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Abstract 

The Chinese government plans to adopt a low or no subsidy policy mechanism on renewable 

energy power development in the future. To achieve a balance between reducing financial 

burden on the government and ensuring profitability of investors as well as to account for 

the regional differences in China, a novel regional wind power grid feed-in tariff benchmark 

price mechanism by Net Present Value (NPV) method and Real Option (RO) method is 

proposed in this paper. The results voice support on the appropriateness of gradually 

decreasing the wind feed-in tariff (FIT) benchmark price to as low as the coal-fired FIT. The 

proposed FIT price level is presented as a price range on the basis of a guaranteed Internal 

Rate of Return (IRR) falls in between 8% to 15% for wind power investors. The results 

indicate that the current FIT price should be readjusted and redistributed. Although the FIT 

price in Central and South China grids is recommended to be relatively high, the NPV of wind 

farm project value in six regional grids are at the same level. 
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1. Introduction 

In January 2019, the National Development and Reform Committee (NDRC) stipulated the 

Notice on work related to wind power and photovoltaic power generation connected to grid 

without subsidy (NDRC, 2019a). The attempt of the Notice expresses the government’s 

intention to promote a low or no subsidy policy mechanism on renewable energy power 

development in the future. The reform of the wind FIT benchmark price in China has been 

concerned by the government for a long time. The highest administrative organ NDRC has 

promulgated a series of notices including the notices related to consecutive adjustment on 

wind FIT benchmark price level and executing nationwide carbon emission trading scheme 

(NDRC, 2019b, 2017a, 2017b, 2016a, 2015a, 2015b, 2014, 2011, 2009a), in order to promote 

the prosperous wind power development in China to achieve a sustainable environment. As 

sub-ordinary bodies of NDRC, the National Energy Administration (NEA) and the Ministry of 

Finance (MF) has also stipulated affiliated policies (MF, 2015; NEA, 2013) to assist in 

encouraging wind farm construction projects.  

In recent years, some researchers around the world have proposed new price policy 

mechanisms to adjust the renewable energy FIT price level. Yang and Ge (2018) introduced 

a dynamic distributed solar power FIT pricing model that considered the unit generation 

cost, profit and tax. The results suggested a 5-tier incentive mechanism based on the 

irradiation time from 0.3245-1.0708 CNY/kWh in 2017, to 0.2159-0.7125 CNY/kWh in 2020. 

Barbosa et al. (2018b) applied the NPV and real option method to identify the fixed or 

unfixed minimum price guarantee with regulatory uncertainty. Their study pointed out that 

a fixed FIT could induce the investment even the price was lower than market price because 
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it provided a risk-free environment. Antweiler (2017b) employed a methodology which 

combines FIT and capacity-augmentation-tariff to analyse the optimal price mechanism on 

wind and solar energy. His study recommended that the price differentiation mechanism 

was economically meaningful according to different types and locations of wind farms. 

Devine, Farrell, and Lee (2017a) applied a risk aversion model to simulate the optimal FIT 

mechanism from investors’ and policymakers’ perspectives, and concluded that the flat-rate 

FIT and premium FIT were optimised in different risk-aversion situations. Kim and Lee 

(2012a) employed NPV method to optimize four FIT payoff structures for solar power 

generation and added in economic constraints to develop an option-like featured model.  

 

The policy reform is imperative. Different from previous studies, this study has proposed a 

brand-new FIT policy mechanism – Regional-power-grids-based FIT policy mechanism, 

which is the continuity of the authors’ preliminary research (Zhang et al., 2019a). The 

contribution of this study is twofold. Firstly, this study advocates a reform of wind power 

FIT policy mechanism from current one to a novel one. The current one refers to a four-

wind-resource-area-based wind power FIT policy mechanism, which has classified 31 

provinces, municipalities and autonomous regions into four wind resource categories 

(Table.A.1) in accordance to annual average effective wind energy density and cumulative 

hours of wind speed of 3-20 m/s (Table A.2). The historical wind power FIT benchmark 

prices set by the Chinese government are distinguished in four wind resource areas 

(Table.A.3), where higher prices are distributed to areas with less wind resource 

abundancy in order to encourage the investment in those areas in particular.  With the 

support of FIT policy, the development of wind power is drastic and status quo of current 
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wind power installed capacity is demonstrated in Fig.A.1. The novel one that proposed by 

this study refers to a six-regional-power-grids-based wind power FIT policy mechanism 

(Fig.B.1)1, which has considered the regional variation on accommodation ability of 

electricity consumption (reflected by wind power curtailment rate and wind farm 

operating hours), different regional development of carbon emission trading scheme 

( reflected by carbon emission factors and carbon trading prices), as well as regional FIT 

price deduction rate based on historical data.  Secondly, the proposed policy mechanism 

has solved the rationality problem on lowering the wind power FIT benchmark price to a 

minimized level. The model that established by this study is based on strong theoretical 

support and empirical data. This study has applied the NPV method and the RO method to 

model the cash flow, project value and risks in enterprise’s managerial flexibility and 

uncertainties during warranted life of a typical 45 MW wind farm which comprises of 18 

units of 2,500 kW wind turbines. The feasibility of the methodology in renewable energy 

field could be proven by existing researches (Barbosa et al., 2018; Fagiani et al., 2013; Kim 

and Lee, 2012; Lin and Wesseh, 2013; Penizzotto et al., 2019; Rigter and Vidican, 2010; 

Ritzenhofen and Spinler, 2016; Schmidt et al., 2013; Wesseh and Lin, 2016; Yang and Ge, 

2018; Zhang et al., 2016) . The result illustrates different wind power FIT benchmark price 

adjusting levels in different regionals, which has provided constructive prospectives and 

insights towards the future wind power market to policymakers and wind power investors.   

 
1 The basic information of six regional power grids is summarized in Table.B.1. 
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The structure of this paper is organized as the following: Methodology is presented in 

Section 2, Results and Discussions are conducted in Section 3, and Conclusion and Policy 

Implications are summarized in Section 4. 

 

2. Methodology 

Section 2.1 comprehensively introduces the concept of applying NPV method considering 

RO. The conventional NPV method only calculate the discounted cashflow subtracts the 

upfront investment cost, but in this paper, the value of RO which counts in the enterprise’s 

managerial flexibility and uncertainty is also considered as a loss and subtracted from the 

discounted cash flow. The cashflow of a wind farm project comprises of the profit from 

selling on-grid wind power, the profit from carbon emission trading scheme, the profit 

from curtailed wind compensation, the expenditure on the operation and maintenance 

(O&M) cost and tax payment. Relevant policies which can support this paper’s calculation 

are referenced in each sub-section. The principle of employing RO is explained in Section 

2.2. the value of RO represents the risk of an enterprise’s managerial flexibility and 

uncertainty to invest in the wind power project immediately instead of waiting or delaying.  

