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ABSTRACT 

Avoiding failures of corroded steel structures are critical in offshore oil and gas operations. An 

accurate prediction of maximum depth of pitting corrosion in oil and gas pipelines has significance 

importance, not only to prevent potential accidents in future but also to reduce the economic 

charges to both industry and owners. In the present paper, efficient hybrid intelligent model based 

on the feasibility of Support Vector Regression (SVR) has been developed to predict the maximum 

depth of pitting corrosion in oil and gas pipelines, whereas the performance of well-known meta-

heuristic optimization techniques, such as Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO) and Firefly Algorithm (FFA), are considered to select optimal SVR hyper-parameters. 

These nature-inspired algorithms are capable of presenting precise optimal predictions and 

therefore, hybrid models are developed to integrate SVR with GA, PSO, and FFA techniques. The 

performances of the proposed models are compared with the traditional SVR model where its 

hyper-parameters are attained through trial and error process on the one hand and empirical models 

on the other. The developed models have been applied to a large database of maximum pitting 

corrosion depth. Computational results indicate that hybrid SVR models are efficient tools, which 

are capable of conducting a more precise prediction of maximum pitting corrosion depth. 

Moreover, the results revealed that the SVR-FFA model outperformed all other models considered 

in this study. The developed SVR-FFA model could be adopted to support pipeline operators in 

the maintenance decision-making process of oil and gas facilities. 
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1. INTRODUCTION 

For decades, pipelines have been used all over the world as the fastest and safest way of oil and 

gas transportation. Any failure in pipeline transmission systems has a direct impact on the 

economics of the oil and gas industry. Various failure modes may affect transmission systems [1]. 

For several years, researchers have studied these failure modes [2,3]. Most of the investigations 

on the evaluating of the different failure modes for oil and gas pipelines reveal that the corrosion 

is one of the most common causes of failures in transmission systems.  

Analysis of existing reports on pipeline failure incidents reveals that corrosion, as the highest mode 

of failure, has the most negative impact in the degradation of oil and gas pipelines [4,5]. Lam and 

Zhou [6] analyzed the statistical failure incidents of onshore gas pipelines using the well-known 

PHASMA database from 2002 to 2013. The results confirm that 23.7% of pipeline failure 

incidents may occur from external corrosion while 8.7% from internal corrosion. Valor et al. [7,8] 

explained that 60% of failures in Mexican oil and gas transportation systems are caused by pitting 

corrosion on the external walls of pipelines. This fact of high incidents occur due to corrosion 

relates to the complexity of the environment that surrounds pipelines, including a large variety of 

the soil properties, water and transported products using the pipeline (Oil or Gas). All these 

features provoke the development and the growth of numerous types of corrosion on the metallic 

surfaces of a pipeline. Among them, uniform and localized corrosion are the most common types 

of pipelines failures,  known as pitting corrosion [9–11]. Therefore, to predict the failure of a 

pipeline, and schedule the maintenance accordingly, it is important to estimate the maximum depth 
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of the pitting corrosion precisely. Moreover, a precise prediction of pits depth allows operators to 

better analyze and manage the risk in the transmission pipeline system [5,12]. 

Several researchers have proposed different models to predict the maximum depth of pitting 

corrosion in oil and gas pipelines by attending to its importance in the safety assessment and the 

structural reliability analysis. Various theoretical basis methods have been adopted analytically or 

by using real field-databases integrated with statistical approaches, which result in the 

development of different empirical to fully stochastic models.  

Most of the existing empirical models predicting pitting corrosion depth in metals are developed 

based on the power-law model. The model was developed based on the studies of Rossum in 1969 

[13], where it can be expressed using Equation 1 in which parameters k and n are constants, d 

represents the maximum depth while T is the time in years.   

𝑑(𝑇) = 𝑘𝑇𝑛                                   (1) 

In the past few decades, several attempts were made to enhance and improve the power-law model 

by developing more precise approaches for formulating k and n.  Among the widely used models 

based on Equation 1  to describe pitting depths in pipelines,  the model proposed by Velázquez et 

al. (2009) [14] is one of the most well-known. This empirical model is a modified version of 

Equation 1 in which a new factor is considered in the model to represent pit initiation time (𝑇0). 

In addition, to developing this model, a large database of real-field corroded pipelines buried in 

various soil types was considered. The collected database includes several important parameters 

from the maximum depths of pitting corrosion to different soil properties in each location. 

Statistical analysis was then conducted to fit the database into the proposed model using a non-

linear regression technique. The two contacts in the model (K and n) were derived based on all 

possible combinations of factors influencing pitting corrosion.  Although the new model has 
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improved the basic power-law model proposed by Rossum, the discussion of the model’s 

performance evaluation was limited to the Coefficient of determination (R2), where the highest 

results were equal to 0.9. Moreover, the applied technique based on non-linear regression suffers 

from the chaotic pattern of the data, and mostly results in the inaccurate fitting.  Similarly, Alamilla 

and Sosa (2009) [15] proposed a new model that describes the damage velocity of pitting corrosion 

in operating buried steel pipelines. Unlike the Velázquez model, this model introduces two types 

of pit rates which are initial and long-term rates, and it is only the second one that is assumed to 

be dependent on soil properties. Several in-line inspection results were used to support model 

development. Moreover, the proposed model was developed mathematically using different 

known operations such as Tylor series and convolution equation, yet the performance evaluation 

and the ability of the model were not investigated.  

