This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Construction Management on 17 Nov 2020 (published online), available at: http://www.tandfonline.com/10.1080/15623599.2020.1847405.

1

2

IoT-based Application for Construction Site Safety Monitoring

William Wong Shiu Chung^a, Salman Tariq^a, Saeed Reza Mohandes^b and Tarek Zayed^a

^a Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong

^b Department of Civil and Environmental Engineering, The Hong Kong University of Science and
 Technology, Hong Kong

6

7 ABSTRACT

8 Hong Kong construction safety has witnessed substantial improvement in the last three decades, however, 9 accidents still occur frequently as more than 4,000 accidents are reported in the year 2017. Against this 10 background, this research, firstly, aims to investigate the effectiveness of safety training for construction 11 personnel in Hong Kong. A questionnaire is designed to explore the efficacy and weaknesses of mandatory 12 basic safety training. The results indicate the inadequate knowledge of the concept of personal protective 13 equipment as the main weakness of the workers. Secondly, to overcome the training weakness, an Internet-14 of-Things (IoT) based innovative safety model is designed to provide real-time monitoring of construction 15 site personnel and environment. The proposed model not only identifies real-time personnel safety 16 problems, i.e. near misses, to reduce the accident rates but also stores the digital data to improve future 17 training and system itself. The proposed model in this research provides a cost-effective solution for optimal 18 construction safety to the stakeholders. A cost comparison analysis suggests that the IoT system can provide 19 1) 78% cost-savings with respect to the traditional manual system and 2) 65% cost-savings with respect to 20 the traditional sensor system.

Keywords: Construction safety; Safety Training; Internet of things; Site Accidents; Hong Kong; Safety
 Management System; IoT

- 23
- 24
- 25
- 26

27 **1. INTRODUCTION**

28 The linkage between the construction industry and economic competitiveness has been well-established 29 through empirical evidence (Dlamini 2012; Giang and Pheng 2010). Governments worldwide have used 30 construction investment as a tool to stabilize the country's economy, further reinforcing the position of the 31 construction industry in the national development policy (Giang and Pheng 2010). In fact, global 32 construction-related spending represents 13% of the global GDP (McKinsey Global Institute 2017). Despite 33 the pivotal role in the economy, it is also a bitter reality that the construction industry is widely considered 34 as one of the hazardous industries due to the high rate of accidents causing injuries, occupational diseases, 35 and even deaths (Zhang et al. 2017). For example, in China, the death toll due to construction accidents 36 averaged above 2500 annually from 1997 to 2014 (Guo et al. 2016). Besides developing countries, 20% of 37 the overall industrial accidents in Japan, South Korea, and Hong Kong, from 1996 to 2005, were related to 38 the construction industry (Poon et al. 2008). In this sense, one of the most vulnerable related construction 39 trades, if not the only endangered, are construction workers (Zhang et al. 2020). Considering the essence of 40 this group for propelling the construction projects, more and more researchers are becoming motivated to 41 promote the safety and health of construction workers (Ahyan and Tokdemir 2019). Despite this, the figure 42 for construction mutilated workers has not experienced a tangible downward trend in many countries, that 43 even include some developed countries from where the idea of zero-accident construction site originates 44 (Mohandes et al. 2020). In accordance with a recent report, the construction industry makes up 45 approximately 20 percent of the total proportions of accidents reported in Europe and the US, illustrating 46 the perilousness of this industry for the workers involved in the associated activities (Ayhan et al. 2020).

In Hong Kong, construction projects value over 9.4% of the GDP (Census and Statistic Department 2017) with more than 0.7 million workers are involved (CIC 2017). Given the hazardous nature of the construction workplace environment and the risks exposed to such a large workforce, construction safety has become a matter of serious concern in Hong Kong. As a mitigation measure since the 1990s, firstly, the Labour Department and registered public sector institutions, and other large construction companies have started providing mandatory basic safety training to the workers and site staff. Secondly, regular seminars, exhibitions, and promotional campaigns are being conducted to raise awareness about Environment, Health, and Safety (EHS) among stakeholders. Thirdly, substantial resources are being put into day-to-day on-site construction operations, especially by well-known building services companies, to ensure the effective application of EHS safety factors among frontline workers, engineers, and the site management staff (Choudhry et al. 2008a).

58 In the late 1980s and early 1990s, construction site safety in Hong Kong was far from being satisfactory i.e. 59 twice than the figure obtained for the USA in the same years and 25 times higher than Japan and Singapore 60 (Chan and Tam 1999). 374 accidents per 1000 workers were reported annually in 1989 (Robson 1999). 61 Drastic improvements have been observed after three decades of stakeholders' efforts, with the rate falling 62 to 32.9 accidents per 1000 workers in 2017 (Housing Authority 2019). Despite the positive change, safety 63 hazards and fatal incidents, nevertheless, are recorded each year. For example, the Labour Department of Hong Kong reported 4,114 construction accidents in 2017. Out of overall industrial fatalities, around 22% 64 65 were construction-related (Labour Department 2017). Figure 1 depicts a continuous decrease in accident 66 rates over time, however, the safety risk levels in the Hong Kong construction industry are still worth 67 considerations and a massive improvement is required to reduce site accidents through effective and 68 innovative means.

69

[Insert Figure 1]

Past research has indicated that the causes of construction accidents vary considerably but falling from height is the most common cause. Tam et al. (2001) classified the reasons behind 'falls from height' into four categories, namely planning error, routine violations, hidden hazards created by other parties, and poor crew resource management. According to the Labour Department of Hong Kong, around 25% of the fatal industrial accidents were caused by falls from height (Labour Department 2017). Moreover, construction accidents also occur due to lifting materials, tripping on the same level, and mishaps by contact 76 with moving machinery. Traditionally, safety training is regarded as the most significant and low-cost 77 technique to minimize construction accident rates. Such pieces of training not only serve as a means to 78 enhance the safety knowledge of site personals but also as a purposeful reminder of the importance of 79 safety. Previous studies have explicitly discussed the importance of safety training as an effective way to 80 reduce the risks of construction accidents such as Tam et al. (2001); Wong et al. (2016); Choudhry et al. 81 (2008b); Enshassi et al. (2016) and so on. Cunningham et al. (2018) and Başağa et al. (2018) reported less 82 absenteeism among the workers with the declination in occurrences of fatal- or non-fatal accidents on 83 construction sites. Thus, the related construction activities can be performed in a more focused way (which 84 results from reduced injuries), leading to delivering high-quality products and finishes for end-users Başağa 85 et al. (2018).

86 In Hong Kong, four types of training are provided to the construction workers and site staff. The first type 87 is Mandatory Basic Safety Training (Green Card Safety Training) which has come into operation in 2001 88 (Labour Department 2019). It is a one-day training course that focuses on the local ordinance and personal 89 protective equipment (PPE) for all types of site personnel. Under section 6BA(2) of the Factories and 90 Industrial Undertakings Ordinance, Chapter 59, the participants are awarded a green card with a 1 to 3 years 91 validity period (Labour Department 2019). The cardholder has to renew the green card before its expiration. 92 Coverage of the ordinance include factories, construction sites, cargo and container handling, repair 93 workshops, and other industrial workshops. The second type is designed for special workers such as gantry 94 crane operators (duration=10days), skilled metalworkers (duration=18-42hrs), forklift truck operators 95 (duration=7 days), and confined space operators (duration=8hrs). The third type is composed of a half-day 96 site safety induction and toolbox training, tailor-made for individual construction sites. The content covers 97 the location of the first aid room, vehicle logistics, storage room for dangerous goods, etc. This type of 98 training is a part of the Pay-for-Safety Scheme and a prerequisite for some construction projects. The fourth 99 type is special training (duration=12hrs approx.) designed by the main contractors to illustrate in-house 100 rules and other particulars not covered by the other types of training e.g., handling 110V portable tools, 101 wearing a helmet belt, prohibiting the use of a ladder, and bamboo scaffolding.

