at full capacity during a typical business day. Therefore, the 83 

reasonable operation and coordination between VAV terminal units is extremely important for large 84 

spaces due to their high ceilings, spacious floor areas, and large number of occupants.  85 

In order to enhance and optimize HVAC performance and control, many publications propose and 86 

discuss several control strategies without considering occupancy distribution information 87 

[16][8][17][10], which may or may not avoid a redundant cooling/heating supply or ignore places 88 

in demand by bypassing actual occupancy patterns. Demand-driven control is a demand-side 89 

management tool to enable the proper operation of HVAC systems [18]. Some simulation-based 90 

research studies show potential energy savings from demand-driven HVAC operations vary from 91 

10% to 60% [19]. This control mechanism aims to use the actual energy load information to 92 

improve control accuracy and eliminate unnecessary waste. For example, the demand-driven 93 

control system determines the volume of conditioned air in a thermal zone based on occupancy 94 

information (such as the number of occupants) and environmental information (such as 95 

temperature and humidity), rather than fixed operating schedules. Therefore, applying demand-96 
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driven control systems to multi-zone VAV controls in large-scale rooms shows great potential for 97 

optimizing HVAC operation. Lin and Claridge proposed a temperature-based Days Exceeding 98 

Threshold-Toa (DET-Toa) method to detect persistent small increases or decreases in the normal 99 

building energy consumption [20]. Zeng et al. developed a predictive model of HVAC energy 100 

consumption and a data-driven approach to optimize the temperature and air static pressure setting 101 

point [21]. In a more recent study, Zhou et al. proposed a supervisory demand-based temperature 102 

control system. In this research, the primary VAV box and secondary VAV box differentiate the 103 

occupied and unoccupied zones based on the temperature measured at the breathing level [17].  104 

The conventional demand-control systems include occupancy-driven demand control [22], 105 

temperature-based demand control [17][20], and CO2-based demand control (mostly in DCV 106 

systems) [23]. Each control mechanism is subject to limitations. A temperature-based demand 107 

control mechanism adjusts the supplied airflow rate based on nominal temperature or the 108 

temperature difference between the supply air and setting values. However, occupancy derived 109 

from temperature fluctuations may not be accurate because temperature fluctuations are not 110 

necessarily caused by occupants; therefore, such a system yields huge potential for errors in 111 

unoccupied zones. CO2-based demand control compares CO2 concentrations between supply and 112 

return ducts to determine the number of occupants in a space. Many demand-driven strategies are 113 

based on coarse occupancy detection by balancing the CO2 concentrations of supply air, return air, 114 

and outdoor air, although it is costly and difficult to accurately estimate the actual occupancy 115 

pattern [23][24]. However, similar to temperature-based methodology, CO2 concentration is an 116 

indirect reflection of occupancy. Due to the time delay of CO2 reaching its equilibrium and a 117 

nonlinear relationship with the number of occupants, CO2 is a dubious occupancy indicator. 118 

Therefore, this research develops a fine-grained occupancy detection approach based on an Indoor 119 

Positioning System (IPS) to collect occupants’ spatial distribution to enable the proposed IPS-120 

based demand-driven control (IDC) approach and study its energy-saving potential. The IDC 121 

HVAC control mechanism is built on the new occupancy measurement framework that represents 122 

large spaces as small, occupied patches based on data collected from the IPS. The operation of 123 

VAV boxes is determined by the distribution of occupied patches. Temperature sensors are also 124 

installed at the breathing level, instead of the return ducts, to measure the temperature around 125 

occupants. Only occupied zones will receive cooling air until they reach a sufficient thermal 126 

comfort level. Therefore, accurate occupancy detection is the premise of proper demand-driven 127 
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system control. The ASHRAE Guide 14 suggests ideal occupancy identification for a building 128 

model should have an hourly Mean Bias Error fall within ±10% and an hourly Cumulative 129 

Variation of Root Mean Square Error fall below 30% [25,26]. In a CO2-based occupancy 130 

prediction model, a 3 or 4-tolerance (10%-13% for about 30 occupants) away from actual 131 

occupancy could be acceptable if over 80% of  accuracy for occupancy detection guaranteed [27].  132 

 133 

2.2 Building Occupancy and Indoor Positioning Systems 134 

Occupancy information can serve as inputs for energy simulations and assist facility managers in 135 

optimizing HVAC system operation to provide sufficient thermal comfort. Therefore, accurate 136 

building occupancy detection is the premise of efficient HVAC system control and design [28]. 137 

Building occupancy detection requires retrieving information at various resolution levels. 138 

Christensen et al. defined "occupancy resolution" as a three-dimensional system (i.e., temporal 139 

resolution, spatial resolution, and occupant resolution) [29]. Other researchers have summarized 140 

occupancy resolution using different scales, such as present, count, location, track, identity, and 141 

behavior [30]. Higher data resolution and accuracy enables more sophisticated building energy 142 

management strategies.  143 

Many researchers have proposed studies on schemes to determine occupancy profiles, and most 144 

studies still obtain building occupancy schedules based on assumptions or experience with 145 

occupancy models. The American Society of Heating, Refrigerating, and Air-Conditioning 146 

Engineers (ASHRAE) standard 90.1-2007 [31] recommends approximate occupancy diversity 147 

factors for different building types or zones by hourly occupant distribution within different day 148 

types in order to standardize building simulation and analysis when actual data is unknown. It has 149 

been observed that the difference between actual occupancy and standardized occupancy schedules 150 

recommended in the ASHRAE can be as high as 40% when comparing occupancy schedules in 151 

terms of days, weeks, months, and holidays [32]. This discrepancy might cause mismatching 152 

between actual energy costs and simulated energy costs in buildings. Therefore, researchers have 153 

proposed many approaches to collect reliable occupancy information. These approaches fall into 154 

two categories: (1) simulation-based occupancy models and (2) direct monitoring through sensors. 155 

Simulation-based occupancy models, such as the agent-based model and Markov models, estimate 156 

or predict occupancy based on historical data and analytical analysis; however, their accuracy 157 
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relies significantly on abundant historical data collections and data mining processes and normally 158 

provides low-resolution information, such as the number of occupants and a rough estimate of the 159 

duration of the occupants’ stay in certain spaces [33][34][35]. Although these model-based and 160 

data-mining process methodologies provide insight to facilitate analysis and prediction of 161 

occupancy profiles, their outcomes are seldom used for building facility operations. On the other 162 

hand, many researchers utilized ambient sensor systems to directly monitor occupancy, such as 163 

CO2-based detection systems [36][37], infrared sensors [38], and RFID [10]. Among those 164 

systems, occupancy sensors are widely used for detection in lighting and HVAC systems because 165 

they are suitable in cases when only the on/off (occupied or unoccupied) status needs to be detected, 166 

potentially leading to inaccessibility of the number of occupants with a timestamp. Another 167 

popular methodology is CO2-based detection systems, which are widely applied in building 168 

ventilation control systems and show good results in occupant number prediction for whole 169 

buildings. CO2-based detection determines the ventilation demand using a balance equation 170 

between CO2 concentration of supply air and return air duct [19,23,39]. A study conducted by 171 

Jiang et al. [27] suggests the estimation accuracy of CO2 concentration is often less than 50%. 172 

This approach is bound with limitations like time delays, high costs, and inaccuracy due to indirect 173 

detection [40]. Also, several researchers use lighting sensors or light switch on/off actions to report 174 

the duration of time an occupant spends in one room, or they use building envelope actions 175 

