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Abstract 13 

Mobile augmented reality (MAR) enhances the real world through the superimposition 14 

of computer-generated information while not interfering with their users’ mobility, having great 15 

potential to support various construction tasks. However, such information may lead to 16 

cognitive overload and thus could lead to adverse effects on the performance of tasks. Also, the 17 

narrowing of a user’s field of view that comes with MAR use could limit his/her ability to notice 18 

events in their surroundings. Therefore, it is important to understand how MAR use affects 19 

cognitive behavior, as well as task and safety performance for better design and applications of 20 

MAR in construction. As a preliminary investigation, this study conducted laboratory 21 

simulations of rebar-inspection tasks, and compared the cognitive load (CL), task performance 22 

(TP) and situational awareness (SA) of users of two types of MAR system – i.e., head-mounted 23 

and handheld – against those of inspectors using traditional paper-based methods. In particular, 24 

participants’ CL was measured with the NASA-TLX; their TP, by completion time and the 25 

number of rebars correctly detected; and their SA, with Taylor’s SART. Based on the results, 26 
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we discuss the impact of the MAR system on rebar-inspection tasks from both cognitive and 27 

safety perspectives. 28 

Keywords: Mobile augmented reality, cognitive behavior and performance, cognitive load, 29 

situational awareness, rebar inspection 30 

 31 

INTRODUCTION 32 

Augmented reality (AR) is a technology for enhancing the real world by superimposing 33 

computer-generated information such as computer graphics, text, or sound onto real-world 34 

scenes (Kalawsky et al., 2000). Architecture, engineering and construction (AEC) industry 35 

stakeholders are embracing its potential applications at various project stages, including 36 

visualization during the design stage (Alsafouri and Ayer, 2019); safety 37 

management/inspection during construction (Heinzel et al., 2017; Olsen et al., 2019); and 38 

information access (Irizarry et al., 2013) and evaluation for maintenance (Ammari and 39 

Hammad, 2014) during the facility-management stage (Rankohi and Waugh, 2013). One 40 

prominent benefit of using AR at construction sites is that it enables construction stakeholders 41 

to review construction drawings at full, i.e., 1:1 scale, and thus identify errors that might not 42 

otherwise be spotted (Agarwal, 2016). For example, installation of a structural steel column 43 

requires not only the placement of its base in a specific location, but also a critical 3D 44 

assessment of its vertical alignment. Thus, AR can help prevent steel-column installation errors 45 

and save inspection time, since each object in its superimposed model is uniquely referenced 46 

to a unified system of coordinates, eliminating the possibility of errors accumulating across 47 

different sets of reference materials drawn at multiple scales (Dunston, 2009). Also, by 48 

marrying spatial data to real-world physical objects and locations, AR supports construction 49 

tasks such as a layout task, the process whereby relevant points in a construction space are 50 

earmarked for future work, by strongly leveraging its users’ spatial cognition and memory 51 

(Chalhoub et al., 2019). As such, AR assistance for cognitive-based construction tasks such as 52 



 

assembly work (Lei et al., 2013), point layout (Chalhoub et al., 2019) and inspection (Zhou et 53 

al., 2017) could reasonably be expected to reduce both mental workload and task-completion 54 

time. 55 

While various types of AR devices and systems have been developed, mobile AR 56 

(MAR) systems are increasingly prominent, as they allow AR to be moved from the laboratory 57 

onto actual construction sites (Izkara et al., 2007). MAR can be divided into two main 58 

categories – handheld devices such as tablets, and wearable devices like smart glasses and head-59 

mounted displays (HMDs) – both of which afford their users high mobility and 60 

anytime/anywhere management of spatially registered information. Some previous AEC-61 

focused research on AR has looked at how to apply it to and through mobile devices, such as 62 

for registration of virtual objects, real-time tracking, and calibration (Bae et al., 2013; Kopsida 63 

and Brilakis, 2016; Kwon et al., 2014). Unsurprisingly perhaps, the usefulness and technical 64 

advancement of MAR have taken center stage in such research, which in most cases has ignored 65 

that the AR environment could create perceptual issues, including but not limited to field-of-66 

view, registration, and depth-perception errors (Dey et al., 2018). These issues, in turn, could 67 

severely affect users’ cognition, performance, and comprehension of augmented content 68 

(Kruijff et al., 2010). In addition, the reference frame of AR information is critical to the 69 

cognitive functioning needed to understand one’s surroundings when using MAR (Li and Duh, 70 

2013). Nevertheless, previous studies’ proposed MAR designs have not given due 71 

consideration to these issues, and no specific MAR design guidelines exist (Li and Duh, 2013). 72 

These absences necessitated the current investigation of how cognitive factors and 73 

corresponding task and safety performance could be affected by MAR environments. 74 

In this regard, we aim to understand the effects of two distinct types of MAR (i.e., 75 

handheld and head-mounted systems) on construction professionals’ cognitive load (CL), task 76 

performance (TP), and situational awareness (SA), relative both to each other and to paper-77 

based techniques. To achieve this research objective, we conducted experimental studies of a 78 



 

rebar-inspection task that is not only information-intensive, but also cognitively demanding, at 79 

construction sites. Specifically, our three participant groups were given the task of inspecting 80 

rebar for a concrete slab using MAR on a tablet, MAR on Microsoft HoloLens, and traditional 81 

drawings. TP was measured using task-completion time and error-identification rate; CL was 82 

measured using the National Aeronautics and Space Administration’s Task Load Index 83 