In the stochastic models, Markovian approaches are widely applied to describe the growth of 

pitting defects in oil and gas pipelines [16]. Several researchers have been conducted using Markov 

chain methodologies for predicting the pit development. Transition probabilities between pit 

‘‘states’’ are modeled as functions of environmental factors following the original model of pit 

growth rate developed by Velázquez et al. (2009) [17–19]. Previous studies on predicting the 

maximum depth of pitting corrosion have mostly focused on using simple and analytical methods 

to achieve their formulation. No previous study has given sufficient consideration to evaluate the 

performance of the model that predicts the maximum depth of pitting corrosion or employs hybrid 

artificial intelligence (hybrid AI) approaches to solve such a problem. 

Recently, Artificial Intelligence (AI) has attracted much attention due to the success of its 

techniques in solving engineering problems [20,21] . Support Vector Regression (SVR) is among 

these techniques that have been widely used as a strong tool to formulate the relationship between 
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inputs and outputs variables [22,23]. The SVR has been applied in various fields including 

regression estimation problems, time-series predictions, pattern recognition and dynamic systems 

inverse solution of [24–27]. Despite the advantages of SVR techniques in problem-solving, 

SVR suffers from the un-optimum hyper-parameters selection. This returns to the fact that SVR 

traditionally chooses its hyper-parameters using trial and error approach. This method is time-

consuming and leads to un-optimum hyper-parameters, which decrease the performance of the 

SVR technique. In order to overcome such limitations, integrating an optimization method with 

the SVR technique has been proposed as a solution to achieve optimum selections of the hyper-

parameters. Wen et al [28] developed an SVR model in order to predict the corrosion rate within 

3C steel. Five different seawater environments were studied. Their research reveals that the SVR 

results show more precious prediction than the back-propagation neural network (BPNN) results. 

However, sample numbers of the reported database is very limited, which was insufficient to train 

the predictive models in terms of performance and accuracy.  

 

Thus, considering the aforementioned shortcomings, the present research attempts to develop a 

model for predicting the maximum depth of pitting corrosion in oil and gas pipelines using hybrid 

artificial intelligence approaches. Therefore, different hybrid meta-heuristic optimization 

algorithms i.e., Practical Swarm Optimization (PSO), Genetic Algorithms (GA) and Firefly 

Algorithms (FFA), are integrated with SVR to select its optimal hyper-parameters. The hybrid 

models i.e., SVR-GA, SVR-PSO, and SVR-FFA are then used to predict the maximum pitting 

corrosion in pipelines. To achieve this aim, a large experimental database containing the maximum 

depths of pitting corrosion with different related soil properties is used.  Therefore, the objectives 

of this study are to (1) develop the framework of the proposed hybrid models-based SVR. (2) 
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Implement both the proposed models i.e. SVR, SVR-GA, SVR-PSO, SVR-FFA and excited well-

known empirical correlations on a large database of maximum pitting corrosion depth. (3) Evaluate 

and compare the prediction results in terms of performance, efficiency, and accuracy using 

different statistical and graphical criteria. This study outlines a new framework for more accurately 

predicting the maximum depth of pitting corrosion in oil and gas pipelines. The application of such 

a model enhances operational safety and reliability in the oil and gas industry.   

 

2. MODELLING METHODOLOGY 

2.1. Support Vector Regression (SVR) 

In the 1960s, Vapnik introduced a new tool to solve classification problems based on the concepts 

of Structural Risk Minimization (SRM) and Support Vector Machine (SVM) [29,30]. 

Subsequently, at the end of the 20th century, the general applicability of the method had been 

improved by adopting the principle of the ε-insensitive loss function [31]. This amelioration has 

permitted SVM to solve nonlinear regression estimation problems. Inspiration from SVM, by 

including the new loss function to solve non-linear problems, has promoted Support Vector 

Regression. SVR as a non-linear kernel method used for regression problems is a powerful 

machine learning technique. The goal of the method is to define the best hyper-plan for regression, 

aiming to minimize as much as possible the risk for high dimensional feature space [32,33]. 

 SVR concept is to split the training data {xi, yi} in order to determine the hyper-planes with the 

maximum margin. A hyper-plane is defined by using Equation 5 [34,35]: 

 𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 (5) 

where w represents the regression coefficient vector, while b represents the bias. Therefore, 

minimizing the regularized risk problem represented in Equations 6 and 7 is a solution for the 
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regression. Thus, the estimation of w and b can be conducted based on minimizing the next 

optimization formulation: 

 
𝑅(𝑓) =

1

𝑛
∑𝐿(𝑓(𝑥𝑖) − 𝑦𝑖) +

1

2
‖𝑤‖2

𝑛

𝑖=1

 
(6) 

 𝐿(𝑓(𝑥) − 𝑦) = {
‖𝑓(𝑥) − 𝑦‖ − 𝜀   𝑓𝑜𝑟 |𝑓(𝑥) − 𝑦| ≥ 𝜀
0                                      𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒 

 
(7) 

Equation 6 represents the so-called ε -sensitive loss function, whereas, ε defines the precision 

parameter that represents the tube radius of this function. This tube surrounds the regression 

function 𝑓(𝑥). This zone is called the ε-sensitive zone that represents the internal tube region, 

where the predicted value loss in this zone is equal to zero. Outside this region, the predicted value 

of the loss is equal to the difference magnitude between the predicted value and the radius ε. 