(window shades) and building electricity use variance to reversely ratiocinate occupancy [41], 176 

possibly causing very low-resolution results [42]. Several researchers combined CO2 sensors with 177 

temperature, humidity, lighting, and sound sensors and reported accuracy ranging from 75 to 84.5% 178 

[43,44]. Infrared sensors and motion sensors are often utilized to detect the events of “occupied to 179 

vacant” or “ vacant to occupied” in single-person office rooms without detecting the number of 180 

occupants at an accuracy of 46% [38,45]. RFID technologies were reported with a higher detection 181 

accuracy of  88% for stationary occupants and 62% for mobile occupants [10].  182 

A fully functional IPS can retrieve real-time locations and identify objects in indoor areas. Many 183 

researchers have introduced similar systems for the study of built environments [10][46][47] and 184 

focus on the building occupancy presence, number of occupants, and building energy variances. 185 

However, it is extremely challenging to capture occupancy distribution in real time and identify 186 

unique identities of occupants. In previous research, Wi-Fi and BLE positioning networks show 187 

great potential for commercial application [18][48][49] at low cost. Given their popularity, Wi-Fi 188 
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infrastructures installed in most buildings become the most effective existing signal network with 189 

the promise of minimum cost [14]. However, Wi-Fi signals have significant issues in terms of 190 

stability when close to obstacles, metals, and building separations. It is impractical to merely rely 191 

on a Wi-Fi network for reliable positioning data. Therefore, we introduced another layer in the 192 

form of a Bluetooth Low Energy (BLE) network to cross reference the signal fingerprints of Wi-193 

Fi networks. BLE technology is a cheap (less than 20 USD per beacon station and a cell phone can 194 

be the tag), portable, and controllable signal network applicable in indoor location acquisition and 195 

information broadcasting with location tags. This research intends to improve the operation of 196 

HVAC systems based on a new IPS-based occupancy acquisition approach. Therefore, we chose 197 

both Wi-Fi and BLE networks to construct the indoor positioning coordination and draw the 198 

occupancy distribution. Since most HVAC systems are controlled using thermal zones and VAV 199 

box affect areas, it is not necessary to have high positioning precision to enable demand-driven 200 

control based on occupants’ spatial distribution. More specifically, we utilized the dual network 201 

IPS to locate occupants in space meshes and use these meshes to quantify the spatial distribution 202 

of occupants. With such information, we can optimize the HVAC operation and minimize energy 203 

waste.  204 

 205 

3. METHODOLOGY 206 

3.1 Positioning System and Space Meshing  207 

In a large space with Wi-Fi and BLE networks installed, each location inside the space has a unique 208 

combination of received signal patterns from the Wi-Fi and BLE networks. Given this property, 209 

the k-nearest neighbors (kNN) algorithm is adopted to estimate the most likely location based on 210 

signal strength. Since the movements of occupants are continuous, the future location of an 211 

occupant is based on his or her current position. Therefore, a random walk algorithm is also 212 

embedded in the proposed positioning system. The system assumes occupants can only move to 213 

an adjacent zone close to the current location. Figure 1 shows the proposed positioning system that 214 

integrates both the kNN and random walk algorithms. 215 

-------------------------------------------------------------------------------------------------------------- 216 

Insert Figure 1 about here 217 

-------------------------------------------------------------------------------------------------------------- 218 
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 219 

 (1) Signal Measurement of kNN algorithm 220 

A signal receiver can sense radio signals in the surrounding environment. Since the source of 221 

signals could vary in frequency or voltage, received signal strength indicators (RSSIs) are typically 222 

used as a quantitative representation of signal strength. 𝑅𝑆𝑆𝐼 is an integer value measurement of a 223 

received radio signal that complies with the IEEE 802.11 standard. Based on this protocol, BLE 224 

and Wi-Fi networks can adopt the distance estimation metric proposed by Texas Instruments of 225 

2.4 GHz radio signal as 226 

 227 

𝑅𝑆𝑆𝐼 = 𝛼 − 10 ∙ 𝑛 ∙ log!"(𝑑) + 𝑅 (1) 

 228 

where power level is measured by 𝑅𝑆𝑆𝐼 in dBm; 𝑑 is the distance between the transmitter and the 229 

receiver; the term 𝑅 denotes a Gaussian random error with a zero mean caused by shadowing; 𝛼 230 

is a constant that depends on several factors, such as averaged fast and slow fading as well as 231 

transmitted power (𝛼  can often be determined beforehand); and 𝑛	 is the signal propagation 232 

constant reported in the device manual.  233 

The k-Nearest Neighbors (kNN) algorithm is a non-parametric pattern recognition approach for 234 

classification purposes. The algorithm compares the “distances” between received signal strengths 235 

and all reference points to determine the closest reference point as the rough location of the receiver. 236 

There are many measurement metrics that can represent the “distance” between the reference 237 

points and receivers. To generalize the estimation, this research adopts the Minkowski metric (or 238 

𝑝 norm) as the measurement tool. The Minkowski distance can be calculated using the following 239 

equation: 240 

 241 

𝐷𝑖𝑠(𝑅𝑆𝑆𝐼, 𝑅𝑆𝑆𝑅#$) = 89(𝑅𝑆𝑆𝐼 − 𝑅𝑆𝑆𝑅#$)%
&

#'!

8

= ‖𝑅𝑆𝑆𝐼 − 𝑅𝑆𝑆𝑅#$‖% (2) 

 242 
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where 𝑅𝑆𝑆𝐼 is the received signal strength of the receiver, 𝑅𝑆𝑆𝑅#$ is the received signal strength 243 

of reference points, 𝑠 is the index of the source, 𝑖 is index of reference points, and 𝑝 is the order of 244 

distance.  245 

Once all the distances are calculated, the kNN algorithm ranks the distances in increasing order. 246 

Shorter distances, or a higher rank, mean the receivers are closer to the given reference point. In 247 

our model, 𝑘 = 10, which means the top ten reference points with the shortest distances will be 248 

selected as potential location candidates. Then, the probability of a receiver at the location of 249 

certain reference points is assigned based on the kNN rank, which follows a geometric distribution, 250 

where 𝑟 is the rank of that reference point and 𝜃 is the shape factor of the distribution in our 251 

algorithm 𝜃 = 0.5. 252 

 253 

𝑃$(𝑟) = (1 − 𝜃)( ∙ 𝜃 (3) 

 254 

𝑃$ is the probability of the occupant being located close to reference point 𝑖. Then 𝑃((𝑥, 𝑦), the 255 

probability of an occupant located in a zone, is calculated by averaging all 𝑃$’s in that zone. The 256 

row and column indices of a zone are 𝑥 and 𝑦. For example, the probability of an occupant’s 257 

location being in zone 2, or 𝑃((1,2), is averaged from the 𝑃$’s of reference points R2, R3, R9, R15, 258 

and R16. 259 

 (2) Space Meshing and Random Walk 260 

In commercial buildings, large rooms are normally divided into multiple thermal zones for the ease 261 

of HVAC system operation and interference. Each thermal zone has multiple independent VAV 262 

boxes or other air conditioning devices to enable flexible operations. The separation of thermal 263 

zones and corresponding subsystems allows facility managers to provide different levels of thermal 264 

comfort in regards to space occupancy status. This study takes the conditioned air supply in a large 265 

office room as an example to explore the possibility of implementing a demand-driven control 266 

mechanism based on high-resolution occupant distribution. This type of occupancy information is 267 

collected from the proposed IPS and reflects uneven spatial cooling demands. Therefore, instead 268 

of coordination, the proposed IPSs are specially designed for space patches/meshes. All inner space 269 

is meshed into small space patches for three major benefits: (1) ease in HVAC operation, (2) high 270 
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detection accuracy tolerance, and (3) a simpler positioning algorithm. Once the spaces are meshed, 271 

an occupant’s movement is modeled as a random walk on a 2D lattice.  272 

In any enclosed space, occupants enter from specific entrances and walk toward their targets. 273 

