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ABSTRACT 4 

Existing infrastructure is aging while the demands are growing for a better infrastructure 5 

system in response to the high standards of safety, health, population growth, and environmental 6 

protection. Bridges are subjected to severe deterioration agents such as variable traffic loading, 7 

deferred maintenance, cycles of freeze and thaw, etc. The development of Bridge Management 8 

Systems (BMSs) has become a fundamental imperative nowadays due to the huge variance 9 

between the need for maintenance actions, and the available funds to perform such actions. 10 

Condition assessment is regarded as one of the most critical and vital components of BMSs. 11 

Ground Penetrating Radar (GPR) is one of the non-destructive techniques (NDTs) that are used 12 

to evaluate the condition of bridge decks which are subjected to the rebar corrosion. There is a 13 

major issue associated with the GPR which is the absence of a scale for the amplitude values. 14 

The objective of the proposed model is to compute standardized amplitude thresholds for 15 

corrosion maps. The proposed model considers eight un-supervised clustering algorithms to 16 

obtain the thresholds. The proposed model incorporates a multi-objective optimization-based 17 

methodology that employs three evolutionary optimization algorithms to calculate the optimum 18 

thresholds which are: 1) genetic algorithm, 2) particle swarm optimization algorithm, and 3) 19 

shuffled frog-leaping algorithm. Five multi-criteria decision- making techniques are used to 20 

provide a ranking for the solutions. Finally, group decision-making is performed to aggregate the 21 

results and obtain a consensus and compromise solution. The standardized thresholds obtained 22 

from the proposed methodology are: -16.7619, -8.8161, and -2.9744 decibels.    23 

Keywords: Bridge Management System, ground Penetrating Radar, non-destructive techniques, 24 
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1 INTRODUCTION  1 

Infrastructure systems refer to systems that support the prevailing of the society. Infrastructure 2 

systems are divided into: bridges, highways, dams, waste water systems, sewer water systems, 3 

etc. Existing infrastructure is vulnerable to high levels of deterioration. Therefore, billions of 4 

dollars should be invested every year in order to maintain the desired levels of standards to the 5 

customers. The deterioration in Canada’s infrastructure systems is mainly because of two main 6 

reasons: 1) the decrease in the investment of the infrastructure systems, and 2) most of the 7 

infrastructure systems were constructed relatively a long time ago. 8 

The infrastructure investment in Canada has declined extensively over 40 years from the late of 9 

the 1950s to the mid of the 2000s, whereas the infrastructure investment peak was 3% of the 10 

Gross Domestic Product (GDP) in the late 1950s and it decreased to 0.4% of the GDP in 1979 11 

(Mackenzie 2013). Most of Canada’s infrastructure is relatively old because most of them were 12 

constructed between the 1960s and 1970s (Statistics Canada 2014). As per Canada Infrastructure 13 

Report Card, 40% of infrastructure systems is in a “Good” condition, 40% of infrastructure 14 

systems within 20 years will be in a “Fair” condition, 40% of infrastructure systems within 40 15 

years will be in a “Poor” condition, 40% of infrastructure systems within 60 years will be in a 16 

“Very Poor” condition (Felio 2016).  17 

Consequently, the infrastructure deficit will increase significantly where Canada’s municipal 18 

infrastructure deficit is $123 billion and it is growing by $2 billion per year. The deficit is 19 

divided into four main components which are: 1) $31 billion for water and waste water systems, 20 

2) $21.7 billion for transportation and $22.8 billion for transit, 3) $7.7 billion for waste 21 

management, and 4) $40.2 billion for community, cultural, and social infrastructure. One-third of 22 

infrastructure is either “Fair, Poor or Very Poor (Mirza 2007). Based on the aforementioned 23 
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statistics, Canada must invest $66 billion to maintain and repair roads and bridges between 2013 1 

and 2023. Moreover, the transit systems require an annual investment of $4.2 billion to repair 2 

and replace existing assets (Mckinsey 2013; Mirza 2007). 3 

Bridges are subjected to aggressive influences such as overloading, chloride ingress, cycles of 4 

the freeze and thaw, earthquakes, etc. Thus, they are more likely to deteriorate significantly. The 5 

overall condition of the bridges and roads in Canada is “Good” where 57% of the bridges are in 6 

“Good” condition, and 22% of the bridges are in “Fair” condition (Felio 2016). The number of 7 

highway bridges in Canada is 75,000 where their average age is 24.5 years in 2007 compared to 8 

a mean service life of 43.3 years (Statistics Canada 2009a). This means that the bridges in 9 

Canada have passed 57% of their useful lifetime (Statistics Canada 2009a). Bridges in Quebec 10 

have the highest average age of 31 years followed by Nova Scotia with an average age of 28.6 11 

years (Statistics Canada 2009b). 12 

Bridge Management Systems (BMSs) have become a necessity nowadays in order to provide a 13 

tool for the government agencies to manage a large network of bridges under some constraints 14 

such as limited resources (budget). AASHTO defined Bridge Management System (BMS) as “a 15 

system designed to optimize the use of available resources for inspection, maintenance, 16 

rehabilitation and replacement of bridges” (AASHTO Highways subcommittee on Bridges and 17 

Structures 2011). There are five main components of BMS which are (Czepiel 1995): 1) database 18 

for data storage, 2) condition rating model, 3) deterioration model, 4) cost model, and 5) 19 

optimization model for running the system.  20 

Condition assessment is considered as one of the main fundamental and vital pillars of BMS. 21 

Visual inspection is considered as one of the most common techniques in the condition 22 



4 

 

assessment of bridge decks. However, it is a very subjective technique and deals with only the 1 

defects visible on the surface. Non-destructive techniques (NDTs) have gained positive 2 

recognition in the condition assessment of concrete structures. Ground Penetrating Radar (GPR) 3 

is one of the NDTs that are used to evaluate corrosion of reinforcing rebars in concrete bridge 4 

decks based on the transmitted electromagnetic waves from the antenna. Condition assessment 5 

plays a very role in the prioritization plan for the maintenance, repair, and rehabilitation 6 

(MR&R) actions. Developing an accurate corrosion index is one of the pillars of the condition 7 

assessment. Thus, the presence of standardized thresholds for the GPR is very essential in order 8 

to provide an equal basis for comparison between the different concrete bridge decks.  9 

The proposed model utilizes Ground Penetrating Radar in order to overcome the drawbacks and 10 

the flaws of the visual inspection. Nevertheless, GPR suffers from some limitations where one of 11 

the main limitations that there are no clear or exact thresholds for the GPR scale. The objectives 12 

of the current research are as follows: 13 

1.  Review the previously-developed and identify their shortcomings.  14 

2. Compute the standardized amplitude thresholds for the GPR 15 

3. Develop a corrosion map and calculate a corrosion index for the bridge deck.  16 

2 LITERATURE REVIEW  17 

Few contributions have been made in the field of defining thresholds for the GPR amplitudes 18 

where there is no clear value for the thresholds that define the different categories of corrosion. 19 

Dinh and Zayed (2016) calculated a bridge deck corrosiveness index (BDCI) based on the fuzzy 20 

set theory. They developed a corrosion map for concrete bridge decks. The thresholds of the 21 

corrosion map were calculated based on K-means clustering. On the other hand, the model has 22 

some limitations because it is based on K-means clustering. K-means clustering is an un-23 
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supervised learning technique which means that it is highly dependent on the input dataset since 1 

there is no prior information about the model. Thus, if another bridge deck is investigated, the 2 

amplitude thresholds will be different consequently.  3 

Shami (2015) calculated the thresholds based on some goodness of fit tests such as Kolmogorov-4 

Smirnov test, Anderson Darling, and chi-squared test. These tests were used to select the most 5 

feasible probabilistic distribution that fits the dataset. They concluded that the threshold that 6 

separates the “very severe” category from the “severe” category, and the “Severe” category from 7 

the “medium” category follow the logistic distribution. Moreover, they concluded that the 8 

threshold that separates the “medium” category from the “good” category follows the triangular 9 

distribution. The value of the threshold is calculated based on the median of the probabilistic 10 

distribution. The model had some limitations where the most feasible probabilistic distribution 11 

was selected based on only 34 bridge decks. However, Fornell (1983) illustrated that the 12 

minimum sample size required to perform goodness of fit tests is 200. In addition to that, Grant 13 

et al. (2017) stated that the Kolmogorov-Smirnov test is performed when the sample size is more 14 

than 50 observations.  15 

Martino et al. (2016) calculated a threshold for the GPR based on the receiver operating 16 

characteristic curves (ROC) using half-cell potential as a ground truth. They concluded that -1.6 17 

DB is the universal threshold that separates the healthy areas from the corroded areas in concrete 18 

bridge decks. However, the developed methodology can be only used for the binary 19 

classification since it is based on the ROC curves, i.e., for the separation of the corroded areas 20 

from the non-corroded areas. The developed methodology will not be feasible to provide the 21 

amplitude thresholds in the case of the existence of more than two condition categories.   22 
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 Based on the previous limitations, the research presents a model that is capable of calculating 1 

standardized thresholds of the GPR and for any number of bridge condition categories. The 2 

proposed methodology is a hybrid model that is divided into three main modules which are: 1) 3 

clustering module. 2) multi-objective optimization module, and 3) decision-making module. The 4 

clustering module utilizes eight clustering algorithms for a different number of bridges. A multi-5 

objective optimization module is designed to calculate the standardized thresholds based on the 6 

output from the clustering module, and based on four objective functions. The multi-objective 7 

optimization module integrates three evolutionary algorithms which are: 1) genetic algorithm, 2) 8 

particle swarm optimization algorithm, and 3) shuffled frog-leaping algorithm. The decision-9 

making is utilized in order to select the most feasible solution among the optimum solutions.    10 

3 MODEL DEVELOPMENT 11 

The framework of the proposed methodology is shown in Figure 1. The proposed methodology 12 

is a hybrid model that integrates evolutionary algorithms, un-supervised clustering algorithms, 13 

and multi-criteria decision-making techniques. The multi-objective optimization module utilizes 14 

three evolutionary algorithms which are: 1) genetic algorithm, 2) particle swarm optimization 15 

algorithm, and 3) shuffled frog-leaping algorithm. These three algorithms are selected due to 16 

their capability of solving the discrete and continuous optimization problems efficiently. The 17 

first step is to survey the bridge decks using the ground penetrating radar. Ground penetrating 18 

radar is one of the non-destructive techniques that are used for field investigation in structural 19 

engineering. Ground Penetrating radar can determine the subsurface structure easily and 20 

accurately. Moreover, it has the capability of locating metallic and non-metallic objects. GPR 21 

transmits pulsed electromagnetic waves from the transmitting antenna which is located on the 22 

ground surface and signals are then received by the receiving antenna.  23 
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The proposed model utilizes GPR in order to evaluate the corrosion of the reinforcement rebars 1 

in the concrete bridge decks. GPR system is composed of data collection system and antennas. 2 

