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Abstract: Windstorms cause a range of damage to the built environment. Although numerous risk-assessment 

models for estimating such damage have been developed, the results generated by these models are often inaccurate 

due to the incompleteness and/or poor quality of the regional-scale building information that they require. As an 

alternative, therefore, this study utilizes an insurance company’s loss data pertaining to the high winds of Typhoon 

Maemi in South Korea in 2003 to calculate building damage in terms of damage ratios. Next, these damage ratios 

and storm-wind speeds are utilized to construct vulnerability curves that can be used to predict levels of damage to 

designated building types that are subjected to given wind speeds. Lastly, geographical information systems spatial 

data is combined with those vulnerability curves to arrive at four distinct wind-damage states. It is hoped that the 

present research will serve as a reference for further development of building vulnerability curves for storm winds. 
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1. Introduction

Over the past two decades, the severity of major storms and the damage they cause has rapidly increased. 

For example, Hurricane Katrina in 2005 devastated and paralyzed the Gulf Coast, causing US$108 billion worth of 

damage, making it the costliest natural disaster in U.S. history [1]. Hurricanes Ike in 2008 and Sandy in 2012 caused 

about US$29.5 billion and US$71.4 billion in damage, respectively. In 2013, Super-typhoon Yolanda – also known 

as Typhoon Haiyan – caused similar levels of damage in Southeast Asia, which were valued at nearly US$2.9 billion 

[2]. 

Investigating damage caused by high winds of various speeds is crucial to public-policy makers’ risk-

mitigation plans, as well as to insurance-industry decision-making about insurance premiums. Accordingly, 

governments, the insurance industry, and also the construction industry have developed a variety of risk-assessment 

models for estimating the damage to buildings caused by strong winds at the regional and national levels. In the 

specific case of windstorms, such models can be used to estimate the values of probable property loss, which is 

important information for governmental decisions about the designation of catastrophe zones, and about how to 

share and allocate risk [3, 4]. 
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Risk-assessment models are generally made up of four modules: hazard, vulnerability, exposure, and 

damage [2]. When dealing with windstorms, such as hurricanes and typhoons, the first module’s hazard values 

represent their intensity in terms of wind speed, while its hazard curve indicates the probability of particular wind-

speed values occurring. The vulnerability module estimates damage potential as a function of the intensity of the 

hazard; the exposure module provides information about the properties that may be affected; and the damage 

module estimates the total loss [5]. This implies that it is critically important for the exposure module to incorporate 

detailed information regarding properties, such as their building materials, heights, numbers of floors, ages, and 

locations, if accurate evaluations of damage and losses are to be obtained. However, such property information at a 

regional scale is often incomplete, or of a poor quality, leading to inaccurate risk-assessment modeling results, 

which in turn can hinder governmental and insurance-company efforts to plan for disasters. 

An alternative approach makes use of post-event data: specifically, the claim payouts determined by 

engineers and adjusters from insurance companies, which is a relatively reliable index of loss. Vulnerability curves 

for buildings subjected to high winds have been developed based on such post-event loss data, and are arguably a 

more reliable way to assess building damage caused by windstorms than any other existing method [5]. 

Vulnerability curves are generally presented in the form of vulnerability functions that express the correlations 

among damage ratios, wind speeds, and damage states [6]. According to Jaimes et al. [7] and Goyal and Datta [8], 

damage can be represented as the ratio of the expected repair cost of each structure to its total construction cost. 

Insurance-company data on financial losses can also be used to represent damage. Kim et al. [9] and Ahn et al. [10], 

for example, computed damage ratios by dividing claims payouts for repair costs to particular buildings by the total 

construction cost of those buildings. As well as being objective, this quantitative approach has the advantage of 

capturing the extent of damage, regardless of structures’ sizes or construction budgets. And in practice, it can be 

assumed that a low damage ratio equates to low vulnerability. However, effective use of damage ratios requires that 

researchers define damage states. Goyal and Datta [8], for instance, defined damage states as the failure of specific 

components (e.g., various types of walls, roofing material, roof members, roof members’ connections to walls) at 

particular wind speeds; and overall damage as the combination of all such failures. By its nature, however, such an 

approach requires much more detailed damage and wind-speed information than is commonly available. 

As a proof-of-concept, the present study develops vulnerability curves pertaining to the high winds of 

Typhoon Maemi in South Korea in 2003, using actual loss data from a local insurance company (Figure 1). Damage 

ratios and damage states are utilized to assess the vulnerability of each insured property at particular recorded wind 

speeds during that catastrophic event. Specifically, damage ratios were established by dividing the insurance-claim 

payout amount by the total value of the insured property. Damage states, meanwhile, were defined according to the 

correspondence between damage-ratio distribution and five wind-speed intervals, i.e., 10.00-14.99 meters per 

second (m/s), 15.00-19.99 m/s, 20.00-24.99 m/s, 25.00-29.99 m/s, and 30 m/s and above. This resulted in the 

identification of four damage states, ranging from 0 to 0.01, i.e., 0-0.00299 (state I); 0.003-0.0059 (state II); 0.006-

0.0099 (state III); and 0.01 (state IV). This data formed the basis of a damage matrix, from which the vulnerability 

curves of each damage state were computed. Then, damage data from Typhoon Maemi in 2003 were utilized to 

show how well each vulnerability curve predicted financial damage ratios. This study’s procedures and findings 
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should be useful references for government, insurance-industry, and construction-industry personnel who need to 

assess the relationships between structural damage to buildings and the intensity of windstorms. 

 

2. Literature review 

2.1 Prior studies involving vulnerability to wind 

The history of wind-damage modeling can be traced back nearly half a century. Friedman [11] proposed a 

model that classified undamaged and damaged buildings, with data on the former being utilized to estimate the 

probability of damage as a function of wind speed, and the latter, the probability of particular damage ratios, again 

as a function of wind speed. Leicester and Reardon [12] developed their model based on observed damage states to 

typical single-family houses when Cyclone Tracy struck Darwin in 1974. Hart [13] proposed an engineering-based 

vulnerability model to estimate the risk of damage to buildings from tornadoes, using experts’ judgments of damage 

states as a function of wind speeds where the damage occurred. And Sparks and Bhindarwala [14] studied the 

existing vulnerability models for typical single-family houses in Florida, in light of an insurance company’s records 

of damage and losses from Hurricane Andrew, and used the results to create a model of economic impacts that could 

be used in disaster mitigation. 

