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Abstract 

Today’s buildings are not only energy intensive, but also information intensive. Massive amounts of operational 
data are available for knowledge discovery. Data mining (DM) has excellent ability in extracting insights from 
massive data. This paper performs a case study on the assessment of building operational performance using DM 
techniques. Typical DM techniques are compared and considerations for choosing specific DM techniques for the 
case study are presented. The methodology developed has been applied to analyze the data retrieved from a 
university building in Hong Kong. Useful insights have been obtained to identify typical operation patterns and 
energy conservation opportunities. 
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1. Introduction 

Buildings have become one of the largest energy consumers around the world. The energy saving potential in 
building operations is huge due to the widespread occurrence of equipment degradation, faults in system 
components, and deficiencies in control strategies in buildings. Advanced technologies, such as the building 
automation system (BAS), have been integrated with modern buildings to facilitate the real-time monitoring and 
controls over building operations. Massive amounts of building operational data are collected and stored in BAS, 
from which valuable insights can be extracted to enhance the building operational performance. Nevertheless, 
building data are far from being fully utilized, mainly due to the lack of methods and tools for handling those big 
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data. Conventional methods for using the building data, which primarily rely on physical principles, statistics and 
engineering expertise, are neither efficient nor effective in discovering potentially useful yet previously unknown 
knowledge from massive BAS data sets. Advanced methodologies and tools are urgently needed in the building field 
to tackle the big data challenge. 

Data mining (DM) technology is a promising solution and renowned for its excellent ability in extracting useful 
insights from massive data sets. It has been widely used in various industries, including the financial services, retails, 
health care, and even counter-terrorism [1, 2]. In general, DM techniques can be classified into two groups, i.e., 
supervised and unsupervised learning. Supervised learning techniques aims to perform regression or classification 
based on the relationships discovered between input and output variables. The knowledge discovered is usually 
represented using various models. Supervised learning techniques have been widely applied for energy consumption 
prediction [3-6] and fault detection and diagnosis [7-10] in the building field. One intrinsic limitation of supervised 
learning is that it needs reliable training data, which are very hard to obtain in building operations, particularly data 
under fault conditions. By contrast, unsupervised learning doesn’t have such a need and it focuses on discovering the 
intrinsic structures, correlations and associations in the data. Moreover, it requires less domain expertise which 
makes it more preferable in real applications to discover new knowledge. The knowledge obtained using 
unsupervised DM techniques is usually in the form of data clusters, association rules, or anomalies.   

This paper performs a case study on extracting useful knowledge from massive building operational data using 
DM techniques and their potential applications in building energy management. The methodology is derived from 
the generic data analytic framework, which was proposed in our previous study [11]. The main DM techniques 
adopted are decision trees and association rule mining. The methodology has been applied to analyze the data 
retrieved from one building in the Hong Kong Polytechnic University. The results show that useful insights can be 
obtained for enhancing building energy efficiency.  

2. Research Methodology 

2.1. Research outline 

The knowledge gap between building professionals and advanced analytics motivated us to develop a generic 
DM-based analytic framework for analyzing big building operational data. Based on extensive investigation of 
popular DM techniques and deep understanding of building operations, a framework has been proposed in our 
previous paper [11]. The framework contains 4 phases, i.e., data exploration, data partitioning, knowledge discovery 
and post-mining. The data exploration phase mainly aims to enhance the data quality and prepares the data into 
suitable formats for the following data analysis. The data partitioning phase intends to improve the reliability and 
sensitivity of the knowledge discovered by dividing the building operational data into several groups according to 
the characteristics of building operations. Various DM techniques can be adopted to extract knowledge at the 
knowledge discovery phase. Domain expertise is involved in the post-mining phase to interpret, select and apply 
potentially useful knowledge. 

The methodology adopted in this paper is derived from the framework. The clustering analysis method and the 
decision tree method are compared and the latter is chosen for data partitioning. The quantitative association rule 
mining is applied for knowledge discovery. The details are introduced in the following sub-sections. 

