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Abstract 

Accurate building energy prediction is vital to develop optimal control strategies to enhance 

building energy efficiency and energy flexibility. In recent years, the data-driven approach based 

on machine learning algorithms have been widely adopted for building energy prediction due to 

the availability of massive data in building automation systems (BASs), which automatically 

collect and store real-time building operational data. For new buildings and most existing buildings 

without installing advanced BASs, there is a lack of sufficient data to train data-driven predictive 

models. Transfer learning is a promising method to develop accurate and reliable data-driven 

building energy prediction models with limited training data by taking advantage of the rich 

data/knowledge obtained from other buildings. Few studies focused on the influences of source 

building datasets, pre-training data volume, and training data volume on the performance of the 

transfer learning method. The present study aims to develop a transfer learning-based ANN model 

for one-hour ahead building energy prediction to fill this research gap. Around 400 non-residential 
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buildings’ data from the open-source Building Genome Project are used to test the proposed 

method. Extensive analysis demonstrates that transfer learning can effectively improve the 

accuracy of BPNN-based building energy models for information-poor buildings with very limited 

training data. The most influential building features which influence the effectiveness of transfer 

learning are found to be building usage and industry.  The research outcomes can provide guidance 

for implementation of transfer learning, especially in selecting appropriate source buildings and 

datasets for developing accurate building energy prediction models.  

Keywords: Building energy prediction; data-driven approach; transfer learning; neural network; 

information poor buildings 

1. Introduction 

Building construction and operations account for 36% of the global final energy use and 39% of 

energy-related carbon dioxide (CO2) emissions in 2017 (IEA 2018). In China, the building sector 

represents nearly 16% of the total global final energy consumption in buildings (IEA 2015). In 

Hong Kong, buildings are responsible for over 90% of electricity use in 2017 (EMSD 2019), which 

are the primary users in power grids and significantly influence the supply-demand balance and 

grid reliability. Building energy prediction models are widely used in evaluating building design 

alternatives (Asadi et al. 2014), developing energy efficient optimal control and diagnosis 

strategies (Li and Wen 2014), and developing the demand and supply management in power grids 

(Xue et al. 2014). Building energy prediction is an essential basis for decision making towards 

reducing building energy consumption and CO2 emissions as well as enhancing the building-grid 

eco-system.  

Two basic approaches have been developed for building energy prediction, i.e., physical-based 

and data-driven approaches (Amasyali and EI-Gohary 2018). The physical modeling is mainly 



based on engineering methods and dedicated building energy simulation tools, which usually 

requires detailed information and in-depth understanding of the building and building energy 

systems. With the dramatic increase in the scales and complexity of modern buildings, the 

physical-based modeling approach become increasingly time-consuming and computationally 

heavy, which make it unfavorable for online optimization and control applications. As a result, the 

data-driven approach based on building operation data and intelligent machine learning algorithms 

is attracting increasing interests (Fan, Sun et al., 2019; Fan, Wang et al., 2019; Fan et al., 2017; 

Rahman et al., 2018).   However, most research and applications on data-driven prediction mainly 

deal with information-rich buildings with sufficient high-quality building operational data to train 

the data-driven models (Amasyali and EI-Gohary 2018). Without sufficient training data, the 

performance of the data-driven models may significantly deteriorate, owing to under-fitting or 

local minimum (Goodfellow et al. 2016). For those information-poor buildings, such as new 

buildings with very little historical data, and existing buildings without installing advanced 

building automation systems (BASs), the development of data-driven energy prediction models 

remains a big challenge. 

Transfer learning is a machine learning technique initially motivated by difficulties in accessing a 

large amount of training data for training models in some applications, such as image recognition 

and natural language processing (Silver et al. 2013). Transfer learning aims at applying knowledge 

gained in solving one problem (i.e., the source task) to a different but related problem (i.e., the 

target task) (Weiss et al. 2016). The concept of transfer learning and related algorithms have been 

widely used in many fields, including software engineering (Ma et al. 2012), voice processing (Hu 

et al. 2015), image processing (Li et al. 2014), and natural language processing (Hosseinzadeh et 

al. 2016). Hu et al. (2015) implemented transfer learning-based Logistic Regression (LR) 



classifiers to improve mispronunciation detection performance. The shared hidden layers of this 

neural network-based classifier for extracting useful speech features were pre-trained using 

training data. The new LR classifier streamlined training multiple individual classifiers separately 

by learning the common feature representation via the shared hidden layer. The proposed method 

showed a 7.4% improvement of the precision and recall rate than the conventional model. Shin et 

al. (2016) adopted transfer learning to fine-tune convolutional neural network (CNN) models pre-

trained using natural image datasets and then used the tuned/target models to classify medical 

images. The target models retained the structure of the pre-trained CNN models and showed 

superior in detecting some diseases. Previous research on transfer learning has proved that, if 

appropriately implemented, it has the following advantages: (1) reducing the amount of training 

data required for the development of the target model; (2) saving time for constructing and training 

models; and (3) improving prediction performance. 