Khanduri and Morrow [5] developed vulnerability models for different types of buildings, using a large 

amount of real-world damage data. However, their modeling was not sufficient by itself to explain the vulnerability 

curves of individual building types. Vickery et al. [15, 16] later proposed a comprehensive vulnerability model, 

which included wind features such as hurricane wind speeds, and wind loads on particular building components, as 

well as engineering judgments. Henderson and Ginger [17] applied Vickery et al.’s [15, 16] model to typical houses 

in northern Australia, and estimated the probability of damage – and of certain damage states being reached – 

according to the various failure levels of such properties as a function of wind speed. Heneka and Ruck [18] focused 

more narrowly on the initial wind speeds that damaged buildings, as a parameter of vulnerability, and assessed the 

statistical features of winds of various speeds. Walker [19], however, argued that developing a universal 

vulnerability model is very difficult due to the lack of damage data on extreme events in some countries, as well as 

sharp international variation in building codes and construction quality. Walker therefore studied how insurance 

companies simulate wind-damage patterns, and found that in practice, the cost of repairing and replacing damaged 

buildings was the most common metric of wind damage. Specifically, a damage pattern was usually represented 

empirically by a plot of the maximum wind speed where damage repair costs were incurred against the damage 

ratios of the buildings in those places. 

Insurance companies tend to recognize the value of catastrophe-loss modeling and use it widely in 

quantifying and allocating risk to specific types of structures within their portfolios. Usually, these companies’ 

vulnerability models, and thus their vulnerability curves, have included information related to damage functions, 

such as each building’s history of prior wind damage and other negative events, as well as its number of floors, 

occupancy class, location, and so forth. Watson and Johnson [20], for example, evaluated the combination of 

windstorm damage, vulnerability, and risk through wind models and damage models from previously published 

literature, and used their results to develop an enhanced type of loss-assessment modeling. 
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The exceedance probability for a given damage ratio is usually expressed as a function of wind speed, and 

different curves indicate different damage states. In other words, vulnerability curves show that the probability of 

exceeding a particular damage state is 0% up to a certain critical wind speed, i.e., the threshold determined by the 

damage ratio. Above that threshold, a property’s probability of exceeding a particular damage state increases until, 

at a certain maximum wind speed (vmaximum; [6]), it reaches an exceedance probability of 100% – meaning that it has 

totally collapsed or is so severely damaged that it must be replaced rather than repaired. Those vulnerability curves 

that take account of wind speed and direction, as well as specific types of construction and the vulnerabilities of 

different infrastructure types, are extremely useful tools for predicting the possibility of reaching or exceeding 

different damage states [21]. Based on the above literature review, it is also clear that studies have hitherto used 

damage ratio, considered as a function of wind speed, as their main dependent variable. Friedman’s [11] above-

mentioned investigation of vulnerability curves for hurricane loss, for instance, involved placing contour maps of 

maximum wind speeds during actual disasters over the properties covered by a specific insurance company; and he 

later adapted this method to estimation of earthquake damage losses. 

To estimate the vulnerability of rural housing, Goyal and Datta [8] considered wind directionality for the 16 

orthants and components of each building, and arrived at failure velocities on a component-by-component basis 

according to where the wind was coming from [8]. Wind direction was revealed to have a significant effect on 

overall annual damage to rural housing, as well as a marked, but non-significant, effect on the scale of that damage. 

Similarly, Rhee and Lombardo [22] used tree-fall patterns during tornadoes, and Rankine vortex simulation of 

fallen-tree patterns, to approximate the near-surface wind fields of tornadoes and construct fragility curves, with the 

wider aim of providing guidelines for tornado-resistant structural design [22]. Event-based wind-risk damage 

assessments have also been proposed for protecting Mexican wind farms’ turbine towers from tropical cyclones, by 

Jaimes et al. [7]. That study calculated average annual loss and probable maximum loss based on time-history 

analysis at various intensities of wind velocities and the turbines’ various heights. The results were represented as a 

fragility function with three modes: i.e., residual displacement, yielding of the tower, and collapse. 

Cui and Caracoglia [23] researched methodologies for assessing the lifetime costs of tall buildings along 

the U.S. Atlantic coastline, utilizing the representative concentration pathways published by the Intergovernmental 

Panel on Climate Change to acquire additional quantitative information. Hurricane simulation was introduced to 

estimate hurricane intensity and frequency at the various representative concentration pathways. The simulated 

tracks of hurricanes coupled with data on existing tall buildings were used to estimate the likely structural 

performance and lifetime damage/costs to such buildings of future hurricane-induced wind hazards. In place of risk 

assessment of independent assets, an interdependent risk-assessment methodology has been developed by Dunn et 

al. [24], based on catastrophe modeling (CAT) modeling not of individual properties, but of system resilience, 

taking account of the geographical distribution of properties in hurricane-prone areas. Specifically, their research 

utilized empirical data on damage to overhead electrical lines caused by high wind speeds and other storm hazards 

to construct and test the spatial resolution of fragility curves based on three distinct methodologies (i.e., high 

resolution, low resolution, and land use). The R2 in Dunn et al.’s statistical analysis indicated that high spatial 

resolution had the greatest effect on the curves. The same study analyzed three major components of wind loading 
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on transmission towers – i.e., transverse wind load, longitudinal wind load, and wind load transferred from the wires 

– as represented by wind speed, wind angle, and horizontal length of the transmission lines. Kriging was then 

applied to identify the relation between the capacity surface of the transmission-line towers and structural 

uncertainty, based on the wind-load parameters. 

Cai et al. [25] adopted Monte-Carlo simulation to estimate the possibility of the failure of towers as a result 

of extreme wind hazards. Suvanto et al. [26] used spatial data from forest mapping to investigate the probability of 

disturbance over a large area and a five-year timeframe, taking account of forest characteristics, return rates of wind 

speeds, soil conditions, and climate conditions. They used three different methods (i.e., boosted regression tress, 

generalized addictive models, and generalized linear models) to create their probability model. That probability 

model, along with three different models generated from damage-probability maps coupled with geographic 

information systems (GIS) data, yielded damage predictors of potential extreme wind hazards. A more reliable 

quantification method for uncertain wind-induced losses during various intensities and frequencies of storms was 

developed by Khajwal and Noshadravan [27], using nonstationary stochastic processed economic-loss modeling. 

Specifically, they used insurance loss data and tested a prediction model for estimating the loss caused by strong 

winds at a regional level. 

