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Abstract 

For the active vibration control (AVC) of periodically time-varying (PTV) systems, the 

filtered-x least mean squares (FXLMS) method is widely applied. Many AVC systems based on 

FXLMS employ two coupled adaptive processes – online modeling or identification and controller 

updating – to track the parametric change and realize the real-time updating of the control signal. 

Errors in one process can affect the other. When one process converges, it takes several steps for 

the other process to converge. After they both converge, it is difficult to tell whether the controller 

is optimal or not. Therefore, it is difficult to evaluate the influence of the coupling effect and 

perform a rigorous derivation. In this study, the new AVC system adopts adaptive identification 

and nonadaptive control to avoid the coupling effect, and the necessary condition for decoupling is 

obtained. This condition guarantees that the optimal controller can be obtained the moment the 

system identification process converges, and meanwhile boosts the convergence of the 

identification process. The robustness of the identification process with the self-tuning mechanism 

and the optimization of the controller are proved by rigorous derivation. A simple but 

representative numerical verification is presented to verify the effectiveness of the proposed AVC 

system. 
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1. Introduction 

Periodically time-varying (PTV) systems fall into the category of parameter-varying systems 

whose dynamic parameters change with time or other independent variables (Richards 1983). The 

phenomenon of varying dynamic parameters can be found in various fields (Richards 1983, Lazarus 

et al 2010, Elachi 1976, Wang et al 2012, Wang and Mak 2014); for instance, some parameters of 

unsymmetrical rotating machines vary with time, and the propagation parameters of wave 

propagation in periodic media vary with distance. This class of structures is governed by differential 

equations of motion with PTV coefficients, making the systems exhibit remarkable dynamics 

which is difficult to control. Take linear periodically time-varying (LPTV) systems as an example. 

According to Claasen and Mecklenbräuker’s review (1982), the input-output relation for LPTV 

systems is ( ) ( ) ( )
k

lptv k
k

X f H f k T F f k T




   . The input-output relation for LPTV systems 

shows that the input spectrum F(f) has an infinite number of shifted versions F(f-k/T), where T is the 

period of the parametric variation. Consequently, the output spectrum Xlptv(f) is composed of the 

weighed input spectrum F(f) and its shifted versions at other frequency values. That is to say, an LPTV 

system is different from a linear time-invariant (LTI) system in which the response at one frequency 

only comes from the input spectrum at the same frequency: for example, ( ) ( ) ( )ltiX f H f F f . As a 

result, Xlptv( f ) is characterized by a series of separate peaks with an interval of 1/T at the two sides of 

one frequency because a peak at that frequency can be moved to other frequencies and create those side 

peaks at f-k/T. This difference can be utilized for active control, such as feedback control incorporating 



PTV components (Nielsen and Svensson 1999, Svensson 1995). However, this paper focuses on the 

active control of PTV systems, and this difference may lead to the invalidity of many active vibration 

control (AVC) algorithms designed by ignoring the oscillation of time-varying parameters and the 

resultant side peaks. The situation becomes worse if the systems are nonlinear. Therefore, much 

research effort has been devoted to the active control of PTV systems (Deng et al 2011, Yanga et al 

2004, Zhang et al 2012). Most of the control schemes are dependent on a mathematical or estimated 

model and cannot converge the moment the model is obtained.  

Online modeling is usually required for AVC because of the difficulty of measuring or 

recovering systematic parameters and the possible inapplicability of some promising methods, i.e. 

AVC methods without modeling, to a high-order system (Niedzwiecki and Meller 2009 and 2010). 