2.2. Data partitioning  

Building operations are highly complicated due to the constantly changing indoor and outdoor conditions. It is 
therefore not wise to treat the building operational data as a whole for data analysis, as it will negatively affect the 
reliability and sensitivity of knowledge discovered. Typical building operational data are stored in a two-
dimensional data table, in which each column represents a variable and each row stores the values of different 
variables sampled at the same instant of time. Data partitioning refers to the process of dividing the entire data table 
into several subsets, each containing a number of rows. 

Two types of methods are suitable for partitioning building operational data. The first is to treat each row as an 
observation and then grouping observations based on their similarities which can be evaluated by Euclidean distance 
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or Cosine distance. The clustering analysis is the effective method to perform this task. It divides the data into 
several clusters with the aim of minimizing the between-cluster similarities and maximizing the within-cluster 
similarities. The variables in building operational data are usually of different scales, e.g., the power consumption of 
a chiller may range from 0~1000 kW while the supplied chilled water temperature may range from 5 ~ 100C. 
Therefore, one essential for this method is to normalize the data before calculating their similarities. It is worth 
mentioning that due to the curse of dimensionality, the similarity measures may become meaningless when the 
variable number is large [12]. Therefore, users may have to select a subset of variables as inputs for clustering 
analysis when the variable number is large. This subset should be able to reflect the changes in building operations. 
The main drawback of this method is that the result is more like a black-box model. The results lack interpretability, 
as the only output is the clustering membership of each observation. Further data exploration has to be carried out if 
users want to know the data characteristics in each cluster. 

The other method is to partition the massive data sets according to one typical variable which can represent the 
building operation characteristics and is also a major concern, e.g., the building power consumption. The decision 
tree method can fulfill this task and the results obtained are highly interpretable. An example of decision tree model 
is shown in Fig. 1. The model depicts the relationship between building cooling load, outdoor temperature and 
indoor occupancy ratio. Nodes 3 to 5 are called terminal nodes, which present the prediction result of cooling load 
under different scenarios. For instance, Node 3 indicates that the building cooling load is Low if the outdoor 
temperature is no more than 24oC and the indoor occupancy ratio is no more than 0.5. The decision tree model is 
highly interpretable and it offers clues on how to partition the data. In this study, the decision method is applied for 
the data partitioning task.   

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1. An example decision tree model 
 

2.3. Knowledge discovery methods 

Investigating the relationships between different variables is the main approach for knowledge discovery. 
Association rule mining is popular method to mine associations. An association rule A→ B  states that if A 
happens, then B happens, where A is the antecedent and B is the consequence. Two thresholds are required to 
perform the association rule mining, i.e., support and confidence. The support of A→ B  is the joint probability of 
A and B while the confidence of A→ B  is the conditional probability of B given A. The number of association 
rules obtained decreases with the increase in the support and confidence thresholds. One drawback of association 
rule mining is that the number of association rules obtained is too large which results in heavy load in manual 
inspection of useful rules. In such a case, users may use some statistics to measure the rule interestingness. For 
instance, the lift value is defined as the ratio between the rule confidence and the support of the consequence [2]. If 
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the lift value is larger than 1, it indicates the presence of consequence is positively affected by the presence of 
antecedence and vice versa. A lift value of 1 indicates that the antecedent and consequent are independent from each 
other and therefore, the rule is of little value. 

In general, association rule mining algorithms only works with categorical variables. The majority of building 
operational data is numeric and therefore, discretization becomes necessary. Data discretization for building 
operational data is a challenging problem, as variables usually have their own behavior and the optimal 
discretization levels are hard to define without prior knowledge. For instance, the power consumption data of a two-
level speed fan exhibits a typical bimodal distribution. It is evident that they can be discretized into three categories 
indicating the operating conditions of Idle, Low and High. By contrast, the flow rates of a variable speed pump may 
have a more uniform distribution, and it is difficult to define the number of categories and the breakpoints. Such 
discretization usually leads to information loss and  may severely downgrades the mining performance.   