Although their destinations are unclear, their movements are continuous, and the next location of 274 

their movements must be close to their current location. This fact enables us to exclude the 275 

possibility of zones far away from the current zone when predicting in which zone an occupant 276 

will be located at the next time step. Therefore, in addition to the kNN algorithm, the proposed 277 

algorithm also introduces a possibility estimation approach to predict the occupant’s location based 278 

on the random walk theory. For each time step, the occupant will move to another zone or remain 279 

in the same zone. The time development of the probability density function 𝑤(𝑡) after several time 280 

steps from 0 is given by 281 

 282 

𝑤)(𝜏) = 𝑊(𝑥) → 𝑥*, 𝑦) → 𝑦*) ∙ 𝑤)(𝑡) (4) 

where 𝑊*(𝑥*, 𝑦*) is the transition function of the random process. 283 

The equation represents the discretized time-development of one step as  284 

 285 

𝑤)(𝜏) = 𝑊*(𝑥*, 𝑦*) ∙ 𝑤)(𝜏 − 1) (5). 

 286 

This random process has a transition functions as  287 

 288 

𝑊*(𝑥*, 𝑦*) =

⎩
⎨

⎧
1 − 𝜂

∑ (N𝑥*,$ − 𝑥$N + N𝑦*,$ − 𝑦$N)$
,			𝑖𝑓	N𝑥*,$ − 𝑥$N − N𝑦*,$ − 𝑦$N = 1	

																						𝜂,															𝑖𝑓	𝑥$ = 𝑥*,$ ∩ 𝑦$ = 𝑦*,$
0,																			𝑒𝑙𝑠𝑒									

 (6) 

 289 

where 𝑥*  and 𝑦*  are the vertical and horizontal zone indices at time 𝜏, and 𝜂 is a constant that 290 

suggests the probability that the occupant remains at the same zone at next time step 𝜏 + 1. The 291 

final location for the time step 𝜏  is determined by maximizing the product of both the kNN 292 
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probability and the transitional probability. 293 

 294 

argmax
,∈.

𝑃((𝑥) ∙ 𝑊*(𝑥),			∀𝑥 (7) 

 295 

3.2 Field Tests and Tracking Accuracy   296 

To investigate whether the proposed occupancy detection approach could effectively obtain highly 297 

accurate occupancy data, the research team conducted a field experiment in a signal-covered space 298 

inside an institutional building. The selected testbed is an open space without any separations so 299 

the possible interference caused by internal walls can be mitigated. The space is part of a public 300 

lobby in the AC3 building of City University of Hong Kong. There is no wall or separation inside 301 

the space that may cause sudden signal strength depreciation. The testing space was marked and 302 

divided into a 6 by 6 grid with 36 zone patches (1 meter by 1 meter) and 85 location nodes 303 

(presented as Rxx). Figure 2 shows a picture of the experimental space and the network settings.  304 

-------------------------------------------------------------------------------------------------------------- 305 

Insert Figure 2 about here 306 

-------------------------------------------------------------------------------------------------------------- 307 

 308 

In the space, the signals for three access points were detected without knowing their locations. 309 

Four iBeacons were installed at nodes R25, R22, R61, and R64 to generate Bluetooth Low Energy 310 

(BLE) networks. To construct positioning coordinates, the signal strength of all three access points 311 

and the four iBeacons was collected for each node on the grid. These nodes served as reference 312 

points (RF) to locate occupants in the future. There was a column at the location of a reference 313 

point (R53) in the experiment space, so no signal was collected for R53, R47, and R60. The signal 314 

strength of these three reference points was derived by averaging the signal strength of surrounding 315 

reference points. Each reference point was measured three times to minimize random error. Three 316 

research assistants participated in the preliminary experiment, each equipped with a data logger 317 

that recorded the signals from all seven signal emitters. For the accuracy test, all research assistants 318 

walked through the space and covered all zones. Each assistant randomly selected a location inside 319 
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each zone and recorded the signal strength of the APs and iBeacons. 320 

After the preliminary experiment, two groups of data were archived for detection system 321 

construction and validation. The first data group (construction group) included the signal strength 322 

at the extract location of each reference point. This data was used to train the positioning algorithm 323 

and construct a reference grid with coordinates (i.e. the signal “fingerprints”). The second data 324 

group (validation group) included experimental data collected by the research assistants. Instead 325 

of reference nodes, each assistant collected a set of data at a random location inside each zone. The 326 

signal was collected in a manner allowing the determination of the location of the assistant and 327 

validation of the positioning accuracy. Figure 3 shows a comparison between the walking path of 328 

a sample test and its predicted probability spectrum based on Hamming distance. The top two 329 

images of Figure 3 are ground truth of a trail movement; the bottom two images of Figure 3 show 330 

the predicted position with probabilities (lighter color suggests higher probability). Our proposed 331 

algorithm will select the zone with the highest probability as the predicted location.  332 

-------------------------------------------------------------------------------------------------------------- 333 

Insert Figure 3 about here 334 

-------------------------------------------------------------------------------------------------------------- 335 

 336 

To determine the accuracy performance of the proposed IPS system, we summarized its accuracy 337 

in Table 1. The accuracy is calculated by the total number of correct predictions in each timestamp 338 

divided by the total number of timestamps. 339 

-------------------------------------------------------------------------------------------------------------- 340 

Insert Table 1 about here 341 

-------------------------------------------------------------------------------------------------------------- 342 

Table 1 compares the performance of different distance metrics for the kNN algorithm and shows 343 

the chronic accuracy of the model. From the results, the City Block distance and the third order 344 

Minkowski distance show the highest accuracy, and the City Block distance is selected for system 345 

control algorithm development. At the same time, chronic accuracy shows the error development 346 

is constrained to some degree, and the accuracy is converged/stable. These results suggest there is 347 
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no significant error accumulation in the model, and the algorithm is robust and reliable.   348 

 349 

3.3 Control Algorithm 350 

The flow chart in Figure 4 shows the supervised demand-driven control algorithm proposed by 351 

this research. The supervised control algorithm executes through three control phases. 352 

(1) In phase I, the indoor positioning system will identify whether the zones or patches are 353 

occupied. Once the system finds occupied patches, it will estimate the occupancy distribution for 354 

each thermal zone and calculate the necessary air supply amount to be distributed to that zone.  355 