The time-varying characteristic of some systematic parameters may require a typical AVC system 

with a fast online modeling process to catch up on systematic changes and an efficiently updated 

controller to create destructive vibration. Hence, the filtered-x least mean squares (FXLMS) method 

(Huang 2012, Zhang et al 2012), characterized by low computational cost and easy implementation, 

is potentially a competent candidate for the real-time control of time-varying systems. However, it is 

very difficult to analyze the coupling effects between the two adaptive processes – online modeling 

and controller updating. On one hand, the performance of one process may negatively influence the 

other process, leading to accumulated errors, amplified vibration, and destabilized systems (Kim 

and Swanson 2005). On the other hand, after one process converges, it may take several samples for 

the other process to converge. This mismatch in terms of the convergence of the two processes 

makes it hard to tell whether they converge to their optimal values under the present systems 

situation (Yuan 2006). This coupling effect together with the multi-channel coupling potentially 



results in the difficulty to achieve uniform distribution of residual sound fields in multi-input 

multi-output (MIMO) active control (Fan, Su and Chen 2013). 

Given the above disadvantages, in the most recent literature, an active noise control (ANC) 

system (orthogonal adaptation system) with adaptive system identification and nonadaptive 

controller design was proposed by Yuan to avoid the coupling effect (Yuan 2006a, b). Although the 

applicability of this ANC system is limited in time-invariant systems or approximately 

time-invariant systems, it provided the motivation for this study to propose a control system with 

adaptive system identification and nonadaptive controller design for PTV systems. Later, Yuan 

presented a self-learning feedback mechanism, and this mechanism could work as a backup for the 

orthogonal adaptation system (Yuan 2008). When the stability threat due to modeling errors is 

detected, the orthogonal adaptation block is switched off and the feedback block is triggered to 

stabilize and optimize the system without using the estimated model. Nonetheless, this 

trial-and-error method inevitably leads to slow convergence and may induce the intermittent switch 

between the two blocks when controlling a time-varying system. Therefore, it would be better if a 

wide range of dynamic uncertainties and external disturbances could be tuned and tolerated inside 

one control system, leaving other ones which may not commonly happen to the backup system. In 

section 3, the range of these disturbances considered in this paper is clarified for the purposes of 

deriving the identification algorithm and discussing the robustness of the proposed system. 

Motivated by Yuan’s work, the objective of this paper is to apply this decoupling scheme to the 

active vibration control of PTV systems. The new AVC system for PTV systems aims at bearing the 

following characteristics. It consists of one adaptive process for system identification and one 

nonadaptive process for controller optimization. Besides, the identification process can suppress the 



negative influence of dynamic uncertainties and disturbances and exhibit strong robustness to them. 

The algorithms for both of these processes will be rigorously derived in sections 3 and 4. Simulation 

results will be presented in section 5 to demonstrate the stability and effectiveness of the new AVC 

system. 

2. Background information and objectives 

A typical AVC system can be described by a block diagram (Fig. 1), where poH , sH , rH , and 

cH are the primary path, secondary path, reference path, and the controller respectively and ˆ pow  

and ˆ sw are finite impulse response (FIR) adaptive estimators of poH  and sH . With the sensor 

for the reference signal ( )r n  sufficiently collocated with the primary disturbance ( )d n , the 

reference path rH is a minimum-phase system with a stable inverse. Therefore, Fig. 1(a) is 

equivalent to Fig. 1(b) since the equivalent primary path 1
p r poH H H . It is commonly assumed 

by many researchers that primary and secondary paths can be approximated, with acceptable 

errors, by FIR filters. This study is based on the same assumption, and so the AVC system 

resulting from it will be applicable to any PTV systems which satisfy this assumption. 

Figure 1 

Assuming that the output under control ( )y n  is governed by the regression model of Eq. (1), the 

estimated output under control ˆ( )y n  can be expressed by Eq. (2).  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
p s p sy n y n y n n n n n v n n n v n      w r w u w X     (1) 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
p s p sy n y n y n n n n n n n    w r w u w X           (2) 