In recent years, several studies have focused on applying transfer learning to data-driven building 

energy prediction considering insufficient training data and taking advantage of additional datasets 

from other buildings (Ribeiro et al. 2018; Hooshmand and Sharma 2019; Perera et al. 2019). 

Ribeiro et al. (2018) developed a neural network model for electricity consumption prediction of 

a newly built school (i.e., the target building) by transferring knowledge learned from the three 

years’ data of the other four similar schools in the same area (i.e., the source buildings). There 

were only one-month data available in the target building. The authors proposed a novel transfer 

learning method, namely Hephaestus, to remove seasonal and trend effects, and prepare time-

independent features as model inputs. The results showed that prediction accuracy increased by up 

to 11.2% using transfer learning compared with the model that was trained using the one month of 

data of the target building. Hooshmand and Sharma (2019) proposed a transfer learning-based 



framework for short-term electricity load forecasting. A CNN model was designed to predict the 

next 24 hours of electricity demand of target building using its energy consumption data in the 

past four weeks. The CNN model was pre-trained by public repository datasets which include data 

of 370 different buildings (i.e., the source buildings) and then fine-tuned by four months’ data 

from the target building, which showed lower error than other baseline cases. Fan et al. (2020) 

proposed a transfer learning-based methodology for 24-hour ahead building energy demand 

prediction. A public-available dataset composed of more than 400 different buildings was used in 

this research. He tested the methodology by developing a pre-trained model using data retrieved 

from 80% of the buildings, and evaluating the pre-trained model on target domain formed by the 

other 20% buildings. The results showed that approximately 15% to 78% of prediction errors can 

be reduced by the transfer learning-based methodology, compared with standalone models. 

It is observed that previous studies on transfer learning-based building energy prediction usually 

transferred the knowledge, such as model structures and parameters. The source dataset is usually 

composed of, based on engineering experience, one or a small number of buildings with similar 

building industry and scale and in the same climate area to the target building (Ribeiro et al. 2018), 

or a great number of buildings of different scales and types (Hooshmand and Sharma 2019; Fan et 

al. 2020). It is well known that building energy/electricity consumption is influenced by multiple 

factors, including building design, location, usage, weather conditions, occupant behavior, energy 

systems, operation strategies and etc. In principle, the more similar the source buildings are to the 

target building, the better the prediction results can be obtained. Selecting sources buildings in 

transfer learning based on this principle would require a substantial amount of information about 

the sources buildings and the target building. However, it is not well studied in previous research 

whether the knowledge learnt from source buildings, whose usages, scales and locations are 



different from the target building, are valuable and transferrable to the target building, for example, 

using datasets from residential buildings to pre-train the prediction model of a non-residential 

building. And there are few experiences and guides on how to select source dataset for pre-training 

building energy prediction models. To well leverage transfer learning for building energy 

prediction model development, the guides on how to select dataset for pre-training models are in 

urgent need.  

This study aims to develop an ANN-based building energy model by transferring the knowledge 

about energy consumption learned from information-rich buildings to buildings with limited 

operational data. As Keogh and Kasetty (2003) highlighted, the contribution of many studies 

would have been dwarfed by the variance that would have been observed by testing on many real-

world datasets, or the variance that would have been observed by changing minor (unstated) 

implementation details. Using a large, consistent benchmark dataset to test different data-driven 

and machine learning algorithms can generate more generic comparisons of accuracy, speed, and 

ease-of-use, and consequently provide more convincing general conclusions. This paper tests 

implement transfer learning on one open-source benchmarking dataset, the Building Data Genome 

Project (Miller and Meggers 2017b). Annual energy consumption data of total 404 buildings are 

used as source data separately. The knowledge about the Back Propagation Neural Network 

(BPNN) models developed using the data from 404 buildings is transferred to the BPNN models 

developed for the target buildings, which are assumed to have only several days’ operation data. 

The influence of different building factors on the performance of transfer learning is discussed 

with the aim to share experiences and provide useful guide in selecting proper source buildings 

and source datasets in using transfer learning for building energy prediction.  



The remaining part of the paper is constructed as follows. Chapter 2 introduces the research outline 

and gives a brief overview of transfer learning. Chapter 3 presents the performance of ANN-based 

building energy consumption prediction models, and analyses the influence of different factors 

(pre-train data volume, train data volume, and building features). Chapter 4 concludes the paper. 