Mitsova et al. [28] looked into the effects of hurricanes on power outages in Florida, using multiple 

regression analysis of power-outage data during the period of Hurricane Irma, and identified important differences 

between rural and urban areas in terms of power restoration, power-outage duration, and the relation between power 

outages and socio-economic vulnerability. They also identified Irma’s wind field as one of the critical reasons for 

electric power outages in Florida during that hurricane. Another approach to assessing the structural vulnerability of 

buildings was made by Hatzikyriakou and Lin [29] who, rather than treating each natural hazard independently, 

computed joint natural-hazard return periods. Specifically, they first created synthetic storms crossing Manhattan 

Island, and then separately utilized the Holland gradient wind profile to simulate their wind speeds, and advanced 

circulation to simulate their storm surges. The resulting simulated wind speeds and surges of the synthetic storms 

were then used to arrive at the joint return periods of these two natural disasters, using bivariate copula and 

exceedance thresholds. Lastly, they used generalized Pareto distribution to fit the two natural hazards’ return periods 

at particular target areas. 

 

2.2 Prior studies of typhoon damage in South Korea 

Previous research on damage caused by typhoons in South Korea has mainly focused on those storms’ 

characteristics. For instance, Ku et al. [30] developed a prediction model using storm-induced rainfall data; Park et 

al. [31] and Park et al. [32] utilized data on typhoons’ wind fields and highest wind speeds to predict the area and 

extent of the damage they caused; and Shin et al. [33] estimated property damage based on typhoons’ movement 

speed and direction. 

Kim et al. [34] identified hurricane wind speed, building age, and building floor area as key independent 

variables, and damage ratios as their dependent variable, based on Hurricane Ike-related claim-payout data from the 

Texas Windstorm Insurance Association. Through Spearman correlations, they found that maximum wind speed and 



 6 

building age had a positive relationship with damage ratio, whereas building floor area had a negative relationship 

with it. However, that study was limited by its use of 1) only wind speed, from among the wide range of other 

hurricane characteristics; 2) damage data only from commercial buildings; and 3) only one case, Hurricane Ike. Kim 

et al. [4] studied the same data, but applied more independent variables, including appraised building value, surge 

zone, side of hurricane track, and distance from shore. They found that building value and being on the right-hand 

side of the hurricane track both had positive relationships with damage ratio, whereas for surge zones and distance 

from shore, these relationships were negative. Like Kim et al. [34], however, their study focused solely on 

commercial property damage and Hurricane Ike, and thus was not a sufficient basis from which to generalize 

vulnerability as a function of typhoon wind speeds across the numerous different types of buildings and building 

materials that can be found around the world. 

Another approach to predicting and estimating damage was investigated by Kim et al. [35], who 

categorized typhoons affecting the Korean Peninsula, and then used these categories to estimate property 

vulnerability. Specifically, typhoons that made landfall on the west coast of the peninsula were classed as Type 1, 

and those that struck its southern coast as Type 2. Loss ratio was used as the dependent variable, while the 

independent variables were rainfall, radius, maximum wind speed, forward movement speed, and the number of 

hillside and mountainside areas whose slope-angles had decreased due to urban or agricultural development. The 

authors concluded that the extent of damage caused by Type 1 typhoons was correlated, in descending order, with 

maximum wind speed, decreased slope, and rainfall. The critical damage indicators for Type 2 typhoons, in contrast, 

were – again in descending order – forward movement speed, rainfall, maximum wind speed, and radius. In short, 

differences linked to different landfall locations can have profoundly different impacts on storm-hit communities. 

2.3 The relation of typhoons’ characteristics to the extent of damage they cause 

As the above discussion suggests, the severity of typhoons can be measured in various ways, including 

their maximum wind speed, peak wind duration, wind radius, speed of forward motion, and motion direction [15, 

36, 37]. Several studies have linked the extent of property damage to one or more such characteristics, with some 

researchers having argued that maximum wind speed and maximum wind radius are the most critical factors in this 

regard [15, 36]. Others have posited that forward-motion speed is the most important variable, due to its impact on 

flood volume: with slow-moving typhoons likely to cause more property damage due to heavy flooding than their 

fast-moving counterparts do [38]. According to Choi and Fisher [39], rainfall is another key variable in determining 

the extent of damage; and the characteristics of the built environment, typhoon frequency, and other factors have 

also been proposed as key to effective windstorm-damage assessment [4, 5, 40]. In the present study, 10-minute 

maximum sustained wind speed has been used to construct the vulnerability function, since wind speed has long 

been the most commonly accepted means of classifying typhoons’ and hurricanes’ strength. 

The U.S.’s National Oceanic and Atmospheric Administration coordinates a hurricane-observation system 

that provides its Hurricane Research Division with real-time wind analysis at 4-6 hour intervals during hurricanes. 

The collected wind data includes each storm’s maximum wind speed, its forward movement speed and direction, 

and its winds’ direction and duration [37, 41, 42, 43]. This information, especially when combined with GIS spatial 

data, can be applied effectively to classify hurricanes. 



 7 

Built-environment vulnerability is also regarded as a critical factor in the damage caused by typhoons [4, 5, 

44]. Khanduri and Morrow [5], for example, have suggested that high-rise buildings are likely to incur more damage 

than other structures; and, as noted above, decreases in the slopes of mountains due to urban or agricultural 

development have also been associated with the extent of damage caused by major storms [45, 46, 47, 48]. 

Another important factor in existing methods of assessing damage caused by typhoons is a given property’s 

position in relation to the storm. In the northern hemisphere, the right-hand side of hurricanes generally causes more 

damage than the left-hand side. This is because storms’ counterclockwise direction of rotation multiplies their 

winds’ intensity and speed on that side [49, 50]. 

2.4 Use category, construction typology, and contents 

Vulnerability curves that are appropriate to use in the insurance industry also take account of line of 

business, i.e., groupings of buildings or other properties according to similarities in their uses and property policies. 

Within the field of civil engineering, however, the same term is applied to groupings of buildings according to their 

structure, use, and resale values. Thus, the three most commonly used lines of business within the latter field are 

industrial, commercial, and residential [2]. Most of the prior literature has focused on residential buildings, due to 

the abundance of loss data for them, as compared to the other two. However, the present study will combine all three 

of these lines of business to produce a more robust dataset. 