102 All these four safety trainings expect different outcomes and therefore, the time duration for each is 103 different. However, several researchers in the past argued that the training hours and work experience are 104 not directly correlated to construction safety such as Perlman et al. (2014) and Chan et al. (2020). The former 105 did not find any correlation between hours of safety training and work experience and between hazard 106 identification and perception skills. Whereas, the latter, only found an indirect impact of working experience 107 on the accidents among building maintenance workers. In addition, the contents of the four types of training 108 are sometimes overlapping. Part of the training modules can be easily understood through common sense. 109 Those types of modules were useful for site personals of the past due to their low educational backgrounds. 110 Nowadays, more educated individuals enter the construction industry owing to attractive salary packages 111 (Census and Statistics Department 2016; 2020). These individuals usually have common know-how of 112 safety-related issues covered by the training. This makes traditional training less useful and the development 113 of effective safety promotion has gained importance. In addition to this, the current work culture in the industry 114 is also a big hurdle in safety promotion. On the one hand, contractors are usually focused more on the time, cost, 115 and quality, and sometimes put safety in a low priority list. For example, metal scaffolding is considered a safer 116 option but due to the amount of time and money spent on installation and removal, many contractors prefer 117 bamboo scaffolding (Fang et al. 2003). On the other hand, construction laborers are typically reluctant to wear 118 life-rope as it lessens the efficiency of installation works. In Hong Kong, the most efficient monitoring method 119 to check PPE on each worker is to install guard booth scanners at the entrance of construction sites; workers 120 without PPE are rejected to enter the site. Another monitoring method is the safety supervisor's routine site 121 walk and penalty to the worker not using PPE properly. Since the area of most construction sites in Hong Kong 122 is large typically a hundred thousand square feet with more than 30+ floors, main contractors and sub-123 contractors do not hire sufficient safety supervisors to conduct real-time monitoring to all areas in each site. 124 Moreover, some workers abandon the use of PPE during the absence of safety supervisors due to various reasons 125 such as peer pressure, hot weather, carelessness, etc.

126 To overcome the loopholes in safety monitoring, the objective of IoT model design is to ensure that every worker in the specified area must carry PPE and also to trigger alarms in the site office in case of improper use 127 128 for real-time monitoring. Additionally, the data collected from the system can be stored in a database 129 automatically instead of a paper record from the site safety supervisors. The data can be utilized for future 130 betterments in safety training course designs as well as the IoT system itself. In regards to the real-life IoT 131 implementation, the Hong Kong Convention and Exhibition Centre (HKCEC) upgraded its Building 132 Management System (BMS) in 2017 to include an IoT network for the collection of data on temperature, 133 humidity, water leakage, and internal air quality. Over 500 IoT sensors were installed and connected to a 134 wireless IoT gateway. It was a major IoT project in Hong Kong that addressed a number of installations 135 constraints, cost, and IoT-sensors effectiveness issues. Conceptualizing from the HKCEC IoT system, the 136 current research examined its application in the improvement of construction site safety and proposed an 137 innovative design model of the real-time safety monitoring system using IoT technology with sensor 138 recommendation. With LoRa protocol and existing Class A type of wireless sensors, the system performs real-139 time data collection from the construction site, generates instant alerts to safety officers, and compiles data for 140 further safety training modifications.

141 Several systems have been proposed in the past using heavy equipment that improves safety performance. These 142 systems have incorporated sensors, robotics, laser scanning, and data management (Kanan et al. 2018; 143 Skibniewski 2014). IoT is rapidly becoming a new trend offering major benefits to the construction industry. 144 For example, Zhong et al. (2017) introduced a multidimensional IoT enabled platform for real-time 145 achievability and traceability for the whole processes in prefabricated construction. Lee et al. (2009) 146 developed a safety management system for detecting falling objects using different types of sensors. Wu et 147 al. (2010) established a real-time solution for near-miss accidents. Lower cost, higher safety, and smarter 148 designs are some of the benefits that favor IoT in comparison to the other advanced safety systems (Kanan et 149 al. 2018). Woodhead et al. (2018) reported that the construction industry needs to transform itself from a low-150 tech labor extensive industry into a high-tech capital intensive industry to increase the productivity and profit

151 margin. IoT provides the decision-making ability and emergent needs through the availability of information 152 from sensors that will pave the way for such transformation (Woodhead et al. 2018). In this regard, our study 153 has made a step forward by purposing a cost-effective IoT design model for construction safety in Hong Kong. 154 All the required network equipment, internet services, sensors, servers, and workstations can be easily purchased 155 in local markets. Besides, skilled solution providers can also be found with ease to supply, install, and 156 commission services in accordance with the IoT model design. The major objectives of this research are: 1) to 157 verify the effectiveness of current safety training, 2) to develop an innovative construction site monitoring model 158 using IoT technology, and 3) to verify the cost effectiveness of the system.

159

2. Literature review on safety issues

The literature on safety issues is vast due to the continuous interest of researchers. 'Improvement of safety performance', 'safety effectiveness measurements', and 'innovative approaches for safety training' and 'innovative approaches for safety monitoring' are the most active areas in the safety arena, which are discussed in detail in the following lines.

164

2.1. Improvement of safety performance

Sunindijo et al. (2017) identified 4 areas conducive to the improvement of safety performance in the construction industry: 1) quantitative study for experienced construction practitioners, 2) learning-in-practice and interaction with people and machinery at work, 3) skill development methods to enrich the workers' safety knowledge, and 4) universities involvement to improve the safety learning process. While the basic safety training fulfills the minimum regulatory requirements, they argued that additional processes such as information exchange are also important to the enhancement of safety knowledge and awareness.

171 Cultural and language issues are also important factors to be considered in designing training modules. To gauge 172 such issues, Harvey et al. (2001) conducted two surveys, one immediately after a safety training and another 16 173 months later. The results showed that training effectiveness varies with the participants' cultural backgrounds. 174 They further discussed the feasibility of changing training design to suit different cultures and established that the modules matching with the cultural background of employees yield optimal results. Demirkesen and Arditi
(2015) also pointed towards the challenges in safety training arising from language differences among workers.

177 Tam et al. (2003) examined the manual safety approaches in China and identified that the improper behavior of 178 contractors such as lack of provision of PPEs and inadequate training programs make such approaches 179 ineffective. 'Poor safety awareness of top management', 'lack of training', 'poor safety awareness of project 180 managers', 'reluctance to input resources to safety', and 'reckless operations' were found to be the main factors 181 affecting safety performance. Other popular studies on manual safety systems include Hale et al. (1997), 182 Jaselskis et al. (1996), and Tam et al. (2001). Besides, behavioral-based safety approaches that focus on the 183 carelessness and conscious/unconscious unsafe behavior of the workers were also given due attention in the literature such as Frederick and Lessin (2000); Lipscomb et al. (2015); and Wirth and Sigurdsson (2008). 184

185

2.2. Safety Effectiveness Measurements

186 The safety performance of construction projects can be said to have fully been blossomed if proper Safety 187 Management System (SMS) is taken into account within different layers of the respective organization. SMS 188 was introduced in the Singaporean construction industry around three decades ago, but no significant 189 improvements in safety standards were visible. To fill this gap, Teo et al. (2006) conducted research with 15 190 steps consisting of surveys, safety expert's consultation, interviews, and workshops. They attempted to work 191 out a multi-attribute value model subjected to the validation via site-audits for boosting safety standards and to 192 calculate Construction Safety Index (CSI) to gauge safety effectiveness for management purposes at various 193 sites.

Ricci et al. (2016) proposed a method of effectiveness measurement by employing training using a questionnaire, practical tests, on-job reservation, physiological data, and documentary databases. In total, 28 studies were included in the meta-analysis to calculate the effect-size of training efficiency based on 44 measures. It was found that the training effects were reduced significantly 3 months after the training.

199 **2.3. Innovative approaches for safety training**

200 One viable solution to come up with appropriate and prudent safety measures for the sake of improving 201 construction site safety is through the exploitation of up-to-date technologies and equipment. In this regard, the 202 utilization of BIM has made a giant leap towards improving the occupational health and safety of construction 203 crew members. Considering this, a BIM-enabled safety training method was proposed by Clevenger et al. (2015) 204 which included the 3D-visualisations environment and interactive features for trainees. Feedback from 205 participants was hugely positive, with the computer models were being commended as an attractive feature 206 making the training more interesting. This research paved the way for the replacement of traditional paper, slide, 207 and video teaching methods in safety training by advanced computing technology. Zolfagharian et al. (2014) 208 proposed an automated safety plug-in to mitigate site accidents for scheduling software.

Sacks et al. (2013) identified the importance of Virtual Reality (VR) training as a tool to engage the attention and concentration of trainees. The method was incorporated into the compulsory site entry training program of one of Hong Kong's large-scale construction companies but with a larger group size of 20-30 as opposed to the proposal of a small group of 10-20 in the research. In Hong Kong, only a few developers/contractors provide the VR training to engineers and site supervisors due to the high fixed cost (such as equipment and the corresponding software) and the running cost (maintenance and the wages for the trainers) relative to the traditional training.

For Internet-of-Things (IoT) application, Jiang et al. (2013) explored the idea of a wireless network for site safety surveillance systems based on IoT. WIFI LAN was proposed to connect various field equipment such as digital cameras, smoke detector, and other kinds of the sensor. Although the issue of field device (power supply, mobility, battery life, and size) was not tackled, applying IoT to construction site safety was an innovative idea.