(2) In phase II, the algorithm will determine which VAV boxes should be turned on or off and the 356 

flow rate the VAV boxes need to provide to the zones. To quantify the thermal comfort of each 357 

zone, the temperature difference 𝑒.,$  (tracking error) between the average temperature of 358 

temperature sensors in each zone (𝑇. ) and the room temperature set (𝑇&/0 ) will be used to 359 

determine the airflow rate of each VAV box. If the 𝑒.,$ 	 fails to meet the condition (𝑒.,$ =360 

|𝑇. − 𝑇&/0| ≤ 0.5℃), a temperature-based PID control and feedback mechanism will adjust the 361 

airflow rate to reach the setting point. It should be noted that the supply airflow rate of each 362 

operating VAV box is adjusted independently for each zone during this phase. Also, the supply 363 

airflow rate should be adjusted to create a temperature distribution to match the occupancy 364 

distribution. The flow rate of each VAV box can then be estimated or simulated with fluid dynamic 365 

theories [50]. In this paper, the flow rates were calculated based on CFD simulation; to simplify 366 

the calculation, the flow rate can also be determined by ASHRAE standards. Combined with the 367 

mechanical information of VAV boxes, the cooling load and energy consumption can be estimated 368 

through integrated efficiency over time. When the temperature tracking error in a corresponding 369 

zone is minimized and the corresponding zone is conditioned to the setting point, meaning it meets 370 

the thermal comfort level, the VAV box will work at that specific airflow rate. When the VAV box 371 

of a target zone operates at full capacity for more than a specified time length (e.g., 5 minutes) and 372 

the zone still cannot be cooled to reach the corresponding temperature setting point, the system 373 

will proceed to the next execution phase.  374 

-------------------------------------------------------------------------------------------------------------- 375 

Insert Figure 4 about here 376 
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-------------------------------------------------------------------------------------------------------------- 377 

 378 

(3) In phase III, the adjacent VAV boxes will work together with one of the target zones to 379 

compensate the cooling load when one target zone in phase II cannot reach the expected thermal 380 

comfort within 30 minutes. In the control algorithm, occupancy distribution mapped into occupied 381 

patches can be acquired by IPS and only occupied areas in zones would be conditioned by VAV 382 

boxes. When the target zone’s air supply amount provided by a VAV box is not sufficient, the 383 

adjacent zone will provide additional cooling power at its full capacity. Figure 5 illustrates how 384 

zones are defined. The operation efficiency of a VAV box is determined by the occupancy level of 385 

the zone it covers and its adjacent zones. Once the adjacent zone is defined, the target zone and 386 

the adjacent zone would be combined as an integral zone. Phase II would be repeated so that the 387 

flow rate provided by VAV boxes in two zones is adjusted based on the load in the integral zone 388 

and the temperature captured by the sensors located at the thermal comfort level in the two zones. 389 

Once occupancy information in the former zone has varied and cooling load estimation is lower 390 

than the maximum cooling load, the corresponding zones would be conditioned individually, and 391 

control phase III would transition back to phase II. 392 

-------------------------------------------------------------------------------------------------------------- 393 

Insert Figure 5 about here 394 

-------------------------------------------------------------------------------------------------------------- 395 

 396 

Compared to a conventional control system, the proposed algorithm treats the HVAC system in a 397 

large space as a loosely connected system. Through switching between the zone levels to deduce 398 

a room level control basis, the proposed algorithm provides a customized flow rate based on the 399 

demand of each zone to avoid waste. The energy-saving potential is realized by matching the 400 

demand to capacity and avoiding unnecessary cooling or heating activities in unoccupied zones. 401 

Therefore, this proposed system is highly suitable for indoor spaces with uneven load distribution. 402 

 403 
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3.4 Energy Simulation Model  404 

Since the preliminary experiment only has an IPS installed, to validate the efficiency of the 405 

proposed control algorithm, we developed a building simulation model and conducted a 406 

computational fluid dynamic (CFD) simulation for a sample office space. Simulation is an 407 

economic approach to explore the feasibility of a control algorithm at low cost before the practical 408 

system implementation. The outcome of the simulation could provide guidance for future system 409 

design. More specifically, the outcome of our CFD simulation includes the temperature 410 

distribution and the stable flowrate to maintain that temperature distribution. The flowrate 411 

indicates how much energy the system will consume to supply the cooling air amount and maintain 412 

the power of the VAV boxes. Therefore, the occupants’ thermal comfort is achieved by matching 413 

the temperature distribution and occupancy distribution.   414 

In this study, Fluent Airpak was employed to simulate temperature distribution of the airflow 415 

pattern under different control strategies. Fluent Airpak is one of the most popular commercial 416 

software programs used in the HVAC field to simulate airflow, air quality, and contaminates. It can 417 

construct realistic boundary conditions and predict the air spread and penetration in a confined 418 

room. The physical test bed is an office room 10 meters in length, 10 meters in width, and 3 meters 419 

in height. There are 21 occupants living in the room, and each occupant has one work desk, one 420 

computer, and one monitor. To simplify the model, the mixing ventilation type is chosen. Hence, 421 

the air in this room is a steady and uncompressible Newtonian fluid with the buoyancy effect of 422 

the body face neglected. The default ambient temperature outside the room is set as 35℃, which 423 

is a typical summer temperature for most subtropical cities [17], while the indoor air temperature 424 

is set to 25℃, also a typical indoor temperature setting point in most commercial buildings. The 425 

specifications and physical conditions of the test room are illustrated in Figure 6.  426 

-------------------------------------------------------------------------------------------------------------- 427 

Insert Figure 6 about here 428 

-------------------------------------------------------------------------------------------------------------- 429 

 430 

The space also has wireless temperature sensors installed at the human breathing level, which is a 431 

height of 1.1m and at least 0.5m away from the nearest occupant [17]. The walls of the room are 432 
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adiabatic, and the heat flux of the walls is neglected. The turbulence in the room is modeled with 433 

two standard 𝑘 − 𝜀 equations to represent the airflow of the mixing ventilation. More detailed 434 

room specifications and CFD model settings are summarized in Table 2. The total cooling load is 435 

about 5.3kW when the room temperature is set at 25℃. 436 

-------------------------------------------------------------------------------------------------------------- 437 

Insert Table 2 about here 438 

-------------------------------------------------------------------------------------------------------------- 439 

 440 

The transfer function method (TFM) is used to estimate cooling load and identify uneven cooling 441 

demand. The TFM can relate an output function at one specific time to the value of one or more 442 

input functions at that time or to previous values of output functions [51].  Based on TFM, heat 443 

flux to the zone can be expressed using the formula below: 444 

𝑄$ = Q1 + 𝑄2 + 𝑄3 + 𝑄456 + 𝑄& (8) 

 445 

where 𝑄456, 𝑄& in equation (8) represents the heat gain due to air flow from the adjacent zone or 446 

boundary condition and the heat gain to the zone from all surfaces, respectively. The model 447 

constructed in this study represents an inner space not in direct contact with the building envelope 448 

or surface, and in this case, the heat transfer between two adjacent zones is neglected. 449 

While the heat gains to a zone due to infiltration 𝑄1 and ventilation Q2 are 450 

𝑄1 = 𝑚1 ∙ 𝐶4$( ∙ (𝑇780 − 𝑇19) (9) 

 451 

and 452 

 453 

𝑄2 = 𝑚2 ∙ 𝐶4$( ∙ (𝑇2 − 𝑇19)	 (10) 

 454 

ASHRAE standards require a minimum ventilation rate of fresh air for occupants in rooms or 455 
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whole buildings [52]. That is, heat gains to a zone due to ventilation can be estimated with 456 

occupancy information. The heat production, 𝑄3 ,	usually includes the process of equipment heat 457 

dissipation (such as computers in our model, shown in Figure 6), lamp heat dissipation, and human 458 

body heat dissipation. Therefore, the energy consumption of occupants can be calculated as 459 