To avoid the drawbacks of discretization, some algorithms, so called quantitative association rule mining, have 
been proposed so that the association rule mining can be performed on both numeric and categorical variables. . 
This study adopts the QuantMiner [13] as the mining algorithm. If the variable is numeric, then an interval is 
automatically identified considering the rule gain and the coverage of the interval identified. The identified interval 
is then used to create categorical values. The rule gain is calculated using Eq. 1, where MinConf refers to the 
minimal confidence threshold. Genetic algorithm is applied to identify the interval by maximizing a fitness function, 
as shown in Eq. 2, where Anum is the number of numeric variables in the rule; IAi is the interval of Ai; size(Ai) is the 
range of Ai; size(IAi) is the length of the identified interval. The algorithm prefers to select rules with large gains and 
small intervals.  

 
        Gain(A→ B) = Support(A,B)−MinConf × Support(A)                                                             (1) 
 

        Fitness(A→ B) =Gain(A→ B)× 1−
size(IAi )

size(Ai )

⎡

⎣
⎢

⎤

⎦
⎥

2

Ai∈Anum

                                                               (2)  

3. Case study 

3.1. Description of building, systems and building operational data 

The Phase 5 building located in the campus of the Hong Kong Polytechnic University is selected for case study. 
It mainly consists of offices, classrooms and a computer data center. The gross floor area is approximately 
11,000m2, of which about 8,500m2 are air-conditioned spaces.  

The data collected for Phase 5 come from two sources. One set comes from the power meter, which measures the 
total building electricity consumption at the interval of 30-minute. The other set comes from the Building 
Automation System (BAS), which monitors the performance of the chiller plant of Heating, Ventilation and Air-
Conditioning (HVAC) system at the interval of 1-minute. The chiller plant contains 2 water-cooled chillers (denoted 
as CH-1 and CH-2) and 2 cooling towers (denoted as CT-1 and CT-2). Chillers are connected in parallel and the 
chilled water is distributed using 3 variable speed driver (VSD) pumps (denoted as PCHWP-1 to 3). The condenser 
water is circulated between chillers and 2 cooling towers using 3 VSD pumps (denoted as CDWP-1 to 3). The 
design specifications of main chiller plant components are summarized in Table 1.  

One-year data retrieved from the BAS (from January 2014 to January 2015) are used for analysis. The data have 
52 variables, including the building electricity consumption and measurements of the water-side HVAC system, 
e.g., temperature, flow rate and pressure. 
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                                            Table 1. Specification of the chiller plant 
Components Number Remarks Power (kW) 
CH-1/CH-2 2 Cooling capacity: 1050 kW 338.3 
PCHWP-1~3 3 VSD, Flow: 50.4 l/s 26.7 
CDWP-1~3 3 VSD, Flow: 62.8 l/s 18.5 
CT-1/2 2 VSD 11 

 

3.2. Identifying typical building operation patterns  

Building power consumption, which is sensitive to the outdoor and indoor conditions, is a typical variable related 
to the building operations. It can be used as an indicator of different building operation patterns. As introduced in 
section 2.2, the decision tree method is adopted in data partitioning. In this study, the building power consumption is 
considered as the output variable and the time variables, such as the Year, Month, Day, Hour, Minute and Day type 
as the input variables. The indoor variables, such as the occupant number, are not used as inputs because, firstly, 
those data are not available due to the lack of measurement instruments; secondly, they are not necessary 
considering that the time and day type determines how people use the spaces.   

A decision tree model is constructed using the electricity consumption data in the whole year, which is shown in 
Fig. 2. The model selects the Month, Hour and Day type as the splitting variable. Starting from Node 1, the model 
first picks the Hour as the splitting variable and the splitting criterion is {0, 1, 2, 3, 4, 5, 6, 7, 22, 23} and {8 to 21}. 
The result matches our domain knowledge as it corresponds to the non-peak and peak hours. The lectures normally 
start at 8:30am and end at 9:30pm. Node 2 divided the data based on the Month, one is {1, 2, 3, 12} and the other is 
{4, 5, 6, 7, 8, 9, 10, 11}. The first set corresponds to the cool and less humid seasons while the second refers to the 
hot and more humid seasons in Hong Kong. Node 4 selects the Day type and the partitioning is basically made based 
on weekdays and weekends.  