The optimum parameters are obtained using Equations 8 and 9, which formulate a constrained 

optimization problem. 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

1

2
‖𝑤‖2 + 𝐶∑(𝜉 + 𝜉𝑖

∗)

𝑛

𝑖=1

 
(8) 

Subjected to constraints: 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 {

𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜀 + 𝜉𝑖
〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0                           

 

(9) 

C represents a modifying constant-coefficient superior to zero, where the trade-off between model 

complexity and training error is determined using this constant.  In Equation 8, the term 
1

2
‖𝑤‖2, 

improves the generalization ability by maximization of the regression function smoothness due to 

the concept, distance increasing of two separated  training data [34]. The other term uses ε -

sensitive loss function to penalize training errors of 𝑓(𝑥) [36].  Therefore, optimum parameters 
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values can be found using the Lagrange equation based on the width of the tube (ε), the constant 

C and the kernel function K [37]. Hence, SVR can be represented using Equations10 and 11. 

 
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 −

1

2
∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)

𝑛

𝑖,𝑗=1

(𝑥𝑖, 𝑥𝑗) − 𝜀∑(𝛼𝑖 − 𝛼𝑖
∗) +∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)

𝑛

𝑖=1

𝑛

𝑖=1

 
(10) 

with the following constraints: 

 

𝑆. 𝑡

{
 
 

 
 ∑(𝛼𝑖 − 𝛼𝑖

∗) = 0

𝑛

𝑖=1

0 ≤ 𝛼𝑖 ≤ 𝐶

0 ≤ 𝛼𝑖
∗ ≤ 𝐶

𝑖, 𝑗 = 1,2, … ,𝑁

 

(11) 

𝛼𝑖, 𝛼𝑖
∗  are Lagrange multipliers and the solution for the dual problem, they have non-zero values. 

Using the abovementioned maximization function, SVR for the fitting function is illustrated by 

adopting Equation 12. 

 𝑓(𝑥, 𝑤) = (𝛼𝑖 − 𝛼𝑖
∗)〈𝑥𝑖, 𝑥〉 + 𝑏 (12) 

Finally, in the dual space, SVR function is expressed by using Equation 13. 

 𝑓(𝑥, 𝑤) = (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏 (13) 

For obtaining the kernel function K, several equations are available (i.e. linear kernel, radial basis 

kernel, polynomial kernel, sigmoid kernel, … etc.). In the current study, the radial basis function 

is used as it commonly gives the best outcome and is well adaption with datasets. Therefore, the 

radial basis function is expressed by Equation 14 [38]. 

 
K(𝑥𝑖, 𝑥𝑗) = exp (

1

2

‖𝑥𝑖 − 𝑥𝑗‖
2

𝜎2
) 

(14) 

The addressed objective function for the optimization approach through this study is the average 

absolute relative deviation (AARD) of SVR technique outcomes. Thus, the AAPD of SVR 

outcomes is formulated as explained by Equation 15. 
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𝐴𝐴𝑃𝐷 =

100

𝑛
∑|

𝑑𝑚𝑎𝑥
 𝑖 − �̂�𝑚𝑎𝑥

 𝑖

𝑑𝑚𝑎𝑥
 𝑖

|

𝑛

𝑖=1

 
(15) 

In which 𝑑𝑀𝑎𝑥
𝑖 , �̂�𝑀𝑎𝑥

𝑖  are the ith field measured and predicted value of maximum depth of pitting 

corrosion, correspondingly, and n represents the initial population samples. In other words, the 

optimization problem can be expressed as illustrated by Equation 16. 

 𝑀𝑖𝑛 𝐹(𝐶, 𝜀, 𝛾) = 𝑀𝑖𝑛(𝐴𝐴𝑃𝑅𝐷) (16) 

2.2. SVR hyper-parameters optimization using Meta-heuristic algorithms  

2.2.1. Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a powerful meta-heuristic algorithm developed from the 

inspiration of swarms dynamic movement and social behaviour such as birds, fishes and insects 

[39].  PSO stands for a stochastic approach based on the concept of population-based which aims 

to solve space problems by a continuous search [40].  In this study, PSO is considered to determine 

SVR optimum hyper-parameters, which are referred to as SVR-PSO. Hybrid SVR-PSO steps 

begin with random initializations of the locations and velocities population.  

Each particle fitness is evaluated using the statistical function in Equation 15 based on train 

database. The next step is the stopping criteria test. If the best particle fitness rate satisfies the 

condition, the parameters are supposed as being optimum. Otherwise, an enhanced rate must be 

achieved using particle velocity and position updating.  

Therefore, in the case where the fitness result of the global best is inferior to the fitness result of 

the particle, the parameters of the best global should be updated. In the other case, where best 

particle fitness is less than best global fitness, updating goes for the best particle. The new velocity 

and position can be formulated by adopting Equations 17 and 18 respectively. 