In Eqs. (1-2), ( ) ( ), ( )T T T
p sn n n   w w w  is the optimal estimator with pL  and sL  as their 

orders and ˆ ˆ ˆ( ) ( ), ( )T T T
p sn n n   w w w  is the real-time estimator; ( ) ( ), ( )T T Tn n n   X r u is 



the input made up of ( ) ( 1), , ( )T
pn r n L r n    r   and  ( ) ( 1), , ( )T

sn u n L u n  u  ; 

and ( )n  is an unknown additive disturbance without any assumptions made about its statistical 

characterization.  ˆ( ) ( ) ( ) ( )
T

n n n n  w w X  and ( ) ( ) ( )e n n v n   are called the 

undisturbed identification error and the disturbed identification error. Therefore, the objective of 

controller design process is to minimize 

2
( ) ( )T

cJ n n w X , 

and the objective of system identification process is to drive ˆ ( )nw  to converge to ( )nw , or 

specifically to minimize the Euclidean norm of model error ˆ( ) ( ) ( )n n n  w w  

  2
ˆ( ) ( )J n n n w w . 

For simplification of denotation, all of the subscripts in the following text except for p , s , and 

( )f   denote the variables in the parentheses: for example, ˆny  is ˆ( )y n . ( )f   is the function for 

adjusting the abnormal signal and will be used in the identification algorithm in the next section. 

3. System identification  

3.1 Derivation of online path modeling algorithm 

With the expectation that the updated model 1 , 1 , 1ˆ ˆ ˆ,T T T
n p n s n     w w w  is close to the present 

optimal model , ,,T T T
n p n s n   w w w  with negligible error, an objective function is constructed as a 

feasible substitute of 
2

ˆn n nJ  w w , 

22

1 1ˆ ˆ ˆ( )T
n n n n n nJ y f   w w w X .                    (3) 

where , 1 ,ˆ( )T
f n n n n n f ne y f y y   w X  is the predicted identification error, 1

ˆ ˆ ˆn n n  w w  

is the approximated model error, and   is the weight; ( )f   may be called a self-tuning function 



which aims at preventing 1ˆ T
n n n n n ne y y y   w X  from exceeding a conservatively preset 

threshold by adjusting 1ˆ T
n nw X . For a linear system, this function may be a fix value or a 

time-varying value. For a nonlinear system, this function changes with time nonlinearly to avoid the 

divergence of the algorithm (see Zhang et al 2012). This paper mainly focuses on the application 

to linear PTV systems.   

The reason for an unacceptable ne  is the additive disturbance n . Since there are no restrictions 

on or assumptions made about n , the sources of n  may cover a wide range of dynamic 

uncertainties and external sources: 

(1) Measurement noise; for example, the noise resulting from imperfect sensors. 

(2) Modeling errors; for example, the error due to the use of an FIR filter to approximate an infinite 

impulse response filter (IIR) system. 

(3) Other disturbances imposed by unknown sources. 

These factors negatively affect identification performance and destabilize a system, and thus it is 

necessary to take some measures, such as introducing ( )f  , to suppress this negative influence. 

The impact of the self-tuning function ( )f  on the robustness of the system estimator will be 

discussed after the algorithm of the estimator is derived. 

To obtain an optimal updated model, the objective function nJ is differentiated with respect to 

1ˆ nw , leading to  

1 ,ˆ ˆ
nn n y f n nf e  w w X
  ,                               (4) 

where
 

n

n

y

z y

df z
f

dz





 . To solve the unknown weight  and obtain an explicit expression of Eq. 

(4), three constraint conditions are introduced based on three practical concerns: 

(1) The first concern is to avoid the unacceptable predicted identification error ne . This means that 



ne  does not need the adjustment and that the identification errors with and without the 

adjustment by ( )f  are nearly same. In other words, the tuned predicted error 
,f n

e  and the 

original predicted error ne  should approach each other as much as possible.  

   
222

,

2
1 f n ne e                                      (5) 

Differentiating Eq. (5) with respect to 1ˆ nw  and setting the result equal to zero,  

,nn y f ne f e 
                                       (6) 

is obtained, where 
 

n

n

y

z y

f z
f

z








 . 