2. Methodology 

2.1 Research outline 

The prediction task in this research is to predict one-hour ahead building energy consumption by 

using previous 24-hour energy consumption data. This type of prediction was widely used in 

building energy management and building-grid interactive management (Zhao and Magoules 

2012). The benchmark database used in this research is developed by the Building Data Genome 

Project (Miller and Meggers 2017b). It contains hourly electrical power consumption data and 

weather data of more than four hundred non-residential buildings in America and Europe. The 

buildings in this database are mainly college and primary/secondary school buildings. Brief 

building information is also recorded, including its area, primary use type (e.g., office, laboratory, 

classroom and dormitory) and building industry (e.g., education and government). The datasets in 

this database have been used to predict building use type, performance class and operations 

strategy (Miller and Meggers 2017a), and load forecasting (Nichiforov et al. 2018).  

As shown in Fig.1, the research methodology consists of the following parts: 1) Using the datasets 

from the information-rich buildings (i.e., source dataset) to pre-train a base model; 2) Using the 

training dataset from the information-poor building (i.e., target training dataset) to fine-tune the 

pre-trained model; 3) Using the test dataset from the information-poor building (i.e., target test 

dataset) to validate the target model. In principle, transfer learning can work with a diversity of 

predictive machine learning algorithms, like CNN (Hooshmand and Sharma 2019), RNN (Fan, 



Sun et al. 2020) and LR (Hu et al. 2015), this study selects back-propagation neural network 

(BPNN) to develop the prediction model considering its simplification and popularity in building 

energy prediction. To fulfill the aim of this research, i.e. to investigate the influences of source 

building type, scale and usage, pre-training data volume, and training data volume on the 

performance of the transfer learning, a large number prediction models (i.e., n in Fig. 1) are 

developed using different pairs of source and target buildings extracted from the Genome database. 

The influences of multiple factors concerned on transfer learning are then analyzed based on 

performance evaluation of all models.  

 

Fig.1 Research outline 

Before the data are used to develop prediction models, they are pre-processed as shown in Fig.2, 

including data cleaning, data transformation and normalization. Data cleaning methods are 

implemented to detect outliers and fill missing values in order to improve data quality. After data 

cleaning, data transformation methods are needed to transform the data format, for example 

transferring numerical data (e.g., building type, location) into categorical data and prepare proper 



data format for the next stage, since some machine learning algorithms can only deal with 

categorical data. Data normalization is to eliminate the influence of the scales of data/measurement. 

The min-max normalization methods, as shown in Eq. (1), is adopted in this research to adjust the 

values of power consumption from buildings with different scales considering that larger buildings 

have larger values of power consumption.  

𝑦𝑦𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)
(1) 

where x = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} and 𝑦𝑦𝑖𝑖 is the normalized data of 𝑥𝑥𝑖𝑖.  

 

Fig.2 Data preparation 

After data are pre-processed, 404 buildings in total are selected to form the pool of source buildings, 

which provide the source datasets. In addition, 20 buildings of different scales, primary usages, 

and weather conditions are selected as target buildings. Their information is shown in Table 1. 

These buildings are considered as information-pool buildings by assuming that only several days’ 

energy data are available for developing the prediction models. For each case of developing 



prediction models, one source dataset is extracted from the source building dataset pool, while the 

target train dataset and target test dataset are extracted from the target building dataset pool. As a 

result, for each target building, 404 prediction models are developed corresponding to each source 

building. 

 

 

 

 

 

Table 1. Information of 20 target buildings 

Building 
type Building No. Location Vintage 

Outdoor 
Temperature 
(℃) 

Relative 
Humidity 
(%) 

Size 
(m2) 

Office (OF) 

OF-1 Phoenix, USA 1930s 17.9 41.9 6,892 
OF-2 Los Angeles, USA 1960s 5.52 67.2 21,948 
OF-3 London, EU Pre 1100s 13 76.8 122,223 
OF-4 Chicago, USA NA 0.6 60.9 14,636 
OF-5 Zurich, EU NA 5.3 84.1 9,244 

Primary 
Classroom 
(PC) 

PC-1 New York, USA NA 11.2 73.7 8,070 

PC-2 New York, USA NA 7.9 79.3 8,747 
PC-3 New York, USA NA 10.4 74.7 21,652 
PC-4 New York, USA NA 7.3 76.3 10,877 
PC-5 London, EU Pre 1910s 12 86 1,597 

Dormitory 
(DO) 

DO-1 Phoenix, USA 1960s 17.9 41.9 10,340 
DO-2 Phoenix, USA 1930s 17.9 41.9 3,051 
DO-3 New York, USA 1970s 6.9 78.8 6,100 
DO-4 London, EU 1960s 13 76.8 6,181 
DO-5 Chicago, USA NA 0.6 60.9 16,495 

University 
Laboratory 
(UL) 

UL-1 Phoenix, USA 1950s 17.9 41.9 8,480 

UL-2 Phoenix, USA 2010s 17.9 41.9 30,403 
UL-3 Los Angeles, USA 1960s 5.5 67.2 11,608 



UL-4 New York, USA 1980s 6.9 78.8 6,930 
UL-5 London, EU 1990s 13 76.8 7,715 

Note: The average outdoor dry-bulb temperature and relative humidity within the sampling time period 
 

2.2 Transfer learning 

Transfer learning aims to improve the learner (e.g. the prediction model) in a target domain using 

the knowledge from other domains and learning tasks (Weiss et al. 2016; Pan and Yang 2009).  

