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Abstract—Deterioration and aging associated with building 
assets are becoming major concerns in most countries as their 
building portfolios continue to increase and expand. Healthcare 
facilities are a special case of building assets that inherit a 
significant criticality and complexity within its operation and 
maintenance regimes which makes monitoring the assets' 
condition and forecasting their life expectancy two of the most 
essential functions in a healthcare environment. In this paper, a 
stochastic deterioration prediction approach was developed to 
model and estimate the degradation of elevators systems within 
hospital building environments due to their importance to the 
continuity of the hospital mission and services. Different 
probability distributions were fitted using historical condition 
data and the performance of different distributions was then 
compared utilizing the Anderson-Darling test. Parameters of the 
best distribution were thus found using maximum likelihood 
estimate. The developed model is expected to aid decision makers 
in improving the planning process for their maintenance and 
rehabilitation programs and to efficiently conduct proactive 
maintenance activities in a timely manner which helps ensure the 
sustainability of hospital operation. 

Keywords—deterioration prediction; Weibull probability 
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I. INTRODUCTION

Evaluating the condition and performance of hospital 
building assets is considered a vital step in the process of 
predicting the expected deterioration in building components 
occurring due to aging, obsolescence and exposure to the 
surrounding environment [2]. Deteriorating buildings and 
facilities often require significant upgrades to improve their 
economic, operational and environmental performance [1]. 
Given the complex and dynamic nature associated with 
healthcare facilities, a systematic maintenance management 

framework is considered essential for efficiently operating and 
upkeeping the hospital building assets. And due to the recurring 
issue of scarcity of funds allocated to hospital operation and 
rehabilitation, a maintenance budget planning model is deemed 
necessary. One of the core functions linked with budgeting the 
maintenance and renovation activities is the prediction of the life 
expectancy of building assets [5]. However, being dependent on 
the deterioration process occurring in the building assets as a 
result of the in-use conditions, life expectancy prediction and 
estimation is not an exact science and is even referred to by some 
researchers as an “uncertain process” [10]. In addition to that, 
[16] have rated the forecasting and estimation of the
deterioration pattern estimation as the most complex task to
perform within the facility management of hospitals and
healthcare facilities. This conclusion was linked with the
variability of users and stakeholders in hospital environments as
well as their different objectives, needs and satisfaction
measures.

II. LITERATURE REVIEW

In general, asset components’ deterioration is predicted by 
utilizing either deterministic, artificial intelligence-based or 
probabilistic/stochastic approaches [15]. 

For the deterministic approach, the use of codes and 
standards is considered crucial for the identification of the 
Reference Service Life (RSL) that guides experts involved in the 
forecasting process to give a robust and sound estimation of the 
Expected Service Life (ESL) of the assets [11]. This can be 
illustrated as per the case of hospitals in the National Health 
Service (NHS) of the United Kingdom; where the current 
assessment process of the overall remaining service life of the 
hospitals is done by deriving the arithmetic mean of all the 
remaining service life values for all hospital building elements 
obtained through expert judgement [13].  
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Straight-line extrapolation, regression-based methods and 
curve fitting are three of the mostly used deterministic 
procedures of predicting the deterioration of building assets 
[21]. Due to the relative simplicity associated with deterministic 
models, several researches have explored its applicability on 
estimating the service lives of buildings and healthcare facilities. 
For example, [16] developed a maintenance expenditure 
planning framework for hospital buildings based on several 
criteria including the facility age. A conclusion was then drawn 
as part of this study that concrete structural elements in hospital 
facilities experience a linear deterioration for the first 15 years 
in their service lives and continue deterioration on an 
exponential basis thereafter. [23] have also utilized a hybrid-
deterministic deterioration prediction models to estimate the 
service live of building elements, specifically façade systems, 
that are undergoing a failure state. Furthermore, [22] created a 
reliability-centered maintenance management model based on 
the current performance of the hospital assets, that uses expert 
surveys and questionnaires to determine the duration between 
the potential point of failure and functional failure point (P – F) 
for hospital building components based on their experience-
driven preferences. However, as it can noted from the researches 
involving deterministic approaches to predicting the 
deterioration, a high level of uncertainty is evident since the 
output is a single value representing the service life of the 
building element [10]. Also, another limitation of using 
deterministic approaches is its dependence on age and time as 
the sole indicator for building degradation [20]. 