It is possible to construct empirical vulnerability curves based on historical damage data for specified 

regions, without taking account of construction types, materials, loads, and so on [2]. Nevertheless, masonry walls 

differ from other walls in terms of the levels of damage they are likely sustain at a given wind speed [5, 51]. To 

account for such variation, empirical vulnerability curves can be combined with engineering-based ones that 

incorporate construction typologies such as region-specific and line of business-specific materials, structure types, 

and load types [2]. 

Arguably, it is useful to consider buildings’ interior contents when creating vulnerability curves for them, 

since such contents can be damaged by high winds, and are generally covered by insurance policies. However, 

interior contents’ contributions to total damage costs are very difficult to gauge and analyze; and at low wind speeds, 

such items only tend to be at risk from flood damage, not direct wind damage. Therefore, they have not been 

included in this study’s calculations of damage ratios. 

 

3 Research methods 

In terms of recorded damage, Typhoon Maemi was the costliest in the history of South Korea. As of the 

time of writing, this storm and its two nearest rivals, Kompas and Bolaven, account for 85.7% of the total typhoon 

damage and 66% of the total typhoon casualties in South Korea’s history [2]. Although Maemi impacted the entire 

country, the southern part of the Korean Peninsula was hit especially hard: with the city of Busan alone suffering 

35% of South Korea’s total damage costs, and 29% of its total of losses by number of properties destroyed. The 

main purpose of this research is to develop reliable empirical vulnerability curves for damaged properties, based on 

a Busan-based insurance company’s large, high-quality set of loss data pertaining to Typhoon Maemi. Each curve 
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will be generated based on damage ratios, wind speed, and the above-mentioned damage states, i.e., I = Slight, II = 

Light, III = Moderate, or IV = Major. 

In computation of the damage states for the vulnerability function in the present study, aleatory and 

epistemic uncertainty were both considered to be random uncertainty. Aleatory uncertainty has an inherent random 

nature, and is therefore not reducible. Epistemic uncertainty, on the other hand, arises from lack of sufficient 

knowledge (e.g., building type and structure type), and therefore can be reduced if, for example, new data becomes 

available [52, 53]. Uncertainty has been approached via evidence theory, possibility theory, and fuzzy-set theory. In 

the present study, evidence theory’s monotone measure was applied to the damage data to reduce the uncertainty of 

the vulnerability functions, since that measure can be utilized to quantify uncertainty [54]. The monotone-measured 

damage ratios were assorted sequentially at each damage state with respect to the corresponding wind-speed 

interval. Also, at a given state of damage, the monotone measures were set at 1 or 0, depending on whether or not 

the monotone-measured damage ratio exceeded, or was less than, the wind speed. Epistemic uncertainty was also 

reduced through the use of high-quality damage data (i.e., from an insurer) pertaining to a relatively compact site 

(i.e., Busan). 

Vulnerability functions model the probability of structures exceeding certain limits or states at a given wind 

speed. This approach can produce quantitative and objective determinations of how structural failure occurs. It was 

initially developed and used for earthquake-damage risk assessment, and is still mainly used in the field of seismic 

risk management. Basoz and Kiremidjian [55] developed curves using bridge-damage data from the Northridge 

earthquake in 1994, while Shinozuka et al. [56], Porter et al. [57], and Lin [58] developed curves for the 

vulnerability of structures to seismic loading. Recently, vulnerability curves have been widely used in the insurance 

industry for risk assessment and premium-setting related to natural disasters, including hurricane-induced damage 

[59]. However, the application of such curves to wind hazards has been limited, especially in the case of potential 

damage to infrastructure systems. 

The vulnerability function was pioneered based on study of structures’ components. Holmes [60] proposed 

curves based on the assumption that they could be estimated by the cumulative distribution function of the 

components. Pinelli et al. [61] estimated the repair costs of wind-induced damage using a similar component-based 

approach, as did Ellingwood et al. [59] in the case of wind and earthquake damage. In 2006, Li and Ellingwood [62] 

extended this previous research to low-rise wooden residential buildings, to establish a probabilistic framework for 

component damage in hurricane-prone areas. In the same year, Vickery et al. [16] proposed a damage-prediction 

model that utilized the HAZUS-MH hurricane model, again based on component vulnerability.  

Wind-induced vulnerability functions have been developed by Sparks et al. [14], Huang et al. [40], and 

Khanduri and Morrow [5], and buildings’ wind-induced hazard vulnerability curves have been investigated eagerly 

for more than a quarter of a century. Sparks [14] introduced and developed deterministic vulnerability functions 

based on the typical single-family dwellings that existed when and where Hurricane Andrew occurred. Katz [63] 

later utilized stochastic models, in which extreme storm events served as the extreme-value functions, and the 

Poisson process was utilized to model economic loss. Khanduri and Morrow [5] proposed vulnerability functions for 

a disaggregation of generic curves to different types of buildings; and the impact of the uncertainty of the damage 
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cost of hurricanes was investigated by Wang et al. [64]. CAT has been usefully applied to the quantification of risk, 

including from natural disasters [65], and is especially attractive because it can reduce the uncertainty of damage 

databases and economic losses associated with such hazards [24]. In addition to analytically based and performance-

based vulnerability models, empirically based ones have been introduced recently, based on synthetic wind profiles 

[66]. And, as noted above, fallen-tree analysis has been introduced as an alternative methodology for estimating 

surface wind-field profiles [22]. 

The present study extends these previous efforts to estimate vulnerability to wind hazards by adding 

empirical monetary losses incurred by particular properties, an approach that can reasonably be expected to 

dramatically reduce uncertainty while also increasing objectivity (Figure 2). The data matrix described above was 

utilized for assigning a degree of belief in a binary damage response (1 or 0) to the different damage states 

associated with the selected wind-speed intervals. Based on the collected damage data, lognormal probability 

distribution and maximum likelihood were utilized to generate a vulnerability curve for each of the four damage 

states. 