Definition. Given a source domain 𝐷𝐷𝑆𝑆 and a learning task 𝑇𝑇𝑆𝑆, a target domain 𝐷𝐷𝑇𝑇 and a learning 

task 𝑇𝑇𝑇𝑇, transfer learning aims to improve the learning of the target predictive function 𝑓𝑓𝑇𝑇(∙) in  𝐷𝐷𝑇𝑇 

using the knowledge in 𝐷𝐷𝑆𝑆 and 𝑇𝑇𝑆𝑆, where 𝐷𝐷𝑆𝑆 ≠ 𝐷𝐷𝑇𝑇, or 𝑇𝑇𝑆𝑆 ≠ 𝑇𝑇𝑇𝑇 (Weiss et al., 2016). 

From the definition above, a domain D is defined as a pair 𝐷𝐷 = {𝜒𝜒,𝑃𝑃(𝑋𝑋)}, where 𝜒𝜒 is a feature 

space with n dimensions; X is a learning sample such that 𝑋𝑋 = {𝑥𝑥1, . , 𝑥𝑥𝑛𝑛} ∈ 𝜒𝜒, and 𝑃𝑃(𝑋𝑋) is the 

marginal is the marginal probability distribution of X. A task T is defined as 𝑇𝑇 = {𝑌𝑌,𝑃𝑃(𝑌𝑌|𝑋𝑋)}, 

where Y represents the label space and 𝑃𝑃(𝑌𝑌|𝑋𝑋) represents the conditional probability of Y given X. 

Given a source domain 𝐷𝐷𝑠𝑠 (the information-rich buildings in this research) and a corresponding 

source task 𝑇𝑇𝑠𝑠 (building energy consumption prediction), a target domain 𝐷𝐷𝑡𝑡 (the information-poor 

building) and a target task 𝑇𝑇𝑡𝑡 (building energy consumption prediction), transfer learning aims to 

learn the target conditional probability distribution P(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡) in 𝐷𝐷𝑡𝑡  with the help of knowledge 

learnt from 𝐷𝐷𝑠𝑠 and 𝑇𝑇𝑠𝑠, where 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡, 𝑇𝑇𝑠𝑠 and 𝑇𝑇𝑡𝑡 are not identical. 

2.3 Artificial neural network 

The back-propagation neural network (BPNN) was initially developed by Rumelhart et al. (1986) 

as a solution to the problem of training multi-layer perceptron (MLP). In the area of building 

energy consumption prediction, BPNN is one of the most popular neural network models because 



of its simple architecture yet powerful problem-solving ability (Bourdeau et al. 2019). The 

prediction task concerned in this study is to use the previous 24-hour building power consumption 

to predict the power consumption in the next hour. Therefore, the input layer of the BPNN contains 

24 nodes, corresponding to the previous 24-hour power consumption. The output layer contains 

one node, i.e., the next hour power consumption. Considering the volume of the source and target 

dataset, a four-layer BPNN model structure was found to be suitable. The first hidden layer 

contains 24 nodes, and the second hidden layer contains 12 codes. Rectified Linear Unit (ReLU) 

and Adam algorithm (Kingma and Ba 2014) are selected as the activation function and optimizer 

respectively. The rectifier is an activation function defined as the positive part of its argument, as 

shown in Eq. (2). 

𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥) (2) 

ReLU was first introduced to develop a dynamical network by Hahnloser et al. in 2000 with strong 

biological motivations and mathematical justifications (Hahnloser et al. 2000). ReLU is the most 

popular activation function for deep neural networks in 2017 (Ramachandran et al. 2017). Adam 

is an adaptive learning rate optimization algorithm which finds individual learning rates for each 

parameter (Kingma and Ba 2014). It has several attractive benefits, including easy-to-implement, 

computationally efficient and little memory requirements. And this optimization algorithm 

released in Dec 2014 has been used in around 23% of papers according to a survey in 2017 

(Karparthy 2017). The loss function used in network work training is the mean squared error. 

2.4 Implementation strategies for transfer learning 

Network-based transfer learning is one category of transfer learning (Weiss et al. 2016). The usual 

network-based transfer learning approach is to train a base neural network and then copy its first 



n layers to the first n layers of a target network. The remaining layers of the target network are 

then randomly initialized and trained using the target train dataset in the target task. There are two 

methods to handle the first n layers in the target network (Yosinski et al. 2014). The first method 

is to back-propagate the errors in the target network/model into the base (copied) features to fine-

tune them to suit the target task. The second method is to freeze the transferred layers, which means 

that they do not change during training in the target task. Usually, the selection of these two 

methods depends on the overfitting problem (Yosinski et al. 2014). In this research, the model is 

fine-tuned using the former way, considering that the number of features is rather small so that 

overfitting is not a problem. 