 𝑉𝑖+1 = 𝜔. 𝑉𝑖 + 𝐶1. 𝑟𝑎𝑛𝑑( ). (𝑃𝑖 𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝐶2. 𝑟𝑎𝑛𝑑( ). (𝑔𝑖 𝑏𝑒𝑠𝑡 − 𝑋𝑖) (17) 
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 𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖+1  (18) 

Where  𝑉𝑖+1, 𝑉𝑖, 𝑋𝑖, 𝑋𝑖+1 are the velocity and position at ith and i+1th moment respectively, rand () 

represent random value in [0,1] range; C1 and C2  are called learning factors, and 𝜔  is a weighting 

factor used to accelerate the convergence speed. The mathematical formulation of 𝜔 is provided 

by Equation 19. 

 𝜔 = 𝜔𝑚𝑖𝑛 + (𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟). (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)/𝑖𝑡𝑒𝑟𝑚𝑎𝑥 (19) 

Terms 𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 represent the smallest and highest weighting factors, where “Iter” refers to the 

number of iterations. Therefore, the next step is to re-evaluate the following particles.  

 

2.2.2. Genetic Algorithm (GA) 

Genetic algorithm (GA) represents a well-known randomized searching algorithm for handling 

optimization problems. Its principals are inspired by the theory of genetics and natural selection 

[41]. GA is selected to search the optimum hyper-parameters of SVR due to the algorithm 

efficiency in solving various engineering optimization problems [41]. The involved steps of the 

hybrid SVR-GA start by initializing a random population. Next, using the statistical fitness 

function, each individual is evaluated. Subsequently, an examination of the agreement of each 

individual, based on the stopping criterion, is made. If results are found to be acceptable, the 

algorithm must stop and the global best satisfactory individual has been generated. Therefore, the 

optimum parameters are achieved. If results are not acceptable, fitness evaluation is the next step 

to be considered. It includes three essential operations starting with the selection of the fittest 

individuals, then, the crossover is followed by the mutation in order to overcome the stopping 

criterion [42].  

2.2.3. FireFly Algorithm (FFA) 
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Firefly algorithm (FFA) is a new swarm intelligence optimization technique developed by Yang  

[43], inspired by fireflies dynamic movements. The algorithm has obtained considerable attention 

in the past few years due to its efficiency to determine the optimal solutions for numerous 

optimization problems [44–46]. FFA is deployed in this study to obtain the optimal hyper-

parameters of SVR. Hybrid SVR-FFA steps are commenced by randomly generating the 

population and FFA parameters i.e., original light intensity (𝛽0) adsorption coefficient (𝛾) and 

attractiveness. By using the statistical fitness function, fireflies brightness is evaluated. If the 

brightness of the firefly fulfills the stopping criteria, then the algorithm must cut and the supposed 

optimal parameters have been generated. Otherwise, another two-steps must be considered, first 

fireflies must move to the brightest firefly, and then the fireflies brightness should be updated. The 

movement of an “i” firefly towards another brighter “j” firefly is expressed by adopting Equation 

20. 

 
𝑋𝑖 = 𝑋𝑖 + 𝛽0𝑒

−𝛾𝑟𝑖,𝑗
2

(𝑋𝑖 − 𝑋𝑗) + 𝛼(𝑟𝑎𝑛𝑑( ) −
1

2
 ) 

(20) 

Where the attractiveness is represented by the term  𝛽0𝑒
−𝛾𝑟𝑖,𝑗

2

 ; (𝑟𝑎𝑛𝑑( ) −
1

2
 ) is a term indicating 

a randomization in the range [-0.5,0.5], 𝛽0 is the light intensity and 𝛾 refers to the adsorption 

coefficient. Thus, a distance between two fireflies i and j at Xi and Xj, respectively, is a Cartesian 

distance formulated by using Equation 21. 

 

𝑟𝑖,𝑗 = √∑(𝑋𝑖,𝑘 − 𝑋𝑗,𝑘)

𝐷

𝑘=1

 

(21) 

The second step is to rank the fireflies according to their fitness and determine the best option. The 

framework of hybrid SVR approaches i.e. SVR-PSO, SVR-GA, SVR-FFA are depicted in Figure1 

where the initial random populations are divided into training and test datasets. The optimization 
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algorithms i.e. PSO, GA, FFA are applied on the training dataset then the performance and 

accuracy of the output results generalization in each algorithm are tested using the other dataset as 

shown in Figure 1.  

 

Fig. 1. Flowchart of the proposed hybrid models (i.e. SVR-GA, SVR-PSO and SVR-FFA) 

 

3. Comparative criteria  

The performance and accuracy of the proposed intelligent techniques i.e., SVR, SVR-GA, SVR-

PSO, SVR-FFA and empirical correlations against the studied database is demonstrated through 

different comparative criteria. Thus, the differences between field measured data and predicted 

data using the above models are determined. Subsequently, a comparative study is considered 

according to several statistical indicators. These indicators include the root mean square error 

(RMSE), the mean absolute error (MAE), the Nash-Sutcliffe Efficiency (NSE), the Willmott index 

of agreement (d), and the coefficient of determination (R2). Models pertaining to these criteria are 

explained in Equations 22-28 [47]. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑑𝑚𝑎𝑥

 𝑖 − �̂�𝑚𝑎𝑥
 𝑖 )

2𝑛
𝑖=1                                              (22) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑑𝑚𝑎𝑥

 𝑖 − �̂�𝑚𝑎𝑥
 𝑖 |𝑛

𝑖=1                                                  (23) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑑𝑚𝑎𝑥

 𝑖 − �̂�𝑚𝑎𝑥
 𝑖 )

2𝑛
𝑖=1                                                                (24) 