There are two types of antennas which are: 1) mono-static antenna, and 2) bi-static antenna. 3 

Mono-static antennas are composed of one antenna that performs both transmitting and 4 

receiving. Bi-static antennas include separate antennas for transmitting pulses and receiving 5 

those that are reflected. There are three basic components of GPR system which are: 1) display 6 

unit, 2) control unit, 3) an antenna, and 4) cart. The display unit is used to display the recorded 7 

data such as laptop. Control unit controls the operation of transmitting and receiving 8 

electromagnetic pulses. The antenna is used to perform the task of transmitting electromagnetic 9 

waves and receive the reflected pulse.  10 

Then, the scanned profiles are imported into the GSSI RADAN7 software in order to extract the 11 

needed information. GSSI RADAN7 software is used to extract the amplitude values of the top 12 

reinforcing rebars. The numerical-amplitude method is used to interpret the corrosion of the 13 

bridge decks. Numerical amplitude method depends on the value of the amplitude of the 14 

reflected waves from the top layer of reinforcement. The higher the amplitude the better the 15 

condition of the bars will be. On the other hand, the lower the amplitude the higher the corrosion 16 

the reinforcement bars will be and consequently, the lower condition state the bridge deck will 17 

be. This method main drawback is its lack of a clear value for the thresholds that define the 18 

different categories of corrosion. For example, the profiles of one bridge deck may have 19 

amplitude values from 10 dB to -5 dB, where 10 dB represents the best condition and -5 dB 20 

represents the worst for that bridge. Meanwhile, another of Bridges’ profiles may have amplitude 21 

values that range from -5 dB to -40 dB, where -5 dB represents the best condition and -40 dB 22 

represents the worst condition. A Microsoft Excel spreadsheet is generated containing some 23 
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important parameters retrieved from the GPR profiles such as scan number, two-way travel time, 1 

and normalized amplitude for each reinforcement rebar. 2 

Then, the depth correction is performed based on the methodology developed by Barnes et al. 3 

(2008). The main objective of this step is to remove the effect of the depth on the target data 4 

because there is an attenuation of the electromagnetic waves associated with the deeper targets. 5 

Depth-corrected amplitudes provide a more accurate assessment of the amplitude values of the 6 

reinforcement rebars. The depth correction was performed as follows: 1) the data points were 7 

divided into time bins; e.g. 0.5 ns, 2) 90th percentile point for each time bin is calculated 8 

assuming that the chloride content is consistent for the 90th percentile of the normalized 9 

amplitude at each time bin, i.e., amplitude values above the 90th percentile are not affected by 10 

deterioration, 3) regression is applied to fit the 90th percentile points, and 4) correcting the data 11 

by forcing the 90th percentile to be zero decibel (dB). After the depth correction, the threshold 12 

values should be calculated in order to delineate the areas of corrosion. 13 

The third step of the proposed methodology is the clustering module where a group of bridge 14 

decks is used as an input for the proposed methodology. Several clustering algorithms are 15 

applied because each one of them depends on a certain calculation methodology which generates 16 

different clusters, and consequently different thresholds. Eight clustering algorithms are utilized 17 

which are: K-means, fast K-means, kernel K-means, K-medoids, expectation maximization, 18 

fuzzy C-means, X-means, and agglomerative clustering. The multi-objective optimization 19 

module takes into consideration any number of bridge decks (based on the available dataset) and 20 

it calculates the standardized thresholds based on four objective functions. The first three 21 

objective functions tend to find the optimum threshold based on a local search, i.e., dealing with 22 

each threshold individually. On the other hand, the fourth objective function tends to find the 23 
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optimum threshold based on a global search. The multi-objective optimization module 1 

incorporates three evolutionary algorithms which are: genetic algorithm, particle swarm 2 

algorithm, and shuffled frog-algorithm. The output of this module is the combined Pareto 3 

frontier points obtained from the three algorithms where each one of the candidate solutions is 4 

represented in a three-dimensional space, i.e., threshold (1), threshold (2), and threshold (3).  5 

Decision-making module is used to calculate the most feasible solution among the optimum 6 

solutions obtained from the multi-objective optimization module. Five multi-criteria decision-7 

making techniques are implemented which are: 1) WSM (Weighted Sum Model), 2) COPRAS 8 

(Complex Proportional Assessment), 3) VIKOR, 4) GRA (Grey Relational Analysis) and 5) 9 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). Each one of the 10 

decision-making techniques provides a distinct ranking for the alternatives. Group decision-11 

making is performed to aggregate the ranking of the alternatives into one final ranking for the 12 

alternatives, i.e., obtain the best compromise solution. The alternative with the first ranking 13 

represents the standardized thresholds of the GPR. After calculating the thresholds, a corrosion 14 

map can be developed for any bridge deck. Surfer 12 is a plotting and mapping software that is 15 

utilized to develop the corrosion map for the concrete bridge decks. Finally, a corrosion index 16 

(𝐶𝐼) can be calculated using the following Equation. 17 

𝐶𝐼 =
∑ 𝑄𝑐×𝑊𝑐

4
𝑐=1

∑ 𝑄𝑐
4
𝑐=1

                                                                                                                                              (1)                                                                                                                             18 

, where 19 

𝑄𝑐 represents the quantity (area) of a bridge element in condition category 𝑐. 𝑊𝑐 represents the 20 

weighting factors for a bridge element in condition category 𝑐. The weighting factors for the 21 
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“good”, “medium”, “severe”, and “very severe” condition categories are assumed 100%, 70%, 1 

50%, and 20%, respectively. 2 

INSERT FIGURE 1 3 

3.1 Clustering Module  4 

Clustering is the process of partitioning the dataset into a homogenous set of clusters without 5 

having any prior information about the clusters where the points within the same cluster share 6 

similar features. The selected clustering algorithms incorporate a combination of soft and hard 7 

clustering techniques. Hard clustering is the process of the assignment of data points to only one 8 

cluster such as K-means clustering algorithm. On the other hand, soft clustering is the process of 9 

the assignment of data points to the clusters with different membership degrees such as fuzzy C-10 

means clustering algorithm (FCM). RapidMiner 7.5 and KNIME 3.3.1 softwares are used as 11 

platforms to perform the clustering algorithm. K-means and fuzzy C-means clustering algorithms 12 

are only discussed in the following lines due to the limited space.  13 

3.1.1 K-Means Clustering Algorithm 14 

K-means clustering algorithm is based on minimizing the distance between the average squared 15 

Euclidean distance between the data points and the clusters’ centroids. The main distinct feature 16 

between K-means and k-medoids clustering algorithms is that one of the data points represents 17 

the centroid of the cluster in the case of k-medoids. K-means algorithm utilizes the mean of the 18 

data points. The steps of K-means clustering algorithm are as follows (Sawant, 2015):  19 

1- Select the number of desired clusters 𝐾. 20 

2- Select 𝐾 starting points randomly to be used as initial candidates for clusters’ centroids.   21 

3- Calculate the distance between data points and cluster centroids.  22 
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4- Assign the data point to the cluster centroid which has the minimum distance between the 1 

data point and cluster centroids. The distance is simply the Euclidean distance.  2 

𝑑(𝑥𝑖 , 𝐶𝑗) = √∑ (𝑥𝑖𝑑 − 𝑐𝑖𝑑𝑖
𝑛
𝑑=1 ) ²                                                                                                               (2)                                                                                                          3 

5- Re-compute the new cluster centroids (centroid is the mean point of the cluster).  4 

6- Repeat steps 3, 4, and 5 until convergence (centroid and data points no longer move).  5 

3.1.2 Fuzzy C-means Clustering Algorithm 6 

FCM is an iterative clustering algorithm where each data point is assigned to one cluster or more 7 

based on the membership degrees. FCM was developed by Dunn in 1973 and improved by 8 

Bezdek in 1981. FCM is based on minimizing the following objective function (Keskin, 2015).  9 

𝐽𝑤 = ∑ ∑ 𝑢𝑖𝑗
𝑚 ||(𝑋𝑖 − 𝐶𝑗)

2
||𝐶

𝑗=1
𝑁
𝑖=1                                                                                                               (3)                                                                                               10 

, where 11 

𝑚 is a fuzzifier constant that is greater than one. 𝑢𝑖𝑗 denotes the degree of membership of the 𝑋𝑖 12 

in the cluster 𝑗 and it is between zero and one. 𝑋𝑖 is a  𝑖 − 𝑡ℎ data point in a d-dimensional space. 13 

𝐶𝑗 represents the centroid of the 𝑗 − 𝑡ℎ cluster. || ∗ || is a norm distance that represents the 14 

similarity between the data point and the centroid of the cluster.              15 

FCM starts by randomly initiating the cluster centroid. The second step is to construct the 16 

membership matrix. A membership matrix (𝑈(𝑁×𝐶)) is composed of a group of membership 17 

degrees. The degree of membership (𝑢𝑖𝑗) can be calculated using Equation (4). The cluster 18 

centroids are then updated and can be calculated using Equation (5). The cluster centroids and 19 

the membership degrees are iteratively updated until the convergence criteria are satisfied. The 20 

convergence criteria is shown in Equation (6). The de-fuzzification process is performed using 21 
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Equation (7) where the data point is assigned to the cluster that has the maximum degree of 1 

membership.  2 

𝑢𝑖𝑗 =
1

∑ (
||(𝑋𝑖−𝐶𝑗)||

||(𝑋𝑖−𝐶𝑘)||
)

2
𝑚−1 

𝐶

𝑘=1

                                                                                                                       (4)                                                                                                          3 

𝐶𝑗 =
∑ 𝑢𝑖𝑗

𝑚×𝑋𝑖

𝑁

𝑖=1

∑ 𝑢𝑖𝑗
𝑚

𝑁

𝑖=1

                                                                                                                                             (5)                                                                                                                            4 

max
𝑖𝑗

{|𝑢𝑖𝑗
𝑖𝑡+1 − 𝑢𝑖𝑗

𝑖𝑡|} < 𝜁                                                                                                                             (6)                                                                                                                        5 