The second type of deterioration prediction methodologies is 
artificial intelligence-based models. This type of models is 
highly data-intensive requiring timely detailed condition 
monitoring and reporting to design, train and validate the 
models. They include artificial neural networks, fuzzy set 
theory, and case-based reasoning. However, due to the scarce 
and limited nature of data collection and availability within the 
healthcare environment, the applicability of such models 
remains unexplored [7]. 

The last type of deterioration prediction models is the 
probabilistic/stochastic models. Stochastic prediction 
approaches are categorized into two main categories: 1) Time-
based models (i.e. Weibull Probability Distribution models) that 
estimate the probability distribution of the duration spent for the 
component to change from one state to the other, and 2) State-
based models (i.e. Markov models) that predict the probability 
of building components experiencing a deterioration or a 
transformation in its current condition within a given time 
duration [5]. Extensive research has been conducted in this area 
with regards to building deterioration prediction, as 
probabilistic/stochastic frameworks possess a proven 
applicability to complex environments like buildings and 
healthcare facilities [8].  Also, stochastic models are superior to 
other prediction models like deterministic ones as they have an 
ability to account for uncertainties, subjectivity and errors in 
assessments and initial conditions as well as applied stresses on 
building components [17]. Advantages of using stochastic 
Markov chains to predict building deterioration include their 
inherent ability to depend only on the current or previous 
observed condition state in order to predict a future state given 
their memoryless nature [18]. This encouraged researchers to 

apply Markov chains to forecast future conditions of a variety of 
asset types including linear networks like wastewater networks, 
stormwater pipes, pavements and bridge elements, as well as 
complex hierarchical structures like building assets and facility 
components [6]. To begin with, [9] developed a time-based 
stochastic self-correcting deterioration prediction model that 
uses Weibull probability distribution to estimate the condition 
of building components over time. The model utilizes current 
and past condition inspections to provide an accurate projection 
of the components’ service life. On the other hand, state-based 
deterioration models have been more popular for application in 
building and hospital environments. [18] studied the 
generalization of infrastructure transition probabilities assuming 
constant inspection durations corresponding to the cycle time. 
Moreover, a study by [8] developed an asset deterioration 
prediction model for buildings owned by the U.S. Department 
of Defense (DoD) that utilizes a semi-Markov model to estimate 
the expected condition of building assets over the transition 
intervals accounting for the previous condition state observed 
for each component as well as the time elapsed since the last 
inspection. Finally, a study was conducted by [6] proposing a 
Markov model developed as per extensive analysis of the factors 
available in the International Standards Organization’s (ISO) 
method with the goal of determining the effect of a limited set 
of variables on the deterioration of building components over a 
fixed duration. Despite its relative complexity compared with 
the deterministic approach, the stochastic and probability-based 
deterioration prediction approach provides a sounder estimation 
of the depreciation inside the hospital building which results in 
a more efficient budget planning and allocation for maintenance 
and rehabilitation activities [24]. 

As it can be noted from the literature review previously 
presented, the number of studies conducted on predicting the 
deterioration expected within hospital facilities components is 
significantly limited compared to the studies conducted on 
buildings of a general-use ignoring the complexity and 
importance of healthcare facilities and their underlying elements 
that need to efficiently work with maximum performance 
around the clock, and any downtime expected as part of a 
component’s failure should be minimized by proper planning 
and monitoring of the overall condition of building components. 
Another noteworthy observation would be the inefficiency of 
the methods utilized in previous studies to model the hospital 
building components, as they mainly relied on deterministic 
methodologies that are not considered an appropriate 
representation of the actual reliability distribution of the hospital 
components. Accordingly, this paper experiments multiple 
algorithms and probability distributions in order to propose a 
reliable stochastic-based deterioration prediction model for 
hospital building elements. The hospital components selected 
for the purpose of this application are hospital building elevators 
due to their significance and criticality pertaining to the overall 
hospital mission. 

III. MODEL DEVELOPMENT 
The first step in the developed methodology is retrieving the 

relevant datasets from Canadian hospitals representing the 
resulting reports and commentaries from the expert-based visual 
inspection process conducted inside the hospital facility to 
gauge the performance of building assets and ensure continuity 