2.1. Net Present Value Method  

In this paper, NPV is calculated by means of Eq. (1) on the basis of the following equation: 

𝑉𝑁𝑃𝑉 = ∑
𝐶𝐹𝑡

(1 + 𝑟)𝑡
− 𝑅𝑂 − 𝐶𝐼𝑡

𝐿

𝑡=0

 
(1) 

 

Where  

𝐶𝐹𝑡 = 𝐸𝐿𝐸𝑡 + 𝐶𝐸𝑅𝑡 + 𝐶𝑈𝑅𝑡 − 𝑂𝑀𝐶𝑡 − 𝑇𝐴𝑋𝑡 (2) 
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𝑉𝑁𝑃𝑉  stands for the amount of net presenet value, 𝐶𝐹 denots yearly cash flow of the project 

and CI represents capital investment. RO represents the enterprises’ managerial flexibility 

and uncertainty investigated by, the value of RO is calculated by means of quantifying the 

systematic risk and idiosyncratic risk using the Black-Scholes Model, which will be discussed 

in Section 2.2. The wind turbine life span is 𝐿 and the investment is settled in yeat t. r denotes 

the discount rate. The calculation of yearly cash flow includes the profits from selling wind 

power to the grid ELE, the profits from carbon trading mechanism CER, the compensation 

on the curtailed wind power due to systematic failure 𝐶𝑈𝑅𝑡 , the operation and maintenance 

cost OMC, as well as the tax expenditure TAX.  

2.1.1. Profit from Selling Grid-Connected Wind Power 

The profit for the wind farm investors on selling the wind power to the regional power grids 

is calculated by the following equations: 

𝑊𝐹𝑡 =
𝐻𝑖

ℎ
∗ 100% 

(3) 

𝑊𝐹𝑡+1 =  𝑊𝐹𝑡 ∗ (1 − 𝑅𝑑𝑒𝑝) (4) 

𝐺𝐸𝑡 = 𝑃𝑡 ∗ 𝑁 ∗ 𝑊𝐹𝑡 (5) 

𝐸𝐿𝐸𝑡 = 𝐺𝐸𝑡 ∗ 𝐹𝐼𝑇𝑡 (6) 

𝐹𝐼𝑇𝑡+1 = 𝐹𝐼𝑇𝑡 ∗ 𝑒𝑅𝑓𝑖𝑡 (7) 

 

Where 𝐻𝑖  stands for the annual wind farm utilised hour for grid-connected wind power 

generation, and ℎ  denotes the annually total hour. Wind farm capacity factor 𝑊𝐹𝑡  is 

calculated by 𝐻𝑖  and ℎ . 𝐺𝐸𝑡 denotes the grid-connected power that generated from wind 

energy, 𝑃𝑡 denotes the rating power of a wind turbine system, 𝑅𝑑𝑒𝑝  denotes the wind turbine 

system depreciation rate. 𝐹𝐼𝑇𝑡 stands for the feed-in-tariff price level at year t and it follows 
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an exponential descending trend with rate value of 𝑅𝑓𝑖𝑡 . The decreasing rate 𝑅𝑓𝑖𝑡  is 

calculated according to the actual changing rate over the past years that stipulated by the 

NDRC. 

Since the North China grid, Northeast China grid and Northwest China grid are facing a 

severe wind curtailment problem, the wind curtailment rates are getting even worse over 

the past three years (Zhang et al., 2019b).  

2.1.2. Profit from Carbon Emission Trading Scheme 

According to BP Statistical Review of World Energy (2017), the total carbon emissions in 

China at the end of 2017 was 9232.6 million tons, which accounts for 27.6% of world’s output 

and is on the rise for consecutive years. Among all the power consuming segments, electricity 

and heat production contributes around 50% of the carbon emission, thus make carbon 

emission reduction a critical role of energy transition from traditional fuels to renewables. 

On December 19, 2017, the NDRC (NDRC, 2017b) promulgated the Notice on the National 

Carbon Emission Trading Market Construction Plan (Power Generation Industry) , which 

represents the start-up of nation-wide carbon trading system. The Notice stipulated more 

than 1700 enterprises (with a majority of power generation enterprises) should commit the 

obligation of carbon trading process. Therefore, the implementation of this policy will 

discourage the investor’s choice on coal-fired power plants, but make the wind farm 

investment choice more attractive (Zhao et al., 2018). Therefore, the North China grid, 

Northeast China grid and Northwest China grid should consider this factor as a potential 

influence on the amount of coal consumption. 
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The profit of wind farms from trading carbon emission certificate (𝐶𝐸𝑅𝑡) is calculated in 

accordance with the NDRC’s (NDRC, 2016b) standardized combined margin emission factor 

of a certain grid in year t (𝐸𝐹𝑔𝑟𝑖𝑑,𝑡): 

𝐶𝐸𝑅𝑡 =  𝐸𝐹𝑔𝑟𝑖𝑑,𝑡 ∗ 𝐺𝐸𝑡 ∗ 𝑃𝑐,𝑡  (8) 

𝐸𝐹𝑔𝑟𝑖𝑑,𝑡 = 𝑊𝐵𝑀 ∗ 𝐵𝑀𝑔𝑟𝑖𝑑,𝑡 + 𝑊𝑂𝑀 ∗ 𝑂𝑀𝑔𝑟𝑖𝑑,𝑡  (9) 

 

The 𝐸𝐹𝑔𝑟𝑖𝑑,𝑡  is calculated by the weighted average of the build margin emission factor 

(𝐵𝑀𝑔𝑟𝑖𝑑,𝑡) and operational emission factor (𝑂𝑀𝑔𝑟𝑖𝑑,𝑡), the values are summarised in Table 

1. The operating margin is the emission factor of the thermal power plants and all plants 

serving the grid that cannot be characterized as “must run”. The build margin is the 

emission factor of a group of recently built power plants. The weights are denoted by 𝑊𝐵𝑀  

and 𝑊𝑂𝑀 , respectively (China Environmental United Certification Center (CEC), 2016; 

SecuritiesIndustrial, 2013). The methodology ACM002 referred to the Global Climate 

Change Research Institute of the Tsinghua University targets at large-scaled (installed 

capacity above 15MW) wind farm projects has stipulated the value of 𝑊𝐵𝑀  and 𝑊𝑂𝑀  as 0.25 

and 0.75, respectively (Liu, 2012). 

Table 1. Values of build margin emission factor (𝐵𝑀𝑔𝑟𝑖𝑑,𝑡) and operational emission factor (𝑂𝑀𝑔𝑟𝑖𝑑,𝑡) in 

six regional grids in China. It is noted that the values are updated by weighted average method to year 
2014 (NDRC, 2016b).   

 𝐵𝑀𝑔𝑟𝑖𝑑,𝑡  𝑂𝑀𝑔𝑟𝑖𝑑,𝑡  𝐸𝐹𝑔𝑟𝑖𝑑,𝑡 

North China grid 1.0000 0.4506 0.58795 

Northeast China grid 1.1171 0.4425 0.61115 

Northwest China grid 0.9316 0.3467 0.492925 

Central China grid 0.9229 0.3071 0.46105 
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East China Grid 0.8086 0.5483 0.613375 

South China Grid 0.8676 0.3071 0.447225 

𝑃𝑐,𝑡  represents the carbon price. The NDRC has issued the Notice on Pilot Work on Carbon 

Emissions Trading and announced seven pilot provinces and cities to launch the carbon 

trading scheme in October 2011 (NDRC, 2011). During the pilot operation, the carbon price 

is fluctuated between 5-50 𝑅𝑀𝐵/𝑡𝐶𝑂2𝑒 (Boer de et al., 2017). In December 2017, the NDRC 

released the National Carbon Emission Rights Trading Market Construction Plan to open up 

the nation-wide carbon trading mechanism and will be practised in 2019 (NDRC, 2017b). 