 
Figure 1. General approach and workflow 

Claim payout (Financial loss) Appraised value of properties Hazard information 

(Maximum wind speed) 

Damage ratio = 
Claim payout

Appraised value of property
 

Damage data matrix: Damage ratio and maximum wind speed 

Data sample determination: Explore damage and wind speed 

distribution for damage states and wind speed intervals 

Classifying damage ratio: Assign damage ratio with associated 
wind speed to damage state 

Vulnerability function: Estimate the curve of four damage states 
and fit log normal distribution to exceedance probability 
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Figure 2. Workflow of vulnerability model 

 

Damage ratio and associated maximum wind speed: 
ሺ𝑟1, 𝑤1ሻ, … , ሺ𝑟𝑛 , 𝑤𝑛ሻ 

Damage ratio threshold:, 
𝑟ҧdamage state I, 𝑟ҧdamage state II, 𝑟ҧdamage state III, 𝑟ҧdamage state IV 

Input variables 

Set 𝑥𝑖 = 1 if 𝑟𝑖 > 𝑟ҧ, and 𝑥𝑖 = 0 if 𝑟𝑖 ≤ 𝑟ҧ, for 𝑖 = 1, … , 𝑛 

Define the likelihood function 𝐿ሺ𝜇, 𝜎|𝑥1, … , 𝑥𝑛; 𝑤1, 𝑤2, … , 𝑤𝑛ሻ 

Find the values of 𝜇MLE and 𝜎MLE that optimize the likelihood L 

via the L-BFGS under the constraint that σ ∈ ቀ0,∞ቁ, for data 

ሺx1, w1ሻ, … , ሺxn, wnሻ 

Plot the vulnerability curve  

F𝜇MLE, 𝜎MLE
ሺ⋅ሻ = Φ ቂ

lnሺ⋅ሻ−ln ሺ𝜇MLEሻ

 𝜎MLE
ቃ, and  

return  𝜇MLE and 𝜎MLE to step the first above. 

𝜇MLE (Mean), 𝜎MLE (Standard deviation) 
 

Output variables 

For each damage threshold 𝒓ത, 
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3.1 Case study of windstorm-induced damage 

3.1.1 Study area 

Busan has a population of 3.5 million people, plus another 4.5 million in its wider metropolitan area, and is 

located in the southeast of the Korean Peninsula. Thanks to this location, its international trade has boomed, and as a 

consequence, it has the largest port in South Korea. The longest and widest river in the country, the Nakdong, also 

passes through it. Due to these geographical characteristics, Busan has been very vulnerable to typhoons and other 

storms, and the importance of accurately predicting the impact of future storms on it has been increasingly 

recognized by government agencies and other stakeholders. In Figure 3, the white line indicates the boundary of 

Busan, and the yellow line, the track of Typhoon Maemi. The damage ratios for each insured property are shown in 

Figure 5, with differently sized circles indicating different extents of damage. 

 
Figure 3. Track of Typhoon Maemi 

 
3.2 Data collection 

In addition to the Typhoon Maemi loss dataset, this study utilizes data on 10-minute sustained maximum 

wind speeds provided by the Korea Meteorological Administration. Critical information such as the address, damage 

losses, and value of each insured property has been extracted from the insurance-company dataset. The original, 

Korean-language data have all been translated into English. GIS has been used to record the longitude and latitude 

of each property, and to construct a map that includes its damage state and wind-speed exposure history. 

 

3.3 Data analysis 

3.3.1 Damage-ratio computation 

A statistical model was developed to construct vulnerability curves for wind-induced damage. As noted 

above, the main purpose of such curves is to indicate the probabilities of particular damage states as functions of 

various wind speeds. 



 12 

A damage ratio for each component was established to facilitate quantitative, objective assessment of the 

damage caused by the focal typhoon. While other researchers [9, 10] have used total construction cost or total 

insured amount of projects, the present study utilizes both the total value of insured each property and the damage-

claim payout amounts arising from Hurricane Maemi to estimate damage ratio for vulnerability curves as a function 

of the wind speed. Such an approach can aid understanding of the extent of the damage, regardless of the amount of 

loss or the size of the building. Here, a damage ratio is defined as the ratio of the financial loss to the total value of 

insured property, as shown in Eq. (1), below: 

 Damage Ratio =
Claim payout 

Total value of insured property 
 (1) 

The damage ratios of properties in Busan affected by Typhoon Maemi ranged from 0 to 0.01, with higher damage 

ratios indicated more damage, greater financial losses, and at least by implication, higher vulnerability to typhoons. 

3.3.2 Spatial distribution of damage 

Wind speed at the location of each property was calculated in ArcGIS (Esri, Redlands, CA) using its 

inverse distance weighted tool. This yielded an enhanced dataset that includes maximum sustained wind speed and 

direction, as well as gridded data, image data, and GIS shape files, all of which are essential information for 

constructing an ArcGIS wind map like Figure 4. More specifically, a wind map of typhoon damage relies on the 

interpolation of wind-speed data pertaining to each damaged property with the maximum 10-minute sustained wind 

speed at each wind-observation station. Different wind speeds and wind directions (wind angles) in Figure 4 are 

indicated by color (with green representing the slowest, and red the fastest) and contour. Each property’s location, 

based on the longitude and latitude provided by the insurance company, and the extent of its damage, are also 

marked on the map in Figure 5. 
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Figure 4. Wind-speed map with spatial distribution of damage 

 
Figure 5. Spatial distribution of damage 

 

4 Data-analysis results 

In all, 126 observations of damage ratios and related maximum wind speeds were made, i.e., 90 of 

residential buildings, and 18 each of commercial and industrial buildings. The present research modeled 

vulnerability curves of the analytical type using the cumulative distribution function of the lognormal distribution, 

and then estimated four distinct vulnerability curves, each with its own damage threshold ranging from damage state 

I to damage state IV. Two different approaches were used for such estimation: the first based on mean square error 

(MSE), and the other on maximum likelihood estimation (MLE). Each approach is described in turn below. 
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4.1 Mean squared error method 

Assume that 𝑛 damage ratios 𝑟1, 𝑟2, … , 𝑟𝑛 are observed, along with their associated maximum wind speeds 

𝑤1, 𝑤2, … , 𝑤𝑛, and that the former are assigned to groups based on the latter. For each such group, the fraction of 

ratios that exceed a given wind-speed threshold is computed, and serves as an observation of the vulnerability curve 

of interest at that point. As well as their maximum wind speeds, all damage ratios are grouped according to the five 

wind-speed intervals described in introduction section, above. Each wind-speed interval contains all four of the 

damage states described in introduction section, above; and for each such damage state within each wind-speed 

interval, a damage ratio is computed. The numbers and percentages of the damage ratios that are equal to or larger 

than each damage state within each wind interval are shown in Table 1 and Figure 6. 