After fine-tuning, the model will be validated by the target test dataset. It is assumed that transfer 

learning works well when the source domain is related or similar to the target domain because the 

knowledge learned from the source domain may be applicable to the target domain due to the 

relevance or similarity. However, when the source domain is not closely related or similar to the 

target domain, the target model could be negatively impacted, which is the so-called negative 

transfer (Weiss et al. 2016). The consequence of negative transfer is that the target model’s 

prediction accuracy is lower than that of the base model trained by using only the target building 

dataset. The negative transfer ratio is defined as shown in Eq. (3).  

Negative transfer ratio =  
𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑡𝑡𝑁𝑁𝑚𝑚𝑚𝑚𝑡𝑡𝑓𝑓𝑁𝑁𝑁𝑁 𝑙𝑙𝑁𝑁𝑚𝑚𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙 𝑐𝑐𝑚𝑚𝑡𝑡𝑁𝑁𝑡𝑡

404 (𝑡𝑡ℎ𝑁𝑁 𝑚𝑚𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑡𝑡𝑜𝑜𝑁𝑁𝑁𝑁𝑐𝑐𝑁𝑁 𝑁𝑁𝑁𝑁𝑚𝑚𝑙𝑙𝑏𝑏𝑚𝑚𝑚𝑚𝑙𝑙 𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙)
× 100% (3) 

3. Results and discussions 

As explained in 2.1, a pair of one source building and one target building is used in each prediction 

task, and 8080 (404×20) tasks in total are performed. The results are analyzed and compared to 

obtain more generic conclusions regarding the applicability and performance of transfer learning 



in building energy prediction, taking into account the volumes of source data and target data, 

different building locations, scales, and usages. Performance indicators used in this research 

include Mean Absolute Percentage Error (MAPE) and Mean Square Error (MSE). MAPE 

expresses average absolute error as a percentage, whereas MSE measures the average of the 

squares of the errors. MAPE and MSE are calculated as by Eq. (4) and Eq. (5), respectively. 

MAPE =
1
𝑁𝑁
��

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�
𝑦𝑦𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1

(4)
 

 

MSE =
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑁𝑁

𝑖𝑖=1

(5) 

where 𝑦𝑦𝑖𝑖 is the actual energy consumption, 𝑦𝑦𝚤𝚤�  is the predicted energy consumption, and N is the 

number of observations. 

3.1 The effects of transfer learning  

To test the effects of transfer learning on the model performance, the data volumes of source 

dataset for pre-training, target train dataset and target test dataset are set at 20, 2 and 20 days, 

respectively, the performance of the 8084 models developed for 20 target buildings without and 

with transfer learning was compared in Fig.3. The horizontal axis represents the 20 target buildings. 

The red points in Fig.3-a represent the accuracy of models developed using only the target 2-day 

train dataset and without using transfer learning, which serves as the baseline cases. In most 

baseline cases, the models’ performance is undesirable, with MAPE higher than 50%. The 

boxplots represent the performance of the models of the 20 target buildings, which are pre-trained 

by source datasets from 404 sources buildings and then trained/fine-tuned by the target train data 

by adopting transfer learning. Each boxplot (or vertical column in the figure) represents the 404 



models of the corresponding target building (shown on the x-axis). Remarkable improvements in 

prediction accuracy can be seen after applying transfer learning. For every target building, the 

average model performance of all 404 cases is calculated and shown in Table.2. For 13 target 

buildings, the average MAPE is lower than 10%, and the average MAPE for target building 7 and 

15 are 13% and 12% respectively, which are very close to 10%.  

To better investigate the influences of transfer learning, the prediction accuracy of cases using 

transfer learning is normalized by the accuracy of the corresponding baseline case. Fig.3.b 

provides the normalized results. As can be seen from the figure, most source and target building 

pairs can help improve the prediction performance. And the negative transfer phenomenon only 

occurs for three target buildings. These results suggest that when the available training data is 

somewhat limited, the mechanism of transfer learning works well in most source-target building 

pairs. In such cases, the effects of weight initialization outperform the impact of data distribution 

differences. 

 

Fig.3 (a) Model performance of different source-target building pairs 

(b) Normalized model performance (by baseline cases) 

Table 2. Model performance with and without using transfer learning 



Target building Performance without 
transfer learning (MAPE) 

Performance with transfer 
learning (MAPE) 

1 26% 9% 
2 99% 8% 
3 125% 8% 
4 95% 9% 
5 7% 6% 
6 71% 46% 
7 136% 13% 
8 447% 7% 
9 105% 37% 
10 54% 42% 
11 375% 929% 
12 16% 6% 
13 16% 3% 
14 52% 6% 
15 147% 12% 
16 11% 4% 
17 77% 2% 
18 30% 44% 
19 27% 6% 
20 51% 5% 