The decision model constructed provides evident clues on data partitioning. Rather than dividing the whole data 
into 4 data groups according to the terminal nodes, the splitting criteria generated at Nodes 1, 2 and 5 are used. As a 
result, the entire data sets are partitioned into 8 groups, as shown in Table 2. Fig. 3 presents the boxplots of building 
electricity consumption in each partition. It is apparent that the building power consumption in each group presents 
different distribution, especially when it belongs to the peak hours. The power consumptions during non-peak hours 
on weekdays and weekends in the same cool or hot season are generally the same, e.g. Group 1 and Group 3, Group 
5 and Group 7 as shown in Fig. 1. It is worth mentioning that the data in Group 4, 5 and 7 are quite similar, which 
states that the power consumption during peak hours on weekends in cool seasons is similar to that during non-peak 
hours in hot seasons. Conventional approach may easily classify those observations into one group. The decision 
tree method performs better in this case which can improve the sensitivity and reliability of the knowledge 
discovered. 

 
                                         Table 2. Data partition details 

Partitions Month Day type Hour 
1 {1,2,3,12} {Monday to Friday} {0,1,2,3,4,5,6,7,22,23} 
2 {1,2,3,12} {Monday to Friday} {8 to 21} 
3 {1,2,3,12} {Saturday, Sunday} {0,1,2,3,4,5,6,7,22,23} 
4 {1,2,3,12} {Saturday, Sunday} {8 to 21} 
5 {4 to 11} {Monday to Friday} {0,1,2,3,4,5,6,7,22,23} 
6 {4 to 11} {Monday to Friday} {8 to 21} 
7 {4 to 11} {Saturday, Sunday} {0,1,2,3,4,5,6,7,22,23} 
8 {4 to 11} {Saturday, Sunday} {8 to 21} 
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Fig. 2. Decision tree model for building electricity consumption 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Boxplots of building electricity consumption in each partition 

3.3. Discovering associations in building operational data 

As introduced in section 2.3, the QuantMiner algorithm is adopted to discover the associations in each group of 
data separately. For the convenience of interpreting the rules obtained, both sides of the rule, i.e. the antecedent and 
the consequence, are constrained to have one variable only. The parameters for the genetic algorithm are set as 
follows: 250 as the population size, 100 as iteration number, 50% as crossover rate and 40% as mutation rate. These 
parameters are set according to the suggestions of [13]. The support and confidence thresholds are set as 15% and 
90% respectively. In general, the confidence threshold should be set no less than 0.8 to ensure the quality of 
association rules. The support values can be set according to the user’s actual need. A small support threshold helps 
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to discover less frequent associations. It can be used to discover atypical associations in building operations. 
However, a smaller support threshold may lead to a dramatic increase in the association rules obtained, which makes 
the post-mining phase more time-consuming.  

Taking the weekdays in hot seasons (i.e., Group 5 and 6) as examples, 199 and 161 quantitative association rules 
are obtained respectively. The majority of the rules obtained are in accordance with domain expertise and Table 3 
presents 3 example rules. The first rule states that if the number of running chillers is 0, then the total condenser 
water flow will range from 0.0 to 1.0 l/s. The rule confidence is quite high but not 100%. This is because the water 
flow sensor may have recorded some values slightly smaller than 0 or larger than 1 due to the measurement 
precision problem or the data transmission problem. The latter two rules specifying the idle condition of CT-2 and 
CH-2 also agree with domain expertise. It should be mentioned that such rules can be used as a knowledge database, 
which can be further applied to detect anomalies in new observations. Meanwhile, some rules are not in accordance 
with expectation. These rules can help to identify the energy conservation opportunities in building operations. The 
details are discussed in the following section. 