𝑄3 = 𝑊: =9𝑊7
99

+ 1000 ∙ 𝑛! ∙ 𝑛;9𝑊<
9:

+9𝑊=
9;

 (11) 

 460 

The values of 𝑊< , 	𝑊=  could be different based on the device type and size. 𝑊7  can also be 461 

different according to occupant type (men, women, or children), activity, and garments worn. To 462 

maintain a consistent room temperature setting (𝑇&/0), VAV boxes in the HVAC system need to 463 

provide conditioned air with supply temperature 	𝑇19  to compensate for the total heat flux 464 

illustrated in all heat gain equations. The total heat flux, then, can be calculated as 465 

𝑄 =9𝑄: = 𝐶4$( ∙ 	9𝑀> ∙ (𝑇19 − 𝑇&)
>

	. (12) 

 466 

𝑀> is the volume of air provided by VAV box 𝑘 at unit time, which is the control object in this 467 

study. The volume of supply air and the ventilation of VAV boxes can be used to calculate the 468 

energy consumption of the ventilation system in the test space.  469 

 470 

3.5 Infrastructure Coupling for the Simulated Space 471 

Current building service systems in most commercial buildings assume the building occupants 472 

have fixed occupancy schedules. The facility managers operate the building facilities based on 473 

fixed occupancy schedules or maximum occupancy. Partially occupied and unoccupied conditions 474 

are not considered during the day’s standard operating periods (e.g., 9am to 6pm) [10]. The chart 475 

in Figure 7 illustrates the integrated detection-control system and the interrelationships between 476 

the indoor positioning system and the HVAC control system. Through a positioning algorithm and 477 

received signal strength of all Wi-Fi access points (APs) and BLE broadcasters (iBeacons), the 478 

indoor positioning system can locate all occupants inside the room. The identity of occupants can 479 

be acquired through each device’s unique MAC address. Location coordination and timestamps 480 
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can calibrate and synchronize the two systems. Then, the number of occupants and their 481 

distribution inside the room is calculated through occupant location coordination. The flowrate of 482 

each VAV box is determined by the occupancy status (fully occupied, partially occupied, or 483 

unoccupied) of patches in each thermal zone. Under the thermal comfort requirement, we could 484 

adjust the status of VAV boxes based on feedback control mechanisms, and the mapping of 485 

occupancy and thermal comfort requirements in this integration can provide further insight into 486 

the relationship between occupancy distribution and air supply amount at one acceptable thermal 487 

comfort requirement. The fluctuations caused by occupant pass-by and short stays will be 488 

eliminated to avoid too-frequent adjustments [10]. 489 

-------------------------------------------------------------------------------------------------------------- 490 

Insert Figure 7 about here 491 

-------------------------------------------------------------------------------------------------------------- 492 

 493 

Figure 7 shows the fundamental infrastructures of the VAV system and the indoor positioning 494 

system. Wireless temperature sensors are also installed at the breathing level to measure 495 

temperature in the space. The APs and iBeacons generate two radio frequency networks covering 496 

the whole experimental space. There are four thermal zones inside the room, and each zone is 497 

independently served by a VAV box. The proposed HVAC control mechanism is also able to 498 

differentiate the occupied, partially occupied, or fully occupied spatial conditions by coupling with 499 

an indoor positioning system. The experiment space is divided into four thermal zones (Zone A, 500 

Zone B, Zone C, and Zone D) based on the locations of four VAV boxes. Each zone has wireless 501 

temperature sensors installed, and each zone is further divided into smaller patches for higher error 502 

tolerance in positioning. The distribution of occupancy in each zone can be reflected in the 503 

occupied patches. For example, in Zone A of Figure 8, there are five work stations, but only three 504 

are occupied. The temperature of each zone is collected from the wireless temperature sensors to 505 

represent the thermal comfort level of occupants. The occupancy pattern and residents’ routes in 506 

the space are randomly simulated based on the signal samples collected from the preliminary field 507 

experiment. All occupants perform as the regular building energy end-users by requiring thermal 508 

comfort and controlling the occupancy-schedule related appliances. With occupancy distribution, 509 

the building energy load at zone level or building level can be formatted in detailed in occupant-510 
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related loads, such as human thermal gains as well as appliances’ energy usages in real-time. 511 

-------------------------------------------------------------------------------------------------------------- 512 

Insert Figure 8 about here 513 

-------------------------------------------------------------------------------------------------------------- 514 

 515 

4. RESULTS AND ANALYSIS 516 

4.1 Types of Occupancy Distribution 517 

To validate the efficacy of the proposed control algorithm, 12 scenarios with four zone-level 518 

occupancy types (fully occupied, half-occupied, partly-occupied, and unoccupied) were tested in 519 

the preliminary experiment. These occupancy types are defined as follows: (1) fully-occupied 520 

zones are zones where residents occupy all patches, (2) half-occupied zones have half or more than 521 

half of patches occupied, (3) partly-occupied zones have fewer than half of all patches occupied, 522 

and (4) unoccupied zones are zones without any occupants. Two types of room-level occupancy 523 

distributions are also defined in the preliminary test: (1) even distribution, in which all four zones 524 

are occupied at some level (or no zones in the room are unoccupied), and (2) uneven distribution, 525 

in which at least one unoccupied zone is observed. Figure 9 illustrates different occupancy 526 

distributions.  527 

-------------------------------------------------------------------------------------------------------------- 528 

Insert Figure 9 about here 529 

-------------------------------------------------------------------------------------------------------------- 530 

 531 

To investigate the performance of the HVAC system control algorithm developed by this research, 532 

CFD Airpak was applied to simulate airflow patterns to assure the required comfort level is 533 

achieved. In the CFD simulation, temperature is selected as the thermal comfort level indicator. In 534 

the preliminary test, we assumed a thermally comfortable space should have a temperature around 535 

25℃. As a demand-driven control system, the proposed algorithm only guarantees the occupied 536 

patches are thermally comfortable. If the temperature of the zone is higher than the threshold, the 537 

VAV boxes will switch on and adjust the temperature. Once the target temperature is reached, the 538 
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VAV boxes will turn off. The supply air amount for each zone varies with different numbers of 539 

occupants in that zone. Table 3 lists the 12 scenarios with different occupancy patterns and supply 540 

air amounts, determining the temperature variation. Each zone is conditioned independently with 541 

its VAV box at full capacity while no cooling air is provided to an unoccupied zone.  542 

-------------------------------------------------------------------------------------------------------------- 543 

Insert Table 3 about here 544 

-------------------------------------------------------------------------------------------------------------- 545 