𝐷𝑗 = argi{𝑚𝑎𝑥(𝑢𝑖𝑗)}                                                                                                                                    (7)                                                                                                                                                                                                                                                                                                                              6 

∑ 𝑢𝑖𝑗

𝑐

𝑗=1
= 1                                                                                                                                                 (8)                                                                                                                                7 

, where 8 

𝐷𝑗  represents the de-fuzzified value, which is calculated based on the maximum degree of 9 

membership principle. 𝜁 is the termination constant between zero and one. 𝑖𝑡 refers to the 10 

number of iteration steps.  11 

3.2 Clustering Validity Approaches 12 

Clustering is an un-supervised algorithm. Therefore, evaluating the output of the clustering 13 

algorithms is a matter of great importance. Assessing the clustering algorithms is much more 14 

difficult than the supervised algorithms because there is no “ground truth”, i.e., there are no-15 

predefined classes for the domain problem. Moreover, it is very difficult to find the appropriate 16 

metrics to evaluate the quality of the generated clusters (Sahani and Bhuyan 2014).  17 
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The proposed model utilizes two clustering validity approaches to assess the quality of the 1 

generated clusters and to identify the optimal partition of clusters which are: 1) Davies-Bouldin 2 

index, and 2) Dunn index. The objective of the clustering validity approaches is to select the 3 

most feasible thresholds that ensure that the clusters are compact and well-separated, i.e., 4 

maximize the inter-cluster distance (distance between the clusters), and minimize the intra-5 

cluster distance (distance between data points within the same cluster) (see Figure 2).  6 

INSERT FIGURE 2 7 

3.2.1 Davies-Bouldin Index 8 

Davies-Bouldin index is a ratio between the sum of intra-cluster scatter to the inter-cluster 9 

separation. The Davies-Bouldin index can be calculated using the following Equation (Davies 10 

and Bouldin 1979).    11 

𝐷𝐵𝐼 = (
1

𝑘
∑ max

𝑣≠𝑤
( 

𝐷𝑤+𝐷𝑣

𝑑(𝑐𝑤,𝑐𝑣)
)𝑘

𝑤,𝑣=1                                                                                                         (9)                                                                                                12 

, where 13 

𝐷 represents the intra-cluster distance. 𝑑 represents the inter-cluster distance.  14 

The intra-cluster distance (𝐷), and the inter-cluster distance (𝑑) can be calculated using 15 

Equations (10), and (11), respectively based on the Euclidean distance principle. The intra-16 

cluster distance is the average distance between the data points and the cluster centroid. The 17 

inter-cluster distance is the distance between the centroid of the two clusters. 18 

𝐷 = (
∑ ||𝑋𝑎−𝐶𝑤||𝑡

ℎ=1

𝑁𝑤
 )                                                                                                                                    (10)                                                                                                                 19 

𝑑 = 𝑑𝑖𝑠𝑡(𝐶𝑤, 𝐶𝑣) = √(𝐶𝑤1 − 𝐶𝑣1)2 + (𝐶𝑤2 − 𝐶𝑣2)2 … … … … . . … (𝐶𝑤𝑞 − 𝐶𝑣𝑞)
2

                       (11)                                                                                                                             20 
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, where 1 

𝑋𝑎 is an arbitrary data point that belongs to a cluster 𝑤. 𝐶𝑤 and 𝐶𝑣 represent the centroid of 2 

clusters 𝑤 and 𝑣, respectively. 𝑁𝑤 represents number of data points in the cluster 𝑤. The smaller 3 

Davies-Bouldin index denotes that the clusters are compact, and the centers of the clusters are far 4 

away from each other (Sahani and Bhuyan 2014). 𝑡 is the number of the data points in the 5 

cluster. 𝑞 is the number of the dimensions of the model. 6 

3.2.2 Dunn Index  7 

The Dunn index is used to assess the quality of the clusters and it can be calculated using 8 

Equation (12) (Dunn, 1974). 9 

𝐷𝑈𝐼 = ( min
1≤v<𝐾,

( min
1≤w≤𝐾,𝑣≠𝑤

(
𝑑(𝑥𝑤,𝑥𝑣) 

max
1≤k≤𝐾

(𝐷(𝑥𝑘))
)))                                                                    (12)                                                                  10 

, where 11 

𝐷, and 𝑑 are defined as above. The larger the Dunn index indicates that the clusters are compact 12 

and well-separated (Sahani and Bhuyan 2014). 13 

3.3 Multi-Objective Optimization Module  14 

3.3.1 Formulation of the Optimization Problem 15 

The multi-objective optimization module is used to determine the optimum solutions based on 16 

three evolutionary algorithms which are: 1) genetic algorithm, 2) particle swarm optimization 17 

algorithm, and 3) shuffled frog- leaping algorithm. Evolutionary algorithms are very effective in 18 

solving very complex problems where hill-climbing derivative based algorithms are trapped in 19 

local search solutions. Moreover, evolutionary algorithms can handle multiple conflicting 20 

objectives directly and simultaneously (Caldas and Norford 2002). 21 
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The proposed model assumes that there are four categories for the condition of the bridge deck 1 

(very poor, poor, medium and good), i.e., three separating amplitude thresholds. The three 2 

separating amplitude thresholds are: threshold (1), threshold (2) and threshold (3), which are 3 

denoted as 𝑋−, 𝑌− and 𝑍− in the following multi-objective optimization problem. The multi-4 

objective optimization module constitutes four objective functions. The first objective function is 5 

to minimize the root mean square error (𝑅𝑀𝑆𝐸) of standardized amplitude threshold (1), i.e., 6 

minimize the distance between the first threshold obtained from the different clustering 7 

algorithms of some bridges, and standardized amplitude threshold (1). The second objective 8 

function is to minimize the 𝑅𝑀𝑆𝐸 of standardized amplitude threshold (2), i.e., minimize the 9 

distance between the second threshold obtained from the different clustering algorithms of some 10 

bridges, and standardized amplitude threshold (2). The third objective function is to minimize the 11 

𝑅𝑀𝑆𝐸 of standardized amplitude threshold (3), i.e., minimize the distance between the third 12 

threshold obtained from the different clustering algorithms of some bridges, and standardized 13 

amplitude threshold (3). The fourth objective is to evaluate the quality of evaluation clusters and 14 

it is calculated as the average of the Davies-Bouldin index and Dunn index. The decision 15 

variables of the multi-objective optimization problem are the three standardized amplitude 16 

thresholds (𝑋−, 𝑌− and 𝑍−).    17 

𝐹1 = min 𝑅𝑀𝑆𝐸1 = min √(∑ ∑ (𝑋𝑖𝑗−𝑛×𝑚×𝑋−)
2

)𝑛
𝑖=1

𝑚
𝑗=1

𝑛×𝑚
                                                                          (13)                                                                  18 

𝐹2 = min 𝑅𝑀𝑆𝐸2 = min√(∑ ∑ (𝑌𝑖𝑗−𝑛×𝑚×𝑌−)
2

)𝑛
𝑖=1

𝑚
𝑗=1

𝑛×𝑚
                                                                           (14)                                                                   19 

 𝐹3 = min 𝑅𝑀𝑆𝐸3 = min√(∑ ∑ (𝑍𝑖𝑗−𝑛×𝑚×𝑍−)
2

)𝑛
𝑖=1

𝑚
𝑗=1

𝑛×𝑚
                                                                           (15)                                                                   20 
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𝐹4 = min 𝐶𝐿𝑈 =
∑ (

𝑛

𝑖=1
𝐷𝐵𝐼−𝐷𝑈𝐼)

2×𝑛
                                                                                                             (16)                                                                                                  1 

, where 2 

𝑚 indicates the   number of clustering algorithms. 𝑛 indicates the  number of bridges. 𝑋−, 𝑌−, and 3 

𝑍− represent the standardized amplitude threshold (1), standardized amplitude threshold (2), and 4 

standardized amplitude threshold (3), respectively. Threshold (1) represents the threshold that 5 

separates the “very severe” condition category from the “severe” condition category. Threshold 6 

(2) represents the threshold that separates the “severe” condition category from the “medium” 7 

condition category. Threshold (3) represents the threshold that separates the “medium” condition 8 

category from the “good” condition category. 𝑋𝑖𝑗 indicates the amplitude threshold (1) obtained 9 

from applying the clustering algorithm 𝑖 for bridge deck 𝑗. 𝑌𝑖𝑗 indicates the amplitude threshold 10 

(2) obtained from applying the clustering algorithm 𝑖 for bridge deck 𝑗. 𝑍𝑖𝑗 indicates the 11 

amplitude threshold (3) obtained from applying the clustering algorithm 𝑖 for bridge deck 𝑗. 𝐶𝐿𝑈 12 

represents the clustering index. 𝐷𝐵𝐼 represents the Davies-Bouldin index. 13 

After defining the optimal solutions from the three evolutionary algorithms, a code is written in 14 

Matlab in order to calculate the Pareto frontier points. i.e., set of the Pareto optimal solutions. 15 

Consequently, the output of this module is combined sets of Pareto optimal solutions obtained 16 

from the three evolutionary algorithms.   17 

3.3.1.1 Genetic Algorithm 18 

Genetic algorithm (GA) is one of the evolutionary algorithms. Genetic algorithm is an 19 

optimization tool developed by John Holland in 1975 (Kühn et al. 2013). Genetic algorithm is 20 

based on two main processes. The first process is the selection of individuals for the production 21 

of the next generation (Garg and Mittal, 2014). The second process is the manipulation of the 22 
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selected individual to form the next generation by crossover and mutation (Garg and Mittal 1 

2014). The selection methodology determines which chromosomes are chosen for reproduction 2 

and how many off springs are produced. The better individual has a higher chance of being a 3 

parent (Garg and Mittal 2014). The flowchart of the genetic algorithm is shown in Figure 3. 4 

The first step is to form a random population of solutions where the solutions are represented in 5 

the form of a string called "chromosomes". Each stage a new population of individuals is created 6 

and it is called “generation” (Caldas and Norford 2002). Chromosomes consist of genes that 7 

carry the set of values for the optimization variables (Elbeltagi et al. 2005). The second step is to 8 

calculate the fitness function for each chromosome in the population. The fitness function is used 9 

to assess the different chromosomes. 10 

The third step is the selection of the chromosomes. The selection process determines which 11 

chromosomes will mate to form the new chromosomes. There are different types of the 12 

chromosomes selection strategies which are: roulette wheel selection, rank selection, steady-state 13 

selection, elitism, Boltzmann selection and tournament selection.  The fourth step is to perform 14 

the crossover  in order to generate an offspring between the two chromosomes or individuals. 15 