(2) The second concern is to avoid the unacceptable present identification error ne . This requires 

that the tuned present error 
,f n

e  and the original present error ne  should approach each other 

as much as possible:  

    
222

,

2
2 f n ne e     ,                               (7) 

where ˆ, ˆ( )
n

T
f n n n n n ye y f y f   w X  is the tuned present error while 

ˆ ˆT
n n n n n ne y y y   w X  is the present error. Differentiating Eq. (7) with respect to ˆ nw  and 

setting the result equal to zero,  

ˆ ,nn y f ne f e                                          (8) 

is obtained, where 
 

ˆ

ˆ
n

n

y

z y

f z
f

z






 . 

(3) The third concern is fast convergence. To reach a higher convergence rate, the objective is to 

render 3  negative and minimum by appropriately setting . 

2 2
3 n ne e                                        (9) 

Differentiating Eq. (9) with respect to , substituting Eqs. (6) and (8), and setting the result equal to 

zero,  



ˆ ,

,

n

n

y f n

T
y f n n n

f e

f e
 

X X


 

                               (10) 

is obtained. 

Substituting Eq. (10) into Eq. (4), the explicit expression  

ˆ ,
1ˆ ˆ ny f n

n n nT
n n

f e
  w w X

X X


                           (11) 

is obtained, which can be slightly modified to  

ˆ ,
1ˆ ˆ ny f n

n n nT
n n

f e

  


w w X
X X


,                       (12) 

where a small positive parameter   is introduced to avoid the numerical difficulties caused by a 

small denominator and a positive real scaling factor   is introduced to control the misadjustment 

without changing the direction of nX . From Eq. (12), we can see that this is a noninvasive process 

because no probing signal is introduced.

 

3.2 Analysis of robustness by H  criterion (Haykin 1998)  

H  norm represents the largest energy gain of a system, and energy gain for an adaptive 

estimator may be defined as the ratio of the energy due to model error 
2

,f n  or 
2

n to the total 

disturbance energy inputted to the online model 
2

n and 
2

0 . According to Eq. (1), the present 

identification error with and without the self-tuning mechanism can be expressed as  

, ,f n f n n

n n n

e

e









  


  
,                                   (13) 

where , ˆ= ( )T T
f n n n n nf w X w X  is the undisturbed estimation error after the self-tuning 

adjustment.  

To compute the H  norm of the estimator, we proceed as follows. For a periodic time-varying 



system with N  samples per cycle, the mean-square deviation (MSD) in the thk  period is defined 

as 

( 1) 1
21 k N

kN n
n kN

D
N


 



  .                                  (14) 

So, 

   
( 1) 1

( 1) 1 1

1 k N
T

kN k N n n N n n N
n kN

D D
N

   
 

    


    .               (15) 

Substituting Eq. (12) into Eq. (15) and neglecting  , an inequality is obtained in an attempt to 

bound the energy gain:  

ˆ
( 1) 1

2 2

ˆ ˆ ˆ ˆ ˆ( 1) , ,

1
(2 ) 2(1 2 ) (2 2 )n

y

T

n n

n n n n n

k N
T

kN k N y f n y y f n n y y n
n kN

f
D D f f f f f

N


     

 




           


    
X X

 (16) 

When the condition 
ˆ

0 2
1

nyf
    holds, the inequality of Eq. (16) can be recast as 

ˆ
( 1) 1

2 2

( 1) ,

1
n

y

T

n n

k N

kN k N f n n
n kN

f
D D

N




 




     


X X
.                  (17) 

If the self-tuning mechanism is not triggered, with the consideration of the second constraint in Eq. 

(7), Eq. (15) becomes 

( 1) 1
2 2

( 1)

1
(2 ) 2(1 )

T

n n

k N

kN k N n n n
n kN

D D
N


    

 




       
X X

.          (18) 

When the condition 0 1  is satisfied, the inequality of Eq. (18) is followed by   

( 1) 1
2 2

( 1)

1
T

n n

k N

kN k N n n
n kN

D D
N




 




    
X X

.                    (19) 

Suppose the algorithm runs for ( 1)n k N   iterations from 0n  with the initial condition 

ˆ (0)w . Letting max( )T
n nX X   and ˆmax( )

n

T
f n n yX X f   , starting from ˆ (0)w  and 

summing the two sides of the inequalities in Eqs. (17) and (19), the energy gains fG  and G  are 

solved.     