Therefore, referring to the historical data (Ministry of Industry and Information 

Technology, 2019), this study assumes 50 𝐶𝑁𝑌/𝑡𝐶𝑂2𝑒 as carbon trading price in North, 

Northeast and Northwest power grids, and 30 𝐶𝑁𝑌/𝑡𝐶𝑂2𝑒 in Central, East and South power 

grids. 

Based on the previous research works (Brauneis et al., 2013; Fuss et al., 2009; Zhao et al., 

2018; Zhu and Fan, 2011), 𝑃𝑐,𝑡  follows a Geometric Brownian Motion (GBM) as: 

dP𝑐,𝑡 = μ𝑐𝑃𝑐,𝑡 𝑑𝑡 + σ𝑐𝑃𝑐,𝑡 𝑑𝑊𝑐,𝑡  (10) 

Where μ𝑐  and σ𝑐 denote percentage drift of carbon price and percentage volatility of carbon 

price, respectively. 𝑊𝑐,𝑡  represents an incremental Wiener process and obeys normal 

distribution 𝑊(𝑡)~N(0, 𝜀𝑐
2𝑡), and ε𝑐 denotes the parameter of the Wiener process. 

2.1.3. Profit from Curtailed Wind Power Compensation  

Refer to the overview of the status quo of the wind power development in China (Zhang et 

al., 2019b), the wind power curtailment rate is significant and the major reason is attributed 

to the inconsistency of power grid planning between power grid companies and local 
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government. (Gu and Xie, 2014; Zhao et al., 2016a). Simply speaking, although the wind 

farms are constructed in areas with abundant wind resource (i.e., Northwest and Northeast 

China Grids), the population in these areas is not high, so the power demand is relatively low. 

It turns out that the wind power is unable to be fully accommodated by power consumers 

instantaneously, so that part of wind power has to be curtailed. As recorded, wind power 

curtailment problem appears to be severe in South, North, Northeast and Northwest China 

grids (Fig.C.1), which leads to a national average wind curtailment rate as high as 18% and 

21% in year 2015 and 2016, respectively . Realized the urgent measure should be adopted 

to curb the wind power curtailment situation, the National Energy Bureau (NEB) has 

promulgated the Notice on Wind Power Grid Connection and Consumption to privilege the use 

of wind power in these regions. As a result, the national average wind curtailment rate has 

decreased heavily to 13.2% and 7% in year 2017 and 2018, respectively. Nevertheless, the 

wind power curtailment rates in Northeast and Northwest China grids are still high. 

Due to the wind power curtailment problem, the wind power investors appear not to invest 

immediately but to wait-and-see. They are worried about their profit since the FIT is 

provided to “on-grid” wind power. Fortunately, In 2015, the NDRC has enacted the Notice on 

Guaranteeing the Purchasing of Electricity Generated by Using Regenerable Energy Resources 

in Full Amount (NDRC, 2015b), which stipulated that the amount of curtailed renewable 

power due to grid connection failure 2  or constrained dispatch quota could receive full 

compensation as the same rate of FIT price. This policy offsets the investment risk caused by 

 
2 Grid connection failure refers to some amount of the wind power has to be curtailed due to overcapacity, in 
order to prevent the power system from unstable frequency and other power safety problems (Liu and Zhang, 
2018).  
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systematic failure3 that should not be responsible by wind power investors, therefore, it 

encourages the wind power investors who is concerned about this issue to be more confident 

to enter the market. From 2015 on, the curtailed amount of wind power is required to be 

recorded in official document because of severe wind power curtailment situation emerged 

in China. North, Northeast, Northwest and South China grids are currently on record with 

curtailed amount of wind power, and this study has calculated the wind curtailment rate 

according to the official data and employed the value in the model to calculate the profit from 

curtailed wind power compensation: 

𝐶𝑈𝑅𝑡 =
𝑅𝑐𝑢𝑟 ∗ 𝐺𝐸𝑡

(1 − 𝑅𝑐𝑢𝑟)
∗ 𝐹𝐼𝑇𝑡 

(11) 

Where 𝑅𝑐𝑢𝑟  denotes the wind curtailment rate and 𝐶𝑈𝑅𝑡  represents the profit from curtailed 

wind power compensation to the wind power investors.  

2.1.4. Expenditure on O&M Cost and Tax Payment 

In 2009, the Minister of Finance stipulated the Notice on Value-added Tax Policy of Wind 

Power Generation, which provided favourable tax preferential incentives for enterprise 

income tax (𝐸𝐼𝑇𝑡) and value-added tax (𝑉𝐴𝑇𝑡). The Notice announced that for wind energy 

project in China, the 𝑉𝐴𝑇𝑡  has been deducted from 17% to 8.5% while the 𝐸𝐼𝑇𝑡  has been 

exempted during the first three years, and then deducted from 33% to 15% during the 

second three years. 

 
3 Systematic failure refers to grid connection failure  or constrained dispatch quota that is caused by the 
inconsistency of grid planning between power gird companies and local governments as aforementioned, that the 
corresponding curtailment problem should not be responsible by the wind power investor, so they are reasonable 
to receive the compensation. 



13 

 

𝑂𝑀𝐶𝑡 = (𝐺𝐸𝑡 +
𝑅𝑐𝑢𝑟 ∗ 𝐺𝐸𝑡

(1 − 𝑅𝑐𝑢𝑟)
) ∗ 𝑈𝑂𝑀𝐶𝑡 ∗ 103 

(12) 

𝑇𝐴𝑋𝑡 = 𝑉𝐴𝑇𝑡 + 𝐸𝐼𝑇𝑡 (13) 

𝑉𝐴𝑇𝑡 = (𝐸𝐿𝐸𝑡 + 𝐶𝐸𝑅𝑡 + 𝐶𝑈𝑅𝑡) ∗ 𝑅𝑣𝑎𝑡,𝑡  (14) 

𝐸𝐼𝑇𝑡 = [(𝐸𝐿𝐸𝑡 + 𝐶𝐸𝑅𝑡 + 𝐶𝑈𝑅𝑡) ∗ (1 − 𝑅𝑉𝐴𝑇,𝑡) − 𝑂𝑀𝐶𝑡]

∗ 𝑅𝐸𝐼𝑇,𝑡 

(15) 

The expenditure on O&M cost is presented in Eq. (12), where 𝑈𝑂𝑀𝐶𝑡  denotes the unit 

operation and maintenance cost. The expenditure on tax payment is calculated by Eq. (13) 

to Eq. (15), where the 𝑅𝑉𝐴𝑇,𝑡 and 𝑅𝐸𝐼𝑇,𝑡  denote the rates of value-added tax and enterprise 

income tax, respectively. 