There are different types of crossover such as single point crossover, two-point crossover, and 16 

uniform crossover. The most common type of crossover is the single-point crossover where a 17 

random point is selected at which the remaining genes from one parent to another are swapped 18 

(Heidari and Movaghar 2011). 19 

The fifth step is to perform the mutation. The mutation gene is chosen randomly. The process of 20 

the mutation occurs by looping through all the genes of the individuals and if a gene is selected 21 

for mutation, the gene will be changed by a small value or it will be replaced by a new value 22 

Heidari and Movaghar 2011). Mutation is performed in order to ensure the genetic diversity 23 
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within the population (Heidari and Movaghar 2011), and to avoid the stagnation around local 1 

minima. Finally, a population is generated in each generation and the above processes continue 2 

for a certain number of iterations. The chromosomes in the final iteration are the optimal 3 

solutions. The genetic algorithm is performed using Matlab optimization Toolbox.  4 

INSERT FIGURE 3 5 

3.3.1.2 Particle Swarm Optimization Algorithm 6 

Particle swarm optimization (PSO) algorithm is a population-based heuristic search algorithm 7 

inspired by the social behavior of birds flocking to the desired place in a multi-dimensional 8 

space. PSO belongs to the family of “swarm intelligence” algorithms in solving optimization 9 

problems. PSO was originally developed by Eberhart and Kennedy in 1995. The PSO starts by 10 

creating a population called “swarm” which is composed of individuals called “particles” where 11 

each particle adjusts its own flying based on its own flying experience and its companions 12 

experience. Each particle represents a candidate solution in a multi-dimensional space where the 13 

status of the particle is characterized by its position and velocity and they are updated within 14 

each iteration (Zhang and Li 2010).  15 

PSO shares some similarities with the genetic algorithm where each one of them is initialized a 16 

population of candidate solutions which are called “chromosomes” in the case of the genetic 17 

algorithm, and “particles” in the case of PSO, and they both try to search for the optimum 18 

solution within a number of iterations.   The main difference between them is that the generation 19 

of candidate solutions is done through operators such as mutation and crossover in the genetic 20 

algorithm. On the contrary, the natural evolution is done through the exchange of the information 21 

between particles. Each particle in the search space moves in the multi-dimensional search space 22 

towards its own best flying experience (personal best “𝑝𝑏𝑒𝑠𝑡”), and towards the best experience 23 
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so far in the entire swarm (global best “𝑔𝑏𝑒𝑠𝑡”) (Kumar and Reddy 2007). PSO is discussed in 1 

detail in the following lines. 2 

During the optimization process, the velocity and position of the particle are updated. The 3 

velocity and the position of the particles are updated using Equations (17), and (18), respectively 4 

(Baltar and Fontane 2008; Yang 2007). 5 

𝑣𝑖(𝑡 + 1) = 𝑤 × 𝑣𝑖(𝑡) + 𝑐1 × 𝑟1 × (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 × 𝑟2 × (𝑔𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡))      (17)                                                     6 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                                                                                                                 (18)                                                                                                     7 

, where 8 

𝑥𝑖(𝑡 + 1) represents the updated position vector of the particle 𝑖. 𝑥𝑖(𝑡) represents the current 9 

position vector of the particle 𝑖. 𝑣𝑖(𝑡 + 1) indicates the updated velocity of the particle 𝑖. 𝑣𝑖(𝑡) 10 

indicates the current velocity of the particle 𝑖. 𝑟1, and 𝑟2 are two uniformly distributed random 11 

numbers in the interval [0, 1] where they allow the potential of finding better solutions along the 12 

direction which is guided towards the global best, and the personal best. 𝑐1, and 𝑐2 are two 13 

constants and they refer to the cognitive learning, and social parameters and they control the 14 

effect of personal and global guides. Normally, 𝑐1, and 𝑐2 are assumed 2. 𝑤 refers to the inertia 15 

weight which is used to control the balance between the global and the local experience. A 16 

typical range of the inertia weight is between 0.3, and 0.7. It is recommended to start with a large 17 

inertia weight at the beginning of the optimization process, and it decreases within the iterations 18 

using a damping factor to facilitate the global exploration of the search space. A code is written 19 

in Matlab in order to perform the multi-objective particle swarm optimization using Matlab 20 

R2013a. 21 
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3.3.1.3 Shuffled Frog-Leaping Algorithm  1 

Shuffled frog-leaping (SFL) algorithm is one of the “swarm intelligence” algorithms that are 2 

based on simulating the social behavior of frogs when searching for the location that has the 3 

maximum amount of the available food. SFL is one of the latest meta-heuristic algorithms that 4 

was presented by Eusuff and Lansey in 2003. SFL starts by generating a set of frogs as candidate 5 

solutions where the number of dimensions for all frogs is equal to the number of decision 6 

variables. In addition to that, an objective function is calculated for each frog (Orouji et al. 7 

2016). SFL combines the strengths of both the genetic-based memetic algorithm (MA), and the 8 

social behaviour-based particle swarm optimization algorithm (Wang and Fang 2011). 9 

The frogs are divided into subsets called “memeplexes”. The different memeplexes represent 10 

different cultures of the frogs where each frog performs a local search within each memeplex. 11 

Within each memeplex, the behavior of the frog is affected by the behavior of other frogs in the 12 

memeplex where frogs evolve through a memetic evolution process (see Figure 4). Ideas are 13 

passed between the memeplexes in a shuffling process after a number of memetic processes 14 

where the local search and the shuffling process continue until the convergence criteria are 15 

satisfied.  16 

INSERT FIGURE 4 17 

The flowchart of the SFL is depicted in Figure 5. An initial population of "𝐹" frogs is generated 18 

in a S-dimensional search space and the dimension of the problem equals to the number of the 19 

decision variables (Elbeltagi et al., 2005). A frog 𝑖 is represented as 𝑋𝑖 = {𝑋𝑖1, 𝑋𝑖2, … … . . 𝑋𝑖𝑆}. 20 

The entire population is divided into "𝑀" groups of “memeplexes” where each memeplex 21 

consists of "𝑁” frogs i.e., 𝐹 = 𝑀 × 𝑁. The frogs are arranged in a descending order based on the 22 

fitness function where the first frog goes to the first memeplex, the second frog goes to the 23 
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second memeplex, the 𝑀th frog goes to the 𝑀th memeplex, and the 𝑀 + 1 frog goes to the first 1 

memeplex and so on. 2 

The positions with the best and the worst fitness functions are identified which are: 𝑋𝑏, and 𝑋𝑤, 3 

respectively. The frog with the global best fitness function is denoted as 𝑋𝑔. Then, a process 4 

(frog leaping rule) is applied to improve the position of the frog of the lowest fitness function 5 

only in each memeplex similar to the PSO algorithm as shown in Equations (19), and (20).  6 

𝐷𝑖 = 𝑅𝑎𝑛𝑑 × (𝑋𝑏 − 𝑋𝑤)                                                                                                                           (19)                                                                                                                       7 

𝑋𝑛𝑒𝑤 = 𝑋𝑤 + 𝐷𝑖,-𝐷𝑚𝑎𝑥<=𝐷𝑖<=𝐷𝑚𝑎𝑥                                                                                         (20) 8 

, where 9 

𝑅𝑎𝑛𝑑 represents a random number between 0 and 1. 𝐷𝑖 represents the change in the frog’s 10 

position. 𝐷𝑚𝑎𝑥 represents the maximum allowable change in the frog’s position. 𝑋𝑤 represents 11 

the current position of the frog. 𝑋𝑛𝑒𝑤 denotes the new updated position of the frog. 𝐼 represents 12 

the number of iterations within each memeplex. If the frog leaping rule generates a better 13 

solution, consequently the better solution replaces the worst frog. Otherwise, Equations (19) and 14 

(20) are repeated to produce a better solution but the global best solution replaces the best 15 

solution in the memeplex. If no improvement can be achieved, a new solution replaces the worst 16 

solution randomly.  17 

The SFL performs the independent local search within each memeplex for a predefined number 18 

of memetic evolutionary steps. After a predefined number of iterations, global shuffling occurs 19 

which allow the frogs among the memeplexes to exchange the information (Venkatesan and 20 

Sanavullah 2013). The population is then ranked in a descending order, and the frog of the global 21 

best fitness is updated and the process continues until the convergence criteria are satisfied, i.e., 22 
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until reaching maximum number of iterations. A code is written in Matlab in order to perform 1 

the multi-objective shuffled frog-leaping optimization using Matlab R2013a. 2 

INSERT FIGURE 5 3 

3.3.1.4 Hypervolume Indicator  4 

There are several metrics that can be used to compare between the multi-objective optimization 5 

algorithms such as general distance, inverted generational distance, epsilon indicator, and 6 

hypervolume indicator. Hypervolume indicator is the most common performance metric and it is 7 

also known as S-metric, hyper-area or Lebesgue measure (Riquelme et al., 2015). The 8 

hypervolume indicator is an effective unary approach that can be used to evaluate the 9 

performance of the multi-objective optimization algorithms by measuring the quality of the 10 

Pareto optimal fronts. An illustration of the hypervolume is shown in Figure 6. The hypervolume 11 

indicator calculates the size of the region of the objective space that is covered by a set of Pareto 12 

optimal solutions (non-dominated or non-inferior solutions). The hypervolume indicator is the 13 

only performance metric that is capable of considering three main aspects which are: diversity, 14 

accuracy and cardinality (Riquelme et al., 2015). The hypervolume indicator can be calculated 15 

using the following Equation (Nebro et al., 2013). Cardinality refers to the number of solutions 16 

exist in the Pareto front, whereas a large number of solutions is more preferred. Accuracy refers 17 

to how close the generated solutions to the true Pareto front. Diversity refers to the relative 18 

distances, coverage and spread of the generated optimum solutions in the search space.      19 

𝐼𝐻𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒 (⋃ 𝑣𝑠

|𝑄|

𝑠=1

)                                                                                                                           (21) 20 

, where 21 
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𝐼𝐻𝑉 denotes the hypervolume indicator. 𝑣𝑠 represents the hypercube of non-dominated solution 𝑠. 1 