3.2 The effects of train data volume 

When the available data from target building increases, the model performances in terms of 

normalized MAEP are shown in Fig.4. The twenty black polylines in the figure represent the 

average MAPE (normalized by baseline cases) of all source-target building pairs for twenty target 

buildings. And the green line shows the overall average prediction accuracy of the 8040 models 

when using different train data volumes, as indicated on the x-axis. When the volume of training 

dataset increases, transfer learning still shows a positive contribution to the prediction task, but the 

proportion of improvement, which is the model using transfer learning over the model without 

using transfer learning, shows a gradual decline. Fig.5 presents the negative transfer ratio with 

different train dataset volume. An overall slight uptrend of the negative transfer ratio can be 

observed as the volume of the train dataset increases. The most likely cause of the aforementioned 



phenomenon is that, when the train data volume is small, the pre-trained dataset provides 

somewhat reasonable weights and biases for the neural network (the weight initialization process); 

when the train data volume increases, the difference of the data distribution between the source 

dataset and target dataset plays an increasingly important role, which negatively influences the 

prediction accuracy. In general, the less available training data, the better the effect of transfer 

learning. 

 

Fig.4 Effect of transfer learning with different train data sample 



 

Fig.5 Negative transfer ratio with different train data sample 

3.3 The effects of pre-train dataset volume 

The impact of different pre-train data samples (train dataset are still retrieved come from 2 days) 

is studied in this chapter. The model performance, normalized performance by baseline cases and 

negative transfer ratio with 10 days, 20 days, and 30 days’ pre-train data are presented in Table.3, 

Fig.6 and Fig.7, respectively.  It can be seen that when the pre-train data sample increases from 10 

days to 30 days, the average prediction accuracy is slightly increased, and the negative ratio shows 

a slight drop. The consistency of the source dataset may have been an important influential factor; 

thus, the model cannot learn much more new knowledge from the increased pre-train data.  

Overall, this difference is rather small, compared to the performance difference with and without 

transfer learning. When the target building has limited training data, transfer learning can achieve 

great accuracy improvement without using much pre-train data. It is worth mentioning that this 

generalization of this conclusion remains uncertain. 

Table 3. Model performance with different pre-train dataset volumes (train data sample: 2 days)  

Target building Without transfer learning 10 days 20 days 30 days 



1 0.26 0.1 0.09 0.09 

2 0.99 0.08 0.08 0.08 

3 1.25 0.09 0.08 0.08 

4 0.95 0.09 0.09 0.09 

5 0.07 0.07 0.06 0.06 

6 0.71 0.47 0.46 0.46 

7 1.36 0.14 0.13 0.13 

8 4.47 0.71 0.7 0.7 

9 1.05 0.37 0.37 0.37 

10 0.54 0.44 0.42 0.42 

11 37.5 9.84 9.29 9.29 

12 0.16 0.06 0.06 0.06 

13 0.16 0.03 0.03 0.03 

14 0.52 0.06 0.06 0.06 

15 1.47 0.12 0.12 0.12 

16 0.11 0.04 0.04 0.04 

17 0.77 0.02 0.02 0.02 

18 0.3 0.05 0.44 0.04 

19 0.27 0.06 0.06 0.06 

20 0.51 0.05 0.05 0.05 

 

Fig.6 Model performance (MAPE) with different pre-train data volume (train data volume: 2 days) 



 

Fig.7 Negative transfer ratio with different pre-train data volume (train data volume: 2 days) 

3.4 The effects of different building features 

In this section, the impact of different building features, including usage, industry, outdoor dry-

bulb temperature, and relative humidity, on the performance of transfer learning, will be analyzed 

both individually and collectively.  

In this study, for particular target building, the source-target building pair producing the most 

accurate model using transfer learning is considered the most suitable source-target building pair. 

In other words, the knowledge (i.e., the BPNN structure, as explained in Section 2.3) learned from 

the source building is most valuable in developing the BPNN model for the target buildings using 

transfer learning. The source-target building pairs producing the worst accurate model using 

transfer learning can be defined as the most unsuitable source-target building pair. The top 3 

suitable and unsuitable source-target building pairs are summarized in Table.4 and Table.5 (the 

building names follow their usage). From Table.4, it can be found that for eight target buildings 

(marked bold), using their own data as the source data to pre-train the BPNN model can achieve 

the highest accuracy improvement. This finding validates the logical rationality of transfer 



learning’s mechanism, as no other building has a more similar data distribution as the target 

building than its own.  

For top3 unsuitable source-target building pairs, interestingly, the dormitory buildings take up a 

large share in Table 5. To dig out the underlying causes, the energy profiles of dormitory buildings 

are analyzed. Fig.8 provides several examples of the typical dormitory energy profile. The 

dormitory energy consumption patterns are very different from other types of buildings. The peak 

and valley hours of the load curve are in the mid-night and noontime, respectively. The knowledge 

learned from this type of energy profile can easily mislead the model for buildings with 

conventional load curves, whose peak and valley hours are at noon and night, respectively.  