2.1.5. Investment Cost 

The upfront investment cost is calculated as below: 

𝐶𝐼𝑡 = 𝑈𝐶𝑡 ∗ 𝑃𝑡 ∗ 𝑁 ∗ 103 (16) 

d𝑈𝐶𝑡 = μ𝑢𝑈𝐶𝑡 𝑑𝑡 + σ𝑢𝑈𝐶𝑡 𝑑𝑊𝑢,𝑡 (17) 

Where 𝑈𝐶𝑡  represents the unit investment cost of investing a wind farm project. μ𝑢  𝑎𝑛𝑑 σ𝑢 

denote percentage drift of unit investment cost and percentage volatility of unit investment 

cost, respectively. 𝑊𝑢,𝑡  represents an incremental Wiener process and obeys normal 

distribution 𝑊(𝑡)~N(0, 𝜀𝑢
2𝑡), and 𝜀𝑢  denotes the parameter of the Wiener process. Eq. (17) 

demonstrate the GBM of the investment cost. 

The value of the parameter in the model are summarized in Table 2. 

 

Table 2. Parameters input in the NPV model. 

Parameters Description Value Unit Source  

r Discount rate 0.049 Per year (REUTERS, 
2017) 
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𝐿 Life span of a wind 
turbine 

20 Years  / 

ℎ Annually total 
hours 

8760 Hours (Cheng and Yu, 
2013) 

H North Average annually 
operating hours  

2057 Hours (Ministry of 
Industry and 
Information 
Technology, 

2018) 

Northeast 2152 

Northwest 1826 

Central 2033 

East 2325 

South 2012 

P Rated wind power 
capacity 

45 MW Assumed 

𝑁 Number of wind 
farms 

1 / Assumed 

𝑅𝑐𝑢𝑟  North  Annually wind 
curtailment rate in 
severe areas 

6.32 % Calculated by 
this study 

Northeast 16.62 

Northwest 16.40 

South 2.67 

𝑅𝑑𝑒𝑝  Depreciation rate 0.025 Per year (Ragheb, 
2017) 

𝑅𝑓𝑖𝑡  North  FIT reduction rate -2.836 % Calculated by 
this study 

Northeast, 

Northwest  

-2.899 

Central,  

East, South  

-1.674 

𝐵𝑀𝑔𝑟𝑖𝑑,𝑡  Build margin 
emission factor of a 
certain grid in year 
t. 

Refer to 
Table 1. 

𝑡𝐶𝑂2𝑒/𝑀𝑊ℎ (NDRC, 
2016b) 

𝑂𝑀𝑔𝑟𝑖𝑑,𝑡  Operational margin 
emission factor of a 

Refer to 
Table 1. 

𝑡𝐶𝑂2𝑒/𝑀𝑊ℎ (NDRC, 
2016b) 
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certain grid in year 
t. 

𝑊𝐵𝑀  Weight of build 
margin emission 
factor 

0.25 / (Liu, 2012) 

𝑊𝑂𝑀  Weight of 
operational margin 
emission factor 

0.75 / (Liu, 2012) 

𝑃𝑐,𝑡  North, 

Northeast, 

Northwest, 

Carbon trading 
price 

50 

 

𝐶𝑁𝑌/𝑡𝐶𝑂2𝑒 
 

(Ministry of 
Industry and 
Information 
Technology, 

2019) 
Central,  

East,  

South 

30 

μ𝑐 Percentage drift of 
carbon price 

0.03 Per year (Zhang et al., 
2016) 

σ𝑐  Percentage 
volatility of carbon 
price 

0.02 Per year (Zhang et al., 
2016) 

𝑈𝐶𝑡−1 Unit investment 
cost  

3650 

 

RMB/kW 

 

(Esmaieli and 
Ahmadian, 

2018) 

μ𝑢 Percentage drift of 
unit investment 
cost 

-0.06 Per year (Rigter and 
Vidican, 2010) 

σ𝑢 Percentage 
volatility of unit 
investment cost 

0.04 Per year (Rigter and 
Vidican, 2010) 

𝑈𝑂𝑀𝐶𝑡−1 Unit operation and 
maintenance cost 

0.2 CNY/kWh (Zhang et al., 
2016) 

𝑅𝑉𝐴𝑇,𝑡 Value-added tax 
rate 

0.085 Per year The Notice 

𝑅𝐸𝐼𝑇,𝑡  Enterprise-income 
tax rate 

0.25 Per year (Li et al., 2013) 
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2.2. Real Option Method 
 

Although the above NPV method is very useful to simulate the investment performance 

of large-scale wind power projects, the natural limitation of this method still exist 

(Pringles et al., 2015). The investment in secondary infrastructure is regarded merely 

reversible, so the investors are taking every step carefully to eliminate all potential 

risks. Therefore, in the China’s market context, since it is acknowledged that the wind 

power FIT benchmark price descends annually and quickly, so the investors prefer to 

wait and observe or defer their investment rather than investing immediately. Hence, 

under a dynamic investing environment, the investors have the flexibility to take 

advantage of the “time” to make appropriate response until the investment uncertainty 

is well solved. Nevertheless, the value during the “time” is unable to be measured by 

NPV method (Liu and Ronn, 2020). Under this circumstance, the RO method is widely 

applied to address the corresponding problem, and the value refers to “an enterprise’s 

managerial flexibility and uncertainty”.   

 

The RO method has been well applied in the research field of renewable energy policy 

design. For example, Davis and Owens (2003) focused on optimize the renewable 

energy research and development (R&D) funding level, and they used RO method to 

determine whether additional values will be created if R&D funding levels are varying. 

Kim et al. (2014) also focused on the R&D market in wind power, and applied RO 

method to measure the economic value of investing in wind power R&D projects.  

Gollier et al. (2005) employed RO method to compare the option value of managerial 

flexibility and uncertainty between a large-scale nuclear power plant with a small-scale 
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one, and provided plant-size-related insights for decision making. The similar 

comparison studies on hydropower project and biomass power project are completed 

by Bøckman et al. (2008), Fleten et al. (2007) and Wang et al. (2014). Besides, RO 

method is also applied in investment evaluation, policy evaluation and pricing design by 

Lin and Wesseh (2013), Penizzotto et al. (2019), Ritzenhofen and Spinler (2016), 

Wesseh and Lin (2016), Yang and Ge (2018) and Zhang et al (2016) . 

2.2.1. Black-Scholes Model 

Black-Scholes Model (BSM) and Binomial Model (BM) are two popular models applied by 

researchers to solve the RO problems. The BSM requires five key inputs (underlying asset 

stock price and strike price, volatility, duration to the maturity of the option, and risk-free 

risk) into the model to determine the theoretical option value, whereas the BM starts from 

a stock price, and then produces a binomial tree with a up limit and a down limit by the 

volatility step by step till the time to expiration, and finally it requires a backward 

computation (Hoadley, 2020). This study chooses to use BSM to calculate the value of RO 

because of two reasons. Firstly, there are 1002 observations in this study, so the BSM is 

more efficient over the BM since it can reduce the computational complexity. Secondly, 

regarding the output result from the BSM model and BM model, Ahmad Dar and Anuradha 

(2018) have proved that the result does not show much of a difference. Therefore, 

considering the computational efficiency and accuracy, This study has employed the Black-

Scholes this study employed the BMS model to calculate the value of RO. Numbers of 

researchers have taken advantages of the BSM model on financial and economic projects. 