𝑄 represents the set of the Pareto frontier.  2 

INSERT FIGURE 6 3 

A reference point needs to be identified in order to calculate the hypervolume indicator. The 4 

reference point is the point associated with the worst objective function values (nadir point) 5 

(Pourbahman and Hamzeh, 2013). A higher Hypervolume indicator indicates that there is a large 6 

distance between the Pareto frontier and the reference point (worst solution). Accordingly, the 7 

evolutionary algorithm of the highest hypervolume indicator is the optimization algorithm with 8 

the best Pareto frontier, i.e., more space is dominated and a better quality of the solutions. The 9 

hypervolume indicator describes the closeness of the solutions to the Pareto optimal set. 10 

Moreover, it measures the spread of the solutions over the objective space (Fu et al., 2012).  11 

3.3.1.5 Inverted Generational Distance 12 

Inverted generational distance (IGD) is a quality indicator that can be used to compare between 13 

the evolutionary algorithms in terms of diversity and convergence where this measure was 14 

introduced by Czyzak and Jaszkiewicz in 1998 (Ishibuchi et al, 2014). The IGD utilizes the true 15 

Pareto front as a reference point, whereas it measures the Euclidean distance between the 16 

elements of the true Pareto front and the approximate Pareto front (Mashwani and Salhi, 2016). 17 

The smaller the inverted generational distance, the performance of the optimization algorithm is 18 

better in terms of convergence to the Pareto optimal solutions as well as the diversity of the 19 

generated solutions. An illustration of the inverted generational distance is depicted in Figure 7. 20 

The inverted generational distance can be calculated using Equation (22).  21 

INSERT FIGURE 7 22 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hisao%20Ishibuchi.QT.&newsearch=true
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𝐼𝐺𝐷 =  
∑ 𝑑(𝑣, 𝐴)𝑣𝜖𝑝∗

|𝑃∗|
                                                                                                                               (22) 1 

, where 2 

𝐼𝐺𝐷 represents the inverted generational distance whereas it can be defined as the average 3 

distance from 𝑃∗ to 𝐴. 𝑑(𝑣, 𝐴) indicates the minimum Euclidean distance between 𝑣 and the 4 

points of 𝐴. 𝑃∗denotes a set of uniformly distributed points along the true Pareto front. 𝐴 5 

represents set of non-dominated solutions obtained by the optimization algorithm (an 6 

approximate of the Pareto front). In order to obtain a low IGD, A must be close to 𝑃∗. An equal 7 

population size of 250 is used in order to provide equal basis of comparison between the three 8 

evolutionary algorithms as well as same number of iterations.  9 

3.4 Decision-Making Module 10 

The objective of the decision making is to calculate the standardized thresholds of the GPR 11 

based on the output from the multi-objective optimization module, i.e., to select the best solution 12 

among the set of the Pareto optimal solutions with respect to the relevant attributes. The selection 13 

of a solution among the set of finite Pareto optimal solutions is usually called a “posterior” 14 

approach. The Pareto front consists of numerous optimal solutions, which are preferred based on 15 

the decision-making requirements. Usually, multi-criteria decision-making is employed to select 16 

the best solution among the set of Pareto optimal solutions. The hybrid optimization-decision 17 

making model is shown in Figure 8. The proposed model considers a group of multi-criteria 18 

decision-making techniques that are different in nature in order to obtain a more reliable and 19 

comprehensive solution.  20 

INSERT FIGURE 8 21 
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3.4.1 Multi-Criteria Decision-Making  1 

Multi-criteria decision-making methods are a group of methods that allow aggregation and 2 

consideration of different attributes in order to rank alternatives and choose the best alternative 3 

(Mulliner et al. 2013). The proposed model performs multi-criteria decision-making techniques 4 

to select the most feasible solution based on the results obtained from the multi-objective 5 

optimization module. Shannon entropy is employed to compute the weights of the attributes and 6 

five different decision-making techniques are used in this research to rank the alternatives. The 7 

proposed model utilizes five multi-criteria decision-making techniques which are: 1) WSM, 2) 8 

COPRAS, 3) VIKOR, 4) GRA, and 5) TOPSIS. 9 

3.4.1.1 Shannon Entropy 10 

As mentioned before, the optimum solutions are obtained based on a multi-objective 11 

optimization problem. The four objective functions are treated as the attributes in the decision-12 

making module. The weights of the attributes are calculated based on the Shannon entropy 13 

method where the weights of the attributes are calculated based on the degree of index dispersion 14 

(Akyene et al. 2012). Shannon entropy is based on information theory where it assigns a smaller 15 

weight to the attribute if this attribute has similar values across the alternatives, i.e., if the 16 

measures of performance of the alternatives of a given attribute are relatively equal, therefore 17 

this attribute is considered as relatively unimportant by the decision maker.   18 

The first step is to calculate the Weight (𝑃𝑖𝑗) which is calculated using Equation (23). 19 

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

     (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛)                                                                                      (23) 20 

, where 21 
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𝑃𝑖𝑗 represents the weight of the 𝑖 − 𝑡ℎ alternative with respect to 𝑗 − 𝑡ℎ attribute. xij represents 1 

the measure of performance of the 𝑖 − 𝑡ℎ  alternative with respect to 𝑗 − 𝑡ℎ attribute. The terms 2 

𝑚 and 𝑛 indicate the number of alternatives and number of attributes, respectively.  3 

The second step is to calculate the Entropy value and it is calculated using Equation (24). 4 

𝑒𝑗 =   −𝑘 ∗ ∑ 𝑃𝑖𝑗
𝑚
𝑖=1 ∗  𝑙𝑛𝑃𝑖𝑗   (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛)                                                                 (24) 5 

, where 6 

𝑘 =
1

𝑙𝑛 (𝑚)
                                                                                                                                        7 

, where 8 

 𝑒𝑗 refers to the Entropy value of the 𝑗 − 𝑡ℎ attribute.  9 

The third step is to calculate the variation coefficient for different attributes and it is calculated 10 

using Equation (25).  11 

𝑑𝑗  = 1 − 𝑒𝑗                                                                                                                                   (25) 12 

Finally, the weights of the attributes can be calculated as follows.  13 

𝑤𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

                                                                                                                                                 (26)  14 

3.4.1.2 Weighed Sum Model 15 

Weighed sum model is based on calculating a preference index for each alternative, whereas the 16 

best alternative is the one with the highest preference in the maximization case. On the other, the 17 

best alternative has the lowest preference in the minimization case. The preference of each 18 

alternative can be calculated using Equation (27) 19 
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𝑃𝑖 =  ∑ 𝑓𝑖𝑗

𝑛

𝑗=1

∗  𝑤𝑗      (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛)                                                                                        (27) 1 

, where 2 

𝑃𝑖 represents the preference of each alternative. 𝑓𝑖𝑗 represents the measure of performance in the 3 

normalized matrix. 𝑤𝑗 represents the weight of each criteria. 𝑚 and 𝑛 represent the number of 4 

alternatives and the number of criteria, respectively.  5 

3.4.1.3 COPRAS 6 

COPRAS is defined as complex proportional assessment. COPRAS method assumes direct, 7 

proportional dependence of significance and priority of investigated alternatives in a system 8 

containing attributes. The preference of alternative is calculated taking into account the positive 9 

and negative characteristics of alternatives. COPRAS method calculates the utility degree of 10 

each alternative as per below procedure (Mulliner et al., 2013). The normalization process can be 11 

performed using Equation (28).  12 

𝑑𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

𝑞𝑗                                                                                                                                          (28) 13 

, where 14 

𝑥𝑖𝑗 is the value that corresponds to the measure of performance of the 𝑖 − 𝑡ℎ alternative and 𝑗 −15 

𝑡ℎ attribute and 𝑞𝑗 represents the weight of each attribute. 𝑑𝑖𝑗 represents dimensionless weighted 16 

value. The weights of attributes can be calculated using Equation (29). 17 

𝑞𝑗 =   ∑ 𝑑𝑖𝑗

𝑚

𝑖=1

                                                                                                                                                (29) 18 
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The alternatives are distinguished by beneficial (maximizing) attributes and cost (minimizing) 1 

attributes. The sum of weighted normalized values for both the beneficial and cost attributes can 2 

be obtained using Equations (30) and (31), respectively.   3 

𝑠 +𝑖=   ∑ 𝑑𝑖𝑗

𝑛

𝑗=1

                                                                                                                                             (30) 4 

𝑠 −𝑖=   ∑ 𝑑𝑖𝑗                                                                                                                                               (31)

𝑛

𝑗=1

 5 

, where 6 

𝑠 +𝑖 refers to sum of elements in the weighted normalized matrix that corresponds to beneficial 7 

attributes. On the other hand, 𝑠 −𝑖 refers to sum of elements in the weighted normalized matrix 8 

that corresponds to cost attributes. The relative significance (𝑄𝑖) is calculated for each alternative 9 

using Equation (32).  10 

𝑄𝑖 = 𝑠 +𝑖+
𝑠 −𝑚𝑖𝑛∗ ∑ 𝑠 −𝑖

𝑚
𝑖=1

𝑠 −𝑖∗ ∑ (𝑠 −𝑚𝑖𝑛/𝑠 −𝑖)
𝑚
𝑖=1

  = 𝑠 +𝑖+
∑ 𝑠 −𝑖

𝑚
𝑖=1

𝑠 −𝑖∗ ∑ (1/𝑠 −𝑖)
𝑚
𝑖=1

                                          (32) 11 

The utility degree of each alternative is calculated and the best alternative is the alternative with 12 

the highest utility degree. The utility degree for each alternative is computed using Equation 13 

(33).  14 

𝑁𝑗 =
𝑄𝑖

𝑄𝑚𝑎𝑥
∗ 100%                                                                                                                                     (33) 15 

, where 16 

𝑁𝑗 indicates the utility degree of each alterative.  17 
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3.4.1.4 VIKOR 1 

The Serbian name for VIKOR technique is “Vlse Kriterijumska Optimizacija I Resenje” which 2 

means multi criteria optimization and compromise solution. VIKOR is divided into five steps 3 

(Cristóbal, 2011): 4 

The first step is to determine the best and worst values for all criteria which depends whether the 5 

attributes are cost or beneficial. The best and worst values for the beneficial and cost attributes 6 

can be calculated using Equations (34) and (35), respectively. 7 

𝑓𝑗 ∗= max 𝑓𝑖𝑗 ,  𝑓𝑗_ = min 𝑓𝑖𝑗  |𝑗 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎                                               (34) 8 