 546 

4.2 Comparison with Conventional Methods 547 

The most widely selected indicators to estimate the number of occupants are CO2 concentration 548 

and room temperature distribution. In practice, facility management systems use the temperature 549 

at return air vents as the control variable of thermal comfort in most commercial buildings. Yet, in 550 

this paper, we utilize IPS as a new way to gather more precise occupancy information to estimate 551 

actual demands. Therefore, to form a comparison, two conventional control methods, the return 552 

air temperature (RAT) control system and the breathing level temperature (BLT) control system, 553 

have also been examined in the CFD simulation. In the RAT control system, the temperature sensor 554 

is installed inside the return air vent to collect return air temperatures. The VAV boxes operate 555 

based on the temperature difference between the setting point and the return air. However, the 556 

temperature around a return duct cannot efficiently represent the thermal comfort need of 557 

occupants due to thermal stratification and uneven distribution. The BLT control system uses 558 

temperatures collected by sensors at the human breathing level to determine when to turn the VAV 559 

boxes on or off to maintain a thermal comfort temperature. However, temperature fluctuations at 560 

breathing level are not necessarily caused by occupants, so that cannot accurately reflect the 561 

occupancy. 	 In the proposed IDC system, VAV boxes are operated based on the zone-level 562 

occupancy of the space meshes/patches with the help of IPS tags and feedback adjustments based 563 

on temperature sensor nodes at breathing level. To keep the temperature (𝑇:	represents breathing 564 

level temperature) at the proper level, cooling air is supplied to the zone in proximity to occupied 565 

zones, intentionally avoiding VAV-box operation in unoccupied zones. 566 

Figure 10 shows the comparison between temperature distributions around occupancy level under 567 

all three control mechanisms (RAT, BLT, and IDC) in three typical scenarios. In those cases, we 568 
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assumed the occupancy distributions as illustrated in the figure and that equipment is turned on to 569 

distinguish the differences among the three methods. 570 

-------------------------------------------------------------------------------------------------------------- 571 

Insert Figure 10 about here 572 

-------------------------------------------------------------------------------------------------------------- 573 

 574 

Temperature contours under the three control systems depicted in Figure 10 show different 575 

temperature distributions around occupied patches. In the RAT, the VAV boxes condition all zones 576 

with temperature feedback from return ducts without detecting the room occupancy condition. 577 

Therefore, all VAV boxes must be adjusted simultaneously with the same setting. In the BLT, the 578 

heat radiation of the occupants and computers skews the temperature contour. VAV boxes are 579 

adjusted accordingly using the feedback from the breathing-level temperature sensors where 580 

occupants are located. Such improvement avoids unnecessary over-cooling and assures all zones 581 

are sufficiently conditioned. However, unoccupied zones with a higher temperature are also 582 

supplied with cooling air, as in Zone B. Therefore, cooling air supplied by a BLT system in such 583 

areas results in energy waste. In the IDC, only occupied zones are conditioned, so the temperatures 584 

in unoccupied zones would not be considered. The temperatures of unoccupied zones are normally 585 

higher than the typical thermal comfort level. As shown in Figure 10, only occupied zones are 586 

conditioned. Comparing the RAT, BLE, and IDC systems, the IDC system conserves the most 587 

energy by avoiding interference from unoccupied zones. The temperature-based thermal comfort 588 

level is sufficiently satisfied in occupied zones for all three systems, while the IDC system leaves 589 

unoccupied zones at a higher temperature. Therefore, the rationale behind the proposed IDC 590 

system is mainly based on the temperature distribution of the occupied zones and leaves the 591 

unoccupied zones. Therefore, energy can be saved by intentionally avoiding cooling unoccupied 592 

zones and leaving their temperatures high. 593 

-------------------------------------------------------------------------------------------------------------- 594 

Insert Figure 11 about here 595 

-------------------------------------------------------------------------------------------------------------- 596 

 597 
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Figure 11 compares the average temperatures of occupied and unoccupied zones for the above 598 

three scenarios. Using Scenario 4 as an example, the proposed IDC system only needs to maintain 599 

the temperature of occupied Zone C and Zone D at 25.5℃ and intentionally leave Zone A and 600 

Zone B uncooled to be more efficient with the air supply. Since the RAT does not need information 601 

on occupancy distribution and merely adjusts VAV boxes based on the temperature at return air 602 

ducts, the VAV boxes must be uniformly adjusted for the whole room. For the BLT system, where 603 

occupancy detection is also based on temperature, a fluctuation in temperature caused by 604 

equipment can be easily misinterpreted as occupancy. With the help of the CFD simulation, we 605 

can examine the necessary supply air amount for all three systems. Table 4 compares the amount 606 

of conditioned air supplied in the above three different scenarios. Under conventional control 607 

systems, the required supply airflow rate is 1350 m3/h for the RAT system and 1087 m3/h for the 608 

BLT system. Compared to the RAT system, the IDC system will save 30.4% of air supply, 609 

dramatically reducing the energy consumed to power the electrical fans and cooling system. It can 610 

also be observed that more detection of unoccupied zones by the IDC means more energy can be 611 

saved using the proposed IDC systems.  612 

-------------------------------------------------------------------------------------------------------------- 613 

Insert Table 4 about here 614 

-------------------------------------------------------------------------------------------------------------- 615 

 616 

Figure 12 shows the required air supply amount of all 11 scenarios (S12 is the unoccupied scenario). 617 

The IDC system is the most energy-efficient mechanism that needs the least air supply to maintain 618 

the occupants’ thermal comfort. It is also important to note that in the condition of even distribution 619 

of room-level occupancy, the BLT and IDC systems require the same amount of cooling air.   620 

-------------------------------------------------------------------------------------------------------------- 621 

Insert Figure 12 about here 622 

-------------------------------------------------------------------------------------------------------------- 623 

 624 
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4.3 A Case Study on the Daily Energy Saving of the IDC System 625 

This case study adopts a sample occupancy schedule to examine the energy-saving potential of the 626 

proposed control system. An occupancy of 21 total occupants in the preliminary experiment is 627 

scaled to an ASHRAE-recommended occupancy schedule. According to ASHRAE standard 90.1 628 

[31], the hourly schedule has been mapped into the three occupancy scenarios we previously 629 

discussed: (1) from 09:00 to 10:00 and 18:00 to 19:00 in Scenario 6, (2) from 10:00 to 12:00 and 630 

from 14:00 to 18:00 in Scenario 1, and (3) from 12:00 to 14:00 in Scenario 4. We assume the 631 

HVAC system for the whole building is turned off from 20:00 to 08:00. Therefore, in this study, 632 

we divided the occupancy schedule into three scenarios. Based on the results in the previous 633 

section, occupancy distributions of those scenarios were acquired and air supply amounts were 634 

determined at a certain comfort level. To illustrate energy consumption, Figure 13 shows the 635 

proposed occupancy schedules with specifications for the four thermal zones. We also assumed 636 

computers are still running when occupants leave the room during working hours or lunchtime, 637 

and all three control systems update the VAV box settings every hour. 638 

-------------------------------------------------------------------------------------------------------------- 639 

Insert Figure 13 about here 640 

-------------------------------------------------------------------------------------------------------------- 641 

 642 

Figure 14 shows the cooling load estimated for all three systems and IDC’s energy-saving potential 643 

during a typical work day. The cooling load was calculated with the supply air amount in Table 3 644 

and the duration of occupancy. Then, the energy consumption of the room was estimated based on 645 

the calculated cooling load. As shown in Figure 14, a significant load reduction can be realized 646 

when IDC control systems are substituted for the traditional RAT control systems. As observed in 647 

Figure 14, an IDC system has a higher chance of saving more energy when more load variation 648 

exists. For example, when occupants leave the office during lunchtime, some of the VAV boxes 649 

can be turned off. Since we assume all occupants are present during the day and only leave for a 650 

short period at lunch, there is a relatively small energy-saving potential with the IDC system 651 

compared to the BLT system. Similarly, in some seldom-used rooms designed for special purposes 652 

—such as the conference room, kitchen, or restrooms—the IDC system has a higher energy-saving 653 

potential. Compared to the RAT system, the energy-saving potential of the IDC system during the 654 
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entire day can reach around 8.99 kWh, which is 22.77% of the total daily energy consumption. 655 