Apart from the application in the renewable energy policy field that is mentioned before, 

the BSM model is also applied in predicting and measuring the stock price, bankruptcy risk 
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and transaction cost (Al–Zhour et al., 2019; Chowdhury et al., 2020; Hsu and Wu, 2020), 

based on the empirical practices by existing researchers. The meaning of RO is that it 

accounts for the enterprises’ managerial flexibility and uncertainty, which is regarded as a 

stochastic loss added to the fixed upfront payment. The Black-Scholes model includes 

stochastic differential equations and requires fixed inputs to operate the model. The 

theoretical function of the BSM is expressed as follows (Black and Scholes, 1973, 1972): 

RO =  𝑃𝑎𝑠𝑠𝑒𝑡  𝑁(𝑑1)  −  𝑃𝑠𝑡𝑟𝑖𝑘𝑒  𝑒−𝑅𝑓𝐷𝑡  𝑁(𝑑2) (18) 

 
Where RO denotes the value of the option,  𝑃𝑎𝑠𝑠𝑒𝑡  and 𝑃𝑠𝑡𝑟𝑖𝑘𝑒  represent the underlying asset 

price and strike price, respectively. 𝑅𝑓 denotes the constant risk-free rate, which can be 

expressed by a 10-year China government bond yield of 3.19%. 𝐷𝑡 denotes the duration to 

the maturity of the option. 𝑁(𝑑1) and 𝑁(𝑑2) stands for process of standardized cumulative 

density function. The estimation of 𝑑1and 𝑑2 can be expressed by the following equations: 

𝑑1 =  
ln

𝑃𝑎𝑠𝑠𝑒𝑡

𝑃𝑠𝑡𝑟𝑖𝑘𝑒
 +  (𝑅𝑓  +  

𝜎𝑎𝑠𝑠𝑒𝑡
2

2 ) 𝐷𝑡

√𝐷𝑡
𝜎𝑎𝑠𝑠𝑒𝑡

 

(19) 

𝑑2  =  𝑑1  −  √𝐷𝑡
𝜎𝑎𝑠𝑠𝑒𝑡  (20) 

 
Where   𝜎𝑎𝑠𝑠𝑒𝑡

2  denotes the annual volatility of underlying asset. 
 
 
 
 

2.2. 2.2.2. N-Asset Portfolio Combination 

This study established a portfolio containing 10 sets of stocks in different wind power 

industries, among which a half are wind power generators and another half are wind 

turbine manufacturers. These10 enterprises are selected due to their top rankings in terms 

of the market share in wind power industry, and in addition they are listed companies in 

Formatted: Font: (Default) Cambria, 14 pt, Bold

Formatted: Normal,  No bullets or numbering
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Mainland China or Hong Kong, so the datasets of their historical daily stock return could be 

collected online for further calculation and estimation, which is a very important procedure 

and a significant advantage of the variance-covariance approach as stated above. Table. 

AD.1 presents the full name, stock codes of the 10 enterprises and the observation of daily 

stock return in calculation. Table. AD.2 summarizes the descriptive statistics of the 10 stock 

datasets. Each set of the observed data falls within or around an absolute value of 0 of 

skewness and 3 of kurtosis, and the probability of Jarque-Bera test suggests to accept the 

null hypothesis of normal distribution (Soberón and Stute, 2017).  

The portfolio combination plays a crucial role in determining the option value, because 

other input parameters such as duration to maturity and risk-free interest are fixed and 

constant. The value of underlying asset price, strike price and volatility are influenced by 

different portfolio combinations. In this study, we made a combination of different 

portfolio of N=2, 3, 4, 5, 6, 7, 8, respectively. The total number of observations is 1002. 

The N-asset portfolio volatility is calculated by the following equation: 

𝜎𝑎𝑠𝑠𝑒𝑡
2  =  ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌(𝑖,𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 
(21) 

 

Where 𝑤 denotes the weight of market capitalization of asset 𝑖 and 𝑗 in the combined 

portfolio, 𝜎 stands for the standard deviation of stock daily return of asset 𝑖 and 𝑗  and 𝜌(𝑖,𝑗) 

represents the covariance of stock daily return between asset 𝑖 and 𝑗 . 

3. Results and Discussions  

3.1. Overall Result 
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The comparison of wind power FIT benchmark price between government setting and 

suggested value by this paper is illustrated in Fig.1 The lower bound value and upper 

bound value represent the wind power FIT benchmark price level that ensures the 

enterprise’s internal rate of return (IRR) falls in between 8% and 15%. Fig.1 reveals that 

the current government setting value in Hebei and Inner Mongolia goes beyond the lower 

bound, whereas the current government setting value in Liaoning goes beyond the upper 

bound. This finding indicates that the current differentiate FIT price of Category I and 

Category II4 is too low to attract investment in areas with abundant wind resource, which 

turns out a slowdown in wind farm investment in recent years and if the FIT price 

continues to be adjusted to a lower level by the government, consequently the stagnation in 

investment will emerge. On the contrast, the current government setting value in Liaoning 

is regarded too high, which will stimulate large amount of investment, and consequently 

turns out sever wind power overcapacity and curtailment problem.  

Regarding other provinces, municipalities and autonomous regions, the current 

government setting value is considered in the safe zoon which guarantees IRR of 8% to 

15% to investors. However, the current value in Gansu, Ningxia and Xinjiang is 

approximately near the lower bound. This finding provides the government a signal that 

the FIT benchmark price in these three regions should not be decreasing anymore. In 

addition, the differentiated FIT benchmark price in Category III5 is also considered too low, 

thus the wind energy industry in areas with relatively abundant wind resource will 

foreseeably encounter many bottlenecks regarding further development. Although Jilin and 

 
4 See Appendix. B 
5 See Appendix. B 
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Heilongjiang are also classified into Category III, as they located in Northeast China grid 

where the suggested value by this paper is the lowest among six regional power grids, the 

current government setting value is in the middle level and indicates IRR of 11% to 12%. 

As for the provinces, municipalities and autonomous regions that locate in Category IV6, the 

government setting value is found in the middle or higher level of the safe zoon. The IRR of 

enterprises under current FIT benchmark price is around 11% to 12% in Central and South 

China grid, and reaches 13% to 14% in North, Northwest and East China grid.  

Fig.2 presents the suggested FIT benchmark price range in 2021 and 2022, under two 

possible scenarios regarding China’s carbon trading market, respectively. Since China just 

opened the nationwide carbon trading market, the carbon trading price mechanism 

remains ambiguous. What is known is that marketization is the final goal and government 

regulation is the tool to adjust and intervene the market. Therefore, Scenario I 

demonstrates an increasing trend of carbon trading price in previous years by GBM. By 

contrast, Scenario II demonstrates a stable and constant carbon trading price. Compare 

Figs. 2(a), 2(b) with Figs. 2(c), 2(d), the suggested wind power FIT benchmark price in 

Scenario I is lower than that of Scenario II. It is because that the increased carbon trading 

price will offset more expenditure than a constant carbon trading price.  