𝑓𝑗 ∗= min 𝑓𝑖𝑗 ,  𝑓𝑗_ = max 𝑓𝑖𝑗  |𝑗 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎                                                      (35) 9 

The second step is to calculate 𝑆𝑖, 𝑅𝑖. The terms 𝑆𝑖, 𝑅𝑖 represent utility measure and regret 10 

measure, respectively. The utility measure and regret measure are computed using Equations 11 

(36) and (37), respectively. 12 

𝑆𝑖 = ∑(𝑤𝑗 ∗

𝑛

𝑗=1

𝑓𝑗 ∗ −𝑓𝑖𝑗

𝑓𝑗 ∗ −𝑓𝑗 −
 )                                                                                                                         (36) 13 

𝑅𝑖 = 𝑚𝑎𝑥𝑗(𝑤𝑗 ∗
𝑓𝑗 ∗ −𝑓𝑖𝑗

𝑓𝑗 ∗ −𝑓𝑗 −
 )                                                                                                                    (37) 14 

The third step is to calculate 𝑄𝑖. 𝑄𝑖 is calculated using Equation (38). Ʋ represents the weight of 15 

the decision making strategy or maximum group utility. The term (1 − Ʋ) represents the weight 16 

of   the individual regret. The value Ʋ is usually taken 0.5 and its value is between 0 and 1. The 17 

overall ranking index (𝑄𝑖) can be computed using Equation (38). 18 

𝑄𝑖 = Ʋ ∗
𝑆𝑖 − 𝑆 ∗

𝑆_ − 𝑆 ∗
 + (1 − Ʋ) ∗

𝑅𝑖 − 𝑅 ∗

𝑅_ − 𝑅 ∗
                                                                                              (38) 19 
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, where 1 

𝑆 ∗= 𝑚𝑖𝑛𝑖 𝑆𝑖,  𝑆_ = 𝑚𝑎𝑥𝑖 𝑆𝑖                         2 

𝑅 ∗= 𝑚𝑖𝑛𝑖 𝑅𝑖,  𝑅_ = 𝑚𝑎𝑥𝑖 𝑅𝑖                        3 

The fourth step is to sort alternatives by the value of 𝑆, 𝑅 and 𝑄 in decreasing order. The fifth 4 

step is to propose as compromise solution Alternative (A1) which is best ranked by 𝑄 and it has 5 

the minimum 𝑄 if the following two conditions are satisfied: 6 

1. Acceptable advantage where 𝑄(A2)- 𝑄(A1)>= 𝐷𝑄 where 𝐷𝑄 = 1/(𝑛 − 1) and A2 is the 7 

second alternative ranked by 𝑄 and 𝑛 represents the number of alternatives. 8 

2. Acceptable stability in decision making where alternative (A1) must be best ranked by 𝑆 9 

and/or 𝑅. The compromise solution should be stable within decision making process which 10 

could be the strategy of maximum of group utility when Ʋ > 0.5 or by consensus when Ʋ 11 

=0.5 or by veto when Ʋ <0.5. 12 

If one of the conditions is not satisfied, then a set of compromise solutions are proposed which 13 

are: 14 

1. Alternative A1, A2 if only the second condition is not satisfied. 15 

2. Alternatives A1, A2, A3, ............... AM, if condition 1 is not satisfied. AM is determined by the 16 

relation 𝑄(AM)- 𝑄(A1) < 𝐷𝑄 for maximum M. The positions of these alternatives are "in 17 

closeness". 18 

3.4.1.5 Grey Relational Analysis 19 

The process of grey relational analysis (GRA) is divided into four main steps which are (Kuo et 20 

al., 2008): 21 
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Grey Relational generating is normalization process for performance attributes. Equation (39) is 1 

used to normalize beneficial attributes (the higher value the better option). Equation (40) is used 2 

to normalize non-beneficial attributes (the lower value the better option). Equation (41) is used to 3 

normalize attributes where the closer to the desired value (𝑥𝑗 ∗) the better option. 4 

𝑦𝑖𝑗5 

=
𝑥𝑖𝑗 − 𝑚𝑖𝑛 {𝑥𝑖𝑗, 𝑖 = 1,2, … … … 𝑚}

𝑚𝑎𝑥{𝑥𝑖𝑗 , 𝑖 = 1,2, … … … 𝑚} − 𝑚𝑖𝑛 {𝑥𝑖𝑗 , 𝑖 = 1,2, … … … 𝑚}
                                                   (39) 6 

𝑦𝑖𝑗7 

=
𝑚𝑎𝑥{𝑥𝑖𝑗 , 𝑖 = 1,2, … … … 𝑚} − 𝑥𝑖𝑗

𝑚𝑎𝑥{𝑥𝑖𝑗 , 𝑖 = 1,2, … … … 𝑚} − 𝑚𝑖𝑛 {𝑥𝑖𝑗 , 𝑖 = 1,2, … … … 𝑚}
                                                   (40) 8 

𝑦𝑖𝑗9 

=
|𝑥𝑖𝑗 − 𝑥𝑗 ∗ |

𝑚𝑎𝑥{𝑥𝑖𝑗 , 𝑖 = 1,2, … … … 𝑚} − 𝑚𝑖𝑛 {𝑥𝑖𝑗 , 𝑖 = 1,2, … … … 𝑚}
                                                   (41) 10 

Reference sequence generation is the second step where the performance values are defined 11 

within the range [0, 1]. For the cost category, it is the lowest value while in the benefit category, 12 

it is the highest value. Grey Relational coefficient generation is the third step. The aim of this 13 

step is to determine whose compatibility sequence is closest to the reference sequence. Grey 14 

relational coefficient is calculated using Equation (42). 15 

𝛾(𝑦0𝑗, 𝑦𝑖𝑗) =
∆𝑚𝑖𝑛 + 𝜉∆𝑚𝑎𝑥

∆𝑖𝑗 + 𝜉∆𝑚𝑎𝑥
                                                                                                                    (42) 16 

, where 17 

∆𝑖𝑗= |𝑦0𝑗 − 𝑦𝑖𝑗|      18 

∆𝑚𝑖𝑛= 𝑚𝑖𝑛 {∆𝑖𝑗, 𝑖 = 1,2, … … … 𝑚; 𝑗 = 1,2, … … … 𝑛}         19 
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∆𝑚𝑎𝑥= 𝑚𝑎𝑥 {∆𝑖𝑗, 𝑖 = 1,2, … … … 𝑚; 𝑗 = 1,2, … … … 𝑛}        1 

𝜉 is the distinguishing coefficient and it is within the range [0, 1]. 2 

The grey relational grade is calculated using Equation (43). The best alternative is the alternative 3 

with the highest relational grade. 4 

𝑟(𝑦0, 𝑦𝑖) =    ∑ 𝑤𝑗 ∗

𝑛

𝑗=1

𝛾(𝑦0𝑗, 𝑦𝑖𝑗)                                                                                                             (43) 5 

3.4.1.6 TOPSIS 6 

 TOPSIS stands for Technique for Order Preference by Similarity to Ideal Solution. TOPSIS 7 

utilizes the Euclidean distances to compare between the alternatives using the positive and 8 

negative ideal solutions as a reference. TOPSIS decision making technique is divided into five 9 

main steps (Dragia et al., 2013): 10 

The decision matrix is normalized where the purpose of this step is to convert the performance 11 

attributes into non-dimensional ones. The normalized decision matrix is computed using 12 

Equation (44).  13 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥²𝑖𝑗
𝑚
𝑖=1

                                                                                                                                             (44) 14 

, where 15 

𝑥𝑖𝑗 represents the measure of performance of the 𝑖 − 𝑡ℎ  alternative with respect to 𝑗 − 𝑡ℎ 16 

attribute. 17 

The weighted normalized matrix is obtained using Equation (45). 18 

𝑣𝑖𝑗 = 𝑟𝑖𝑗 ∗  𝑤𝑗                                                                                                                                                (45) 19 
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, where 1 

𝑤𝑗 represents the weight of the 𝑗 − 𝑡ℎ attribute.  2 

The ideal and negative ideal solutions are determined. 𝐴 ∗ indicates the most preferable 3 

alternative or ideal solution. On the contrary, 𝐴 − indicates the least preferable alternative or 4 

negative ideal solution. For benefit criteria, decision maker wants to obtain the maximum value 5 

among all alternatives. On the other hand, the decision maker wants to obtain minimum value 6 

among all alternatives for cost criteria. The ideal solution and negative ideal solution can be 7 

computed using Equations (46) and (47), respectively.  8 

𝐴 ∗= {(𝑚𝑎𝑥 𝑣𝑖𝑗|𝑗 Є 𝐽 ), (𝑚𝑖𝑛 𝑣𝑖𝑗|𝑗 Є 𝐽′), 𝑖 = 1,2,3, … … … . 𝑀} = {𝑣 ∗1, 𝑣 ∗2 … … … . . 𝑣 ∗𝑁}   (46) 9 

𝐴−= {(𝑚𝑖𝑛 𝑣𝑖𝑗|𝑗 Є 𝐽 ), (𝑚𝑎𝑥 𝑣𝑖𝑗|𝑗 Є 𝐽′), 𝑖 = 1,2,3, … … … . 𝑀} = {𝑣 −1, 𝑣 −2 … … … . . 𝑣 −𝑁}(47) 10 

Such that; 11 

𝐽 = {, 𝑗 = 1,2,3, … … … . 𝑁|𝑗 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎}        12 

𝐽′ = {, 𝑗 = 1,2,3, … … … . 𝑁|𝑗 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎}             13 

, where 14 

 𝑀 represents the number of alternatives. 𝑁 represents the number of attributes. 15 

The fourth step is to calculate the separation distance of each alternative to the ideal and negative 16 

ideal solutions. 𝑠 ∗𝑖 represents the separation distance of each alternative in the Euclidean way 17 

from the ideal solution. On the contrary, 𝑠 −𝑖 represents the separation distance of each 18 

alternative in the Euclidean way from the negative ideal solution.  The separation distance to the 19 
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ideal solution and the separation distance to the negative ideal solution can be computed using 1 

Equations (48) and (49), respectively.  2 

𝑠 ∗𝑖= (∑ (𝑣𝑖𝑗 − 𝑣 ∗𝑗))
1

2                                                                                                                        (48)𝑛
𝑗=1            3 

𝑠 −𝑖= (∑ (𝑣𝑖𝑗 − 𝑣 −𝑗))
1

2                                                                                                                      (49)𝑛
𝑗=1          4 