Table 1. Numbers and percentages of damage ratios, by wind-speed interval 

Wind-speed interval (m/s) 

 

 

Frequency of damage ratios 

10.00-

14.99 

m/s 

15.00-

19.99 

m/s 

20.00-

24.99 

m/s 

25.00-

29.99 

m/s 

30.00 

m/s or 

above 

Number of damage ratios (≥damage state I) 8 50 30 35 3 

Number of damage ratios (≥damage state II) 6 34 19 26 3 

Number of damage ratios (≥damage state III) 3 18 12 19 2 

Number of damage ratios (≥damage state IV) 3 13 10 14 2 

Percentage at damage state I (%) 100 100 100 100 100 

Percentage at damage state II (%) 75 68 63 74 100 

Percentage at damage state III (%) 38 36 40 54 67 

Percentage at damage state IV (%) 38 26 33 40 67 

Total number of damage ratios 8 50 30 35 3 
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Figure 6. Number of damage ratios per wind-speed interval 

For example, all damage ratios whose associated wind speed was at least 15 but less than 20 m/s were 

assigned to damage state II. By dividing the number of damage ratios equal to or larger than damage state II in that 

wind-speed interval by its total number of damage ratios, we arrive at a figure of 0.68, indicating that 68% of these 

ratios are above the threshold for damage state II, and therefore, that the probability that damage state II will be 

exceeded within that wind-speed interval is 68%. When calculating the vulnerability curve for damage state II at any 

average maximum wind speed within the same interval, 68% can thus be used as the percentage of damage ratios; 

and the same method can be applied to the curves for damage states I, II, III, and IV. Figure 7 presents plots of the 

exceedance probabilities of each damage state in each wind-speed interval. 

 
Figure 7. Exceedance probability of damage states, by wind speed interval 
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Following the above approach produces 𝑚 realizations 𝑝1, … , 𝑝𝑚 (with 𝑚 < 𝑛) of the vulnerability curve 

for given wind speeds 𝑤̅1, 𝑤̅2, … , 𝑤̅𝑚. These realizations are estimated by finding the lognormal curve that 

minimizes the MSE with respect to 𝑝1, … , 𝑝𝑚. Because each lognormal curve is univocally identified by two 

parameters, 𝜇 and 𝜎, this amounts to finding the values of those parameters that minimize the MSE: i.e., 

 Min ∑(𝐹𝜇,𝜎(𝑤̅𝑗) − 𝑝𝑗)
2

𝑚

𝑗=1

, (2) 

where 𝐹𝜇,𝜎ሺ𝑤𝑗ሻ is the lognormal cumulative distribution function with the following parameters: 

 𝐹𝜇,𝜎(𝑤𝑗) = Φ [
ln(𝑤𝑗) − lnሺ𝜇ሻ

𝜎
] (3) 

  The resulting algorithm, Mean squared error estimation of vulnerability curves, is described in more detail 

below. 

(1) Input: Data ሺ𝑟1, 𝑤1ሻ, … , ሺ𝑟𝑛 , 𝑤𝑛ሻ 

Damage thresholds: 𝑟ҧdamage state I, 𝑟ҧdamage state II, 𝑟ҧdamage state III, 𝑟ҧdamage state IV 

Representative wind speed per group: 𝑤̅1, 𝑤̅2, … , 𝑤̅𝑚 (midpoint values) 

(2) Output: 𝜇MSE, 𝜎MSE 

(3) For each damage threshold 𝑟ҧ, do the following: 

1) Assign each damage ratio 𝑥𝑖 to a group based on its wind speed 𝑤𝑖  

2) For each group 𝑗, compute the fraction 𝑝𝑗 of damage ratios that are above 𝑟ҧ 

3) Find the values of 𝜇MSE and 𝜎MSE that minimize the MSE of the vulnerability curve F
μ,σ

ሺ⋅ሻ from p1, … , pm 

and at the representative wind speed values 𝑤̅1, 𝑤̅2, … , 𝑤̅𝑚 

4) Plot the vulnerability curve F𝜇MSE, 𝜎MSE
(𝑤𝑗) = Φ [

ln(𝑤𝑗)−ln ሺ𝜇MSEሻ

 𝜎MSE
], and return  𝜇MSE and 𝜎MSE to step 1) 

above. 

However, as shown in Figure 8, below, calculating vulnerability curves using the MSE method has 

limitations when it comes to explaining the correlations between those curves, for two reasons. First, the curves 

overlap at low wind speeds. And second, they do not show the exceedance probability for damage state I: instead, 

increasing continuously as shown in Figure 9, implying that some properties might not collapse even in a wind of 

200 m/s: nearly double the highest speed ever recorded on Earth. 
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Figure 8. Vulnerability curves simulated by mean squared error, wind speeds of 0-50 m/s 

 

 
Figure 9. Vulnerability curves simulated by mean squared error, wind speeds of 0-200 m/s 

 

4.2 Maximum likelihood estimation method 

Given a family of distributions indexed by certain parameters, MLE can be used to select the parameter 

values under which certain data are most likely to be observed. Here, the same damage states used in MSE are used 

in MLE. A median of each damage-level interval is selected as the threshold: i.e., 0.0015 for damage state I (0-

0.00299), 0.0045 for damage state II (0.003-0.00599), and 0.08 for damage state III (0.006-0.0099); while 0.01 is 
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used for damage state IV (as variations in its numerical value are not associated with any real-world damage 

differences). For the purposes of this study, MLE involves choosing the parameters that define the lognormal shape 

of the vulnerability curve by maximizing the likelihood function for the given data. To do that, a probability model 

for the data-generation process is specified. This model assumes that, for each incident of damage, 𝑛 boolean 

outcomes 𝑥1, … , 𝑥𝑛 are observed; and such outcomes indicate whether the damage is at least moderate or not. Hence, 

 𝑥𝑖 =  {
1, 𝑖-th damage is at least moderate;

0, otherwise.
 (4) 

Assuming that the maximum wind speed (𝑤1, 𝑤2, … , 𝑤𝑛ሻ associated with each damage state can also be 

observed, then – following Shinozuka et al. [56] – the likelihood function can be built as 

 𝐿ሺ𝜇, 𝜎|𝑥1, … , 𝑥𝑛;  𝑤1, 𝑤2, … , 𝑤𝑛ሻ =  ∏[𝐹𝜇,𝜎ሺ𝑤𝑖ሻ]
𝑥𝑖 ⋅ [1 − 𝐹𝜇,𝜎ሺ𝑤𝑖ሻ]

1−𝑥𝑖  

𝑛

𝑖=1

 (5) 

where 𝐹𝜇,𝜎ሺ⋅ሻ is the vulnerability curve under the lognormal assumption, as previously defined. 