of hospital operation. The datasets were collected from 25 
hospital buildings in the province of Alberta, and the datasets 
included resulting datapoints obtained upon visual examination 
of hospital building assets by professional engineers. The 
relevant parameters are extracted from the datasets to model the 
deterioration of the different components in healthcare facilities. 
The extracted data include the name of the system, type of the 
system inspected, its installation year, the year when the 
inspection was conducted, and the observed physical condition. 
The installation year is important to calculate the age of the 
system at a specific inspection year. The data consists of 
different systems such as slab on grade, structural, exterior 
walls, elevators and conveying systems, hot water distribution 
system, oxygen gas pipes, and others. The scope of this study is 
focused on modelling the deterioration of the elevators due to 
the fact that within healthcare facilities environments, elevators 
represent an integral part of the conveying system that carries 
patients, visitors, medical and supporting staff, medical 
equipment and supplies, as well as managerial staff. The 
condition data of the inspection reports are used to model the 
deterioration behavior of elevators based on reliability and 
survivability theory. In this application, various probability 
distributions are investigated to fit the available condition data. 
Eight different distribution are fitted in this study to select the 
best performing one in estimating the determination of the 
elevators. These distributions are normal distribution, Weibull 
distribution, exponential distribution, extreme value 
distribution, and lognormal distribution. Maximum likelihood 
estimates are used to determine the parameters of each 
distribution. Moreover, Anderson-Darling test is used to 
compare and select the distribution with the best calculated 
performance. Below is a brief description of each distribution 
along with an explanation of the statics of the Anderson-Darling 
test. 

Normal distribution is a continuous probability distribution 
that is often used in the natural and social sciences application 
to model real-valued random variables. It is commonly used 
when not enough information is known about the nature or the 
outcome of the process. The general form of the probability 
density function of normal distribution is given by [3] in the 
equation below. 

 
Where μ is the mean of the distribution and 𝜎 is the standard 

deviation. In 1939, Waloddi Weibull developed a failure 
distribution function that is presented by a bathtub-like curve 
like the one shown in Fig. 1 to describe the deterioration 
phenomenon. Since then, his formulation has been accepted as 
the most popular model to asses and predict failures and 
malfunctions across several fields [12]. The probability density 
function for a 3-parameter Weibull distribution is given by 
Equation 2 [12]. 

 

Where x ≥ 0, β > 0, 𝜂 > 0, -∞ ≤ γ ≤ ∞, β is the shape 
parameter, 𝜂 is the scale parameter, and γ is the location 
parameter. 

 

Moreover, the exponential distribution is one of the most 
widely used continuous distributions as well. It is often used to 
model the time elapsed between events. In this case, the random 
variable shall always take positive values. The probability 
density function of exponential distribution is given in Equation 
3 [19]. 

 
Where 𝜆 is the arrival rate.  

On the other hand, extreme value distribution is a limiting 
model for the maximum and minimum values present within a 
data set. A limiting distribution models how large (or small) the 
data can get. The general form of the density function of extreme 
value distribution is given in Equation 4 [14]. 

 
Furthermore, lognormal distribution is a continuous 

probability distribution of a random variable whose logarithm is 
normally distributed. This variable can only take positive values. 
Lognormal is widely used in engineering sciences and 
economics fields. The general density function of lognormal 
distribution is given in Equation 5 [4]. 

 
Where μ is the mean of the distribution and 𝜎 is the standard 

deviation. 

Box-Cox distribution is another probability distribution that was 
studied in this paper. Box-Cox distribution is the distribution of 
a random variable for which the Box–Cox transformation 
follows a truncated normal distribution. The probability density 
function for this continuous distribution is given by Equation 6 
[25] 

 

 

 

 

 

 
Fig. 1. Bathtub Failure Rate Function 



 
 where m is the location parameter, s is the dispersion, ƒ is 
the family parameter, I is the indicator function, Φ is the 
cumulative distribution function of the standard normal 
distribution, and sgn is the sign function. 

Another investigated distribution is Gamma distribution. 
Gamma is a continuous distribution function with two 
parameters. Probability density function of Gamma distribution 
is given by Equation [7] [26] 

 
Where x>0, 𝜆 the scale parameters,  𝛼 is the shape 

parameter , and Γ is the gamma function.  
Finally, Johnson's distribution was also examined. 

Johnson's distribution has a probability distributions function of 
four parameters. It was first proposed by Johnson in 1949 as 
transformation of the normal distribution, Equation 8 [27] 

 
Where 𝜀 is the location parameter, λ is the scale parameter, 

γ  and 𝜂 are the shape parameters.  

The quality of fit of each of the proposed models is tested 
using the Anderson-Darling statistic test. The Anderson-Darling 
statistic is a measurement of how well the data follow a certain 
distribution. It is generally used to compare the fit of several 
distributions to determine which one is the best. This reliability 
testing and analysis procedure commonly incorporates three 
main measuring parameters: 

• Anderson-Darling statistic (AD): A Lower AD values 
indicates a better fit. Nevertheless, to compare between 
the suitability of different distributions to fit the data, p-
value should be assessed. 