The total expenditure, total revenue and NPV of project value are illustrated in Figs.3-5, 

respectively.  The NPV of project value is in the similar level of six regional power grids, 

that is because that this study uses one 45 MW typical wind farm as the model, so the 

 
6 See Appendix. B 
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numbers of wind farms in each regional power grids are not counted. The average annual 

grid-connected wind power and polluting emission reduction is demonstrated in Fig.6.  

Table 3 is the summary of the discussions in this section. It highlights the baseline of IRR, 

proposed FIT benchmark price in six regional power grids under two scenarios, number of 

households can be fed, policy implications to the government, the investment potential for 

the investors as well as the suitable enterprise type to launch the project. The following 

sections has explained the reason of setting the acceptable IRR in each regional power grid.
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Fig.1 The comparison between the results and the current FIT price level.  
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Scenario I – 
Increasing 
Trend of 
Carbon 
Trading Price  

(a)  

(b)  
Scenario II – 
Constant 
Carbon 
Trading Price 

(c)  

(d)  
Fig.2 Suggested FIT price range in 2021 and 2022 under different scenarios. 
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3.2. North China Grid 

The differences of current FIT benchmark price levels in Category I, II and IV are 

simultaneously reflected in North China grid, which result in severely unbalanced IRR for 

investors to invest in the same power grid. 21Century Economic Report (2010) has pointed 

out that the baseline of IRR which is acceptable by wind farm project investors in China is 

8%.  However, the wind power investors may reject to invest in Hebei and Inner Mongolia 

since their estimated IRR under the current FIT price are 7% and 5%, respectively, below 

the acceptable baseline. Moreover, since the discount rate for enterprises by the Central 

Bank of China is 4.9%, the wind power investors in Inner Mongolia is likely to face a losing 

proposition.  

On the contrary, the current FIT benchmark price in Beijing, Tianjin, Shanxi, Shandong 

(included in Category IV) is more favorable by investors, since the IRR is estimated as 14%. 

It is suggested that the government could lower down the IRR standard in North China  

grid to a certain level of IRR equals 11% to 12% (Table 3). The saved financial budget from 

these four regions could be redistributed to investors in Hebei and Inner Mongolia. 

3.3. Northeast China Grid 

The suggested FIT benchmark price level by this paper in Northeast China grid is the 

lowest, with the price range falls in between 0.316 CNY/kWh and 0.443 CNY/kWh (Fig.1). 

This is because 19.3% of the nationwide wind power is generated by Northeast China grid, 

but the curtailed wind power accounts for 40% of the nationwide due to grid connection 

failure or constrained dispatch quota. As mentioned before, the current FIT price in 

Liaoning is found too high as the IRR reaches 17%. Although it is favorable to investors, the 

negative impact will emerge if many investors are attracted to invest in Liaoning. Firstly, 
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the overcapacity and wind power curtailment problem will be aggravated. The electricity 

consumption in Northeast China grid only accounts for 6% of the national total electricity 

consumption (National Bureau of Statistics, 2019), which means that the electricity 

demand in this grid is not high. Therefore, continuing to construct wind farm in Liaoning 

will aggravate the overcapacity and wind power curtailment problem. To solve this 

problem, the need of consistency in grid planning and wind power accommodation is 

highlighted by a group of researchers (Luo et al., 2016; Shen and Luo, 2015; Si et al., 2011; 

Wang, 2010; Wei et al., 2018; Yin et al., 2017; Zhao et al., 2016a, 2016b). Secondly, 

unnecessary government expense will be triggered. The increase of the wind farm project 

in Liaoning will make the government compensate more on the curtailed wind power, 

which is a waste of government budget that can be avoided by lowering down the FIT 

benchmark price of Liaoning. Since the IRR in Jilin and Heilongjiang under current FIT price 

is 12%. The suggested FIT price in Liaoning should be at the same level as other two 

provinces, Jilin and Heilongjiang, of 0.38 CNY/kWh in 2020. Furthermore, considering the 

low electricity demand and severe wind power curtailment in Northeast China grid, it is 

recommended that the IRR baseline is acceptable between 9% and 10% (Table 3). 

3.4. Northwest China Grid 

There are six provinces and autonomous regions in Northwest China grid under Category 

III and IV, respectively. The current FIT benchmark price level could satisfy an IRR of 9% in 

Gansu, Ningxia and Xinjiang, and IRR of 13% in Tibet, Shaanxi and Qinghai. Northwest is 

facing the similar circumstance as Northeast that the electricity demand is relatively low. 

The electricity consumption in Northwest China grid accounts for 10% of the national total 

electricity consumption (National Bureau of Statistics, 2019), whereas the share of the 
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wind power installed capacity accounts for 27% of the national total amount (Fig.7).  

Consequently, the curtailed wind power accounts for 37% of the national total amount. 

Therefore, this study suggests the government also lower down the FIT benchmark price in 

Tibet, Shaanxi and Qinghai, to the same price of that in Gansu, Ningxia and Xinjiang 

(0.38CNY/kWh) in 2020. Furthermore, the IRR baseline is recommended to set between 

9% and 10% in Northwest China grid (Table 3). 

3.5. Central and South China Grids 

The statistics and results in Central China grid and South China grid are very similar, so the 

implications and reflections are interpreted simultaneously in one section. Fig.1 indicates 

that the current FIT level guarantees an IRR of 12% in both Central China grid and South 

China grid in 2020. The suggested lower bound value and upper bound value in these two 

grids are the highest among six regional power grids. In addition, both the total 

expenditure and total revenue (Figs.3-4) in these two grids are the lowest. It is because the 

wind farm average annually operating hours in these two grids are relatively low, which 

are just more than the Northwest China grid, so the amount of grid-connected wind power 

in these two grids are relatively low. In consequence, the profit from carbon trading 

mechanism and selling electricity to the grid is low.  

As the installed wind power capacity could be almost fully adopted in the power gird, the 

government should keep encouraging investors to construct wind farms in these two areas, 

whereas avoid excessive expansion. Therefore, it is suggested that the FIT benchmark price 

levels in Central and South China grids better remain with the baseline of IRR at 12% to 

13% (Table 3).  
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3.6. East China Grid 

The current FIT price in East China grid indicate an IRR of 14% for investors, which 

appears to be the most profitable area for constructing wind farms. However, it is 

surprising to find that the suggested FIT benchmark price in East China grid is even lower 

than North and Norwest China grids, that the upper bound is eve lower than 0.5 CNY/kWh. 

This indicates that the profitability in East China grid does not solely depend on the price 

level of FIT, but also depends on the carbon trading mechanism as explained in the last 

section.  