The present study estimates each vulnerability curve by finding the values of the lognormal parameters 

𝜇MLE and 𝜎MLE that maximize the likelihood function given above for data ሺ𝑥1, 𝑤1ሻ, … , ሺ𝑥𝑛, 𝑤𝑛ሻ. For example, this 

could be achieved by numerically solving the resulting first-order conditions: 

 
𝑑

𝑑𝜇
𝐿ሺ𝜇, 𝜎|𝑥1, … , 𝑥𝑛;  𝑤1, 𝑤2, … , 𝑤𝑛ሻ =

𝑑

𝑑𝜎
𝐿ሺ𝜇, 𝜎|𝑥1, … , 𝑥𝑛;  𝑤1, 𝑤2, … , 𝑤𝑛ሻ =  0. (6) 

In practice, this study directly optimizes likelihood via the limited-memory Broyden-Fletcher-Goldfarb-

Shanno algorithm (L-BFGS) in R (R Foundation for Statistical Computing, Vienna, Austria). As with the MSE 

approach, this process is repeated for each level of damage, yielding four different vulnerability curves. Using 

observed damage ratios 𝑟1, 𝑟2, … , 𝑟𝑛 together with observed wind speeds 𝑤1, 𝑤2, … , 𝑤𝑛, Shinozuka et al.’s [56] 

algorithm Maximum likelihood estimation of vulnerability curves implements this method. 

The present research is believed to be the first to use simulated data to test the validity of an 

implementation of Shinozuka et al.’s [56] MLE method for vulnerability curves. To generate this synthetic data, 

wind speeds were simulated first, as 𝑤̃𝑖 = 13 m/s + 0.1 ∗ 𝑖 for 𝑖 = 0, … , 30, so as to obtain speeds that were 

equally spaced at plausible intervals (e.g., 13 m/s, 16 m/s). Next, the damage associated with each such wind speed 

was generated using the simple linear model 𝐷̃𝑖 =  𝑤̃𝑖 + 𝜀𝑖, where 𝜀𝑖 is an error that follows a standard normal 

distribution. Hence, for each 𝑖, a random-draw 𝜀𝑖 was sampled from a standard normal distribution and then added to 

𝑤̃𝑖 to compute damage 𝐷̃𝑖. Finally, the simulated damage ratios were computed by standardizing the simulated 

damage, by 1) computing the standard deviation 𝜎𝑜𝑏𝑠 of the observed (i.e., non-simulated) damage ratios, and 

finding the smallest observed damage ratio 𝐷𝑅𝑚𝑖𝑛; 2) computing the standard deviation 𝜎𝑠𝑖𝑚 of the simulated 

damage ratios 𝐷̃0, … , 𝐷̃30 and finding the smallest simulated damage ratio 𝐷̃𝑚𝑖𝑛; and 3) for each 𝑖, generating the 𝑖-

th simulated damage ratio 𝐷𝑅̃𝑖 as: 

 𝐷𝑅̃𝑖 =
𝜎𝑜𝑏𝑠

𝜎𝑠𝑖𝑚

⋅ (𝐷̃𝑖  −  𝐷̃𝑚𝑖𝑛) + 𝐷𝑅𝑚𝑖𝑛 . (7) 

The normalization in the last step of the procedure above ensures that the simulated damage ratios preserve 

the observed variance of the real ones, i.e., from 0 to 1. After data simulation as described above, the simulated damage 

ratios were classified into four damage states, based on the following thresholds: below 0.005 for state I, between 



 19 

0.005 and 0.01499 for state II, between 0.015 and 0.02499 for state III, and between 0.025 and 0.035 for state IV. For 

each damage state, Shinozuka et al.’s [56] MLE approach was then used to fit a lognormal vulnerability curve to the 

data, ሺ𝑤̃𝑖 , 𝐷𝑅𝑖ሻ𝑖≥1. The resulting vulnerability curves captured the simulated data as desired, and are plotted in Figure 

10. 

Finally, this study ran the same fit using real wind speeds 𝑤𝑖 , and based on the results, set more suitable 

thresholds for the damage ratios. The curves that were fit on the fully empirical data are plotted in Figures 11 through 

14. 

 
Figure 10. Vulnerability curves simulated according to Shinozuka et al.’s [56] method 

 
The vulnerability curves based on the 2003 Typhoon Maemi data were computed following the likelihood 

function proposed by Shinzuka et al. [56], i.e., 

 𝐿 =  ∏[𝐹ሺ𝑎𝑖ሻ]𝑥𝑖[1 − 𝐹ሺ𝑎𝑖ሻ]1−𝑥𝑖

𝑁

𝑖=1

 (8) 

where 𝐹ሺ∙ሻ represents the vulnerability curve for a given level of damage; 𝑎𝑖 is the wind-speed value, within which 𝑖 

represents the number of damage ratios; 𝑥𝑖 = 1 or 0, depending on whether the damage ratio reaches/exceeds (1) or 

fails to reach (0) the level of damage under 𝑎𝑖; and N = the total number of damage ratios. Under the prevailing 

lognormal assumption, 𝐹ሺ𝑎ሻ takes the analytical form 

 𝐹ሺ𝑎ሻ = Φ [
ln ቀ

𝑎
𝑐

ቁ

𝜁
] (9) 

in which 𝑎 represents the wind speed and Φ[∙] is the standardized normal distribution function. The two parameters 

𝑐 and 𝜁 in Eq. (9) are computed as 𝑐𝑒 and 𝜁𝑒 , satisfying the following equation to maximize ln 𝐿, and hence 𝐿: 
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𝑑 ln  𝐿

𝑑𝑐
=  

𝑑 ln 𝐿

𝑑𝜁
= 0 (10) 

 

5 Discussion 

As mentioned earlier, vulnerability curves provide the probabilities of a particular property reaching or 

exceeding specific damage states, as a function of wind speed, and taking account of 1) damage-level definitions; 2) 

the value of the insured property; 3) any payout claim pertaining to that property; and 4) Typhoon Maemi wind 

speeds at all property locations. The vulnerability curves computed as part of this study show that the probability of 

each damage state rests at 0, but once the threshold of a particular damage ratio is met, exceedance probability as a 

function of wind speed moves asymptotically toward a probability of 100%. The vulnerability curves plotted in 

Figures 11 through 14, below, show the exceedance probability of four different damage states as a function of wind 

speed (up to 200 m/s). 