(NASA-TLX); (Hart, 2006) in a laboratory setting; and SA was measured using the Situation 84 

Awareness Rating Technique (SART); (Taylor, 1990) and by simulating a construction site-85 

like environment in a laboratory.Based on the result, we discussed participants’ TP , CL, and 86 

SA of the surrounding environment in traditional drawings and MAR -assisted rebar inspection. 87 

 88 

LITERATURE REVIEW 89 

Application of Mobile Augmented Reality in Construction 90 

MAR’s known and potential capabilities are attracting AEC industry stakeholders to 91 

embrace its use during various stages of their projects. Wang (2007) used ARTag tracking 92 

markers and ARToolKit software to plan construction worksites through AR, and highlighted 93 

that traditional 2D paper media were less effective than MAR when it came to understanding 94 

both spatial constraints and resource-allocation strategies. Woodward and Hakkarainen (2011) 95 

proposed a MAR for construction-site visualization and interaction with complex 4D building-96 

information models, and Kim et al. (2013), construction job-site defects monitoring using MAR 97 

and computer vision-based algorithms. Kwon et al. (2014) used a MAR with ARToolkit to 98 

automatically detect dimensional errors and omissions on the worksite and found it easier to 99 

use for this purpose than the manual-based defect management process. Kopsida and Brilakis 100 

(2016) used a makerless building information modeling (BIM) registration method for MAR-101 

based inspection and reported that it reduced inspection time by providing the inspector with 102 

instantaneous access to the information stored in the BIM. Zaher et al. (2018) developed two 103 

MAR applications that allow their users to update the progress of construction-site activities, 104 



 

which can be used through implementing a 4D ‘as-planned’ phased model integrated with an 105 

augmented video showing real or planned progress. Alsafouri and Ayer (2019) investigated the 106 

feasibility of wearable and handheld MAR systems for industry practitioners in design and 107 

constructability-review sessions, and found that both allowed their users to ‘walk through’ and 108 

interact with virtual environments, facilitating their decision-making, problem-solving, and 109 

creation of design alternatives. Olsen et al. (2019) used MAR through wearable Microsoft 110 

HoloLens device for inspecting missing or misaligned embeds, sleeves and penetrations in 111 

concrete and masonry construction, and found that HoloLens speeded up the locating of the 112 

embeds, which are hard to represent in 2D drawings. Lastly, Lamsal and Kunichika (2019) 113 

developed an AR system specifically for adaption to MAR via iPads and other tablet computers 114 

using Vuforia and AR markers, and tested it on the rebar construction phase of a 13-story steel 115 

building in Japan, reporting its strong potential to increase productivity. 116 

As the above discussion suggests, the MAR systems developed to date have been very 117 

diverse, with features including touchscreens providing virtual keyboards and onscreen buttons, 118 

integrated cameras, wireless connectivity, global positioning system capabilities, and 119 

computer-generated data displays (Alsafouri and Ayer, 2019). Yet, while all the studies cited 120 

above have endorsed the use of MAR applications for at least one construction task, little 121 

research has focused on MAR’s impacts on AEC-industry users’ perception and/or cognitive 122 

behavior, or how such impacts may be linked to AEC task performance. The present study is 123 

intended to fill those research gaps. 124 

 125 

Potential Impact of Mobile Augmented Reality on Cognitive Behavior and Corresponding Task 126 

and Safety Performance 127 

Human cognitive-behavioral research focuses on understanding how mind, brain, and 128 

body interact, through observation of human cognitive behavior such as CL, SA, perceptual 129 

processing, and information processing (Curtin and Ayaz, 2017). While a number of definitions 130 



 

of CL exist, this study adopts Brunken et al.’s (2003) view that it comprises the amount of 131 

mental effort one expends during information processing. According to Doswell and Skinner’s 132 

(2014) CL theory, human working memory can only simultaneously handle an average of seven 133 

(plus or minus two) disconnected items; and thus, cognitive overload tends to occur when 134 

human working memory is forced to process larger amounts of information quickly. As such, 135 

the amount of information that needs to be handled can significantly affect a person’s task 136 

performance. From a cognitive perspective, all the major tasks in the AEC industry involve 137 

information-intensive processes, so under such conditions, MAR interfaces could overload the 138 

user with information, such that important cues from their actual environments could be missed. 139 

Previous studies on MAR systems to support surgical procedures (Doswell and Skinner, 2014) 140 

and procedural tasks (Baumeister et al., 2017) have reported that the use of MAR systems in 141 

the complex environment could lead to increase cognitive burden. In addition, Li and Duh 142 

(2013)'s study raised the cognitive issues based on the findings of existing literature and 143 

explained that an excessive amount of information, its representation, placement, and view 144 

combination visualization techniques of MAR assisted system such as zooming and panning to 145 

understand the meaning of detailed information could impact the user’s cognitive functioning. 146 

Considering that the nature of construction sites is dynamic and complex, it is more expected 147 

that an excessive amount of information and its placement in the MAR assisted system could 148 

increase the visual-processing and information interpretation issues and have negative impacts 149 

on construction workers CL, TP, and SA. 150 

In general terms, SA consists of being aware of what is happening around you. More 151 

specifically, Endsley (1988a, p. 97) defined it as “the perception of the elements in the 152 

environment within a volume of time and space, the comprehension of their meaning and the 153 

projection of their status in the near future.” MAR has a strong inherent potential to enhance 154 

visual perception via superimposition of information and thus has been argued to enhance 155 

overall SA (Lukosch et al., 2015). However, in most cases, AR environments have been found 156 