Compared to the BLT system, the IDC system can achieve a 0.74kWh (2.36%) reduction in energy 656 

use during a two-hour lunchtime. The difference between the IDC and BLT is not large since the 657 

room was almost fully occupied by the residents throughout the whole day. It also can be observed 658 

from Figure 14, the majority of energy saving comes from the discrepancy between the IDC and 659 

BLT during lunch time. Given the IDC and RAT evenly provide conditioned air to all zones due 660 

to the lack of occupancy distribution information, the BLT has the advantage in providing 661 

unbalanced service to different zones. Therefore, the more unevenly distributed occupants are 662 

within the large space, the more energy can be saved with the BLT. 663 

-------------------------------------------------------------------------------------------------------------- 664 

Insert Figure 14 about here 665 

-------------------------------------------------------------------------------------------------------------- 666 

 667 

5. DISCUSSION  668 

5.1 Implication of the Findings 669 

In this study, a cooling load estimation model is employed to assess the primary cooling air amount. 670 

Such a temperature-based estimation system is the most widely used control method in most 671 

buildings. However, the two major drawbacks of temperature-based systems are (1) all conditioned 672 

air supplies must be uniformly controlled, and (2) there is no feasible solution for unoccupied zone 673 

detection. Demand-driven control can resolve both limitations by adjusting the supply airflow rate 674 

based on accurate occupancy [19] and leave high temperatures in unoccupied areas un-ameliorated 675 

[53]. Therefore, the proposed IDC control system provides significant energy-saving potential by 676 

avoiding unnecessary zone-level energy consumption. As shown in Figure 6, through intentionally 677 

avoiding interfering with the temperature in unoccupied zones and leaving them as hot spots, the 678 

total conditioned air supply can be reduced. This principle can also be extended to other building 679 

service systems, such as lighting and ventilation systems. Building upon occupant distribution 680 

detection, engineers will be able to design and construct more sustainable and smarter systems that 681 

can be automatically controlled. 682 

The IDC system also provides a low-cost pervasive sensing network solution for building 683 

monitoring and indoor occupancy acquisition. If the complete installation of an indoor positioning 684 
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system is not feasible for some buildings, a portable system could be used to detect the occupancy 685 

pattern from room to room. Since many existing buildings are manually and periodically controlled, 686 

using occupancy patterns would be helpful to guide the system settings in different thermal zones 687 

[54]. Long-term occupancy pattern recognition can assess the utilization of space and identify 688 

mostly unoccupied zones. Such information can not only help optimize the HVAC operation 689 

schedule, but also enable unoccupied space reassignment [16]. It is also feasible to provide a better 690 

indoor environment and thermal comfort for frequently used spaces and preferred spaces [55]. In 691 

the IDC system, the integrated facility operating system and indoor positioning system record the 692 

occupancy, timestamp, and system operation information of each space. Historical data logs of 693 

these systems provide a rich source for further data mining and processing, especially for profiling 694 

energy-consumption patterns through a machine-learning process by associating energy needs with 695 

spatial locations [56]. A large number of local energy management strategies require such types of 696 

information, including demand response (DR) and demand-side management (DSM) [57] [58].  697 

 698 

5.2 Limitations and Future Work 699 

In this research, we would like to couple the Wi-Fi and BLE networks to obtain occupancy 700 

distribution for demand-driven control with the purpose of improving building energy efficiency. 701 

Although the proposed system advances current energy management in buildings, this study also 702 

yields several limitations we intend to resolve in future research. First, the room-level cooling load 703 

in this research is estimated by linear addition of all subzones. In practical operation, the supplied 704 

flows from multiple air vents will interfere with each other through a nonlinear heat transfer 705 

process. Therefore, future research should adopt more sophisticated fluid-dynamic models that 706 

consider such superimposed effects. Second, obstacles in the positioning networks could result in 707 

inaccuracy in the location detection. The current experiment test bed is a continuous space without 708 

large separators, such as structural columns or walls. Also, the space boundaries in direct contact 709 

with the building envelope and surface could significantly change the simulation results since the 710 

outside environment is more dynamic and complicated. These building surfaces and components 711 

could also potentially disturb the stability and accessibility of received signals [59]. Therefore, 712 

more complicated indoor geometry needs to be examined to identify potential problems and 713 

develop future improvements to positioning accuracy. Third, the indoor positioning system would 714 

collect the MAC address or UUID information of occupants’ devices, but for the occupants’ 715 
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privacy, this tagging might be impermissible and should be improved and protected. This issue 716 

could not be avoided during the research on location tasks. To protect privacy, future work must 717 

enable new tagging techniques. Fourth, this study ignored the positions of those occupants who 718 

occupied one room just for one short-term duration and could be defined as temporary occupants. 719 

In this positioning work, we did not figure out a method to filter the temporary occupants from the 720 

permanent occupants. In the next study, we would like to focus on this issue and illustrate a 721 

schedule of permanent occupants to provide a more detailed control basis for HVAC systems. Fifth, 722 

the frequency of adjustment must be determined for practical application. The positioning system 723 

can stream real-time occupancy data to the building management system, but the response of the 724 

facility control system is subject to lag and instability. A too-frequent adjustment could result in 725 

error accumulation and system instability. Therefore, for automatic centrally-controlled systems, 726 

it is essential to investigate the best system adjustment frequency to find a compromise between 727 

system uncertainty and energy-saving potential. Sixth, another significant issue is related to 728 

privacy: no matter which IPS is used, it always requires the occupants to carry sensing tags (in our 729 

system these tags were personal cellphones). More studies are necessary to develop safer 730 

technologies to provide occupant privacy. The last and most important limitation of our research 731 

is the control system actuation is based on simulation. More validity must be provided through 732 

field experimentation to verify how much energy can be saved by the proposed system. Current 733 

energy consumption is derived from CFD temperature simulation. It is strongly suggested that 734 

future studies create a complete control loop with physical actuators and carefully monitor their 735 

energy consumption.  736 

5.3 Contributions 737 

Efficient HVAC system control depends on reliable occupancy information. The direct observation 738 

of indoor positioning systems enables accurate load estimation and flexible control. In this study, 739 

the proposed control mechanism relies on high-resolution occupancy information collected from 740 

a dual Wi-Fi and BLE network. Both networks are convenient to install and apply, especially Wi-741 

Fi access points which are normally pre-installed in most buildings. In current popular applications, 742 

BLE technology is convenient for broadcasting and integrating signals with location information. 743 