• P-value: A higher p-value indicates a better fit. A low p-
value (e.g., < 0.05) indicates that the data do not follow 
that distribution and other distribution shall be tested. It 
should be noted that the p-value could not be calculated 
for 3-parametrs distributions. 

• LRT P: A lower value indicates significantly 
improvement realized by adding the third parameter over 
the 2-Parameter version. 

IV. RESULTS AND DISCUSSION 
As previously mentioned, eight different distribution are 

fitted within the proposed model to select the most 
representative modeling pattern of simulating the deterioration 
expected in the elevator systems in healthcare facilities. Table 1 
shows a comparison of the results of the Anderson-Darling test 
for the five distributions utilized. 

Table 1: Comparison of the Anderson-Darling statistic test 
results 

Distribution Type P-Value AD Statistic 
Normal 0.1491 0.5455 
Weibull 0.1650 0.4797 
Exponential 0.0065 2.0534 
Extreme Value 0.0110 0.5783 
Lognormal 0.1389 0.5052 
Box-Cox Transformation 0.1298 0.6258 
Gamma  0.1537 0.5104 
Johnson Transformation 0.1395 0.5898 

It can be observed from Table 1 that the Weibull distribution 
fits the condition data the most. This is evidenced by the highest 
P-value and lowest value of AD statistic. It is also observed that 
all the distribution could fit the deterioration of the elevators 
with acceptable range except for the exponential and extreme 
value distributions. The P-value for these distributions was less 
than 0.05 which suggests the rejection of the null hypothesis (the 
distribution cannot fit the observed data). 

 
Using the maximum likelihood estimate, the parameters of 

the 2-parameters Weibull distribution was found. The values of 
the shape parameters and scale parameter are 4.30 and 27.75 
respectively. Once the Weibull distribution parameters are 
computed for a healthcare-based elevator system having similar 
covariates, the reliability function of this system can be 
calculated by integrating the failure probability density function. 
The reliability function and the failure rate associated with a 3-
parameter Weibull distribution are given by Equations 9 [12]. 

 
Where x is the age of the elevator, β is the shape parameter 

and 𝜂 is the scale parameter. A Weibull distribution with a shape 
factor (β) less than one corresponds to a decreasing failure rate 
over time, corresponding to an improving reliability. This phase 
is known as infant mortality phase or early-life failures. On the 
other hand, a Weibull distribution with (β) more than one 
corresponds to an increasing failure rate over time, 
corresponding to a deteriorating reliability. This phase is known 
as wear out phase or end-life failures. In exceptional cases when 
the Weibull distribution has a shape parameter (β) that is exactly 
one, this corresponds to a constant failure rate. In this study, the 

 

 

 

 
Fig. 2. Elevator Deterioration Function 

 

 



found shape parameter is more than 1 which indicates a wearing 
out phase. The scale parameter 𝜂 determines the spread of the 
Weibull distribution. A higher value of 𝜂 corresponds to a lower 
failure rate and a higher reliability. The deterioration curve is 
then generated by subsisting increased values of x, the age of the 
elevator and computing the corresponding condition reliability 
as shown in Fig. 2. 

The deterioration behavior depicted in Fig. 2 shows a highly 
reliable system during the early years. This curve shows that an 
elevator can be still in a good condition even after 20 years if 
properly maintained. However, after that point, the performance 
starts to dramatically deteriorate with time towards the end of its 
service life. Typically, elevators can last for 25-30 years if they 
are properly maintained. 

V. CONCLUSION 
Estimating the deterioration of systems and their underlying 

components of healthcare facilities is an integral step in the 
maintenance management of such complex assets. It was 
concluded from the analysis of the previous studies that most of 
them capitalized on using some deterioration patterns which 
may not be compatible with the available datasets. As such, a 
holistic comparison of some of the widely acknowledged 
stochastic distributions is carried out. In this paper, one vital 
system, the conveying system, is selected to be studied. The 
deterioration of the selected system was modelled stochastically 
leveraging historical condition data. Various distribution 
probabilities were fitted and the model with the highest 
performance was selected based on different statistical testing 
metrics. The parameters of the selected distribution were then 
found utilizing maximum likelihood estimate and the 
deterioration curves were established. The developed 
methodology in this study is expected to support decision 
makers in better planning for their maintenance and 
rehabilitation programs as well as drafting more efficient and 
realistic budgeting policies. 
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