𝑁𝑆𝐸 =  1 − 
∑ (𝑑𝑚𝑎𝑥

 𝑖 −�̂�𝑚𝑎𝑥
 𝑖 )

2𝑛
𝑖=1

∑ (𝑑𝑚𝑎𝑥
 𝑖 − �̅�𝑚𝑎𝑥

 𝑖 )
2𝑛

𝑖=1

                      − ∞ ≤ 𝑁𝑆𝐸 ≤ 1        (25) 

𝑑 =  1 − 
∑ (𝑑𝑚𝑎𝑥

 𝑖 −�̂�𝑚𝑎𝑥
 𝑖 )

2𝑛
𝑖=1

∑ (|�̂�𝑚𝑎𝑥
 𝑖 − �̅�𝑚𝑎𝑥

 𝑖 |+|𝑑𝑚𝑎𝑥
 𝑖 − �̅�𝑚𝑎𝑥

 𝑖 |)
2𝑛

𝑖=1

                      0 ≤ 𝑑 ≤ 1          (26) 

𝐶𝐼 = 𝑑 × 𝑁𝑆𝐸                                                         (27) 

𝑅2 = 1 −
∑ (𝑑𝑚𝑎𝑥

 𝑖 −�̂�𝑚𝑎𝑥
 𝑖 )

2𝑛
𝑖=1

∑ (�̅�𝑚𝑎𝑥
 𝑖 −�̂�𝑚𝑎𝑥

 𝑖 )
2𝑛

𝑖=1

                                                  (28) 

 

In Equations, 22-28, n refers to the number of database samples, and 𝑑𝑚𝑎𝑥, �̂�𝑚𝑎𝑥 , �̅�𝑚𝑎𝑥 are the 

measured field data, predicted and average values of maximum pitting corrosion depth 

respectively. The models with the smallest values of RMSE and MAE are considered to have more 

accurate performance, while models with higher R2 and CI values (i.e. near to unit) show more 

robust and efficient performance. 

 

4. DEVELOPED MODELS IMPLEMENTATION 

4.1. Data Collection 

It is of fundamental importance that for reliable and accurate AI models development, a reliable 

and accurate database should be used. Therefore, in order to implement the above modeling 

approaches and to prove their efficiency and accuracy against a large database, maximum depth 

data of pitting corrosion in oil and gas pipelines are collected from previous literature [48]. The 
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data contains 259 maximum pit depths gathered from coated steel pipes buried in different types 

of soil for an average period of 23 years. The pipes had been buried in various soil types including 

clay, sandy clay loam, clay loam, silty clay loam, silty clay and silt loam. The details of the 

database were published in a separate technical note by Velázquez et al, which included maximum 

depth of each pit, time that the pipe had been exposed to soil (buried) type of coating in each pipe 

and pipe to soil potential. Moreover, eight important factors that represent soil properties are 

reported being: redox potential, pH, resistivity, water content, bulk density, chloride, bicarbonate 

and sulfate content. The 259 datasets can be separated based on soil categories into 110 datasets 

from clay soil, 79 datasets from clay loam soil, 61 datasets from Sandy clay loam soil and the 

remainder of the samples are from silty clay and silty clay loam. Table 1 summarizes the range 

and the statistical properties of the 259 datasets, where all factors values are represented using 

minimum (Xmin), maximum (Xmax) , mean (Xmean) and standard deviation (XStD) values.  

Table. 1: Statistical attributes of Velázquez et al. datasets (2010) [48] 

Variable, (Units) Xmin Xmax Xmean XStD 

Max. pit depth, (mm) 0,41 13,44 2,02 2,05 

Exposure time (years) 5 50 22,99 9,12 

Resistivity, (X–m) 1,9 399,5 50,15 55,92 

Water content, (%) 8,8 66 23,9 6,66 

Sulphate, (ppm) 0,99 1370,2 152,97 168,18 

Bicarbonate, (ppm) 0,99 195,2 19,67 25,33 

Chloride, (ppm) 0,99 672,7 47,73 75,16 

pH 4,14 9,88 6,13 0,93 

Pipe/soil potential, (V) -1,97 -0,42 -0,88 0,24 

Bulk density, (g/ml) 1,1 1,56 1,3 0,09 

Redox potential, (mV) 2,1 348 167,04 85,48 

Coating type 0,3 1 0,77 0,13 
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4.2. Empirical Models  

4.2.1. Velazquez et al. model [14] 

According to Velazquez et al (2009) [14],the Rossum model was modified and the maximum pit 

depth can be expressed as explained in Equation 29.  

𝑑(𝑇) = 𝐾(𝑇 − 𝑇0)
𝑛                                                       (29) 

where d represents the maximum pit depth, T0 is the pit initiation time, and k and n are regression 

parameters depending on the soil properties. In their study, Velazquez et al. (2009) [14]used the 

aforementioned database with nonlinear regression to extract the formulations of k and n. 

Therefore, the following equations express k and n formulas:  

{
𝐾 = 𝑘0 + ∑ 𝑘𝑖𝑋𝑖

𝑛
𝑖=1

𝑛 =  𝑛0 + ∑ 𝑛𝑖𝑋𝑖
𝑚
𝑖=1

                                                     (30) 

where 𝐾𝑖  and  𝑛𝑖 are regression coefficients related to the predicted possible factor 𝑋𝑖. Table 2 

represents the outcome of the regression results. 