220 **2.4. Innovative approaches for safety monitoring**

Yang et al. (2012) proposed an early-stage design of a safety identification system to improve the performance
 of proactive safety monitoring. Radio-frequency identification (RFID) and Wireless Sensor Network (WSN)

was introduced in the access control over heavy equipment (such as tower cranes and fork-lift truck), material usage and restricted area. This method applied the RFID reader and Zigbee protocols to the daily operation of the construction sites for monitoring site safety and for gathering and analyzing data for future safety plan designs. However, the technological limitations of the processor's power, bandwidth, and hardware especially the size and battery life imposed constraints on the type, complexity, and quantity of data collection.

Augustin et al. (2016) provided a detailed evaluation of the LoRa protocol consisted of modulation, effective data rate, spreading factor, sensor application, and sensitivity, frame format, etc. A field test was conducted to verify the performance of LoRa coverage in the suburban area. The characteristics of the LoRa network made IoT application suitable for safety monitoring provided the constraints related to the battery be tackled properly.

232 Kanan et al. (2018) established a safety monitoring system to operate, in the 868 MHz radiofrequency, with 233 GRPS and wearable devices to secure the hazardous areas such as at the back of the vehicle's rear end and to 234 provide smart alerts for real-time avoidance of potential danger. IoT platform was introduced as the middleware 235 to connect with the cloud server for data collection and analytics. Thanks to the advanced hardware production 236 technology, battery life, and RF wake-up sensor application, wearable devices could be deployed and integrated 237 seamlessly into the construction site with relatively low fixing and running costs. Nonetheless, the IoT platform 238 was semi-mature and the performance was subjected to the limited bandwidth, sensor type, and support. Park 239 and Brilakis (2012) used computer vision wireless sensing technology for monitoring whether the construction 240 workers have worn the specified personal protective equipment or not. Ray and Teizer (2012) and Seo et al. 241 (2013) came up with three-dimensional motion information for detecting the postures of workers, leading to 242 improving the musculoskeletal-related safety hazards menacing the workers involved in particular construction 243 activity. Yang et al. (2010) developed a tracking scheme using cameras to track multiple workers being 244 embroiled in particular construction activity. The developed scheme was based on an online color model 245 learning in conjunction with Kernel covariance tracking.

246 Using the concept of IoT, Yang et al. (2020) developed a personal protective equipment-detection-based tool to

ensure the relative workers are provided with appropriate PPE before the commencement of particular
construction activities. In another study, a protective-IoT-based system for automatically monitoring, localizing,
and warning construction workers working in perilous areas was developed by Kanan et al. (2018).

250

2.5. Knowledge gap and point of departure

251 The former researches are focused on the feasibility test of the IoT equipment with no mass production and 252 locally available sensors are involved. This paper has made use of sensors that are easily available in the Hong 253 Kong market. The cost of such sensors is typically low because of the rapid market competition in the building 254 management system (BMS). This study provides a comprehensive cost-effective safety monitoring system, in 255 comparison with the traditional wiring monitoring system, with easy-to-install and easy-to-learn features as 256 most of the interfaces are web-based. More importantly, this research aims to grapple with the stagnant and 257 inactive training practices that are rampant in the construction industry by incorporating the idea of IoT into 258 such procedures. As far as traditional training practices are concerned, a number of serious shortcomings exist, 259 including the inability to perceive the trainee's safety performance in a real environment, and lack of existence 260 of a feedback system for both the trainer and trainee to rectify their performances immediately, to name but a 261 few (Teizer et al. 2013). Unraveling ways to alleviate these shortcomings have given impetus to the authors of 262 this paper for coming up with a conceptualized IoT-based framework for enhancing the status quo training 263 practices. This research has also performed a cost analysis of the system in comparison with traditional systems 264 to provide a more practical safety solution. Such a cost comparison is rarely reported in the previous literature.

265

3. RESEARCH METHODOLOGY

In order to achieve the research objectives, firstly, a brief literature review was conducted to illustrate different research approaches to safety performance, measurements, and the application of IoT technology in the construction industry. Secondly, a questionnaire survey was conducted to verify the relationship between the effectiveness of safety training and safety consciousness. The results of the questionnaire offered the basis for the further IoT system design to enhance the safety monitoring performance and safety training content

271 modification. Ten selected questions were extracted from the examination questions of mandatory basic safety 272 training course in Hong Kong. Each question referred to a particular category of construction site work such as 273 electrical installation work, high-level work, toxic material, and transportation, etc. The aim was to find out the 274 knowledge of workers after a certain period of training (0 to 3 years, same as the validation period of Green 275 Card). The target respondents were construction workers such as engineers, supervisors, and frontline workers 276 exposed to the risk of accidents at the site. Survey samples among workers were picked up randomly on different 277 construction sites of company A, however, prior approval was taken from the company to administer the survey. 278 A sample validity check was made through the background information collected from the respondents. 75 279 questionnaires were distributed among different teams of company A and 15 minutes were given to fill the 280 survey. Thirdly, relative weight calculation similar to that of AHP (analytical hierarchy process) was then 281 conducted for the first part questionnaire results of the completed surveys to define the majority of the 282 respondents. This was later mapped with the multiple-choice correction rates to find out the question with the 283 lowest average score, which was the criterion selected to apply IoT design. Fourthly, in comparison with the 284 available IoT products and network topology, a new IoT safety monitoring system design was proposed to 285 provide real-time on-site monitoring to enhance the capacity of safety officer and project management staff with 286 complete logging. Figure 2 shows an overview of the research methodology.

287

[Insert Figure 2]

288

4. QUESTIONNAIRE SURVEY AND DATA COLLECTION

A questionnaire survey was conducted to gauge the degree of safety knowledge of the respondents. The questionnaire consisted 2 parts: the first part collected the background information of respondents, such as age group, working experience, and their self-perception of personal attitude towards safety in the construction industry (see table 1); the 2nd part included 10 multiple-choice questions (with four possible answers) on safety from the mandatory basic safety training or green card training examination (see table 2). The questions were taken from the mandatory basic safety training course distributed by the Hong Kong safety training association published in 2018. The course material has 8 sections that focus on general safety concepts, relevant legislation, safety hazards, and preventive measures. As a requirement, the workers should be familiar with the course content and description. Therefore, questions were prepared from the material considering comments from experts from the industry. Care has been taken to cover all parts of the course, thus, each section was given representation.

300 The questionnaire was distributed by email to various departments of company A beforehand which then 301 distribute it to the workers by hand on the day of the test. Care has been taken 1) to avoid cheating and handover 302 the questionnaire back within the allocated 15 minutes' time limit and 2) in confirming that all the survey 303 respondents had passed the mandatory basic safety training and learned all the corresponding knowledge 304 covered in the multiple-choice questions. There was no requirement concerning the work experience of 305 respondents except that they had to be holders of a valid green card. Since all the workers held the green card 306 holders, they were expected to have sufficient knowledge of safety issues at the site. In total, 75 307 questionnaires were distributed and 74 completed questionnaires were received (98.6% response rate). The 308 respondents' occupations varied, spanning project managers, project engineers, site engineers, technicians, and 309 safety department staff.

310

[Insert Table 1 and 2]

311

5. DATA ANALYSIS AND WEIGHTAGE CALCULATION

312 **5.1. Multiple choice quiz results**

Pass threshold for the MCQs part is taken from the green card training examination i.e. 60%. Each correct answer carried 1 mark. 64 out of 74 respondents i.e. 86.5% passed the MCQs test. Since no respondent was allowed to review the training materials before the quiz, the results confirmed that the performance of Green Card training is satisfactory. With reference to the criteria listed in table 1, the average scores under different criteria are shown in figures (Figure 4-11). The distributions of answers of all respondents are shown in the pie charts and the corresponding average scores of the quiz are shown in the bar charts.

319 According to the figures below, light, medium, and heavyweight criteria were defined based on the average

320 scores of the test. If results showed a clear and strong positive correlation (e.g. higher education level got higher 321 average score), the category was identified as 'heavyweight group'. If the results did not depict any obvious (or 322 ambiguous) correlation (e.g. self-proclaimed careful respondents did not correspond to any particular trends in 323 score distribution), then the category in question was identified as 'lightweight group'. In the middle, groups 324 from which partial correlation with scores was observed (e.g. those who 'Agreed' with the statement that 325 training content is helpful earned higher scores, while those who 'Strongly Agreed' with the statement stood at 326 a lower score level on a par with respondents who chose 'No Comment' or 'Disagree' as answer) were identified 327 as 'medium weight group'. 2 criteria (Careful Person and Peer Pressure) were found to be lightweights, 3 328 (Training too much, training content help to identify the hazard and working experience) to be medium weights, 329 and 3 (Training times, age group and education) were found to be heavyweights.