 

to cause perceptual issues during the visual processing and interpretation of information, 157 

affecting field of view, registration, depth perception, and so on, which in turn negatively 158 

impact the user’s cognition, performance, and comprehension of augmented content (Kruijff et 159 

al., 2010). In addition, various studies (Lindblom and Thorvald, 2014; Lyell et al., 2018; Paas 160 

et al., 2004) have looked at the general relationship between cognitive issues and performance 161 

(see Fig. 1). Specifically, Paas et al. (2004) and Lindblom and Thorvald (2014) found that too 162 

little CL (underload) as well as too much CL (overload) could lead to performance issues. For 163 

example, cognitive underload can occur when a user heavily relies so heavily on a system 164 

during tasks that he/she may lose interest in them, leading to more task-related errors. But at 165 

the other extreme, the amount of information coming from a system can surpass and overwhelm 166 

human processing capacity. These insights led Mendel and Pak (2009) to argue that user 167 

performance could be increased by reducing CL during information-intensive tasks. 168 

In conclusion, prior studies indicate that the amount of information provided to AR 169 

system users can influence their performance, and should be carefully considered, with too 170 

much and too little information both being problematic. Given that any MAR system can only 171 

achieve optimal performance when it provides an appropriate amount of information, it is 172 

critically important to gauge users’ CL in specific MAR environments, as well as how 173 

variations in that CL relate to their performance. 174 

Because a construction site is a complex, dynamic environment, failure to address AR 175 

users’ visual-processing and information-interpretation issues could have serious negative 176 

effects on worksite safety (Bhandari et al., 2018). However, previous proposals for MAR 177 

systems for use in AEC have not fully considered these issues, and there are no specific design 178 

guidelines that take account of how MAR environments may affect CL, TP and SA (Li and 179 

Duh, 2013). In-depth understanding of how MAR can affect its users’ cognitive behavior and 180 

performance would be helpful in the creation of such guidelines, and therefore to the design of 181 

safer and more effective MAR systems for AEC use. 182 



 

 183 

Cognitive Load, Task Performance, and Situational Awareness Measures 184 

CL is commonly measured using one or more of four broad sets of techniques: 185 

subjective, performance, physiological and behavioral (Khawaja et al., 2014). The subjective 186 

techniques primarily include gathering data directly from subjects, who rate their own CL on a 187 

Likert-type scale. The most reliable subjective CL results have generally been attained using 188 

the NASA-TLX (Hart, 2006). The performance-based CL measurement technique, on the other 189 

hand, assesses subjects’ performance while a task is being carried out: for example, using task-190 

completion time, critical errors, false starts, speed and/or correctness (Paas et al., 2003). The 191 

physiological approach, meanwhile, relies on changes in human cognitive functions being 192 

reflected physiologically, e.g., through brain activity, eye movement, or heart rate (Joseph, 193 

2013). And lastly, behavioral measures can provide nonintrusive, objective, and implicit 194 

analyses of individuals’ CL, as they are based on data collected during task completion without 195 

the participants’ prior knowledge. Some commonly used behavioral measures of CL include 196 

speech features (e.g., pitch, prosody) and linguistic features (e.g., pauses, patterns of language) 197 

(Khawaja et al., 2014). Across all CL measurement techniques, however, the NASA-TLX is 198 

one of the easiest to use, least expensive, most reliable, and most sensitive to small variations 199 

in workload (Bhandary et al., 2016; Dadi et al., 2014; Hou et al., 2013). 200 

Cognitive TP measures are based on the assumption that the mental workload of an 201 

individual interacting with a particular system or interface during the performance of a 202 

particular task is a good indicator of CL (Lee et al., 2018). Examples of cognitive TP metrics 203 

include reaction time to a secondary task, task-completion time, and error rate (Longo, 2018). 204 

In their reviews of SA measurement techniques, (Salmon et al., 2006; Salmon et al., 205 

2009) categorized past approaches into five general types, including (1) physiological methods 206 

such as eye-tracking and electroencephalograms (EEGs); (2) performance-based methods for 207 

example mission success or failure, hazard detection etc; (3) self-rating methods, such as SART 208 



 

(Taylor, 1990), the Crew Awareness Rating Scale (McGuinness and Foy, 2000) or the Mission 209 

Awareness Rating Technique (Matthews and Beal, 2002) (4) observer-based rating methods 210 

like the Situation Awareness Behavioral Rating Scale (Matthews et al., 2005); and (5) freeze-211 

probe methods, such as SA global-assessment techniques (Endsley, 1988b). Although, there 212 

are both advantages and disadvantages of each technique, among these, SART is widely 213 

acknowledged as non-intrusive, inexpensive, easy to perform, and simple to analyze (Endsley 214 

and Garland, 2000; Endsley et al., 1998; Stanton et al., 2005). Its three key dimensions – i.e., 215 

understanding of the situation, demands on attentional resources, and supply of attentional 216 

resources – together provide comprehensive measurement of individuals’ SA (Hasanzadeh et 217 

al., 2018; Naderpour et al., 2016; Salmon et al., 2009). 218 

 219 

RESEARCH METHODOLOGY 220 

To achieve this study’s research objective, as shown in Fig. 2, the participants we 221 

recruited were assigned to one of three rebar-inspection groups: one using paper-based 222 

inspection methods, another using tablet-based MAR, and a third, HoloLens-based MAR. Two 223 

experiments were performed. Experiment I assessed the respective impacts of the traditional 224 

paper medium and each type of MAR on the participants’ TP (as measured by completion time 225 

and number of errors) and CL as measured by using NASA-TLX (Hart, 2006) in a laboratory 226 

environment. Then, Experiment II added a simulated construction site to the laboratory 227 

environment and assessed how each of the three inspection modalities affected individuals’ 228 

awareness of the surrounding environment during inspection tasks, and their overall impact on 229 