Table. 2: Regression results derived from Velazquez et al. (2009) [14] study 

Coefficient Factor Value 

T0 Initial time 2,88 

K0 Constant 0,608 

n0 Constant 0,896 

k1 Redox potential,(mv) -0,00018 

k2 Ph -0,0654 

k3 Resistivity, (X–m) -0,00026 

k4 Chloride, (ppm) 0,00087399 

k5 Bicarbonate, (ppm) -0,000639 

k6 Sulphate, (ppm) -0,000122 

n1 Pipe/soil potential, (V) 0,519 

n2 Water content, (%) 0,00465 

n3 Bulk density, (g/ml) -0,099 

n4 Coating type 0,431 

 

4.2.2. Alamilla et al. model [15] 
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According to Alamilla et al. (2009) [15] the mathematical formulation that describes the 

propagation of localized corrosion damage can be expressed by using Equation 31.    

𝑑(𝑇) = 𝑣𝑝𝑇 +
(𝑣0−𝑣𝑝)

𝑞0
[1 − exp (−𝑞0𝑇)]                                   (31) 

Whereas previously d represented the maximum pit depth,  𝑣0, 𝑣𝑝 are respectively the initial and 

long- term corrosion velocities, and 𝑞0 is regression constant. In their model, only 𝑣𝑝is considered 

as a function of surrounding environmental parameters. Therefore, the formula of long-term 

velocity was given by Alamilla et al (2009) as follow:   

𝑣𝑝 = 𝐶0 exp [−(𝑞1𝑝𝐻 + 𝑞2𝜌 + 𝑞3𝐸𝑅𝑒𝑑𝑜𝑥 + 𝑞4𝐸𝑠−𝑑)]                      (32) 

In Equation 32, 𝐶0, 𝑣0  and 𝑞𝑖 are regression coefficients relating to the predicted possible 

environment factor as represented in the regression result of Table 3. 

Table. 3: Regression results extracted from Alamilla et al. (2009) [15]study 

Coefficient Factor Value 

q1 Hydrogen potential (pH) 0,6623 

q2 Resistivity (q)/X m 0,0069 

q3 Potential redox (ERedox)/mV/SHE 0,0027 

q4 Soil–structure potential(Es–p)/V/Cu/CuSO4 0,981 

v0 Initial corrosion rate mm/year 0,6743 

q0 Constant 1 /year 1,7326 

C0 Constant 2  mm/ year 12,2652 

 

4.3. Implementation of the Developed Models 

As indicated in the above framework described in Section 2, the results obtained by using the SVR 

technique are highly sensitive to accurate estimation of the SVR hyper-parameters. In order to 

conduct optimum performance, two different approaches are considered to obtain SVR hyper-

parameters. First, the traditional trial and error approach of SVR is applied although; it is time-

consuming and does not guarantee the selection of optimal solutions due to the manual search. 

Secondly, the meta-heuristic algorithms are applied where the performance of three inspired 
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optimization algorithms are investigated (i.e., SVR-GA, SVR-PSO and SVR-FFA). Control 

parameters of the developed hybrid models i.e. SVR-GA, SVR-PSO and SVR-FFA are listed in 

Table 4. As explained in Table 4, the initial random population used in the three algorithms are 

the same and equal to 30.  

Table. 4: Default settings for model parameters 

Algorithm  Parameters Setting values 

GA  

Population size  30 

Crossover’s probability 90% 

Mutation’s probability 70% 

Type of replacement Elitism (10% of the population) 

Type of selection Linear ranking 

Max number of generation 30 

PSO 

Number of particles  30 

Maximum number of iteration 30 

C1, C2 2.05 

𝜔Max 1.2 

𝜔Min  0.1 

FFA 

Number of fireflies 30 

Maximum number of iteration 30 

alpha 0.5 

beta 4 

gamma 1 

 

5. Comparative predicted results of the models 

To implement the proposed hybrid models, the database of section 4.1 with 259 samples is 

separated randomly into training (80% of the data) and testing (20% of the data) datasets. Initially, 

the SVR models are applied to the first dataset (Train), and then the outcome of the model is 

validated by using the second dataset (Test), where different trials are considered to obtain SVR 

model hyper-parameters(𝐶, 𝜀, 𝛾). Statistical performances of the developed models and their 

prediction accuracy are illustrated in Table 5. Considering Table 5, the four SVR-based models 
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show the best performance, based on all statistical indexes, compared to empirical-based 

correlations developed by Velazquez et al. (2009) and Alamilla et al. (2009). Table 5 results also 

indicate clearly that the SVR-FFA hybrid model provides the most accurate results for maximum 

depth prediction of pitting corrosion in pipelines. Specifically, SVR-FFA yields the lowest MAE, 

RMSE, MSE values that equal to 0.0935; 0.0949 and 0.0090, respectively, using the training dataset 

while the same values using the test dataset are equal to 0.2359; 0.2909 and 0.5588, respectively. 

Moreover, the highest CI results in both phases of train and test are provided by SVR-FFA model 

being 0.9977 and 0. 8935, respectively.  