( 1) 1
2

,
0

( 1) 1
2

0

1
(0)

K N

f n
n

f K N
f

n
n

G
N

D 






 


 



 





                           (20a) 

( 1) 1
2

0
( 1) 1

2

0

1
(0)

K N

n
n

K N

n
n

N
G

D






 


 



 





                            (20b) 

fG  and G  can be rewritten as Eq. (21) by substituting 
2

0(0)D    into Eq. (20): 

( 1) 1
2

,
0

( 1) 1
2 2

0
0

1

K N

f n
n

f K N
f

n
n

G
N

 








 


 



 





                           (21a) 

( 1) 1
2

0
( 1) 1

2 2

0
0

1

K N

n
n

K N

n
n

N
G


 







 


 



 





 .                          (21b) 

Eqs. (20-21) show that the output energy (the numerator) caused by the identification error never 

exceeds the total input energy (the denominator) caused by the disturbances consisting of the initial 

model error 0  and the additive disturbance  . 

In the worst case that ( )=- ( )n v n  and ( )=- ( )f n v n , ( ) (0)D kN D for all k  because 

0ne  and , 0f ne  stop the adaptive algorithm Eq. (12) from updating. fG  and G  can 

arbitrarily approach unity with the increase in N . Therefore, the H norm of the estimator or the 

maximum energy gain is unity. Considering the fact that any filter can never have its maximum 

energy gain limited below unity, the optimal H  norm of any filter can never be less than unity. 

Therefore, the proposed estimator is H  optimal if 0 1   and ˆ

1

2nyf





 . 



3.3 Constructing the self-tuning function ( )f   

The fundamental requirement for the self-tuning function is that it starts to adjust the estimated 

output ˆny  when the estimation error exceeds a conservatively preset threshold. So, a preliminary 

guess may be  

   
ˆ

ˆ ˆ ˆ ˆ( ) 1 ,

ˆ

n

n n n n

n

y

f y y y y

y

 
   

 


    
  

,                 (22) 

where ny    is the upper bound of the estimated output and   is an adjustable parameter 

( 0 1  ). When ˆn ny y   , where   is threshold, it means the model error 

ˆn n n  w w is unacceptable, and so this self-tuning mechanism is triggered. A signal processing 

method ( )h  , like averaging 1n N ny y   , may be introduced to alleviate the influence of the 

additive disturbance v . Therefore,    can be modified as ( )nh y   . When no signal 

processing is imposed, 
ny nh y . 

As ˆ

1

2nyf





  is required for the estimator to be H  optimal, 
1

2






 is set. Eq. (22) 

does not have a continuous derivative, and so the sigmoid function is chosen to approximate the 

second term of Eq. (22) because of its similar shape to the second term and the continuity of its 

derivative. Then, the self-tuning function is modified as 

ˆ ( )

ˆ ( )

1 1
ˆ ˆ( )

2 ( ) 1

n

n

y g

n n y g

e
f y y

g e






 






 

 
.                           (23) 

The derivative is  

ˆ ( )

ˆ ˆ ( ) 2

1
2

ˆ 2 (1 )

n

n n

y g

y y g
n

df e
f

dy e








  
 

 ,                        (24) 

where 0   and ( ) 0g    are employed to adjust amplitude and threshold. Although they are 



related to  1  , it is unnecessary to know the analytical solution for the relation of  1  ,  , 

and ( )g  . This is because the lack of the restriction by the analytical solution creates more 

flexibility for the configuration of the self-tuning function. After introducing the sigmoid function, 

the self-tuning function ˆnyf  displays the following properties: when ˆ 0ny  , ˆ ˆ
ny nf y . When 

ˆ0 n ny y   or ˆ0
nn yy h  , ˆ ˆ

ny nf y , with the increase of ˆny , the increase in 

ˆnyf becomes slower; the larger ˆny  is, the more slowly ˆnyf  increases. ˆnyf gradually gets close 

to the shape of the preliminary guess Eq. (22) after ˆny  . This is because the second term of 

ˆnyf is the derivative of the sigmoid function and it is monotonically decreasing with the increase in 

ˆny . This property indicates that ˆnyf becomes very small when ˆny   is unacceptably large, 

preventing the excessive updating of the path model and a larger model error. 