CL, TP, and SA. The task again consisted of rebar inspection, albeit with a different slab rebar 230 

framework to minimize learning effects; and each participant used the same inspection modality 231 

that he/she had used in Experiment I. To assess the impact of construction-safety conditions on 232 

Experiment II’s results, we performed inter-group comparisons of CL and TP, and also 233 



 

measured each participant’s SA using SART (Taylor, 1990). The procedures of both 234 

experiments are explained below in greater detail. 235 

 236 

Participants 237 

A sample of 45 Ph.D. students from the Department of Building and Real Estate at the 238 

Hong Kong Polytechnic University was recruited for the two experiments. All participants had 239 

previously taken multiple classes related to construction project management and had some 240 

professional construction-industry experience, and thus were familiar with rebar inspection. 241 

They were randomly divided into three groups of 15, each of which would perform its rebar 242 

inspections using the same modality (i.e., paper, tablet MAR, or HoloLens MAR) across both 243 

experiments. Before experimental sessions, we provided clear and concise instructions to each 244 

participant by using organized materials regarding the experimental procedures and provided 245 

multiple training sessions on how to use MAR devices for rebar inspection. In addition, to avoid 246 

the potential response bias during the post-experiment surveys, we made questions concise and 247 

easy to understand, and informed participants that survey data would be strictly used for 248 

research purposes only on an anonymous basis. 249 

Task Overview 250 

In both experiments, all participants played the role of a construction inspector tasked with 251 

checking for the following eight types of reinforcement errors: (1) spacing between rebars, (2) 252 

missing rebars, (3) extra rebars, (4) insufficient rebar cover at the side face, (5) insufficient 253 

rebar cover at the bottom face, (6) incorrect number of anchorage bars, (7) insufficient length 254 

of anchorage bars, and (8) bars incorrectly tied and supported. In all, 20 errors were 255 

intentionally placed in the rebar framework to be inspected, as shown in Fig. 3. 256 

 257 

Experimental Procedure 258 



 

During the paper-based inspection session of each experiment, the participants were 259 

asked to find rebar errors of each of the eight types given above by comparing the physical 260 

rebar framework against a drawing, as shown in Fig. 4 (left), using a tape measure if they 261 

wished. The second group of participants performed the same task using a tablet that, when 262 

pointed at the physical rebar framework, showed a 3D rebar model superimposed on it, as 263 

shown in Fig. 4 (middle). This 3D rebar model had first been drawn in SketchUp and then 264 

integrated with SketchUp Viewer, a tablet AR app 265 

(https://www.sketchup.com/products/sketchup-viewer). The third group of participants 266 

performed the same task while wearing Microsoft HoloLens headsets that showed a 3D rebar 267 

model superimposed on physical rebar framework, as shown in Fig. 4 (right). This second 3D 268 

rebar model was also first drawn in SketchUp, but then integrated with Trimble Connect, a 269 

HoloLens-specific AR app (https://mixedreality.trimble.com/). Participants in all three groups 270 

were instructed to perform the inspection task as fast and accurately as possible, with their 271 

respective inspection speeds and numbers of errors both being collected in real-time. NASA-272 

TLX was then used at the end of each experiment to measure their CL. 273 

One week after Experiment I, we conducted a very similar experiment, with the same 274 

groups using the same inspection modalities, but a different rebar model, and with a more 275 

realistic simulation of a construction environment within the laboratory. Specifically, this 276 

environment was designed to expose the participants to realistic construction scenarios as a test 277 

of their SA: with recorded sounds of construction equipment played at accurate volumes, and 278 

a person employed to drive a laden forklift trolley near each participant during his/her 279 

inspection task. During this experiment, the same techniques as in Experiment I were used to 280 

measure participants’ TP and CL, while SART was used at the end of the experiment to measure 281 

their SA. 282 

 283 

Measurements 284 



 

To measure cognitive load, we used NASA- TLX method that has been widely used for 285 

measuring cognitive load (Bhandary et al., 2016; Dadi et al., 2014; Hou et al., 2013). The 286 

original NASA- TLX contains six items (mental demand, physical demand, performance, 287 

temporal demand, effort, and frustration level). However, physical demand – defined as how 288 

much physical activity is required during a task – was not deemed relevant to our research, and 289 

so was omitted from the version of NASA-TLX that was used. One of the remaining five items, 290 

performance, could have been measured directly; however, as used in the NASA-TLX, it 291 

incorporates non-objective factors such as level of satisfaction, self-esteem, and motivation, 292 

and we retained it for that reason. Therefore, based on mental demand, performance, temporal 293 

demand, effort, and frustration level, participants in each experiment were rated on a scale from 294 

1=Low to 5=High, as shown in Table 1. 295 

While TP was measured objectively, as a combination of (1) the actual amount of time 296 

a participant took to complete his/her assigned inspection task in a given experimental session, 297 

and (2) the number of rebar errors that he/she correctly identified during that session. 298 