This study shows that the investment potential in East China grid is enormous, since the 

electricity consumption only in East China grid accounts for as much as 26% of the national 

total consumption. Nevertheless, the cumulative wind power installed capacity merely 

accounts for 7% (Fig.7) and the curtailed wind power is zero. This implies that the high 

electricity demand in East China grid highly improves the harvest of wind power, thus, this 

study ascertains that the baseline of future IRR for enterprises to invest should fall in 

between 13% and 14% (Table 3). 
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Table 3. Summary of the discussions. 

 
7 According to China Statistical Yearbook 2018 (National Bureau of Statistics, 2019), the annual per capita electricity consumption is 610.8 kWh. 

 North China Grid Northeast China 
Grid 

Northwest China 
Grid 

Central China 
Grid 

East China Grid South China Grid 

IRR Range  11% to 12% 9% to 10% 9% to 10% 12% to 13% 13% to 14% 12% to 13% 
Suggested FIT 
(Scenario I, 
unit : 
CNY/kWh) 

Year 2021 0.390 to 0.420  0.315 to 0.332 0.368 to 0.388 0.466 to 0.489 0.431 to 0.451 0.460 to 0.483 

Year 2022 0.389 to 0.408 0.308 to 0.323 0.360 to 0.378 0.454 to 0.478 0.421 to 0.440 0.449 to 0.472 

Suggested FIT 
(Scenario II, 
unit: CNY/kWh) 

Year 2021 0.408 to 0.429 0.322 to 0.340 0.376 to 0.398 0.476 to0.499 0.440 to 0.461 0.470 to 0.493 
Year 2022 0.395 to 0.416 0.315 to 0.331 0.366 to 0.385 0.459 to0.481 0.425 to 0.445 0.453 to 0.475 

Annually average on-grid wind 
power generation of a 45MW wind 
farm (unit: MWh) 

71,716 75,028 63,662 70,879 81,059 70,147 

Number of 
households can 
be fed7 

Two-people 
family 

58,706 61,418 52,114 58,021 66,355 57,422 

Three-people 
family 

39,138 40,945 34,742 38,681 44,237 38,481 

Reduced carbon emission 
(MtCO2e) 

45.00 54.99 37.54 32.68 49.72 32.23 

       
Policy implications to government FIT price in 

Hebei and Inner 
Mongolia should 
be raised 

Consider the 
overcapacity and 
wind curtailment 
problem in 
Liaoning 

Inhibiting the 
investment in 
Tibet, Shaanxi 
and Qinghai 

The expenditure 
and the total 
revenue are the 
least 

Profitability 
depend on both 
FIT price level 
and carbon 
trading 
mechanism 

The expenditure 
and the total 
revenue are low 

Investment potential for investors  Moderate  Low  Low  High  Enormous   High  
Suitable Enterprise type  Medium-scale Large-scale Medium-scale Small-scale Large-scale Small-scale 
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Fig.3 Estimated total expenditure under different value of IRR 
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Fig.4 Estimated total revenue under different value of IRR 
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Fig.5 Estimated NPV of wind farm project value under different value of IRR 
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Fig.6 Estimated annual grid-connected wind power generation and polluting emission reduction 
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Fig.7 Percentage share of regional electricity consumption and cumulative wind power installed capacity to national total 

amount. 
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4. Conclusion and Policy Implications 

This study has proposed a new wind power FIT benchmark price mechanism by applying 

the NPV method and RO method to optimize the FIT price in accordance to a baseline of 

IRR for enterprises fall in between 8% to 15%. The new wind power FIT benchmark price 

mechanism refers to a differentiated benchmark price mechanism based on six regional 

power grids in China, which is strongly recommended to substitute the current category-

based mechanism. The NPV is calculated based on the cash flow of profit from selling 

electricity to the power grids, profit from receiving compensation due to systematic failure 

that should not be held accountable by wind farm investors, profit from participating in 

carbon trading certification mechanism, expenditure on operation and maintenance cost, 

as well as expenditure on tax payment. The RO method is employed to calculate the 

enterprises’ managerial flexibility and uncertainty, which is regarded as a stochastic loss 

added to the fixed upfront payment. The RO method synthesizes the market capitalization 

and stock daily return of five leading wind farm manufacturers and five leading domestic 

wind power generators in China, and then produces 1002 asset portfolios by simulating all 

possible combinations among these ten enterprises. The value of RO represents the risks 

related to enterprises’ right to postpone the investment. The results are comprehensively 

interpreted in Section 3,  

This study contributes to the realignment of regional wind power FIT benchmark price 

level, which provides insights regarding the Notice on work related to wind power and 

photovoltaic power generation connected to grid without subsidy. The policy implications 

are summarized as follows:  
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(1) The open of China’s nationwide carbon trading scheme and the implementation of 

renewable energy compensation are considered in the model. Whether the carbon 

trading mechanism is operated under a relatively liberalized electricity market 

(Scenario I) or under government’s strict regulation (Scenario II), the proposed wind 

power FIT benchmark price level has provided the policymaker some comprehensive 

and systematic foresights by categorizing the IRR in different regional power grids.  

(2) The risks and concerns of low IRR by the investors are eliminated and the investors are 

released from struggling against their social accountability by the RPS scheme and 

uncertainties brought by the systematic fault.  

(3) According to the sensitivity analysis (Appendix. CE), the most sensitive parameters in 

the model are the upfront cost and the grid-connect wind power generation. Therefore, 

improving technological development and restructuring grid planning to decrease the 

upfront cost or alleviate wind curtailment problem are the most efficient way to 

improve the investment environment.  

(4) The redistribution of FIT subsidies is recommended. The proposed wind power FIT 

benchmark price level has reached a balance of regional differences, so the current FIT 

price should be realigned and redistributed.  

(5) The estimated Levelized Cost of Electricity (LCOE) of wind power in different regional 

power grids (Appendix. DF) indicates that the wind power production in East China 

grid is the most cost-effective, whereas in Northwest is the least cost-effective. 

Therefore, stimulating or inhibiting the investment in different regional power grids 

should be adjusted.   
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Appendix. BA Classification of the Current Wind Power FIT Subsidy 
Categories.  

Table.BA.1 Provinces/ Autonomous regions/ Municipalities included in four categories of wind 

resources (NDRC). 

Administrative areas included (Hu et al., 2013) 

Category I: Inner Mongolia autonomous region except: Chifeng, Tongliao, Xing’anmeng, 

Hulunbeier; Xinjiang uygur autonomous region: Urumqi, Yili, Karamay, Shihezi 

Category II: Hebei province: Zhangjiakou, Chengde; Inner Mongolia autonomous region: 

Chifeng, Tongliao, Xing’anmeng, Hulunbeier; Gansu province: Zhangye, Jiayuguan, Jiuquan 

Category III: Jilin province: Baicheng, Songyuan; Heilongjiang province: Jixi, 

Shuangyashan, Qitaihe, Suihua, Yichun, Daxinganling region, Gansu province except: 

Zhangye, Jiayuguan, Jiuquan, Xinjiang autonomous region except: Urumqi, Yili, Changji, 

Karamay, Shihezi, Ningxia Hui autonomous region 

Category IV: Other parts of China not mentioned above 

 

Table.BA.2 Classification of four wind resource areas 

Category Annual average 

effective wind energy 

density (D, W/m2) 

Aannual cumulative 

hours (H) of wind 

speed of  3-20 m/s  

I – Rich wind 

resource areas 

D > 200 H > 5000 

II – Relatively rich 

wind resource areas 

150 < D < 200  3000 < H < 5000 

III – Available wind 

resource areas 

50 < D < 150 2000 < H 3000 

IV – Poor wind 

resource areas 

D < 50 H < 2000 

 

 

 

 

 

 

Formatted Table
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Table.A.3. Historical wind power FIT benchmark prices set by Chinese government 

(NDRC, 2019c, 2017a, 2016c, 2015c, 2014, 2009b). 