With this self-tuning function, the applicability of this identification algorithm is not only limited 

to a linear system, but can be extended to some nonlinear systems when the sigmoid function can 

represent that type of nonlinearity. The reason is listed as follows. In Eq. (23), the first term is a line 

and it means this one part of this function changes linearly, while the second term is sigmoid 

function which represents a nonlinear adjustment when the estimation error exceeds the threshold.  

4. Controller design 

When the identification error ,f ne  converges, the minimization of ny  requires the 

minimization of ˆny since , ˆ( )n f n ny e f y  . Combining ˆ 0ny   and
ˆ ,

1ˆ ˆ ny f n
n n nT

n n

f e
 w w X

X X


, 

we get 1ˆ T
n n ny  w X . This result is desirable and also expected by the objective function of system 

identification Eq. (3) so that Eq. (3) can approximate 
2

ˆn n nJ  w w with negligible error. 

Therefore, any controller which minimizes ˆny  guarantees that Eq. (3) is a reasonable 



approximation of 
2

ˆn n nJ  w w . Additionally, by minimizing ˆny , the second term of Eq. (3) 

can be minimized, which boosts the minimization of Eq. (3) and thus drives the proposed 

identification algorithm to converge. In other words, by minimizing ˆny , the controller can drive the 

adaptive algorithm Eq. (12) to converge, and when the modeling process converges, the optimal 

controller can be obtained simultaneously. Therefore, the convergence of the identification process 

and the optimization of the controller are synchronized. 

One possible controller aiming at minimizing ˆny  is solved by minimizing the practical 

objective function: 

2 2
ˆ( )

n

c k c n
k no

J n y u


  , 

where 1,no n n   and c  is the weight of control signal. Because of the special structure of J , 

1no n   does not yield a control signal different from the nu  obtained by setting 1no n  . 

The estimated output ˆky is formulated by 

   
ˆ

, ,
ˆ

o o o

n n ny u r

     
      

     

y u r
H J M N                      (25) 
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where the subscript o  indicates old signals. nu  is the optimal control signal to be determined by 

the past vibration  1ˆ
T

o no ny y y  , the past control signal 1 1s

T

o no L nu u     u  , and the 



past and present reference signals 1 1p

T

o no L nr r  
   r  and nr . Differentiating Eq. (25) with 

respect to nu  and setting the result equal to zero, the optimal control signal nu  is solved. 

   1T T
n c p p nu r


    J J J Hu Mr N                       (26) 

After the solution of control signal is solved by Eq. (26), the derivation of this AVC system is 

completed. It is compared with those AVC systems updated by FXLMS method in the following 

aspects. 1) Those AVC systems are unstable when the phase error during modeling exceeds 90°, 

while the proposed system possesses H  robustness and the self-tuning function prevents the 

estimation error from exceeding a preset threshold; 2) FXLMS is an estimation method, and thus 

the solution of the controller is not necessarily optimal, but the optimal controller of the presented 

system can be obtained the moment the modeling process converges; 3) due to the coupling effect, 

after the modeling process converges, it takes several steps for the controller to converge despite 

its low computational burden at one step; when the controller converges, it’s difficult to know if it 

is optimal. However, the proposed system successfully apply Yuan’s decoupling scheme to the 

vibration control of PTV systems so that the optimal controller can be obtained the moment the 

modeling process converges. Therefore, the disadvantages of those AVC systems based on 

FXLMS method are the advantages of the proposed system. 