Finally, to measure SA we used the SART method. It is a well-known post-trial 299 

subjective rating technique for the assessment of a participant’s SA, further details of which are 300 

shown in Table 2. SART was completed by our participants at the end of Experiment II using 301 

a five-point Likert scale ranging from 1=Low to 5=High. The original SART instrument 302 

contains 10 items covering the environment’s (1) information quantity, (2) information quality, 303 

and (3) the participant’s familiarity with it ; (4) the instability (5) the variability of the prevailing 304 

situation and (6) complexity.; (7) arousal, (8) concentration, (9) division of attention, and (10) 305 

spare mental capacity. However, these 10 items can be grouped into three major dimensions: 306 

i.e., understanding of the surrounding situation (U), demand on attentional resources (D), and 307 

supply of attentional resources on the surrounding situation (S), where U is the sum of items 308 

(1), (2), and (3); D, is the summation of items (4), (5) and (6); and S, is the summation of items 309 

(7) through (10). A person’s overall SART score can then be calculated as SA=U-[D-S]. 310 



 

 311 

RESULTS 312 

Before analyzing the data in detail, we first performed a Shapiro-Wilk test, a widely 313 

used method of testing data normality in sample sizes smaller than 50 (Ahad et al., 2011; Mishra 314 

et al., 2019). The common alpha value for testing normality (i.e., 0.05) was used in conducting 315 

this test, and if the p-value produced by the test is lower than the accepted value, then we can 316 

conclude that the data are not normally distributed (Darko and Chan, 2018). All the p values 317 

produced by the Shapiro-Wilk testing of the present study’s data were 0.00, indicating that such 318 

data were not normally distributed. Therefore, non-parametric tests – which are considered 319 

suitable for non-normally distributed data – were used for the remainder of our analyses. Non-320 

parametric Kruskal-Wallis H can be used to assess statistically significant differences among 321 

three or more independently sampled groups (McKight and Najab, 2010), and therefore was 322 

chosen for use with both the Experiment I and Experiment II data to identify any statistically 323 

significant differences among the paper, tablet and HoloLens users.  324 

 325 

Experiment I: General Comparison among Inspection Modalities 326 

As the purpose of Experiment I was to assess how traditional paper-based inspection and 327 

the two focal types of MAR would affect the participants’ CL, the Kruskal-Wallis H test was 328 

conducted first, as shown in Fig. 5. Its results indicated that paper-based inspection was the most 329 

cognitively demanding of the three modalities, and HoloLens the least, though differences 330 

among them were not statistically significant. Then, a detailed comparison was made of the 331 

three inspection groups’ NASA-TLX data. As Fig. 5, indicates, users of both MAR systems 332 

perceived lower CL than the participants using the paper-based inspection method did. Again, 333 

however, the mean differences were found to be non-significant (p>0.05).  334 

Next, the Kruskal-Wallis H test was applied to the Experiment I data on users’ average 335 

completion times (Fig. 6) and error-identification rates (Table 3). As shown in Fig. 6 which 336 



 

presents a comparison of completion times across the three experimental groups, the paper-337 

based group, at 11.85 minutes, took significantly longer than either of the two MAR-assisted 338 

groups (p<0.05). However, there was no statistically significant difference between the 339 

completion times of the tablet-based and HoloLens-based MAR groups (6.17 and 6.59 minutes, 340 

respectively; p>0.05). 341 

Each group’s error-identification rate was analyzed through the Kruskal-Wallis 342 

H test, as shown in Table 3. There were no statistically significant differences among 343 

the three groups’ mean performance at identifying missing-bar and extra-bar errors. 344 

However, statistically significant differences did emerge between both MAR groups, 345 

on the one hand, and the paper-based group, on the other, when it came to identifying 346 

spacing, side-cover, bottom-cover, bar-number, length, and tying/support errors 347 

(p<0.05), with the paper-based group performing significantly better in these areas. And 348 

overall, out of 20 errors that were intentionally placed in the physical rebar framework, 349 

an average of 13.5 were correctly identified by the paper-based group, as against 9.5 by 350 

HoloLens users and just 9.1 by tablet users; and this difference was also found to be 351 

statistically significant (p<0.05). 352 

 353 

Experiment II: Relationships between Safety Conditions and Inspection Modalities 354 

The Kruskal-Wallis H test was performed on the Experiment II data to see how the 355 

addition of realistic construction sounds and potentially dangerous environment affected the 356 

participants’ CL, TP, and SA. Although no significant mean difference in CL was found across 357 

the two experiments (as shown in Fig. 7), average CL for all three inspection groups was higher 358 

in Experiment II than in Experiment I. 359 

As shown in Fig. 8, we also found that average completion time for each inspection 360 

modality was higher in Experiment II than in Experiment I. However, this mean difference was 361 

found to be statistically significant only for the HoloLens group. As indicated in Table 4, the 362 



 

Experiment II data also showed that fewer errors were identified by the tablet and HoloLens 363 

users than by the traditional-inspection group. The latter group was also exceptional in that the 364 

increased environmental noise and hazard levels had no marked negative impact on its error-365 

identification performance. However, no statistically significant overall difference in error 366 

identification was found between Experiment I and Experiment II. 367 

Finally, we examined the inspection-group SART scores from Experiment II through 368 

the Kruskal-Wallis H test. Table 5 presents the cumulative mean SART values, along with their 369 