The fifth step is to calculate the relative closeness of an alternative 𝐴𝑖 to the ideal solution A ∗. 5 

The relative closeness is calculated using Equation (50). when 𝑐 ∗𝑖 is close, this means that the 6 

solution is closer to the ideal solution. Alternatives are ranked in descending order.  7 

𝑐 ∗𝑖=
𝑠 −𝑖

𝑠 ∗𝑖+ 𝑠 −𝑖
                                                                                                                                          (50) 8 

3.4.2 Group Decision-Making  9 

Each one of the multi-criteria decision-making techniques provides a distinct ranking for the 10 

candidate solutions. Thus, group decision-making is performed to aggregate the results using 11 

Equation (51). The group decision-making helps the decision makers to extract the best 12 

compromise solution. Group decision-making is performed based on the genetic algorithm by 13 

minimizing the foot rule distances obtained from the five multi-criteria decision-making 14 

techniques and the designated ranking for the different candidate solutions. This methodology 15 

provides the most feasible ranking that better simulates the ranking of the decision-making 16 

techniques. The alternative with the first ranking is the alternative that represents the thresholds 17 

of the GPR scale.  18 

𝐹 = 𝑚𝑖𝑛 ∑ ∑(||𝑅𝑖𝑡 − 𝑅||)

𝐼

𝑖=1

𝑇

𝑡=1

                                                                                                                  (51) 19 

, where 20 
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𝑅𝑖𝑡 represents the ranking obtained for the 𝑖 − 𝑡ℎ alternative by the 𝑡 − 𝑡ℎ multi-criteria decision 1 

making technique. 𝑅 represents the designated ranking for the alternatives. 𝐼 and 𝑇 indicate 2 

number of alternatives and multi-criteria decision making techniques, respectively.  3 

4 MODEL IMPLEMENTATION 4 

The proposed methodology is implemented for four bridge decks in North America: three of 5 

them are in Quebec, Canada, and one of them is in New Jersey, United States. The four bridges 6 

are denoted as bridge “A”, bridge “B”, bridge “C”, and bridge “D”. The signals were collected 7 

using a GSSI 1.5GHZ antenna. All the calculations and optimization algorithms took place on a 8 

2.6 GHZ Intel laptop. GSSI RADAN7 software is used to pick the amplitude values of the top 9 

reinforcing rebars as shown in Figure 9.  10 

INSERT FIGURE 9 11 

RapidMiner 7.5 is one of the platforms that are used to perform the clustering algorithms. The 12 

clustering model is divided into eight main sub modules where the clustering algorithm is 13 

performed using the” clustering” submodule (see Figure 10). The number of optimization steps is 14 

assumed 100 for all the clustering algorithms. The clusters obtained from the expectation 15 

maximization clustering algorithm are shown in Figure 11. “C” label represents the amplitude 16 

values of bridge “A”. Cluster 0 represents the “good” category. Cluster 1 represents the 17 

“medium” category. Cluster 2 represents the “very severe” category. Cluster 3 represents the 18 

“severe” category. Thresholds obtained from the expectation maximization clustering algorithm 19 

of bridge “A” are -25.538, -10.964, and -2.767, respectively.  20 

INSERT FIGURE 10 21 

INSERT FIGURE 11 22 
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Fuzzy C-means is one of the used clustering algorithms in the proposed methodology. The 1 

fuzzifier constant is assumed four, and the number of iterations is assumed 100. The degrees of 2 

membership of a sample of the amplitude values are shown in Table 1. Each data point is 3 

assigned to the cluster that has the maximum degree of membership.  A sample of the thresholds 4 

obtained from some of the clustering algorithms is shown in Table 2. As shown in Table 2, the 5 

thresholds obtained from the clustering algorithms are different within the same bridge, e.g., 6 

threshold 1is -17.158 decibels for the kernel k-means in Bridge “C” while threshold 1 is -14.058 7 

decibels for the expectation maximization in Bridge “C”. The thresholds obtained from the same 8 

clustering algorithm of two bridges are different, e.g., threshold 1 obtained from the fuzzy c-9 

means in Bridge “C” is -10.214 decibels while threshold 1 of the fuzzy c-means of bridge “A” is 10 

-15.706 decibels.   11 

INSERT TABLE 1 12 

INSERT TABLE 2 13 

Due to the difference in the thresholds obtained from the clustering algorithms, the multi-14 

objective optimization module is performed based on the four objective functions defined in the 15 

“Model Development” section. In order to provide a fair comparison between the optimization 16 

algorithms, 20 independent optimization runs are carried out with different initializations for the 17 

multi-objective shuffled frog leaping algorithm, multi-objective particle swarm algorithm and 18 

multi-objective genetic algorithm. The number of iterations is assumed 200, and the population 19 

size is assumed 250 for all the evolutionary algorithms to provide an equal basis of comparison. 20 

For the genetic algorithm, tournament selection is the parent selection strategy. Two-point 21 

crossover is utilized, and the crossover rate is assumed 0.8. Mutation rate is assumed 0.1. For the 22 
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particle swarm optimization, the cognitive learning and social parameters are assumed two. The 1 

inertia weight is assumed 0.5.  2 

For the shuffled frog leaping algorithm, the number of memeplexes is assumed 25, i.e., 10 frogs 3 

per each memeplex. The convergence of the SFL is shown in Figure 12. Figure 12 illustrates the 4 

behavior of the clustering index objective function through a number of iterations. The objective 5 

function begins to stabilize starting from the iteration 180. A sample of the optimum solutions 6 

obtained from the SFL is shown in Table 3. SFL generated very promising results when 7 

compared to the genetic algorithm, and the particle swarm optimization algorithm.  8 

INSERT FIGURE 12 9 

INSERT TABLE 3 10 

A sample of the Pareto frontier points for one of the runs is shown in Figure 13 and Figure 14. 11 

Twenty seven Pareto frontier points are obtained from the three evolutionary algorithms, i.e., 12 12 

points from the shuffled frog leaping algorithm, 10 points from the genetic algorithm, and 5 13 

points from the particle swarm algorithm. The black bubbles, blue bubbles, and red bubbles 14 

represent the Pareto frontier points of the shuffled frog leaping algorithm, genetic algorithm, and 15 

particle swarm algorithm, respectively. As shown in Figures 13 and 14, SFL generates the most 16 

feasible optimal solutions. However, a further detailed analysis is conducted to compare between 17 

the optimization algorithms  18 

INSERT FIGURE 13    19 

INSERT FIGURE 14      20 
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A comparison between shuffled frog-leaping, particle swarm algorithm and genetic algorithm 1 

based on the output of the 20 runs is illustrated in Table 4. The numbers mentioned herein 2 

represent the average values. Shuffled frog-leaping algorithm achieved the lowest objective 3 

function value regarding objective functions 1, 2 and 3 while the genetic algorithm had the 4 

lowest objective function value regarding the objective function 4. The worst objective function 5 

value of shuffled frog-leaping algorithm is better than other evolutionary algorithms for the first 6 

three objective functions. However, genetic algorithm has a better worst objective function value 7 

for the fourth objective function. The mean value obtained employing SFL is better than the 8 

other two algorithms regarding the first three objective functions while GA achieved the best 9 

mean value for the fourth objective function. SFL has the lowest standard deviation in terms of 10 

the four objective functions. A lower standard deviation indicates higher stability of the 11 

algorithm while a higher mean value indicates more accuracy of the optimization algorithm.  12 

GA has the lowest coefficient of variation for the first objective function while SFL has the 13 

lowest coefficient of variation for the remaining three objective functions. SFL has the largest 14 

hypervolume indicator (84.87%) followed by particle swarm optimization algorithm and finally 15 

the genetic algorithm. In terms of the inverted generational distance, the SFL has the least 16 

inverted generational distance (0.0034) when compared to other algorithms. For the processing 17 

time, the average processing times of the shuffled frog leaping algorithm, particle swarm 18 

algorithm and genetic algorithm are 131.97 minutes, 97.048 minutes and 88.143 minutes. Thus, 19 

SFL has the longest average computational time while genetic algorithm has the shortest average 20 

computational time.  21 

Two-tailed Student’s t-tests were performed to evaluate the significance level of the optimal 22 

solutions, whereas the significance level (α) is set to be 0.05. The paired Two-tailed Student’s t-23 
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tests for the three investigated optimization algorithms are depicted in Table 5. The performed 1 

student’s t-tests examine the null hypothesis (𝐻0), which is that there is no significant difference 2 

between the optimal solutions obtained from each pair of meta-heuristic optimization algorithms. 3 

On the other hand, the alternative hypothesis (𝐻1) assumes that there is a significant difference 4 

between the optimal solutions obtained from each pair of the of meta-heuristic optimization 5 

algorithms. If the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 is less than the significance level, then the null hypothesis is 6 

rejected in favor of the alternative hypothesis. Nevertheless, if the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 is more than the 7 

significance level, thus the null hypothesis is accepted. As shown in Table 5, the 𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠 of 8 

the pairs (shuffled frog leaping algorithm, particle swarm algorithm), (shuffled frog leaping 9 

algorithm, genetic algorithm) and (particle swarm algorithm, genetic algorithm) are less than 10 

0.05, which means that the null hypothesis (𝐻0) is false. Thus, there is a statistical significant 11 

difference between the optimal solutions obtained from the optimization algorithms. The results 12 

also illustrates that the performance of the SFL is statistically significantly better than the PSO 13 

and the performance of the PSO is statistically significantly better than the GA, and the optimal 14 

solutions of the SFL are very statistically significantly better than the GA. Based on the previous 15 

statistics, SFL significantly outperformed PSO and GA.  16 

INSERT TABLE 4 17 

INSERT TABLE 5 18 

The decision-making module is implemented to select the best solution among the Pareto frontier 19 

points obtained from the multi-objective optimization module. There are four attributes which 20 

are: 𝑅𝑀𝑆𝐸1, 𝑅𝑀𝑆𝐸2, 𝑅𝑀𝑆𝐸3, and 𝐶𝐿𝑈 whereas the weights of the attributes are calculated 21 

based on the Shannon entropy method. The weights of the four attributes (𝑅𝑀𝑆𝐸1, 𝑅𝑀𝑆𝐸2, 22 
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𝑅𝑀𝑆𝐸3, and 𝐶𝐿𝑈) are 22.11%, 27.23%, 34.83%, and 15.82%, respectively. The calculations of 1 

the weights of the attributes are illustrated in Table 6. A sample of the solution ranking obtained 2 

from the TOPSIS is depicted in Table 7. Each one of the decision-making provided a distinct 3 

ranking for the solutions. For instance, TOPSIS selected the solution [-16.7619, -8.8161, -4 