To eliminate the weakness of Wi-Fi technology in providing more accurate location tags, this study 744 

coupled BLE technology into the dual networks. Integrating the indoor positioning system with an 745 

energy management system could allow for more efficient energy use in buildings. In conventional 746 
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control systems, occupancy information is approximated from historical or indirect data. Such 747 

approximation not only lacks accuracy, but also sacrifices resolution [60]. The major improvement 748 

in the proposed system is controlling the building facility by relying on zone-level occupant 749 

distribution. Using current control mechanisms, the setting point of a building’s facilities, such as 750 

an HVAC system or lighting system, is determined by the rough estimation of room-level occupant 751 

counts. With the help of the IPS, the proposed control system can not only detect the number of 752 

occupants, but locate their accurate spatial distribution in the form of space meshes. With meshed 753 

occupancy patches enabled by the dual layer positioning network, the VAV boxes of HVAC 754 

systems can be adjusted accordingly with higher positioning accuracy tolerance and compatibility 755 

with system design. In addition, the zone-level and room-level occupancy patterns can be 756 

recognized and used to guide facility operation. For example, the occupancy pattern has been 757 

categorized into unoccupied, partly-occupied, half-occupied, and fully-occupied to estimate the 758 

necessary air supply amounts and adjust the system settings. Such differentiation avoids over-759 

cooling caused by uniform control of multiple zones with different occupancy levels. In summary, 760 

the major contribution of our proposed system is it develops a specifically designed algorithm, 761 

which combines both kNN and random walk model, for the dual layer positing system, and it 762 

integrates the demand-driven HVAC control principle with meshed spatial occupancy distribution 763 

detected by the proposed IPS. Given that the HVAC system is designed to control thermal zones, 764 

the spatial occupancy distribution is ready for direct implementation. At the same time, given that 765 

the IPS system we proposed is not intended to capture exact location coordinates, it has much 766 

higher tolerance in positioning inaccuracy. Moreover, meshes/patches work like a 2D lattice, which 767 

is much simpler compared to a continuous space. This allows simple control algorithm design as 768 

well as higher processing and control speed.  769 

 770 

6. CONCLUSION 771 

Among the HVAC control modes, occupancy behaviors are the key to assessing whether the 772 

occupants’ thermal comfort has been sufficiently satisfied. The proposed demand-driven control 773 

system implements an indoor positioning system to collect occupancy information with higher 774 

resolution and accuracy. Wi-Fi and BLE technologies are utilized in the indoor positioning 775 

equipment, and in this research, occupancy distribution data acquired by dual networks is 776 

generated as a demand-driven signal. Based on such information, the service space can be 777 
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monitored and controlled by actual demand rather than rough estimations of temperature and the 778 

number of occupants. In the zone temperature distribution simulation, different control methods 779 

were compared and the results showed higher-accuracy occupancy acquisition can better conserve 780 

cooling air amounts. Integrated with the accuracy of IPS, daily energy performance analysis was 781 

conducted comparing IDC, BLT, and RAT systems. The results of this study show the proposed 782 

system has significant energy-saving potential for demand-driven HVAC operation in large-scale 783 

rooms by avoiding over-cooling and uniform cooling. 784 

Although the core of this research focuses on determining occupancy distribution and then 785 

controlling air supply modes in VAV systems, such demand-driven control systems can also be 786 

extended to other building service systems and may enable more sophisticated control design, 787 

making the potential applications far more extensive. In the coupled IPS and HVAC system, we 788 

postulate the functional harmony in the integration of two systems and the ability to provide more 789 

useful information for future improvements. As the technologies and algorithms in IPS evolve and 790 

mature, the accuracy of IPS can be improved and provide greater benefits to occupancy 791 

information schemes.  792 
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Table 1 Accuracy of Each Measurement Metric and Its Chronic Development 1022 

 Route 1 Route 2 

Timestamps EU CB HM M3 EU CB HM M3 

1-200 0.7605 0.7939 0.5842 0.7674 0.8062 0.8276 0.5240 0.8416 

201-400 0.6707 0.7197 0.5552 0.6800 0.7017 0.7952 0.5217 0.7598 

401-600 0.6400 0.7145 0.5481 0.7258 0.6922 0.7750 0.5123 0.7602 

601-800 0.6378 0.7140 0.5512 0.7072 0.7022 0.7813 0.5109 0.7707 

801-1000 0.6707 0.7197 0.5552 0.6800 0.7017 0.7952 0.5217 0.7598 

Over all 0.6759 0.7323 0.5587 0.7120 0.7208 0.7948 0.5181 0.7784 

*Note: EU – Euclidean; CB – City Block; HM – Hamming; M3 – Minkowski 3;  1023 
The value in each cell is the positioning accuracy. 1024 
 1025 
  1026 
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Table 2 Room Specifications and Model Settings 1027 

Ventilation type 
Geometry 
Diffuser type 
The dimension and quantity of 
fresh air diffusors 
The dimension and quantity of 
exhaust air vents 
Heat sources 
 
 
Total cooling load 
Air supply temperature 
Room temperature set 
Turbulence model 

Mixing ventilation 
10m x 10m x 3m 
Square ceiling diffuser 
0.4m x 0.4m, 4 
 
0.4m x 0.4m, 4 
 
Occupant 21x75W 
Computer 21x150W 
Lamp 16x35W 
5.285kW 
18℃ 
25 ±0.5℃ 
Standard equations 

 1028 

  1029 
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Table 3 Supply Air Amount of Different Occupancy Distributions in a Sample Space 1030 

Scenario 
Index Occupancy 𝑴𝑨 𝑴𝑩 𝑴𝑪 𝑴𝑫 𝑴 Zone Occupancy Room Occupancy (m3/h) 

1 (5,4,6,6) 353 265 382 382 1382 (FO,FO,FO,FO) Even Distribution 
2 (5,0,6,6) 353 0 382 382 1117 (FO,UO,FO,FO) Uneven Distribution 
3 (5,4,6,0) 353 265 382 0 1000 (FO,HO,FO,UO) Uneven Distribution 
4 (0,0,6,6) 0 0 382 382 764 (UO,UO,FO,FO) Uneven Distribution 
5 (5,4,0,0) 294 206 0 0 500 (FO,FO,UO,UO) Uneven Distribution 
6 (0,0,6,0) 0 0 265 0 265 (UO,UO,FO,UO) Uneven Distribution 
7 (5,2,6,2) 353 118 382 118 971 (FO,PO,FO,PO) Even Distribution 
8 (2,3,2,5) 118 176 118 353 765 (PO,HO,PO,HO) Even Distribution 
9 (1,1,3,5) 59 59 206 353 667 (PO,PO,HO,HO) Even Distribution 
10 (4,3,3,5) 280 206 206 280 972 (HO,HO,HO,HO) Even Distribution 
11 (3,0,4,3) 206 0 265 206 667 (HO,UO,HO,HO) Uneven Distribution 
12 (0,0,0,0) 0 0 0 0 0 (UO,UO,UO,UO) Even Distribution 

 1031 
*Note: The column of “Occupancy” shows the number of occupants at Zone A, B, C, and D; 1032 
𝑀𝑠′ show the amount of conditioned air that needs to be supplied to that zone to meet comfort level: 1033 
FO – fully-occupied, HO – half-occupied, PO – partly-occupied, UO – unoccupied. 1034 
 1035 
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Table 4 Comparison of Supply Air Amount among Three Control Systems 1037 

Scenario 
Index Occupancy Room 

Occupancy 

Supply Air Amount 
(m3/h) 

Percentage  
Reduction 

RAT BLT IDC RAT-IDC BLT-IDC 

4 (0,0,6,6) 
(UO,UO,FO,FO) 

Uneven 
Distribution 1350 1087 940 30.4% 13.5% 

1 (5,4,6,6) 
(FO,FO,FO,FO) 

Even 
Distribution 1704 1381 1381 19% 0% 

11 (3,0,4,3) 
(HO,UO,HO,HO) 

Uneven 
Distribution 1250 1116 1014 18.9% 9.1% 

6 (0,0,6,0) 
(UO,UO,FO,UO) 

Uneven 
Distribution 1071 881 650 39.3% 26.3% 

 1038 
*Note: The column of “Occupancy” shows the number of occupants at Zone A, B, C, and D; 1039 
FO – fully-occupied, HO – half-occupied, PO – partly-occupied, UO – unoccupied; 1040 
The column of “Percentage Reduction” compares the amount of supplied air between the proposed control 1041 
system and the conventional systems. 1042 
 1043 
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