SDs, Kruskal-Wallis H values, and significance levels (p). For this purpose, we first grouped 370 

the 10 SART items into the three main dimensions U, D, and S, as described above. There were 371 

significant mean differences in two of these three SART dimensions, i.e., D and S (p<0.05). 372 

While no such significant difference was found for the third dimension, U, the paper-based 373 

inspection modality still had a higher U (9.8) than either its tablet-based (9.53) or HoloLens-374 

based counterpart (8.86). The cumulative average values of D were also found to be highest in 375 

the paper-inspection group (10.31, vs. 9.26 for the tablet group and 9.18 for the HoloLens 376 

group). Lastly, the cumulative average values of S were highest for the paper-inspection group 377 

(13.39). Total SART score, calculated using the formula Situational 378 

Awareness=Understanding-[Demand-Supply], was higher on average in the paper-based 379 

inspection modality (12.88) than in either the tablet (11.53) or HoloLens modality (10.93); 380 

however, these differences were not statistically significant (p>0.05). 381 

 382 

DISCUSSION 383 

This study compared the impact of two popular types of MAR (i.e., handheld and head-384 

mounted systems) on CL, TP and SA. Through Experiment I, we revealed that the rebar-385 

drawing information provided by superimposed computer imagery in both MAR systems 386 

helped to decrease their users’ CL, as compared with traditional paper-based inspection. Also, 387 

we found that the paper-based group took more time to complete their inspection task than 388 



 

either of the MAR-assisted groups. However, because of perception issues associated with both 389 

MAR systems, notably involving depth and registration, the paper-based group identified more 390 

errors than either of its MAR-assisted counterparts. Then, Experiment II established that a more 391 

realistic construction-site environment increased the cognitive demand on the subjects and 392 

lowered their TP; and that the same environment also negatively impacted SA across all three 393 

dimensions of the SART. 394 

In terms of CL, the fact that both MAR systems tended to reduce participants’ mental 395 

demand during Experiment I may have been because the 3D information they superimposed on 396 

the real environment (as shown in Fig. 9) facilitated their users’ cognitive processes: enabling 397 

inspectors to simultaneously perform several cognitive activities, such as looking, 398 

comprehending, searching, remembering, and deciding, unlike with paper-based inspection. 399 

Also, temporal stress in Experiment I was probably less for the members of the two MAR 400 

groups than for the traditional-inspection group, because the former two sets of participants did 401 

not need to perform time-consuming gaze shifts between paper drawings and the real 402 

environment (Polvi et al., 2018). Thus, MAR’s 3D superimpositions on the real environment 403 

could be said to have lowered inspector effort physically as well as mentally. And 404 

unsurprisingly, our Experiment II results confirmed that performing the same tasks in a 405 

realistically simulated hazardous construction environment increased the cognitive demands on 406 

all three groups. 407 

In terms of performance, Experiment I established that the two MAR systems’ 408 

superimposed 3D rebar models increased the participants’ performance when it came to 409 

detecting errors in the numbers of rebars or their spacing. Also, MARS has the potential to allow 410 

its user to more focus on the task by reducing the number of necessary gaze shits between the 411 

real and augmented environment, and thus user’s performance is expected to increase (Polvi et 412 

al., 2018). However, the reduction in the number of these shifts can vary according to the AR-413 

assisted display system. However, both MAR systems we tested also appeared to have some 414 



 

negative impacts on inspection performance. For example, neither could provide clear depth 415 

information regarding rebar placement, due to perception issues, and this resulted in 416 

significantly lower performance by the MAR groups (as compared to the paper-inspection 417 

group) when it came to finding side-cover, bottom-cover, and tying/support errors. On the other 418 

hand, participants equipped with either version of MAR were able to complete their inspection 419 

tasks more quickly than those who were not, with the tablet group finishing quickest, probably 420 

thanks to their devices’ relatively large field of view, as compared to HoloLens. 421 

Our Experiment II results, meanwhile, confirmed that the MAR-assisted groups’ TP 422 

decreased slightly more than the traditional-inspection group’s did when all three groups were 423 

placed in a more realistic construction environment. In particular, task-completion time 424 

increased significantly for the HoloLens group, probably implying that HoloLens’s relatively 425 

small field of view made task performance more time-consuming when the environment was 426 

more complex, distracting, and potentially hazardous. 427 

The superimposed 3D rebar models shown in both head-mounted and tablet-based 428 

MAR appeared to help their users to understand the inspection task itself. However, both had 429 

disadvantages, relative to paper-based inspection, in terms of SA: which was observed to be 430 

lower for both groups of MAR users across all three dimensions of the SART. First, both MAR 431 

systems, but especially HoloLens, appeared to provide their users with less understanding of 432 

their surroundings (U), probably because both restrict the field of view. Generally, human have 433 

a horizontal field of view of 104 degrees to 94 degrees for each eye (over 180 degrees 434 

approximately) (Knapp and Loomis, 2004), while tablet and HoloLens have a relatively small 435 

field of view. HoloLens users, in particular, tend to keep their gaze constantly on the AR 436 

environment, making it difficult for them to fully understand their surroundings or to use their 437 

cognitive resources (i.e., arousal, concentration, attention, and mental capacity) appropriately, 438 

other than on the task at hand. Considering that inspectors on construction worksites must 439 

perform several cognitive activities simultaneously – looking, comprehending, searching, 440 