330

[Insert Figure 3 to 11]

331 **5.1.1. Lightweight categories**

According to Fig. 4 and 5 (left side), the majority of the respondents 'agreed' to the statements: 'are you a careful person?' and 'do you agree that peer pressure is the strongest reason behind people refuse taking safety precautions?'. However, according to their multiple-choice quiz results, no obvious correlation could be identified. Therefore, these 2 categories were defined as lightweight categories.

336

5.1.2. Medium weight categories

According to Fig. 6, the majority of respondents 'agreed' with the statement that training is conducted too frequently, and their scores in the multiple-choice quiz were higher than those whose responses to the statement were 'no Comments', 'disagree' and 'Strongly Disagree'. Although those who stated 'Strongly Agree' also had lower scores, however, they were the minority respondents and therefore, had no significant impact on the final average score. Similar observations can be made for Fig. 7. From fig 8., although it seems that the working experience was not proportionate to the multiple-choice score, the results show that all groups have passed the examination (>=60%). Therefore, these three categories were identified as medium weight categories.

344 **5.1.3.** Heavyweight categories

According to Fig. 9 and 10, respondents who possessed the highest level of education and the most frequent training gained the highest scores on the multiple-choice quiz; thus the scoring trends went in proportion to the level of education and frequency of training. A similar correlation existed between age groups and quiz results (figure 11). In total three categories were thus identified as a heavyweight.

349

5.2. Analytic Hierarchy Process

Besides the grouping of respondents and their total scores, the correction rate of each multiple-choice question is also a major factor in weighting to identify the weakest spot in construction site safety across 8 categories. Figure 12 shows the priorities and decision matrix of category selection using the Analytic Hierarchy Process (AHP). All categories underwent pairwise comparison with respect to the objective: Heavy categories were taken as "5", medium categories as "3", and light categories as "1". After the calculation for determining the Eigenvectors of the matrix, priorities of individual categories are shown in the left part of Fig. 13.

356

[Insert Figure 12 and 13]

Calculations in figure 12 were done following the AHP theory. Based on the correction rate of each question in the 2nd part of the questionnaire, an alternative method was applied to find out the behavior of respondents regarding their answers to each question in the 1st part. The alternative calculations were done by multiplying the following items:

- \rightarrow the correction rate of each 2nd part question,
- 363 \succ the weight ratio of each category.

As shown in Fig. 13. This calculation was subjected to all questions in the questionnaire and found that the focus of the majority of respondents affected the final average score of each 2nd part question. Since each question in the 2nd part quiz corresponded to a category of safety in the construction industry, the final result (lowest average score) pinpointed the category with the weakest awareness. Therefore, the IoT safety system

368	model design of this paper focused on that category.
369	5.3.Category Selection Calculation
370	Data pertaining to self-perception ('Are you a careful person?') as shown in Fig. 4 is used here to demonstrate
371	the calculation. The following figure shows the respondents' answers (from strongly disagree to strongly agree)
372	and the correction rates of multiple-choice questions:
373	5.3.1. Step 1
374	The correction rate of MC $Q1 = 60.00\%$
375	The weighting of category = 3.75% (from figure 12)
376	The respondents who chose 'Strongly Agree' as answer = $5/74 = 6.76\%$ (see figure 14).
377	[Insert Figure 14]
378	5.3.2. Step 2
379	The actual weight of MC 01 in regards to respondents who 'Strongly Agreed' with the self-perceived
380	assumption and with the correct answer to MC 01:
381	60.00% x 3.75% x 5.76% = 0.15% (0.0015)
382	Calculated along the same lines, the actual weightings of MC 01 to MC 10 in Category 1 are listed in figure 15.
383	[Insert Figure 15]
384	5.3.3. Step 3
385	Repeat this calculation to all categories and 10 MC questions and sum up the value, the actual weight of each
386	Multiple-choice question is given in figure 16.
387	[Insert Figure 16]
388	

5.4. Major observation on the lowest score to apply IoT design model

390 According to figure 16, the multiple-choice question 1 (the concept of Personal Protection Equipment (PPE)) 391 got the lowest score and the question 7 (the safety knowledge of working platform set up) got the 2nd lowest. 392 According to the actual construction industry operation in Hong Kong, the working platform installation is 393 regulated as per the Construction Site (Safety) Regulations to ensure the proper installation of high-level 394 platform or scaffolding (Cap. 59, section 7, Labour Department). Only the trained workers are permitted to 395 install the working platform, and the authorized person (AP) then issue the written permit to the installed 396 working platform. It is not a major issue for all construction site workers but every worker who enters the 397 construction site must wear the PPE and understand the usage of equipment. Therefore, the concept and 398 knowledge of how to use the PPE is a major issue for all workers. The IoT model design thus focused on the 399 category of question 1 i.e. the concept of Personal Protection Equipment (PPE).

400

6. INTERNET-OF-THINGS (IoT) MODEL DESIGN

401 "IoT is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people 402 that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring 403 human-to-human or human-to-computer interaction" (Margaret 2019). Figure 17 describes the basic concept of 404 IoT: 1) sensors collect and transmit data to the data collection and storage platform automatically; 2) collected 405 data is stored in a specified format and digested for model building; 3) useful information from the model is 406 used to appropriate action-taking to improve the system and enhance the sensor deployment; and 4) accurate 407 data is collected to further enhance the system performance itself and to avoid "near-miss" instants on the 408 construction site. Figure 18 shows how the IoT system works as a construction site safety monitoring system. 409 People-count-sensors and RFID readers are deployed at the floor entrance for data collection. The data is 410 transmitted to the IoT controller in the site office. IoT server analyzes the data for the safety department's further 411 investigation. Real-time alerts are provided for safety supervisors to approach the workers without inappropriate 412 personal protection equipment.

413

[Insert Figure 17 and 18]

6.1. Design concepts from case studies

415 Lee et al. (2018) conducted an experiment for mesh and star networking system design over 800m x 600m area 416 on a university campus. 1 gateway and 19 LoRa devices were installed. Packet Delivery Ratio (PDR) was tested 417 with a 1-min data collection interval. It was found that the Mesh network can significantly increase PDR without 418 installing additional gateway. However, the high-power consumption was unavoidable to maintain the node 419 transmission, therefore, the battery life of the sensor was affected. Furthermore, security issues were not 420 discussed in their research, which also affects the effective data-rate of LoRaWAN. Besides, Hwang et al. (2019) 421 developed an APP that estimated the effective distance between the gateway and sensors under LoRaWAN in 422 smart grids. 3 factors were found affecting the performance of LoRa: distance, obstacles, and noise production 423 randomness. These factors affected the propagation attenuation, shadowing effect, and multipath fading. Based 424 on the various theoretical calculations, experiments in 81 different locations were conducted to verify the 425 accuracy and feasibility of the APP. Their research provided an initial step that assisted engineers to design the 426 LoRaWAN network effectively. All this research tested the applicable distance between LoRa Gateway and 427 LoRa sensors which was over 100m. Following their research, we can assume all sensors are under the 428 applicable coverage of the gateway. Table 3 show some of the available IoT sensors in the market which provide 429 opportunities for the innovative safety monitoring system design.

430

[Insert Table 3]

431 Hong Kong Convention and Exhibition Centre (HKCEC) owns a total of 92,061m2 rental space and, the 432 maximum capacity is 140,000 visitors per day. According to the Hong Kong Convention and Exhibition Centre, 433 for the BMS upgrade project in 2017, 500 additional sensors were required for the water leakage detection, 434 room temperature and humidity monitoring, and internal air quality (IAQ) monitoring. Most of the sensors were 435 needed to be installed at a high level and the installation was difficult as it required additional cable containment 436 and wirings. LoRaWAN (920-925MHz) with IoT sensors was one of the best solutions for that project. The 437 project was completed in late 2018. Figure 19 shows the traditional block diagram for LoRa applications. Part 438 of the as-built schematic diagram for the IoT network built for Building Management System (BMS) is shown in Figure 19. LoRa was the physical layer or the wireless modulation utilized to create a long-range communication link. LoRa is a chirp spread spectrum modulation, which maintains the same low power characteristics as the Frequency Shift Keying (FSK) modulation but provides a significantly longer communication range. LoRa was chosen because there are several solution providers in Hong Kong which provide the IoT solution with LoRa sensors.