Category Before 2009  2009 

to 

2014  

2015 2016  2017  2018  2019 2020 

I Desulfurized 

coal-fire power 

price + less 

than 0.25 

0.51 0.49 0.47 0.44 0.40 0.34 0.29 

II 0.54 0.52 0.50 0.47 0.45 0.39 0.34 

III 0.58 0.56 0.54 0.51 0.49 0.43 0.38 

IV 0.61 0.61 0.6 0.58 0.57 0.52 0.47 
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Fig.A.1. The situation of wind power installed capacity in different wind resource areas in China. 

 

Formatted: Width:  27.94 cm, Height:  21.59 cm
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Appendix B. Supplementary Materials on Six Regional Power Grids 

Fig.B.1. The classification of regional power grids in China 
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Table.B.1. Basic information of six regional power grids. 
 

North 

China Grid 

Northeast 

China Grid 

Northwest 

China Grid 

Central 

China Grid 

East China 

Grid 

South China 

Grid 

GDP per capita  

per year (USD) 10733.40 6914.93 5798.32 6718.55 10743.69 6269.73 
 

Energy 
consumption per 
capita per year 
(kWh) 5441.87 3152.24 6057.88 2621.41 5574.48 3498.72 

 

Population 
(Thousand 
people) 

273540 109100 104200 381410 260790 250800 

Formatted: Font: Not Bold
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Appendix C. Supplementary Material for Data Collection  

Fig.C.1. Wind power curtailment rate in recorded regions.  
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Appendix. A D Supplementary Material for Real Option Method 

Table. AD.1 Code of 10 enterprises 
 Full Name Code  

Manufacturer Xinjiang Goldwind Science & Technology Co., Ltd 2208.HK 

Sinovel Wind Group Co., Ltd. 601558.SS 

Dongfang Electric Corporation Limited 1072.HK 

Zhuzhou CRRC Times Electric Co., Ltd. 3898.HK 

CGN Power Co., Ltd 1816.HK 

Generator Huaneng Power International, Inc. HNP 

Datang International Power Generation Co., Ltd. 0991.HK 

SDIC Power Holdings CO., LTD. 600886.SS 

Huadian Power International Corporation Limited  1071.HK 

China Resources Power Holdings Company Limited 0836.HK 

 

 

 

Table. AD.2 Descriptive statistics of stock daily return in 10 firms 

 

Code HNP 0991.HK 600886.SS 1071.HK 0836.HK 

 Mean -7.06E-05 -0.00138 0.000862 0.001818 0.00099 

Median  -0.001201 -0.005038 -0.001301 0.00342 -0.000649 

 Maximum 0.048341 0.043478 0.038136 0.076087 0.056277 

 Minimum -0.064502 -0.040404 -0.036458 -0.061856 -0.030211 

 Std. Dev. 0.019297 0.016383 0.014556 0.027393 0.01692 

 Skewness -0.229209 0.256181 -0.038769 0.144004 0.488794 

 Kurtosis 3.873951 2.995711 3.466009 2.951574 3.328049 

      

Jarque-Bera 3.652265 0.984498 0.836911 0.319853 3.987357 

 Probability 0.161035 0.61125 0.658062 0.852206 0.136194 
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 Sum -0.006356 -0.124196 0.077541 0.163657 0.089088 

 Sum Sq. Dev. 0.033141 0.023888 0.018856 0.066782 0.02548 

      

Observations 90 90 90 90 90 

Code 2208.HK 601558.SS 1072.HK 3898.HK 1816.HK 

 Mean -0.002845 0.000705 0.001337 0.000687 -0.000869 

Median -0.006351 0.008403 -0.002232 -0.003561 -0.004914 

 Maximum 0.119829 0.066038 0.049875 0.051059 0.032967 

 Minimum -0.105951 -0.054054 -0.062069 -0.042506 -0.045 

 Std. Dev. 0.035458 0.020693 0.022094 0.018676 0.013989 

 Skewness 0.375927 0.305314 0.002183 0.362375 -0.238175 

 Kurtosis 4.19873 3.745883 3.02367 2.77562 3.519309 

      

Jarque-Bera 7.508392 3.484535 0.002172 2.158536 1.862216 

 Probability 0.023419 0.175123 0.998914 0.339844 0.394117 

      

 Sum -0.25602 0.063438 0.12034 0.061818 -0.078231 

 Sum Sq. Dev. 0.1119 0.038111 0.043443 0.031044 0.017418 

      

Observations 90 90 90 90 90 
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Appendix. B Classification of the Current Wind Power FIT Subsidy 
Categories.  

Table.B.1 Provinces/ Autonomous regions/ Municipalities included in four categories of wind 

resources (NDRC). 

Administrative areas included (Hu et al., 2013) 

Category I: Inner Mongolia autonomous region except: Chifeng, Tongliao, Xing’anmeng, 

Hulunbeier; Xinjiang uygur autonomous region: Urumqi, Yili, Karamay, Shihezi 

Category II: Hebei province: Zhangjiakou, Chengde; Inner Mongolia autonomous region: 

Chifeng, Tongliao, Xing’anmeng, Hulunbeier; Gansu province: Zhangye, Jiayuguan, Jiuquan 

Category III: Jilin province: Baicheng, Songyuan; Heilongjiang province: Jixi, 

Shuangyashan, Qitaihe, Suihua, Yichun, Daxinganling region, Gansu province except: 

Zhangye, Jiayuguan, Jiuquan, Xinjiang autonomous region except: Urumqi, Yili, Changji, 

Karamay, Shihezi, Ningxia Hui autonomous region 

Category IV: Other parts of China not mentioned above 

 

Table.B.2 Classification of four wind resource areas 

Category Annual average 

effective wind energy 

density (D, W/m2) 

annual cumulative 

hours (H) of wind 

speed of  3-20 m/s  

Current government 

setting wind power 

FIT price (CNY/kWh)  

I – Rich wind 

resource areas 

D > 200 H > 5000 0.29 

II – Relatively rich 

wind resource areas 

150 < D < 200  3000 < H < 5000 0.34 

III – Available wind 

resource areas 

50 < D < 150 2000 < H 3000 0.38 

IV – Poor wind 

resource areas 

D < 50 H < 2000 0.47 
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Appendix. CE. Sensitivity Analysis (Under the circumstance of IRR=8%) 
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Appendix. D F Estimated LCOE of Wind Power in Different Regional Power Grids 
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