 

remembering, and deciding – they are generally required to achieve full understandings of their 441 

surroundings over a very short period. Our experimental results confirm that equipping 442 

inspectors with MAR, and especially head-mounted MAR, is likely to be counterproductive, as 443 

our participants in the paper-based group were more fully aware of small changes in the 444 

background environment than their MAR-assisted counterparts.  In short, MAR use by AEC-445 

industry inspectors could reasonably be expected to increase potential worksite-safety issues, 446 

in particular, due to the restrictions these devices place on their wearers’ fields of view, which 447 

tend to focus their attention more narrowly on their tasks than natural human vision would, and 448 

thus render them less alert to changes and potential changes in their immediate environment. 449 

Despite these important findings, there may be some limitations of this study. First, even 450 

though we obtained the statistically significant results from the experimental sessions, the 451 

relatively small number of participants may lead to the generalizability issues of the findings 452 

due to the human variability. For example, the task performance when using new technologies 453 

such as MAR devices could be highly affected by the user's technology acceptance or previous 454 

experience on using them (Olsson et al., 2012). To minimize the issue, comprehensive pre-455 

training sessions were provided to participants, but the possibility of participants’ different 456 

learning abilities still may remain. Also, the individual difference in participants’ cognitive 457 

ability level (i.e., finding errors in rebar placement) was not fully controlled, which may lead to 458 

misinterpretation of the results. So, further studies would be needed to provide strong 459 

generalizability by considering other human variability issues in the future. Also, the self-460 

assessment survey could suffer from potential bias in response. Participants might obtain 461 

different interpretations of questions and respond in a certain way irrespective of the content of 462 

the questions, which is known as acquiescence response bias (Kam and Meyer, 2015). More 463 

objective measures for cognitive load and situational awareness may need to be investigated. 464 

Recently, measurement techniques using sensor data such as eye-tracking or 465 

electroencephalogram (EEG) signals have been tested for measuring cognitive workload, 466 



 

showing the potential as objective assessment (Borys et al., 2017). Lastly, while our second 467 

laboratory experiment tried to simulate a real construction-site inspection experience as closely 468 

as possible, the complexity and uncertainty of an actual construction site are very difficult to 469 

replicate. During real inspection tasks at construction sites, the cognitive demands on workers 470 

may be even higher than reported above, leading to lowering the MAR user’s task performance. 471 

By the same token, in any complex construction environment, workers need to use more 472 

cognitive resources to observe actual and possible environmental changes at construction sites. 473 

Therefore, future research should confirm the validity of the above results through a field 474 

experiment, as well as with a wider variety of MAR systems. 475 

 476 

CONCLUSIONS 477 

In the AEC industry, MAR is widely considered to support its users’ cognitive capability 478 

via the superimposed information it provides. However, such information may lead to cognitive 479 

overload and thus could adversely effects on the performance of tasks. Also, the limited user’s 480 

field of view that comes with MAR use could limit his/her ability to notice events in their 481 

surroundings. Therefore, this study compared the impact of two distinct types of MAR (i.e., 482 

handheld and head-mounted systems) on construction professionals’ CL, TP, and SA, relative 483 

both to each other and to paper-based techniques. While the rebar-framework design 484 

information provided via a superimposed virtual rebar model in MAR-assisted inspection 485 

appeared to decrease the inspectors’ CL associated with the information-seeking (e.g., the 486 

number of rebars required; proper spacing) and processing (e.g., identifying missing or 487 

superfluous rebars in the actual rebar framework), it negatively impacted their performance in 488 

dangerous surroundings. The head-mounted MAR device we used, in particular, decreased its 489 

users’ understanding of the surrounding environment and increased their inspection-task 490 

completion times, as compared not only to paper-based inspection but also to its tablet-based 491 



 

counterpart. As such, the key contribution of this research is that both of the main existing 492 

modalities of MAR-based inspection influence CL, TP and SA – for the most part, negatively. 493 

Despite the aforementioned limitations of this study, several theoretical and practical 494 

implications can be derived from the results. The findings of both our experiments can 495 

contribute to the body of knowledge that a given information-presentation format can influence 496 

construction practitioners’ cognitive workload and performance during MAR-supported tasks. 497 

Also, the findings of the research could provide a better understanding of MAR cognitive issues. 498 

In addition, the findings of our research would guide the design and usage of MAR systems for 499 

construction tasks, and this could possibly enhance the human cognitive functioning at 500 

construction worksites by better utilization of MAR systems. 501 
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 750 

Table 1. The Five NASA-TLX Questions Used for Measuring Cognitive Load (Hart, 2006) 751 

Dimension Question 
Mental Demand How mentally demanding was the task? 
Temporal Demand How temporally demanding was the task? 

Performance How successful were you in accomplishing what you were asked to 
do? 

Effort How hard did you have to work to achieve your level of performance? 

Frustration How insecure, discouraged, irritated, or stressed were you during the 
task? 

 752 

 753 

Table 2. Items for Measuring Situational Awareness (Taylor, 1990) 754 

Domain Items Questions 

Understanding 
(U) 

Information Quantity (1) How much information about your 
surroundings did you take in? 

Information Quality (2) 
How well did you understand/comprehend 
the information about your surroundings 
that you took in? 

Familiarity (3) How familiar with your surroundings did 
you become during the task? 

Attentional 
Demand (D) 

Instability (4) 
How much was the situation in your 
surroundings changing during the 
experimental session? 