 
Table 3. Example quantitative association rules considering data Group 5 and 6 

No. Antecedent Consequent Support (%) Confidence (%) Lift Data partition 
1 CH_No = 0  CDW_Flow in [0.0, 1.0] 87.9 98.8 1.21 5 
2 CT2_Status = Off CT2_MotorSpeed in [0.0, 0.6] 89.6 100 1.12 5 
3 CH2_status = Off CH2_CHW_Flow in [-0.1, 0.3] 73.4 99.5 1.36 6 

4. Applications  

4.1. Chilled water and condensing water distribution system 

Two examples rules presented in Table 4 indicate that when one chiller is switched on, its chilled water and 
condensing water flow rates become nearly constant. By checking the actual motor speed of PCHWP and CDWP, it 
is found out that the motor frequency was maintained at 40Hz during operation, which means the variable speed 
pumps don’t operate at variable speed. The insights obtained helps to spot the energy conservations in actual 
operations, as control strategy should be developed to optimize the pressure set-point for pump speed control 
according to the actual cooling load and weather conditions. 

 
Table 4. Associations in chilled water and condensing water flow rates 
No. Antecedent Consequent Support (%) Confidence (%) Lift Data Group 
1 CH1_Status = On CH1_CHW_Flow in [47.1, 51.3]  60.1 99.5 1.65 6 
2 CH2_Status = On CH2_CDW_Flow in [46.8, 51.9]  26.1 99.7 3.80 6 
 

4.2. Chiller control strategy 

The rules in Table 5 depict the supplied chilled water temperature when one chiller is switched on. The intervals 
identified for the chilled water supply temperature are quite narrow. By checking with the building operation staff, it 
turns out that the set-point was set fixed as 7oC. Considering that the chilled water supply temperature has a huge 
impact on the chiller power consumption [14], it is suggested to develop a temperature reset scheme to regulate the 
chilled water supply temperature.  

 
Table 5. Associations in chiller operation 
No. Antecedent Consequent Support (%) Confidence (%) Lift Data group 
1 CH1_Status = On CH1_CHW_ST in [6.8, 7.3] 60.0 99.4 1.66 6 
2 CH2_Status = On CH2_CHW_ST in [6.8, 7.8]  26.0 99.2 3.81 6 

 



 Cheng Fan and Fu Xiao  /  Energy Procedia   111  ( 2017 )  1070 – 1078 1077

4.3. Cooling tower control strategy 

The rules in Table 6 indicate that the cooling tower fan speed was maintained at around 35Hz during operations. 
In this case, an optimal condenser inlet water temperature set-point reset scheme should be developed. It should be 
able to provide fan speed set-points according to the ambient and working conditions to minimize the overall energy 
use of chillers and cooling tower fans. 

 
Table 6. Associations in cooling tower operation 

No. Antecedent Consequent Support (%) Confidence (%) Lift Data partition 
1 CT1_Status = On CT1_MotorFrequency in [35.0, 35.6] 84.7 99.5 1.17 6 
2 CT2_Status = On CT2_MotorFrequency in [35.2, 35.7]  82.5 99.6 3.21 6 

 

5. Conclusion 

This paper presents a case study on the effective utilization of massive building operational data through DM 
techniques. The methodology is derived from the generic framework proposed in our previous work. It contains 
three main phases, i.e., data partitioning, knowledge discovery and post-mining. Decision tree method is applied to 
provide clues on data partitioning. One unsupervised DM technique, i.e., association rule mining, is adopted as the 
main tool in the knowledge discovery process. The main benefits of using association rule mining include requiring 
no training data and little prior knowledge, having the ability to discover previous unknown knowledge, and the 
results are highly interpretable. Considering that the majority of building operational data is numeric and data 
discretization can be troublesome and time-consuming, a quantitative association rule mining algorithm, 
QuantMiner, is applied. Domain expertise is involved in the post-mining phase for knowledge interpretation, 
selection and application. Valuable knowledge has been extracted from a data set retrieved from a university 
building in Hong Kong. Frequent operation patterns of HVAC systems have been discovered revealing energy 
conservation opportunities in pumps, chillers and cooling tower operations. 
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