Further analysis of Table 5 results reveals that SVR-PSO shows more efficient and robust than 

SVR-GA using the statistical indicators Moreover, the trial and error approach for SVR hyper-

parameters selection shows the satisfactory results in the training phase, though the test results 

have low accuracy compared to the others SVR-hybrid models. Furthermore, results in Table 5 

reveal that the abilities and performances of the two correlation models developed by Velazquez 

et al. (2009) and Alamilla et al. (2009) using the listed indexes of statistical errors have a low 

accuracy compared to AI models. However, Velazquez et al. (2009) model shows better results 

than Alamilla et al. (2009) model.      

 

Table. 5: The comprative statistical indicators for different models in training and testing phases 

 Models MAE RMSE MSE d CI NSE 

T
ra

in
 d

a
ta

se
ts

 

SVR 0,0972 0,1107 0,0122 0,9993 0,9969 0,9975 

SVR-GA 0,0955 0,0988 0,0097 0,9994 0,9975 0,998 

SVR-PSO 0,0986 0,1057 0,0111 0,9994 0,9971 0,9977 

SVR-FFA 0,0935 0,0949 0,009 0,9995 0,9977 0,9981 

Velazquez et al. 0,7011 1,1957 2,7445 0,6896 0,4152 0,6021 
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Alamilla et al. 4,3805 5,6998 34,181 0,9393 -7,5530 -8,0410 
T

es
t 

d
a

ta
se

ts
 

SVR 0,8925 1,1633 1,3533 0,8616 0,3441 0,3994 

SVR-GA 0,5848 0,8389 0,7038 0,917 0,6305 0,6876 

SVR-PSO 0,5719 0,8002 0,6403 0,9185 0,6575 0,7158 

SVR-FFA 0,2359 0,2909 0,5588 0,9285 0,8935 0,9624 

Velazquez et al. 1,2165 2,3153 1,1311 0,5454 0,0620 0,1138 

Alamilla et al. 4,8449 5,8525 37,2137 0,8988 -4,1907 -4,6621 

* Bold numbers represent the best-obtained results amongst the others  

 

To illustrate the applicability of the proposed models, the ratio of d/RMSE based on Equations. 

(22) and (26) are determined and the results are plotted in Figure 2. As illustrated in Figure 2, the 

d/RMSE ratio have high values for all SVR models for the training phase. This means that the AI 

models are accurate and can train this problem with a nonlinear format while the robustness of 

predictions results depend on the tuning SVR parameters. It is clear that SVR-FFA results have 

the most accurate results when compared to all other SVR-based models and empirical correlations 

in both phases. Moreover, SVR-GA and SVR-PSO results are slightly similar, in which the 

d/RMSE values of SVR-GA  provide less accuracy than SVR-PSO when considering the testing 

phase. 
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Fig. 2. d/RMSE factor for different  empirical models and artificial  intelligent-based hybrid SVR 

models in train and test phases 

Figure. 3 depicts the scatterplots of the six models, i.e. SVR-FFA, SVR-GA, SVR-PSO, SVR, 

Velazquez et al. (2009) [14] and Alamilla et al. (2009) [15] based on both training and test datasets. 

Furthermore, the correlation (R2) between predicted and measured/observed data points of 

maximum pitting corrosion depth is also provided in Figure. 3. In these figures, the green lines 

represent a linear relationship between the predicted (�̂�𝑚𝑎𝑥) and measured (𝑑𝑚𝑎𝑥) values, while 

black lines refer to a unit slope.  

As illustrated in Figure. 3, the best determination coefficient R2 is provided by SVR-FFA model 

which is 0.9987 followed by 0.9985, 0.9982, 0.9976 for SVR-GA, SVR-PSO, and SVR   

respectively. This confirms the accuracy and robustness of the SVR techniques as tools for 

predicting the maximum depth of pitting corrosion in oil and gas pipelines. Obtained results of 

Velázquez et al. [14] empirical model is equal to R2 = 0.614, which is lower compared to the one 

reported by Velazquez et al. (2009) (R2=0.87). It is noted that Velazquez et al. (2009) eliminated 

a portion of samples from the original database as outliers, in which this is not the case in the 

present study. Therefore, the difference between the present study results (R2=0.614) and 
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Velázquez et al (2009) results (R2=0.87) return to this elimination of samples that were considered 

as outliers. In addition, it should be noted that SVR-GA and SVR-PSO results are close, where the 

maximum difference of R2 is 0.003. The result obtained with Alamilla et al. (2009) empirical model 

is the lowest. The corresponding R2 value is 0.3392, which indicates the incapability of the model 

against a larger database that contains more variety of data.  

 

 

 

 

 



22 
 

 
 

 

Fig. 3. The scattor plots presentation for the applied predictve models over the training and 

testing phase 

Figure 4 illustrates the Taylor diagram for the test dataset, which is extracted using the hybrid 

models of SVR-PSO, SVR-FFA and SVR-GA, machine learning-based SVR models and 

empirical relations developed by Velazquez et al. (2009).  Results of Figure. 4 indicated that the 

SVR and hybrid models are more accurate than the empirical model. However, the accuracies of 

the predicted data for maximum pitting corrosion depth using hybrid intelligent techniques showed 

that SVR is inaccurate modelling process compared to hybrid intelligent models of SVR-FFA, 

SVR-PSO, SVR-GA) due to the random selecting the SVR hyper-parameters. The best and the 

worst models among the AI schemes are founded to be the SVR-FFA and the SVR models, 

respectively. Following SVR-FFA results, the hybrid SVR model with PSO shows more accurate 

prediction results in comparison with SVR-GA and SVR. The optimization process for tuning the 

parameters of SVR using meta-heuristic algorithms is a robust strategy to improve the accuracy of 

SVR in complex engineering problems. The ability of the optimization method may differ from 

other engineering problems. Dataset for training models and parameters of optimization algorithms 

are the major parameters to provide the nonlinear response for real engineering problems. The 
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abilities of these three hybrid models can be investigated for other complex engineering problems 

in future.     