Variability (5) Were a number of different factors in the 
surrounding environment changing? 



 

Complexity (6) How complex was the surrounding 
situation? 

Attentional 
Supply (S) 

Arousal (7) How alert were you to observing the 
surrounding situation? 

Concentration (8) How much were you concentrating on 
your surroundings? 

Division of Attention (9) 
What proportion of your attention was 
devoted to your surroundings, as opposed 
to your inspection task? 

Spare Mental Capacity 
(10) 

How much mental capacity did you have 
to spare for your surroundings? 

 755 
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Table 3. Average Number of Errors Correctly Identified, by Inspection-modality Group 761 

Rebar errors  Mediums 
No. of 
Errors 
Placed 

Experiment I 
Mean (SD) 

Kruskal-
Wallis H p 

Spacing 
between bars 

Paper 
5 

2.73 (1.43) 
6.54 0.03** Tablet 2.06 (0.88) 

HoloLens 3.00 (0.75) 

Missing rebars 
Paper 

2 
1.60 (0.63) 

0.52 0.77* Tablet 1.53 (0.45) 
HoloLens 1.46 (0.63) 

Extra rebars 
Paper 

3 
1.66 (0.48) 

3.80 0.14* Tablet 2.13 (0.99) 
HoloLens 2.00 (0.84) 

Incorrect side-
cover spacing 

Paper 
2 

1.66 (0.61) 
18.55 0.00** Tablet 0.44 (0.83)  

HoloLens 0.40 (0.63) 
Incorrect 

bottom-cover 
spacing 

Paper 
2 

0.60 (0.82) 
7.96 0.01** Tablet 0.06 (0.25) 

HoloLens 0.06 (0.25) 
Incorrect 

number of 
anchorage bars 

Paper 
2 

2.00 (0.00) 
6.27 0.04** Tablet 1.66 (0.72) 

HoloLens 2.00 (0.00) 
Paper 

2 
1.73 (0.73) 

15.61 0.00** 
Tablet 1.00 (0.75) 



 

Incorrect 
length of 

anchorage bars 
HoloLens 0.46 (0.74) 

Bars 
improperly 

tied and 
supported 

Paper 
2 

1.53 (0.74) 
28.82 0.00** Tablet 0.20 (0.56) 

HoloLens 0.00 (0.00) 

Total number 
of errors 

Paper 20 13.51 (5.44) 
19.61 0.00** Tablet 20 9.08 (5.43) 

HoloLens 20 9.42 (4.29) 
Note. *=No significant difference (p>0.05); **=Significant difference (p<0.05). 762 
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 766 

 767 

 768 

 769 

 770 

Table 4. Average Number of Errors Correctly Identified, Experiments I and II 771 

Mediums 
Number 
of Errors 
Placed 

Total Errors 
Identified in 

Experiment I, 
Cumulative Mean 

(SD) 

Total Errors 
Identified in 

Experiment II, 
Cumulative Mean 

(SD) 

Kruskal-
Wallis H p 

Paper 20 13.51 (5.44) 14.58 (4.70) 2.94 0.08* 
Tablet 20 9.08 (5.43) 8.53 (4.12) 0.69 0.40* 

HoloLens 20 9.42 (4.29) 8.72 (4.98) 0.25 0.61* 
Note. *=No significant difference (p>0.05); **=Significant difference (p<0.05). 772 

 773 

Table 5. Situation Awareness Rating Technique Scores 774 

SART Item 
Modality Kruskal-

Wallis 
H 

p Paper 
Mean (SD) 

Tablet 
Mean (SD) 

HoloLens 
Mean (SD) 

Information Quantity (1) 3.40 (0.91) 3.33 (1.29) 2.93 (0.79) 2.10 0.34* 
Information Quality (2) 3.0 (0.84) 3.13 (1.35) 3.00 (0.75) 0.00 0.99* 
Familiarity (3) 3.40 (0.98) 3.07 (1.38) 2.93 (0.35) 2.06 0.35* 
Instability (4) 3.46 (0.92) 3.26 (0.79) 3.24 (0.70) 0.68 0.70* 
Variability (5) 3.40 (0.73) 2.86 (0.91) 2.85 (0.83) 4.18 0.12* 



 

Complexity (6) 3.46 (0.64) 3.20 (0.67) 3.06 (0.79) 2.13 0.31* 
Arousal (7) 3.33 (0.74) 2.66 (1.23) 2.86 (0.91) 4.75 0.09** 
Concentration (8) 3.20 (0.94) 2.73 (1.16) 3.00 (0.84) 1.30 0.52* 
Division of attention (9) 3.40 (1.05) 2.80 (1.08) 2.66 (0.61) 4.16 0.12* 
Spare mental capacity (10) 3.46 (0.91) 3.06 (0.79) 2.73 (0.79) 2.10 0.34* 
Understanding (U) 9.8 (2.73) 9.53 (4.02) 8.86 (1.89) 2.33 0.31* 
Attentional Demand (D)  10.31 (2.29) 9.26 (2.37) 9.18 (2.32) 7.02 0.03** 
Attentional supply (S) 13.39 (3.64) 11.26 (4.26) 11.25 (3.15) 12.70 0.00** 
SART=U-[D-S] 12.88 (4.08) 11.53 (5.91) 10.93 (2.72) 1.23 0.53* 

Note. *=No significant difference (p>0.05); **=Significant difference (p<0.05). 775 
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