444

[Insert Figure 19 and 20]

445

6.2. Advantages of IoT wireless solution

The advantages of IoT wireless solution are 1) Time and cost-saving: less hard-wiring work and power supply for sensors, 2) Cost-effective sensor installation: sensors are small, easy to install and relocate, and 3) Costeffective infrastructure installation in comparison with the traditional wireless technology: 1 gateway can communicate with around 50-70 sensors, thus corresponding quantity of network switches can be reduced.

450

6.3. IoT Model Design - Site Layout

The following map (Figure 21) shows the selected construction site in Tung Chung for the IoT model design. It is a Y-shape hotel building and the site-office, built by the containers, is situated beside the construction site. Both construction sites and site-offices were provisioned with wireless 4G/LTE Internet service. The distance between the construction site and the site office was under 200m. As per the network size requirements, internet support limitations, and budget constraints, the system schematic of the IoT network is modified in Figure 22. Please see Figure 23 for the workflow diagram of the IoT safety monitoring system and Figure 24 for the proposed IoT equipment installation location in the construction site.

458

[Insert Figure 21 to 24]

459

9 **6.4. Equipment Installation at Construction Site**

460 ➤ 1 x 4G router and the LoRaWAN gateway are proposed to install near the lift lobby (central of the
461 building) for the signal exchange with the IoT sensors.

- 462 > 3 x RFID tag reader connected with the LoRaWAN is proposed to install in each corridor, to record the
 463 workers and their personal protection equipment (PPE) entry and exit record.
- 464 > IoT people-counting sensors are proposed to install near the RFID readers, to monitor the number of
 465 workers entering the specified area.
- 466

6.5. Equipment Installation at Site Office

- 467 > 1 x 4G router and 1 x workstation are proposed to install in the site office for real-time safety
 468 monitoring. A real-time alarm from the construction site will be triggered and will alert the safety
 469 supervisor for follow-up action.

470 **6.6. Equipment Installation at Head Quarter**

A server farm that contains the LoRaWAN server and database server are proposed to install for the
 data collection from RFID readers and IoT sensors to be installed in the construction site. The servers
 will also repeat the alarm signal to the workstation in the site office.

474 **6.7. RFID Tag Installation for all Personal Protection Equipment (PPE)**

A registered RFID tag is proposed to be installed on each PPE (including the safety helmet, light
reflection coat, and safety belt for work at height) for the real-time monitoring of workers' locations to
check whether they are carrying the PPE or not.

478 **6.8. System Operation**

Upon entering the monitoring floor, the RFID tags attached to the workers' PPE will trigger the RFID readers. The system will then record the number of PPEs entering the specified floor. If the quantity of safety helmet RFID tag detection by RFID reader is different from the IoT people-counting sensor detection, the system will generate an alarm and record the events in the server. At the same time, the workstation will display the alarm to the operators for further action. If the workers open the window to go outside for a high-level work, the people-count sensor near the window will be triggered. The system will compare the safety belt RFID tag 485 detection and the people-count quantity. The alarm will be triggered if the quantity does not match. The real-486 time data collected in the database is fundamental for the detailed design or regular safety reviews allowing the 487 safety officer to conduct training focusing on the high-risk near-misses.

488

7. COST-EFFECTIVENESS OF THE SYSTEM

489 Besides the IoT based solution, the most popular methodologies of Hong Kong construction site safety490 monitoring are as follows:

491 1) Employ sufficient safety site supervisor as the "gatekeeper" of the construction site and conduct routine492 site inspection; and

493 2) Traditional wired RFID reader / People Count Sensor deployment.

The Tung Chung construction project, Hong Kong is taken as an example. The project started on Aug-2017 and completed on Aug-2020 (total 3 years). There was a total of 22 floors and 2 main entrances. According to the SalaryCheck by CTgoodjobs (2020), the typical salary of a safety supervisor is HK\$19,000 per month. A total of 2 additional safety supervisors must be employed for personal protection equipment (PPE) checking at the entrance and the routine site inspection.

499 The brief cost of equipment, corresponding installation, test and commissioning, and maintenance cost of the 500 whole project period are given in Figure 25. Items that are highlighted in yellow are typically required for a 501 traditional sensor system including the cost of equipment, corresponding accessories such as power provisions 502 to all equipment, cabling, and conduit. Green highlighted items represent the cost of sensors used for IoT-503 based system. Since all equipment can communicate with the IoT gateway wirelessly, no power provision, 504 conduit, and wiring are required. The blue highlighted item is the common item required for both systems. 505 Figure 26 shows the equipment quantity of each system on each floor according to the situation of the 506 construction site. Red highlighted cells represent the quantity for the whole site whereas green highlighted 507 cells represent the quantity for each floor.

[Insert Figure 25 and 26]

The brief comparison of the IoT system with the other two traditional systems in Table 4. Table 4 shows the cost of the IoT Sensor System is only 35% of the traditional Sensor System and 22% of manual monitoring i.e. cost savings of 65% and 78%, respectively. It is because of the high overhead of safety supervisors in Hong Kong and the high accessories installation cost for the traditional sensor system.

513

[Insert Table 4]

514 In the Hong Kong construction site, main contractors take charge of monitoring, maintaining, and 515 improving site safety matters. According to the Report on the Quarterly Survey of Construction Output 516 (Census and Statistic Department 2020), there are total HK\$135,982 million construction works at 517 construction sites by the main contractor in 2019. In general practice, safety investment in building 518 projects is around 1% of the project amount. Thus the market for construction site safety is \$1,359.82 519 million annually. Most of the Hong Kong companies use traditional safety systems that involve manpower 520 consumption such as registration, checking, and documentation. If IoT systems are deployed, at least part 521 of monitoring works and documentation works can be shared and the cost-saving would be huge which 522 provides an attractive business opportunity. A market analysis showed that there are building services 523 engineering companies in Hong Kong that supply a series of IoT sensors, controllers and provide a total 524 solution to suit companies' needs.

525

526 8. CONCLUSIONS

527 This paper evaluates the effectiveness and weakness of mandatory basic safety training in Hong Kong. Firstly, 528 a questionnaire survey was conducted and over 80% of questionnaire respondents were able to pass the quiz. 529 Then, using criteria weighting calculation calculated through AHP analysis, the weakness of respondents were 530 located. After that, the paper creates an IoT network model design for a real-time construction site safety monitoring system and suggested the basic infrastructure of the system, operation flowchart, and the optimalsensors' locations.

533 IoT network technology has been applied in various types of workspaces such as warehouses, exhibition centers, 534 and commercial buildings, however, there is a lack of discussions on the application of this technology to the 535 construction site for large-scale safety monitoring and storing the data systematically. This research provides a 536 guideline for further investigation of innovative IoT networks' application networks and the data collection 537 methods from the IoT sensors. IoT network can be of worth considerations for construction companies due to 538 1) the affordable costs of IoT sensors and 2) easy installation/relocation characteristics of the system. Because 539 of the limited budget and time, only one category (personal protection equipment) was proposed to conduct the 540 IoT model design. As literature pointed out towards the cost-effectiveness of the IoT solutions, a cost 541 comparison was made with the traditional manual safety system and the traditional sensor-based safety system. 542 It was found that our system can provide cost savings of 78% relative to the traditional manual safety system 543 and 65% cost savings relative to the traditional sensor-based system.

544 The proposed system can also provide functions such as access control for plant rooms, heat or water detection 545 in specified areas, preliminary air quality monitoring for the confined areas, and smoke detections. The 546 combination of various types of sensors with appropriate control logic can create several innovative functions 547 for the system. This system is currently at the design stage. More benefits will emerge after the real 548 implementation of the system in an actual project. However, the cost comparisons have already established the 549 usefulness of this system. The principle investigator is already in a process of obtaining funding for the project. 550 Future research will be carried out, firstly, on the challenges of implementing this system in real-life projects, 551 and secondly, on the improvements in the overall construction site monitoring using this system relative to the 552 traditional systems.

553

554

556 ACKNOWLEDGMENTS

This is to acknowledge that the project leading to the publication of this paper is fully funded by the Chinese National Engineering Research Centre for Steel Construction (CNERC), Hong Kong Branch, at the Hong Kong Polytechnic University. The authors would like to express the appreciation to the volunteers for their participation in the questionnaire survey and verbal conversations. The authors would also like to thanks the three anonymous reviewers for their constructive comments.