5. Verification and Analysis  

From the previous discussion, it is known that the control performance is fundamentally 

decided by the identification performance because the optimal control signal is solved by one-step 

calculation after the identification process converges. Thus, if effective control performances 

under both systematic change (internal change) and excitation change (external change) are 



proved, the effectiveness of the identification process and the decoupling scheme are verified. 

Therefore, the purpose of this numerical verification is to examine the control performance of the 

proposed AVC system when the controlled system suffers from dynamic uncertainties and external 

disturbances. 

Figure 2 

A numerical simulation is conducted on a mass-spring system installed in the center of a simply 

supported flexible plate (Fig. 2). This system suffers from a periodically time-varying stiffness and 

an output noise (a shock). Although the system is not complicated, it is very representative since 

both internal and external uncertainties are involved. This system is governed by Eq. (27), which 

consists of a canonical PTV equation with damping and the equation of the motion of the plate at the 

contact point. The external force is cos(2 70 )F t  and the control force is cF . Assuming the 

period of stiffness oscillation is 10 seconds, separate peaks with an interval of 0.1Hz at the two 

sides of 70Hzf   are excited. The stiffness of the spring varies periodically with an average 

of  2
2 70 N mk  , a mass weighs 1kgm  , and the damping ratio is 0.01  .  is related 

to damping c  by
 

2c m    and 2 k m  . 1x  is the displacement of the mass, and 2x  

the displacement of the center of the plate in time domain. The transfer function at the center of the 

plate is ( )Y s , and L in Eq. (27) denotes the Laplace transform. The mobility of the simply 

supported plate, correspondent to ( )Y s , is calculated by its physical parameters (Wang and Mak 

2013): Young’s modulus 10 2 E 2.1 10 mN  , density 3 3ρ 2.8 10 kg m  , Poisson’s 

Ratio  0.2  , and loss factor 2 η 2 10  . Its dimensions are 3.5m (length) ×3.5m (width) × 

0.24m (thickness). Only the first two modes of the plate at about 50Hz and 250 Hz are considered 

in the calculation of the mobility because of their relatively significant contribution to response of 



the mass. 

     
       

1 1 2 1 2

1
2 1 2 1 2

2 1 0.02*sin 2 0.1

( ) 2 1 0.02*sin 2 0.1

x x x k t x x F

x L Y s L x x k t x x

 

 

      


     

  

 
   (27) 

The system is solved by the Matlab/Simulink model and program. Two simulations are conducted 

for comparison, one simulation employs the proposed AVC system (see Fig. 3) while the other 

adopts an AVC system with a different identification process adapted by the normalized LMS 

method (see Fig. 4). Fig. 3 illustrates the contrast between vibration magnitudes with and without 

control. From Fig. 3(a), it can be seen that significant attenuation of vibration happens after 10 

seconds – the oscillation period of the stiffness. Fig. 3(b) displays shows the frequency-domain 

correspondent of Fig. 3(a). It depicts the effect of the periodically time-varying parameter - the 

separate peaks with an interval of 0.1Hz at the two sides of 70Hzf  , and thereby highlights the 

side-peak suppression achieved by the proposed system. Those side peaks do not exist in a 

time-invariant system and may invalidate the AVC system which is designed based on the 

commonly used assumption of the time-invariant system.  

Figure 3 

For comparison, Fig. 4 shows the control performance of the control system with its 

identification process updated by normalized LMS. Smaller attenuation and more significant 

oscillation are observed, compared to Fig.3 (a). The better performance in Fig.3 is because the 

modeling error (identification error) caused by the internal parametric change is limited below the 

preset threshold by the self-tuning mechanism in the proposed algorithm. Moreover, an impulsive 

noise with the duration of 0.1 seconds is added to the output at around the 27th second. In this 

situation, the controlled system experiences both an additive disturbance (external change) and a 



variable stiffness (internal change). The convergence after the system encounters this shock is 

displayed in Fig.5, which demonstrates the stability of the proposed AVC system under the 

circumstance that the external and internal changes occur simultaneously.   