2.9744] as the best solution. On the other hand, COPRAS selected the solution [-16.729, -8.8339, 5 

-2.9727] as the best solution. Thus, group decision-making is essential to aggregate the rankings 6 

obtained from the several multi-criteria decision-making techniques based on a single objective 7 

optimization problem (Equation (51)). Genetic algorithm is implemented where the population 8 

size and the number of generations are assumed 100. The crossover rate, and the mutation rate 9 

are assumed 0.8, and 0.1, respectively. Based on the decision-making module, the standardized 10 

thresholds are: -16.7619, -8.8161, and -2.9744 decibels. 11 

INSERT TABLE 6 12 

INSERT TABLE 7 13 

A corrosion map is developed for a bridge that is located on the Chemin Saint-Grégoire in 14 

municipality Les Cèdres that overpasses Autoroute 20, Quebec, Canada. The bridge was 15 

constructed in 1965 with a total length of 212 feet, and the width of the bridge decks is 42 feet. 16 

As shown in Figure 15, the area percentages of the “good”, “medium”, “severe”, and “very 17 

severe” categories are: 45.78%, 34.26%, 12.98%, and 6.98%, respectively. The corrosion index 18 

(𝐶𝐼) is 77.6% based on Equation (1) which indicates that the bridge deck is in the “medium” 19 

category.  20 

INSERT FIGURE 15 21 
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5 CONCLUSION 1 

Bridge Management Systems play a very important role in managing large transportation 2 

networks where condition assessment is considered as one of the pillars of BMSs. Ground 3 

penetrating radar is one of the non-destructive techniques that are utilized to evaluate the 4 

corrosion of steel reinforcement in bridge decks. However, the absence of standardized 5 

thresholds for the amplitude values is one of the drawbacks of utilizing the ground penetrating 6 

radar. In this paper, a hybrid model is implemented in order to calculate the standardized 7 

thresholds for the amplitude values for any number of bridge condition categories. The hybrid 8 

model is divided into three main modules which are: 1) clustering module. 2) optimization 9 

module, and 3) decision-making module. The clustering module incorporates a mixture of soft 10 

and hard clustering algorithms such as K-means, fast K-means, kernel K-means, K-medoids, 11 

expectation maximization, fuzzy C-means, X-means, and agglomerative clustering. The 12 

optimization module calculates the standardized thresholds based on four objective functions that 13 

combine both the local search and the global search. The optimization module utilizes three 14 

evolutionary algorithms which are: genetic algorithm, particle swarm algorithm, and shuffled 15 

frog-algorithm.  16 

A detailed comparison among the three evolutionary algorithms is presented using some 17 

performance metrics such as hypervolume indicator, inverted generational distance, coefficient 18 

of variation, student’s t-test, etc. Decision-making module is used to calculate the most feasible 19 

solution among the optimum solutions obtained from the optimization module. Five multi-20 

criteria decision-making techniques are investigated which are: WSM, COPRAS, VIKOR, GRA, 21 

and TOPSIS. Each one of the multi-criteria decision-making techniques provides a distinct 22 

ranking for the alternative. Consequently, group decision-making is implemented to provide a 23 
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final ranking for the alternatives based on a single-objective optimization function. The 1 

standardized thresholds obtained from the proposed methodology are: -16.7619, -8.8161, and -2 

2.9744 decibels.  3 
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Table 1: Sample of the cluster memberships obtained from the fuzzy C-means algorithm 1 

Data point 
Degree of membership Assigned 

cluster Cluster 0 Cluster 1 Cluster 2 Cluster 3 

-1.422 0.349 0.16 0.403 0.086 Cluster 2 

-2.09 0.42 0.166 0.326 0.086 Cluster 0 

-1.689 0.376 0.164 0.371 0.087 Cluster 0 

-0.839 0.29 0.146 0.481 0.081 Cluster 2 

-1.13 0.32 0.154 0.44 0.084 Cluster 2 

0.318 0.128 0.073 0.754 0.042 Cluster 2 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 



66 

 

Table 2: A sample of the thresholds obtained from some clustering algorithms 1 

Clustering algorithm  Bridge 

number  

Threshold 1  Threshold 2  Threshold 3 

Expectation maximization Bridge” D” -8.101 -3.24 -0.206 

Kernel K-means Bridge “C” -17.158 -12.318 -8.173 

Expectation maximization Bridge “C” -14.058 -6.693 -0.752 

Fuzzy C-means Bridge “C” -10.214 -6.003 -1.699 

K-means Bridge “A” -22.736 -10.505 -2.83 

Expectation maximization Bridge “A” -25.538 -10.946 -2.767 

Fuzzy C-means Bridge “A” -15.706 -6.752 -1.66 

Fuzzy C-means Bridge “B” -13.963 -6.296 -2.701 
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Table 3: Sample of the optimal solutions of the shuffled frog leaping algorithm 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Optimal Solutions (decibels) Objective 

function “1” 
(𝑹𝑴𝑺𝑬𝟏) 

Objective 

function “2” 
(𝑹𝑴𝑺𝑬𝟐) 

Objective 

function “3” 
(𝑹𝑴𝑺𝑬𝟑) 

Objective 

function “4” 
(𝑪𝑳𝑼) 

[-16.6637, -8.7673, -2.9887] 0.5281 0.5306 0.0493 1.6003 

[-16.729, -8.8339, -2.9277] 0.1644 0.1597 0.3885 1.6008 

[-16.7505, -8.882, -2.8774] 0.0446 0.1082 0.6887 1.6001 

[-16.8005, -8.8227, -3.0706] 0.2334 0.2223 0.4068 1.6018 

[-16.7911, -8.8046, -2.9266] 0.1814 0.323 0.3947 1.6001 

[-16.8363, -8.8094, -2.9632] 0.433 0.2962 0.1913 1.6018 

[-16.7611, -8.8676, -2.844] 0.0423 0.0282 0.8545 1.6 

[-16.6637, -8.7673, -2.9887] 0.5281 0.5306 0.0493 1.6003 
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Table 4: Comparison between shuffled frog-leaping, particle swarm algorithm and genetic 1 

algorithm for the twenty runs 2 

Index Objective function Shuffled frog-

leaping 

Particle swarm 

optimization 

Genetic 

algorithm 

Minimum 

Objective function “1” 0.0187 0.0423 65.4994 

Objective function “2” 0.0282 0.8257 0.0044 

Objective function “3” 0.0019 0.3135 1.3756 

Objective function “4” 1.5998 1.5804 0.1321 

Maximum 

Objective function “1” 0.6957 3.0568 127.4886 

Objective function “2” 0.7561 14.5401 10.9924 

Objective function “3” 0.8545 24.6486 49.2263 

Objective function “4” 1.6018 1.6036 1.5843 

Mean 

Objective function “1” 0.2598 1.2496 89.1582 

Objective function “2” 0.3177 7.2220 3.2343 

Objective function “3” 0.3259 8.7193 12.3022 

Objective function “4” 1.6006 1.5907 0.6197 

Standard 

deviation 

Objective function “1” 0.196 1.1312 34.197 

Objective function “2” 0.2312 6.0043 3.5267 

Objective function “3” 0.2755 9.6845 18.1101 

Objective function “4” 0.0008 0.0081 0.4647 

Coefficient of 

variation  

Objective function “1” 0.7546 0.9052 0.3836 

Objective function “2” 0.7280 0.8314 1.0904 

Objective function “3” 0.8453 1.1107 1.4721 

Objective function “4” 0.0005 0.0051 0.7498 

Hypervolume 

indicator (HV) 
……. 84.87% 70.65% 50.58% 

Inverted 

generational 

distance (IGD) 

……. 0.0034 0.011 0.0037 

Computational 

time (minutes) 
 131.97 97.0482 88.143  
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Table 5: Statistical comparison between optimization algorithms based on two-tailed 1 

Student’s t-test 2 

Pair of optimization 

algorithm 
Shuffled frog leaping 

algorithm 

Particle swarm 

algorithm 

Genetic algorithm 

Shuffled frog 

leaping algorithm 
𝐻0 

 (𝑃 − 𝑣𝑎𝑙𝑢𝑒=1) 

𝐻1 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =4.235×10-

5) 

𝐻1 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =2.649×10-

6) 

Particle swarm 

algorithm 

𝐻1 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =4.235×10-

5) 

𝐻0 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =1) 

𝐻1 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =3.994×10-

5) 

Genetic algorithm 
𝐻1 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =2.649×10-

6) 

𝐻1 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =3.994×10-

5) 

𝐻0 

(𝑃 − 𝑣𝑎𝑙𝑢𝑒 =1) 
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Table 6: Entropy values, variation coefficients, and the weights of the attributes 1 

Index 𝑹𝑴𝑺𝑬𝟏 𝑹𝑴𝑺𝑬𝟐 𝑹𝑴𝑺𝑬𝟑 𝑪𝑳𝑼 

Entropy value (𝒆𝒋) 0.476 0.355 0.175 0.625 

variation coefficient (𝒅𝒋) 0.523 0.6447 0.824 0.374 

weights of the attribute (𝒘𝒋) 22.11% 27.23% 34.83% 15.82% 
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Table 7: Sample of the solutions’ ranking obtained from TOPSIS  1 

Solution (decibels) Evolutionary 

algorithm 
𝒔𝒊

∗ 𝒔𝒊
− 𝒄𝒊

∗ Solution 

ranking 

[-16.7619, - 8.8161, -2.9744] SFL 0.03318 0.28816 0.89673 1 

[-16.729, -8.8339, -2.9727] SFL 0.03315 0.28773 0.89669 2 

[-16.705, -8.882, -2.8774] SFL 0.03321 0.287303 0.89636 4 

[-29.2791, -8.5982, -3.5222] GA 0.03397 0.28581 0.89377 17 

[-35.5542, -8.8618, -3.5443] GA 0.0332 0.28798 0.89661 15 

[-29.1454, -8.6766, -5.5362] GA 0.227 0.1491 0.3964 26 

[-17.3076, -6.2511, -2.9412] PSO 0.15622 0.2444 0.61006 24 

[-16.7866, -9.0109, 1.4294] PSO 0.11914 0.206 0.63356 21 

[-16.751, -6.2662, -3.1229] PSO 0.15537 0.2435 0.6105 23 
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