562 **REFERENCES**

- Augustin, A., Yi, J., Clausen, T., & Townsley, W. (2016). A study of LoRa: Long range & low power networks
 for the internet of things. *Sensors*, 16(9), 1466.
- Ayhan, B. U., & Tokdemir, O. B. (2019). Safety assessment in megaprojects using artificial intelligence. *Safety science*, 118, 273-287.
- Ayhan, B. U., Doğan, N. B., & Tokdemir, O. B. (2020). An association rule mining model for the assessment
 of the correlations between the attributes of severe accidents. *Journal of Civil Engineering and Management*, 26(4), 315-330.
- Başağa, H. B., Temel, B. A., Atasoy, M., & Yıldırım, İ. (2018). A study on the effectiveness of occupational
 health and safety trainings of construction workers in Turkey. *Safety science*, 110, 344-354.
- 572 BPMSG. (2019). AHP Online System AHP-OS, Building Performance Management Singapore. Retrieved
- 573 from https://bpmsg.com/ahp/ (accessed 26 Sep 2019)
- 574 Census and Statistics Department. (2016). 2016 Population By-Census.
- 575 Census and Statistics Department. (2017). Building, construction, and real estate sectors, Census and Statistics
 576 Department, Hong Kong.
- 577 Census and Statistics Department. (2020). Quarterly Survey of Construction Output, Census and Statistics

- 578 Department, Hong Kong.
- 579 Census and Statistics Department. (2020). Average daily wages of workers engaged in Public Sector
 580 Construction Projects as reported by main contractors, Census and Statistics Department, Hong Kong.
- 581 Chan, A. P., Wong, F. K., Hon, C. K., & Choi, T. N. (2020). Construction of a Bayesian network model for
- 582 improving the safety performance of electrical and mechanical (E&M) works in repair, maintenance, alteration
- and addition (RMAA) projects. *Safety Science*, 131, 104893.
- 584 Chan, P. C., & Tam, C. M. (1999). Nourishing safety culture in the construction industry of Hong Kong. In 2nd
- International Conference on the Implementation of Safety and Health on Construction Sites, Hawaii, United
 States of America (pp. 117-122).
- 587 Choudhry, R. M., Fang, D., & Ahmed, S. M. (2008a). Safety management in construction: Best practices in
 588 Hong Kong. *Journal of Professional Issues in Engineering Education and Practice*, 134(1), 20-32.
- Choudhry, R. M., Fang, D., & Rowlinson, S. (2008b). Challenging and enforcing safety management in
 developing countries: A strategy. *International Journal of Construction Management*, 8(1), 87-101.
- 591CIC. (2017). Number of Valid Registered Construction Workers, Construction Industry Council, Hong Kong.592Retrievedfrom
- 593 http://www.cic.hk/files/page/192/2017%20year%20end%20%28by%20application%29%20%28eng%29.pdf.
 594 (accessed 07 Jan 2020).
- Clevenger, C., Lopez del Puerto, C., & Glick, S. (2015). Interactive BIM-enabled Safety Training Piloted in
 Construction Education. *Advances in Engineering Education*, 4(3), n3.
- 597 CTgoods. (2020). CTgoodjobs, Career Times Online Limited. Retrived from
 598 https://www2.ctgoodjobs.hk/SalaryCheck (accessed 18 Sep 2020)

- 599 Cunningham, T. R., Guerin, R. J., Keller, B. M., Flynn, M. A., Salgado, C., & Hudson, D. (2018). Differences
- 600 in safety training among smaller and larger construction firms with non-native workers: evidence of overlapping
- 601 vulnerabilities. *Safety science*, 103, 62-69.
- 602 Demirkesen, S. & Arditi, D. (2015). Construction safety personnel's perceptions of safety training practices.
- 603 International Journal of Project Management, 33(5), 1160–1169.
- Dlamini, S. (2012) Relationship of construction sector to economic growth, *In International Congress on Construction Management*, Montreal, June 26–29, pp. 213–224.
- 606 Enshassi, A., Ayyash, A., & Choudhry, R. M. (2016). BIM for construction safety improvement in Gaza strip:
- awareness, applications and barriers. International Journal of Construction Management, 16(3), 249-265.
- Fang, D., Shen, Q., Wu, S., & Liu, G. (2003). A comprehensive framework for assessing and selecting
 appropriate scaffolding based on analytic hierarchy process. *Journal of safety research*, 34(5), 589-596.
- Frederick, J., & Lessin, N. (2000). Blame the worker: The rise of behavioral-based safety
 programs. *Multinational Monitor*, 21(11), 10.
- 612 Giang, D. T., & Pheng, L. S. (2011). Role of construction in economic development: Review of key concepts
- 613 in the past 40 years. *Habitat international*, 35(1), 118-125.
- Guo, H., Yu, Y., & Skitmore, M. (2017). Visualization technology-based construction safety management: A
 review. *Automation in Construction*, 73, 135-144.
- Hale, A. R., Heming, B. H. J., Carthey, J., & Kirwan, B. (1997). Modelling of safety management
 systems. *Safety Science*, 26(1-2), 121-140.
- 618 Harvey, J., Bolam, H., Gregory, D., & Erdos, G. (2001). The effectiveness of training to change safety culture
- 619 and attitudes within a highly regulated environment. *Personnel Review*, 30(6), 615–636.

- Hong Kong Housing Authority. (2019). Performance Statistics –Site Safety, Hong Kong Housing Authority,
 Hong Kong. Retrieved from https://www.housingauthority.gov.hk/mini-site/sitesafety/en/publications/performance-statistics/index.html. (accessed 17 Sep 2019).
- Hwang, L. C., Chen, C. S., Ku, T. T., & Shyu, W. C. (2019). A bridge between the smart grid and the Internet
- of Things: Theoretical and practical roles of LoRa. *International Journal of Electrical Power & Energy Systems*, 113, 971-981.
- Jaselskis, E. J., Anderson, S. D., & Russell, J. S. (1996). Strategies for achieving excellence in construction
 safety performance. *Journal of Construction Engineering and Management*, 122(1), 61-70.
- Jiang, Z. H., Huang, F., Wang, D. X., Hu, B., & Dou, J. J. (2013). The Design and Implementation of
 Construction Site Safety Supervisory System Based on the Internet of Things. In Applied Mechanics and
 Materials (Vol. 241, pp. 3190-3194). Trans Tech Publications.
- Kanan, R., Elhassan, O., & Bensalem, R. (2018). An IoT-based autonomous system for workers' safety in
 construction sites with real-time alarming, monitoring, and positioning strategies. *Automation in Construction*, 88, 73-86.
- Labour Department. (2017). Occupational Safety and Health Statistics, Labour Department. Retrieved from
 https://www.labour.gov.hk/eng/osh/pdf/archive/statistics/OSH_Statistics_2017_eng.pdf. (accessed 07 Jan
 2020).
- Labour Department. (2019). Labour Legislation Frequently Asked Questions, Labour Department. Retrieved
 from https://www.labour.gov.hk/eng/faq/content.htm. (accessed 23 September 2020).
- Lee, S. H.-C., Member, I., & Ke, K.-H. (2018). Monitoring of Large-Area IoT Sensors Using a LoRa Wireless
 Mesh Network System: Design and Evaluation. *IEEE Transactions on Instrumentation and Measurement*,
 67(9), 2177–2187.

- Lee, U. K., Kim, J. H., Cho, H., & Kang, K. I. (2009). Development of a mobile safety monitoring system for
 construction sites. *Automation in Construction*, 18(3), 258-264.
- Li, H., Lu, M., Hsu, S.-C., Gray, M., and Huang, T. (2015). Proactive behavior-based safety management for
 construction safety improvement. *Safety Science*, 75, 107–117.
- Lipscomb, H. J., Schoenfisch, A. L., & Cameron, W. (2015). Non-reporting of work injuries and aspects of
 jobsite safety climate and behavioral-based safety elements among carpenters in Washington state. *American Journal of Industrial Medicine*, 58(4), 411-421.
- Margaret, R. (2019). Internet of Things (IoT). Retrieved from
 https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT. (accessed 25 September 2020)
- McKinsey Global Institute. (2017). In brief: Reinventing Construction. Retrieved from
 https://www.mckinsey.com/~/media/McKinsey/Industries/Capital%20Projects%20and%20Infrastructure/Our
 %20Insights/Reinventing%20construction%20through%20a%20productivity%20revolution/MGI-
- 654 Reinventing-Construction-In-Brief.ashx. (accessed 19 September 2020).
- Mohandes, S. R., Sadeghi, H., Mahdiyar, A., Durdyev, S., Banaitis, A., Yahya, K., & Ismail, S. (2020).
 Assessing construction labours' safety level: a fuzzy MCDM approach. *Journal of Civil Engineering and Management*, 26(2), 175-188.
- Park, M. W., & Brilakis, I. (2012). Construction worker detection in video frames for initializing vision
 trackers. *Automation in Construction*, 28, 15-25.
- Perlman, A., Sacks, R., & Barak, R. (2014). Hazard recognition and risk perception in construction. *Safety Science*, 64, 22–31.
- Poon, S. W., Tang, S. L., & Wong, F. K. (2008). Management and Economics of Construction Safety in Hong
 Kong: Dynamics of the Residential Real Estate Market in Hong Kong (Vol. 1). Hong Kong University Press.