 

 

 

Table 4. Top3 suitable source-target building pairs  

Target building OF-1 OF-2 OF-3 OF-4 OF-5 
Top1 UL-84 OF-2 OF-3 UL-73 UL-82 
Top2 UL-68 UL-95 UL-68 UL-76 UL-64 
Top3 OF-1 UL-88 UL-5 UL-65 UL-78 
Target building DO-1 DO-2 DO-3 DO-4 DO-5 
Top1 OF-142 UL-85 UL-78 UL-76 DO-5 
Top2 UL-73 UL-93 UL-70 UL-69 UL-65 
Top3 UL-84 UL-61 UL-81 UL-74 UL-88 
Target building PC-1 PC-2 PC-3 PC-4 PC-5 
Top1 UL-74 PC-2 PC-3 UL-74 UL-5 
Top2 UL-90 PC-27 UL-74 UL-95 PC-93 
Top3 UL-95 UL-65 OF-87 PC-4 PC-71 
Target building UL-1 UL-2 UL-3 UL-4 UL-5 
Top1 UL-67 UL-95 UL-86 UL-93 UL-5 
Top2 UL-80 UL-60 UL-5 UL-69 UL-68 
Top3 UL-78 UL-68 UL-74 UL-62 UL-93 



 

Table 5. Top3 unsuitable source-target building pairs 

Target building OF-1 OF-2 OF-3 OF-4 OF-5 
Top1 DO-19 DO-56 DO-26 UL-54 OF-34 
Top2 DO-49 DO-63 UL-54 OF-135 PC-75 
Top3 PC-22 DO-8 PC-49 UL-4 OF-119 
Target building DO-1 DO-2 DO-3 DO-4 DO-5 
Top1 DO-58 DO-20 DO-51 DO-66 OF-46 
Top2 UL-24 DO-51 DO-58 UL-21 DO-17 
Top3 DO-63 DO-49 DO-56 DO-51 DO-49 
Target building PC-1 PC-2 PC-3 PC-4 PC-5 
Top1 UL-29 DO-37 OF-66 UL-55 DO-43 
Top2 UL-4 DO-24 DO-43 OF-75 UL-10 
Top3 UL-24 OF-23 DO-37 PC-73 OF-109 
Target building UL-1 UL-2 UL-3 UL-4 UL-5 
Top1 UL-80 DO-58 DO-63 DO-43 DO-56 
Top2 OF-116 DO-56 DO-56 OF-112 OF-33 
Top3 OF-116 DO-39 UL-24 PC-8 OF-76 

 

 

 
Fig.8 Typical dormitory energy consumption profile 



 
Fig.9 Impact of same/different usage between source and target building 

 
Fig.10 Impact of same/different subindustry between source and target building 



 
Fig.11 Model performance under source data of different building scale 

 



 
Fig.12 Model performance under source data of different outdoor dry-bulb temperature 

 

 

 



 
Fig.13 Model performance under source data of different relative humidity 

 

 

 

 

 



 

 

Table 6. Kendall coefficient of different building features 

Target building Building type Industry Scale Temperature Humidity Euclidean distance 

1 0.07 0.03 -0.04 -0.06 0.06 0.11 

2 0.06 -0.18 0.02 -0.07 -0.07 -0.02 

3 0.18 0.11 -0.02 -0.05 -0.03 0.24 

4 0.19 -0.01 -0.11 0.02 0.02 0.17 

5 0.06 0.04 -0.07 -0.02 0.04 0.05 

6 0.32 0.32 0.13 -0.08 -0.16 0.20 

7 0.39 0.39 0.1 -0.12 -0.18 0.17 

8 0.28 0.27 0.08 -0.06 -0.08 0.14 

9 0.22 0.21 0.11 -0.08 -0.08 0.21 

10 0.39 0.38 0.14 -0.12 -0.19 0.38 

11 -0.27 -0.24 0.12 -0.08 -0.19 0.01 

12 -0.02 0.11 -0.08 -0.02 0.1 0 

13 0.18 0.08 0.02 -0.02 0.04 0.04 

14 0.01 0.13 -0.06 -0.02 0.08 -0.04 

15 0.06 0.08 -0.09 0.02 0.09 -0.01 

16 -0.01 0.03 -0.03 -0.05 0.07 -0.02 

17 -0.01 -0.09 -0.05 0.01 0 0.10 

18 0.1 0 -0.02 -0.09 0.06 0.01 

19 0.06 0.03 0 0.01 0.01 0.05 

20 -0.04 -0.21 -0.02 -0.07 -0.09 0.15 

 

The impacts of different building features on transfer learning performance are analyzed, and the 

results are presented in Fig.9–13. In Fig.9 and Fig.10, the performance of models trained by source-

target building pairs of same/different usage and subindustry is shown. In Fig.11, the red lines 

represent the building scale of the target building and the black points represent the scale of the 

source building. In Fig.12 and Fig.13, the average value (within the sample dataset) of outdoor 

dry-bulb temperature and relative humidity are categorized into 5 subsets. The red lines represent 

the target buildings’ outdoor dry-bulb temperature (or relative humidity).  