            

           
         Figure 11. Vulnerability curve, damage state I                      Figure 12. Vulnerability curve, damage state II 

                                    

           
         Figure 13. Vulnerability curve, damage state III                    Figure 14. Vulnerability curve, damage state IV 

 

Figure 15, below, illustrates the vulnerability curves for damage states I through IV side by side. The curve 

for damage state I indicates the probability of a property suffering at least damage state I at each wind speed 𝑎𝑖. 
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Each dot plotted at the top of the horizontal axis means 𝑥𝑖 = 1, i.e., that such a level of damage will be reached or 

exceeded under 𝑎𝑖; while each dot plotted at the bottom means 𝑥𝑖 = 0, i.e., that it will not be reached under 𝑎𝑖. 

 
Figure 15. Vulnerability curves, damage states I through IV 

 

6 Conclusion 

To effectively plan for extreme weather events, governments and the insurance industry need accurate 

estimates of infrastructure’s vulnerability to storms. This study has used wind speed-induced damage data provided 

by an insurance company in South Korea, in combination with empirical meteorological data, to develop 

vulnerability curves. Those curves’ exceedance probabilities were shown to be capable of predicting the damage 

states to properties in Busan caused by various wind speeds during Typhoon Maemi. This approach represents a 

considerable advance over prior ones that primarily used damage judgments by experts, which are innately subject 

to considerable bias [24, 25]. To overcome that drawback, some previous research on windstorm-induced damage 

focused on variables related to other storm features such as wind direction and surface wind profiles [22]; 

environmental factors such as fallen trees [26]; and hypothetical data such as the paths of synthetic typhoons [23]. 

The present study’s novel framework for vulnerability functions took account of the non-specificity of 126 

cases of financial-loss data pertaining to Typhoon Maemi damage using statistical vulnerability modeling. 

Specifically, the financial-loss data was utilized in the form of ratios, which allowed for estimation of the extent of 

damage to a given property regardless of its size or value [9]. A binomial method for generating the vulnerabilities 

from the damage data was applied, and wind-speed data was classified into four different damage states based on 

damage-state evidence. In its first part, the present study investigated the exceedance probability of damage using an 

approach based on MSE, but found that the vulnerability curves for damage ratios continued increasing beyond wind 

speeds of 200 m/s, indicating that the methodology was not appropriate to estimating wind-induced damage. In its 
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second part, the vulnerability functions were expressed in the form of two parameters (i.e., log-standard deviation 

and median), using an MLE method that has been widely used to estimate seismic impacts on buildings. For this 

purpose, wind speed was used in place of peak ground acceleration to represent the associated damage ratio. Based 

on the occurrence of damage states within each wind-speed interval, the binomial of damage was assigned to the sets 

of damage states. The identified exceedance probabilities show that the possibility of damage states at a given wind 

speed differed very considerably from one building to another; and that wind speed had an important effect on wind-

induced damage, supporting previous studies’ findings [15, 16, 20, 36]. The vulnerability curves presented in the 

current study also show clearly that the extent of loss increases as maximum wind speeds increase. 

Extreme winds cause major property losses all over the world. The empirical vulnerability curves 

calculated as part of this study have shown that, even if the line of business of damaged buildings is not considered, 

claim-payout and total insured value data for each property are sufficient to the calculation of damage ratios. As 

discussed in previous sections, the damage ratios from Typhoon Maemi can be separated into four damage states, 

each closely associated with a particular wind speed, as computed using MLE. The vulnerability curves can also 

explain exceedance probabilities at various wind speeds and various damage ratios. From the foregoing comparison 

of two estimation models, MSE and MLE, it can be concluded that lognormal distribution-based MLE was the more 

appropriate of the two, as indeed was previously shown in the case of earthquake-damage prediction [57, 58]. 

Though some calibration may be required, the present study’s well-defined, efficient and simple probabilistic model 

for the estimation of natural hazard-induced financial loss can be used as a broad frameworks for risk-assessment 

decision-making, not only in Korea but in other regions with similar sizes of properties and similar wind-speed 

intensities. Most of the typhoon-related research in South Korea has focused on linking sizes and types of damage to 

specific typhoon characteristics [30, 31, 32], which places the present research in a class of its own. It is hoped that 

its promising new approach will be followed up by other researchers. 

The findings of the present research also represent an opportunity for reconsideration of wind hazard-

induced financial loss on the part of governments, the construction industry, and the insurance industry, who could 

use its analyzed results and applied methodology to mitigate financial losses from unexpected extreme events. 

Specifically, insurance companies can use the developed vulnerability model to inform their risk weight models of 

chosen areas, allocating wind hazard-prone areas, setting appropriate premiums, and estimating potential losses to 

insured properties. Construction companies can assess possible wind-storm risks to their construction costs and 

schedules; and governments can refer to the simplified quantitative vulnerability curves developed in the present 

study to optimize their disaster planning on a national scale. 

Nevertheless, some limitations of this research should be acknowledged. First, it focused on the impact of a 

single typhoon on a single metropolitan area, and its approach therefore may not be able to accurately account for 

damage from other typhoons, from other types of storms, or in other parts of the world. Therefore, more case studies 

are needed – as are curves that incorporate construction-typology and building-use data (i.e., residential, commercial 

or industrial) into their damage ratios. If each building-use category has its own damage ratio, that ratio can have its 

own curves tailored to the vulnerability of each of the construction types prevailing in that category; and comparing 

vulnerability models across similar construction types may yield important insights. However, a thorough analysis 
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of construction typology would require larger amounts of data than are typically available to researchers. Future 

research should also consider various additional aspects of wind profiles, including wind direction, as independent 

variables in the estimation of wind-induced damage. The historical paths of severe typhoons, and/or synthetic 

typhoons’ tracks, could also be important indicators typhoons’ and other wind hazards’ intensities. Due 

consideration of such additional damage indicators could well improve the overall accuracy of models of this kind. 

Also, a combination of analytical, empirical, and hybrid approaches could mitigate the drawbacks of using any one 

of them by itself. Lastly, the proposed approach could be usefully combined with tidal-gauge data to estimate the 

return periods of the damaging storm surges often associated with extreme wind storms, as doing so would further 

increase the accuracy of natural disaster-related damage estimation, and even potentially help prevent property 

damage and loss of life. 
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