- Ray, S. J., & Teizer, J. (2012). Real-time construction worker posture analysis for ergonomics
 training. *Advanced Engineering Informatics*, 26(2), 439-455.
- 666 Retrieved from https://www.bycensus2016.gov.hk/data/16bc-summary-results.pdf. (accessed 24 Sep 2020).
- Retrieved from https://www.censtatd.gov.hk/hkstat/sub/sp330.jsp?tableID=106&ID=0&productType=8.
 (accessed 07 Jan 2020).
- Retrieved from https://www.statistics.gov.hk/pub/B10500132020MM06B0100.pdf. (accessed 24 Sep 2020).
- Ricci, F., Chiesi, A., Bisio, C., Panari, C., & Pelosi, A. (2016). Effectiveness of occupational health and safety
 training. *Journal of Workplace Learning*, 28(6), 355–377.
- Robson, G. (1999). The Hong Kong construction worker-what safety culture?. *Safety and Health Practitioner*, 17, 24-29.
- Sacks, R., Perlman, A., & Barak, R. (2013). Construction safety training using immersive virtual
 reality. *Construction Management and Economics*, 31(9), 1005-1017.
- 676 Seo, J., Han, S., Lee, S., & Armstrong, T. J. (2013). Motion Data-Driven Unsafe Pose Identification through
- 677 Biomechanical Analysis. In *Computing in Civil Engineering*, 693-700).
- 678 Skibniewski, M. J. (2015). Research trends in information technology applications in construction safety 679 engineering and management. *Frontiers of engineering management*, *1*(3), 246-259.
- Sunindijo, R. Y., Zou, P. X., & Dainty, A. (2017). Managerial Skills for Managing Construction Safety. *Civil Engineering Dimension*, 19(2), 63-72.
- Tam, C. M., Fung IV, I. W., & Chan, A. P. (2001). Study of attitude changes in people after the implementation
 of a new safety management system: the supervision plan. *Construction Management & Economics*, *19*(4), 393403.
- Tam, C. M., Fung, I. W. H., & Chan, A. P. C. (2001). Study of attitude changes in people after the

- 686 implementation of a new safety management system: the supervision plan. *Construction Management and*687 *Economics*, 19(4), 393–403.
- Tam, C. M., Zeng, S. X., & Deng, Z. M. (2004). Identifying elements of poor construction safety management
 in China. *Safety science*, 42(7), 569-586.
- Teizer, J., Cheng, T., & Fang, Y. (2013). Location tracking and data visualization technology to advance
 construction ironworkers' education and training in safety and productivity. *Automation in Construction*, 35,
 53-68.
- Teo, E. A. L., & Ling, F. Y. Y. (2006). Developing a model to measure the effectiveness of safety management
- 694 systems of construction sites. *Building and Environment*, 41(11), 1584-1592.
- Wirth, O., & Sigurdsson, S. O. (2008). When workplace safety depends on behavior change: Topics for
 behavioral safety research. *Journal of safety Research*, 39(6), 589-598.
- Wong, L., Wang, Y. H., Law, T., & Lo, C. T. (2016). Association of Root Causes in Fatal Fall from-Height
 Construction Accidents in Hong Kong. *Construction Engineering and Management*, 142(7), 235–245.
- 699 Woodhead, R., Stephenson, P., & Morrey, D. (2018). Digital construction: From point solutions to IoT
- ecosystem. *Automation in Construction*, 93, 35-46.
- 701 Wu, W., Yang, H., Chew, D. A., Yang, S. H., Gibb, A. G., & Li, Q. (2010). Towards an autonomous real-time
- tracking system of near-miss accidents on construction sites. *Automation in Construction*, 19(2), 134-141.
- 703 Yang, Huanjia, Chew, David, A. S., Wu, Weiwei, Zhou, Zhipeng, & Li, Q. (2012). Design and implementation
- of an identification system in construction site safety for proactive accident prevention. *Accident Analysis & Prevention*, 48, 193–203.
- 706 Yang, J., Arif, O., Vela, P. A., Teizer, J., & Shi, Z. (2010). Tracking multiple workers on construction sites

- video cameras. Advanced Engineering Informatics, 24(4), 428-434.
- Yang, X., Yu, Y., Shirowzhan, S., Sepasgozer, S., & Li, H. (2020). Automated PPE-Tool pair check system for
 construction 2 safety using smart IoT. *Journal of Building Engineering*, 101721.
- Zhang, M., Shi, R., & Yang, Z. (2020). A critical review of vision-based occupational health and safety
 monitoring of construction site workers. *Safety science*, 126, 104658.
- Zhang, P., Li, N., Fang, D., and Wu, H. (2017). Supervisor-focused behavior-based safety method for the
 construction industry: case study in Hong Kong. *Journal of Construction Engineering and Management*, 143(7), 05017009.
- 715 Zhong, R. Y., Peng, Y., Xue, F., Fang, J., Zou, W., Luo, H., Ng, S. T., Lu, W., Shen, G. Q., & Huang, G.Q.
- 716 (2017). Prefabricated construction enabled by the Internet-of-Things. *Automation in Construction*, 76, 59717 70.
- Zolfagharian, S., Irizarry, J., Ressang, A., Nourbakhsh, M., & Gheisari, M. (2014). Automated safety planning
 approach for residential construction sites in Malaysia. *International Journal of Construction Management*, 14(3), 134-147.
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729

730	List	of	Tabl	les

	Questions	Selectable answers
1)	Are you a careful person?	Strongly Disagree Disagree No Comments
		\square \square Agree \square Strongly Agree \square
2)	Do you agree that peer pressure is the	Strongly Disagree \Box Disagree \Box No Comments
stron	gest reason behind people refuse taking	\square \square Agree \square Strongly Agree \square
safet	y precautions?	
3)	How many times did you receive safety	$0 \Box 1 \Box 2 \Box 3 \Box 4 + \Box$
traini	ng in the past year?	
4)	Do you think that the training was	Strongly Disagree \Box Disagree \Box No Comments
cond	ucted frequently?	\square \square Agree \square Strongly Agree \square
5)	Do you think that the content of safety	Strongly Disagree \Box Disagree \Box No Comments
traini	ng allowed you to identify the potential	\square \square Agree \square Strongly Agree \square
hazaı	d at your workplace?	
6)	Your age group?	16-25 🗆 26-35 🗆 36-45 🗆 46-55 🗆 56+ 🗆
7)	Your work experience in years?	0-4
8)	Your educational level?	Primary \Box Secondary \Box Dip/A.D. \Box Tertiary \Box
		Masters

c

	Questions
1)	The concept of Personal Protection Equipment (PPE)
2)	The concept of work at height (working platform requirement)
3)	The knowledge of safety belt selection
4)	The concept of firefighting
5)	The concept of safety electrical equipment operation
6)	The concept of safety of crane operation
7)	The safety knowledge of working platform setup
8)	The safety awareness of heavy material transportation
9)	The responsibility of the government to the construction industry safety
10)	The safety knowledge of working in a confined area

7	2	o
1	J	フ

Table 3. Available IoT Sensor names and their functions

	Sensor Names	Functions/remarks
1)	Water Leakage Detector-I	Line type
2)	Water Leakage Detector-I	Point type
3)	Temperature/Humidity Sensor – I	For normal temperature
4)	Temperature/Humidity Sensor – II	For low temperature
5)	PM 2.5 Sensor	For air quality
6)	CO Sensor	For carbon mono-oxide
7)	CO ² Sensor	For carbon-di-oxide
8)	People-counting Sensor Detection	For movements, distances, and relative velocitie
9)	Power Meter	For electrical input current detection
10)	Water Flow Meter	To measure liquids in industrial applications
11)	GPS Tracker	For location tracking
12)	Light Sensor	To detect external ambient light intensity
13)	Occupancy Sensor	For motion detection in indoor areas
14)	Door/Window Sensor	To detect whether door/window is closed or ope
15)	Dry Contact Interface (button/switch)	For connection of external dry contact devices
16)	Emergency Push Button	For sending alerts to the gateway
17)	Push Button Interface	For third party push-button connection
18)	Smoke Detector	To detect smoke
19)	Combustible Gas Detector	To detect combustible gas leakage
20)	Air Quality Sensor	To detect indoor air quality
21)	Geomagnetic Parking Sensor	To detect vehicle presence
22)	Liquid Level Sensor	To monitor and check liquid levels in
		tank/container
222	Soil Moisture Sensor	To detect the amount of soil water