For each target building, the mean MAPE of models trained by source buildings of the same 

usage/subindustry is normalized by the mean MAPE of different usage/subindustry. It can be seen 

that, in most cases, the source-target building pairs of the same usage (or subindustry) get better 

results compared to the building pairs of different usage (or subindustry). However, the influence 

of source-target building pairs’ outdoor climates seems relatively small. And the Kendall 

correlation coefficients of different building features are calculated and presented in Table 6. The 

Kendall rank correlation coefficient, also referred to Kendall’s tau coefficient, is a statistic used to 

measure the ordinal association between two measure quantities (Kendall 1938). The Kendall τ 

coefficient can be determined using Eq. (6). 

τ =
(𝑚𝑚𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑜𝑜𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚𝑡𝑡 𝑝𝑝𝑚𝑚𝑚𝑚𝑁𝑁𝑡𝑡) − (𝑚𝑚𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑏𝑏𝑚𝑚𝑡𝑡𝑐𝑐𝑜𝑜𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚𝑡𝑡 𝑝𝑝𝑚𝑚𝑚𝑚𝑁𝑁𝑡𝑡)

𝑚𝑚(𝑚𝑚 − 1)
2

(6) 

The coefficient must be in the range [-1,1]. If the agreement between the two rankings is perfect 

(i.e., the two rankings are the same), the coefficient has value 1. If the disagreement between the 

two rankings is perfect (i.e., one ranking is the reverse of the other), the coefficient has value −1. 

If two rankings are independent, the coefficient is expected to be approximately zero.  

It can be summarized from the aforementioned results, among these five features, the building’s 

primary usage and industry show the most significant influence on the effect of transfer learning. 

That is, if the source dataset has the same building usage (or subindustry) as the target building 

dataset, the implementation of transfer learning may bring greater accuracy improvement. This 

phenomenon is easy to explain that buildings with the same usage have a higher probability of 

having similar energy consumption patterns. However, no significant and consistent correlation 

was found between the other three features and the transfer learning-based model accuracy. This 



may conflict with traditional domain expertise that the weather condition and building scale all 

have substantial impacts on the building energy consumption. A possible explanation is that the 

building energy consumption data in this study are all normalized to adjust the values in different 

scales. The weather condition and building scale affect the energy profile more in terms of scale 

(absolute magnitude), while the building usage and industry affect the energy profile more in terms 

of shape (pattern). Therefore, the effects of these factors on transfer learning may be insignificant. 

Based on the individual and general result analysis, it seems that the similarity of the load profile 

is the most influential factor in the effect of transfer learning. To further validate this assumption, 

the Euclidean distance between the source building and target building’s average energy 

consumption profile is calculated by Eq. (7). 

Euclidean distance =  ���𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 − 𝐸𝐸𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡,𝑡𝑡�
2

24

𝑡𝑡=1

(7) 

The Kendall correlation coefficient between the energy profile Euclidean distance and the transfer 

learning-based model accuracy is shown in Table 6. The results show that, for more than one-third 

of the target buildings, the model pre-trained by more similar source building energy consumption 

profiles can lead to higher accuracy.   

4. Conclusions 

Building energy consumption prediction plays a crucial role in evaluating different building design 

alternatives, developing energy efficiency-optimal control and diagnosis strategies, and 

developing the demand and supply management in power grids. For information-poor buildings 

such as new-built buildings with limited historical data, or already-built buildings with under-



developed building automation systems, the energy consumption prediction task remains a 

significant challenge. This paper implemented transfer learning to improve energy consumption 

prediction accuracy for a target building with limited available data, with the help of additional 

data from other buildings. A three-layer BPNN model is developed and tested using a large public 

benchmark dataset – Building Data Genome Project. The effects of transfer learning with different 

source building data samples, different target building data samples, different source-target 

building pairs are investigated and compared. To sum up, the contributions of this study are 

summarized as follows: 1) When the available training data is very limited, transfer learning can 

increase the prediction accuracy with most source datasets, no matter the sources buildings are 

similar or not. 2) The less the available training data are, the more accuracy improvement 

(compared with the baseline model) transfer learning can bring about to building energy prediction 

modeling; 3) When the target building has limited training data, increasing pre-train data samples 

from 10 days to 30 days make little difference; 4) The most influential building features on the 

transfer learning are the building usage and industry (which has the most significant effect on the 

building energy consumption pattern), compared to outdoor dry-bulb temperature, relative 

humidity, and building scale. When selecting the information-rich buildings as source buildings, 

it is recommended to pay attention to the building usage and industry.  
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