Figure 4 

Figure 5 

It is not necessary to compare it with a control system with coupling effect. For one thing, if 

they possess the same identification process, after the identification process converges, the control 

system with coupling effect spends several extra iterations obtaining the optimal control signal 

while it takes the presented control system (i.e. the control system with decoupling scheme) only 

one-step calculation to solve the optimal control signal. So the control system with decoupling 

scheme possesses obvious superiority in terms of convergence speed. For another thing, if they 

have different identification processes, it is not realistic and meaningful to tell which system is 

better because numerous control systems exist. There must be one system better than the proposed 

system and there must be one system inferior to the proposed system. As different standards exist, 

like attenuation, convergence speed and control effort, the control system selected for comparison 

may be superior according to one standard but inferior according to another standard. Therefore, 

comparison with control systems with coupling effect is a cumbersome and unnecessary task. 

6. Discussion of the advantages of the system according to the theoretical development 

It is an AVC system designed to suppress periodically time-varying vibration, and it utilizes a 

decoupling scheme which is characterized by an adaptive process for system identification and a 

nonadaptive process for controller optimization to avoid the coupling effect. The necessary 



condition for the decoupling is presented in Section 4. With the decoupling scheme and the 

decoupling condition inside the scheme, the two processes can reach synchronous convergence by 

positively affecting each other. The controller can drive the identification process to converge as 

long as the controller is optimized by minimizing the output of the estimated model. When the 

modeling process converges, the controller can be optimized instantly. Therefore, the convergence 

of system identification and the optimization of the controller are synchronized. In other words, this 

advantage of the presented AVC system is the disadvantage of those systems with the coupling 

effect. Moreover, for the system suffering periodically time-varying parameters, the H  

robustness is guaranteed by the condition that the derivative of the self-tuning function is no less 

than  1 2   where   is the adjustable parameter. Its implications are twofold. One 

implication is that the identified model is the H  optimal approximation of the real system once 

the process of identification converges. The other is that this AVC system has strong robustness to 

dynamic uncertainties and disturbances when the condition is satisfied. 

7. Conclusion  

An AVC system with decoupling scheme is proposed to overcome the disadvantages induced by 

the coupling effect between two adaptive processes in many AVC systems. Numerical verification 

is performed on a simple but representative system to examine the control performance and 

stability of the proposed AVC method. The controlled system suffers from an internal dynamic 

uncertainty that is the periodically time-varying parameter. Significant attenuation of vibration is 

observed despite the side-peak effect caused by the periodically time-varying stiffness. Besides, it 

is compared with a control system which is different from the presented system in terms of the 



identification algorithm. This comparison proves the AVC system’s superior capability of 

suppressing the modeling error caused by periodically time-varying effect of the systematic 

parameter. The proposed system has not been compared with a control system with the coupling 

effect, but the reasons are justified. Moreover, the final numerical simulation examines the 

response of controlled system under the circumstance of stiffness oscillation and additive impact. 

It demonstrates the robustness and stability of the proposed system to parametric oscillation and 

external disturbances. Despite the representative numerical simulation and rigorous derivation, 

experimental verification is desirable for the practical application of the presented AVC system. 

Therefore, future investigation may focus on the design of an experimental system for verification. 
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9. Figure Captions 

Fig. 1. Block diagram of a typical AVC system: (a) The original system; (b) The equivalent system 

Fig. 2. The AVC system 

Fig. 3. Control performance of the proposed system: (a) Time domain;(b) Frequency domain 

Fig. 4. Control performance of the compared system 

Fig. 5. Control performance under the circumstance of stiffness oscillation and external impact 
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Fig. 1. Block diagram of a typical AVC system: (a) The original system; (b) The equivalent system 
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Fig. 2. The AVC system 
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Fig. 3. Control performance of the proposed system: (a) Time domain;(b) Frequency domain 
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Fig. 4. Control performance of the compared system  
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Fig. 5. Control performance under the circumstance of stiffness oscillation and external impact 

 