Items	Items Manual Tradi		IoT sensor system	Remarks
	monitoring	system		
Cost of Overhead	\$1,368,000.00	N/A	N/A	Average Salary of Site
(3 years)				Safety Supervisor * 36
				months
Cost of	N/A	\$263,000.00	\$201,000.00	Cost of Equipment * Total
Equipment				Equipment Quantity
Cost of Conduit	N/A	\$158,400.00	\$3,600.00	Cost of Conduit * Total
				Conduit Point
Cost of Cabling	N/A	\$44,000.00	\$1,000.00	Cost of Cabling * Total
				cabling
Cost of Power	N/A	\$176,000.00	\$4,000.00	Cost of Power Provision *
Provision				Total Power Point
				Requirement
Cost of	N/A	\$35,200.00	\$27,200.00	Cost of Installation * Total
Equipment				Installation
Installation				
Cost of Test and	N/A	\$54,128.00	\$18,944.00	8% of total cost
Commissioning				
Cost of 1st Year	N/A	Included	Included	1st Year Warranty included
Maintenance				
Cost of 2nd Year	N/A	\$54,128.00	\$18,944.00	8% of total cost
Maintenance				
Cost of 3rd Year	N/A	\$81,192.00	\$28,416.00	12% of total cost
Maintenance				
Cost of Overhead	\$1,368,000.00	N/A	N/A	Average Salary of Site
(3 years)				Safety Supervisor * 36
				months
Total Cost	HK\$1,368,000.00*	HK\$866,048.00**	HK\$303,104.00	1 HK\$= 0.13 US\$

Table 4. Cost Comparison between Manual Monitoring, Traditional Sensor System and IoT Based Sensor System

749 *IoT system provides 78% cost savings with respect to the traditional manual system **IoT system provides 65% cost savings with respect to the traditional sensors system

753 List of Figures

Figure 1 – Accidental Rate of Hong Kong Construction Industry (Source: Hong Kong Housing Authority, 2019)

Figure 2: Research methodology

Figure 4. Respondent's Self Perception – Careful Person and Quiz Result of Each Group (Light Weight)

Figure 5. Respondent's Perception of Peer Pressure and Quiz Result of Each Group (Light Weight)

- Figure 6. Respondent's Training Frequency Perception and Quiz Result of Each Group (Medium Weight)

Figure 7. Respondent's Perception of Training Content and Quiz Result of Each Group (Medium Weight)

Figure 8. Respondent's Working Experience and Quiz Result of Each Group (Medium Weight)

Figure 11. Respondent's Age Group and Quiz Result of Each Group (Heavy Weight)

Cat		Priority	Rank
	Careful	3.7%	7
2	Peer Pressure	3.7%	7
3	Training Times	22.4%	1
4	Training Too Much?	10.5%	4
5	Content help identify hazard	10.5%	4
6	Age Group	20.0%	2
7	Working Experience	10.5%	4
8	Education	18.7%	3

Figure 12. Priorities and Decision Matrix of Category Selection (Source: calculated using an online system managed
 by BPMSG, 2019)

Figure 13. AHP components with weighting for category selection

Weighting: 3.75%	Respondents'	Respondents'		Multiple-Choice Correction Rate								
Careful Person?	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Strongly Agree	5	6.76%	60.00%	100.00%	60.00%	80.00%	80.00%	80.00%	80.00%	100.00%	100.00%	100.00%
Agree	57	77.03%	63.16%	100.00%	89.47%	89.47%	98.25%	82.46%	71.93%	100.00%	98.25%	84.21%
No comment	8	10.81%	37.50%	100.00%	100.00%	87.50%	87.50%	87.50%	50.00%	100.00%	100.00%	87.50%
Disagree	2	2.70%	100.00%	100.00%	50.00%	50.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Strongly Disagree	2	2.70%	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	0.00%

Figure 14. Respondents' Reply and Correction Rate of MC Question

Part 1 Q1 (3.75%)	Respondents'	Respondents'	Part 2 - Multiple-Choice Question Correction Rate									
You are a careful person	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Strongly Agree	5	6.76%	0.0015	0.0025	0.0015	0.0020	0.0020	0.0020	0.0020	0.0025	0.0025	0.0025
Agree	57	77.03%	0.0182	0.0289	0.0258	0.0258	0.0284	0.0238	0.0208	0.0289	0.0284	0.0243
No comment	8	10.81%	0.0015	0.0041	0.0041	0.0035	0.0035	0.0035	0.0020	0.0041	0.0041	0.0035
Disagree	2	2.70%	0.0010	0.0010	0.0005	0.0005	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
Strongly Disagree	2	2.70%	0.0000	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0000
Total Average Score (Q1)				0.0375	0.0329	0.0329	0.0360	0.0314	0.0269	0.0375	0.0370	0.0314

Figure 15. Actual Rate of MC Questions for Category 1

Part 1 Q1 (3.75%)	Respondents'	Respondents'			Part 2	- Multiple	e-Choice C	Question	Correctior	n Rate		
You are a careful person	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Avera	age Score (Q1)		0.0223	0.0375	0.0329	0.0329	0.0360	0.0314	0.0269	0.0375	0.0370	0.0314
Part 1 Q2 (3.75%)	Respondents'	Respondents'										
Peer pressure affects safety	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Avera	age Score (Q2)		0.0223	0.0375	0.0329	0.0329	0.0360	0.0314	0.0269	0.0375	0.0370	0.0314
Part 1 Q4 (22.34%)	Respondents'	Respondents'										
Training taken	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Avera	age Score (Q4)		0.1328	0.2234	0.1962	0.1962	0.2143	0.1872	0.1600	0.2234	0.2204	0.1872
Part 1 Q5 (10.49%)	Respondents'	Respondents'										
Training too much?	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Avera	age Score (Q5)		0.0624	0.1049	0.0921	0.0921	0.1006	0.0879	0.0751	0.1049	0.1035	0.0879
Part 1 Q6 (10.49%)	Respondents'	Respondents'										
Training allows identification	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Avera	age Score (Q6)		0.0624	0.1049	0.0921	0.0921	0.1006	0.0879	0.0751	0.1049	0.1035	0.0879
Part 1 Q8 (20.04%)	Respondents'	Respondents'										
Age	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Avera	age Score (Q8)		0.1192	0.2004	0.1760	0.1760	0.1923	0.1679	0.1435	0.2004	0.1977	0.1679
Part 1 Q10 (10.49%)	Respondents'	Respondents'										
Working Experience	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Average Score (Q10)			0.0624	0.1049	0.0921	0.0921	0.1006	0.0879	0.0751	0.1049	0.1035	0.0879
Part 1 Q11 (18.65%)	Respondents'	Respondents'										
Education Level	Reply	Reply (%)	MC Q1	MC Q2	MC Q3	MC Q4	MC Q5	MC Q6	MC Q7	MC Q8	MC Q9	MC Q10
Total Avera	ge Score (Q11)		0.1109	0.1865	0.1638	0.1638	0.1789	0.1563	0.1336	0.1865	0.1840	0.1563
Gran	d Total		0.5946	1.0000	0.8784	0.8784	0.9595	0.8378	0.7162	1.0000	0.9865	0.8378

Figure 16. Actual Rate of MC Questions (After Weighting Calculation)

Figure 17. Construction Site Safety Monitoring with Internet-of-things (IoT)

Figure 18. IoT System for Construction Site Safety Monitoring – from Data Collection to Action Taking

Figure 21. Selected Construction Site (Hotel) with Site Office for the IoT Model Design (Google Map)

Figure 23. Workflow Diagram of IoT Safety Monitoring System

Figure 24. Proposed Equipment Installation Location in Construction Site

ltem	Cost	Unit
Cost of Network Switch	5,000.00	No(s)
Cost of Controller	6,000.00	No(s)
Cost of RFID Reader	1,500.00	No(s)
Cost of People Count Sensor	4,000.00	No(s)
Cost of Power Provision	2,000.00	Point(s)
Cost of Conduit	1,800.00	Point(s)
Cost of Cabling	500.00	Point(s)
Cost of IoT RFID Reader	2,500.00	No(s)
Cost of IoT People Count Sensors	2,500.00	No(s)
Cost of IoT Gateway	18,000.00	No(s)
Cost of Installation	400.00	Point(s)

829 Figure 25. Brief Cost Breakdown of Traditional Sensor System Installation and IoT Based Sensor Installation

		Traditional	IoT Sensor
		Sensor System	System
	Network Switch	2	N/A
	IoT Gateway	N/A	2
	Controller	1	N/A
	RFID Reader	2	2
831	People Count Sensor	2	2
832 833	Figure 26. Equij	pment Quantity of	each system
834			
835			
836			