 

 

Fig. 4. Taylor diagrams for predicted test data using different models. 

 

Histograms of the ratio between predicted and observed maximum depth of pitting corrosion (dmax-

P/dmax-O) are plotted in Figure 5. It comprises the mean and standard deviation (SD) of results 

obtained from each model. When the mean value is close to the unit with a low standard deviation, 

it indicates that the model performs more accurate in predicting the real-field phenomena. Unlike 

empirical correlation developed by Velazquez et al. (2009) and Alamilla et al. (2009) models, the 

mean values of the proposed SVR-hybrid models are the closest to one while their standard 

deviations are the lowest with different results. The SVR-FFA model provides the lowest SD value 

(equal to 0.386) compared to the other hybrid models while the SVR-PSO outperforms SVR-GA. 

The Alamilla et al. (2009) model shows the lowest accuracy for approximating the maximum 
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pitting corrosion depth. Thus, for accurate and robust predictions of the maximum pitting depth 

for oil and gas pipelines, the hybrid models based SVR are suitable choices.  

 

Fig. 5. Comparison of maximum pitting corrosion depth using predicted to observed (dmax-P/dmax-

O) dataset. 

The predicted to an observed maximum depth of pitting corrosion (dmax-P/dmax-O) ratios for different 

models are presented with respect to the time exposure in Figure 6 for the train and test datasets. 

It is shown from Figure. 6, that the ratio dmax-P/dmax-O  values are the nearest to one in training data 

for the machine learning approaches of, SVR, SVR-PSO and SVR-GA and SVR-FFA compared 

to the empirical models. By comparing the test data, the hybrid model of SVR-FFA is accurate 

modeling procedure than the models of SVR, SVR-GA and empirical formulations. In fact, the 

obtained regression models resulting from the adopted empirical formulations present a high 

percentage of errors compared to the developed intelligent models. The SVR-FFA provides the 
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most accurate results for time exposure with more than 30 years while its prediction results are 

sensitive within the range goes from 10 to 25 years. 

 

Fig. 6. Comparison of predicted to observed data points corresponding to exposure time for 

different models 

Figure.7 presents the uncertainties of predicted models using the train and test data for maximum 

corrosion depth of pipelines. As seen, the empirical models are not robust schemes for the 

prediction thus it is required to improve the nonlinearities of these models as well as the machine 

learning approaches. By comparing the results of the best model of SVR-FFA, highly accurate and 

acceptable prediction results are obtained for depth larger than 5 mm while a high uncertainty is 

available for depth less than 3mm. This mean that the soil properties affecte on the corrosion defetc 

for long times exposure, which led to the increase of the corrosion depth.  
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Fig. 7. Comparison of predicted to observed data points of maximum pitting corrosion depth for 

the proposed AI approaches and empirical models 

 

6. CONCLUSIONS  

Predicting maximum depth of pitting corrosion in oil and gas pipelines is significantly important 

in maintaining high reliability and security levels of those structures.  In the present study, a new 

methodology based on using an artificial intelligence technique, namely SVR, has been developed 

to more accurately predict the depth of pitting corrosion in metallic pipes. Moreover, three meta-

heuristic algorithms are used to enhance the accuracy of SVR capability in selecting optimal 

solutions for its hyper-parameters. Therefore, exploiting GA, PSO and FFA optimization 

algorithms for seeking global optimal hyper-parameters extended the SVR ability to move towards 

its best generalization capability. A real database of pitting corrosion depth has been adopted which 
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covers different factors affecting the pitting corrosion. The main conclusions from this study, 

therefore, are summarized as follows:  

• Performance results based on statistical indicators show that all proposed models using 

hybrid AI (i.e. SVR-GA, SVR-PSO, and SVR-FFA) have high efficiency and accuracy in 

adapting when predicting the maximum depth of pitting corrosion in oil and gas pipelines;   

• Comparative computational results based on adopting Velázquez et al (2009) database 

indicated that SVR-based hybrid models i.e. SVR, SVR-GA, SVR-PSO, and SVR-FFA 

outperform empirical ones. The improvement from Velazquez’ model to the best-obtained 

hybrid model .i.e. SVR-FFA using RSME is about 94.23% and 29.72 % in train and test 

phases. Where SVR-FFA has the highest coefficient of determination (R2=0.9987). 

• The results of the present study indicate that assumptions adopted by empirical models may 

lead to the inaccurate performance of the models and low accuracy of the outcomes, in 

which the Alamilla et al. (2009) model shows the lowest performance among all models.  

This study provides a guideline for using artificial intelligence techniques as an appropriate 

framework for modelling the depth of pitting corrosion in oil and gas pipelines in terms of accuracy 

and efficiency in performance. However, new machine learning techniques integrated with further 

optimizations algorithms should be investigated to enhance the accuracy of predicting the depth 

of pitting corrosion in oil and gas pipelines in the future.    
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