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Abstract

Accurate building energy prediction is vital to develop optimal control strategies to enhance
building energy efficiency and energy flexibility. In recent years, the data-driven approach based
on machine learning algorithms have been widely adopted for building energy prediction due to
the availability of massive data in building automation systems (BASs), which automatically
collect and store real-time building operational data. For new buildings and most existing buildings
without installing advanced BASs, there is a lack of sufficient data to train data-driven predictive
models. Transfer learning is a promising method to develop accurate and reliable data-driven
building energy prediction models with limited training data by taking advantage of the rich
data/knowledge obtained from other buildings. Few studies focused on the influences of source
building datasets, pre-training data volume, and training data volume on the performance of the
transfer learning method. The present study aims to develop a transfer learning-based ANN model

for one-hour ahead building energy prediction to fill this research gap. Around 400 non-residential



buildings’ data from the open-source Building Genome Project are used to test the proposed
method. Extensive analysis demonstrates that transfer learning can effectively improve the
accuracy of BPNN-based building energy models for information-poor buildings with very limited
training data. The most influential building features which influence the effectiveness of transfer
learning are found to be building usage and industry. The research outcomes can provide guidance
for implementation of transfer learning, especially in selecting appropriate source buildings and

datasets for developing accurate building energy prediction models.
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1. Introduction

Building construction and operations account for 36% of the global final energy use and 39% of
energy-related carbon dioxide (CO2) emissions in 2017 (IEA 2018). In China, the building sector
represents nearly 16% of the total global final energy consumption in buildings (IEA 2015). In
Hong Kong, buildings are responsible for over 90% of electricity use in 2017 (EMSD 2019), which
are the primary users in power grids and significantly influence the supply-demand balance and
grid reliability. Building energy prediction models are widely used in evaluating building design
alternatives (Asadi et al. 2014), developing energy efficient optimal control and diagnosis
strategies (Li and Wen 2014), and developing the demand and supply management in power grids
(Xue et al. 2014). Building energy prediction is an essential basis for decision making towards
reducing building energy consumption and CO emissions as well as enhancing the building-grid

eco-system.

Two basic approaches have been developed for building energy prediction, i.e., physical-based

and data-driven approaches (Amasyali and EI-Gohary 2018). The physical modeling is mainly



based on engineering methods and dedicated building energy simulation tools, which usually
requires detailed information and in-depth understanding of the building and building energy
systems. With the dramatic increase in the scales and complexity of modern buildings, the
physical-based modeling approach become increasingly time-consuming and computationally
heavy, which make it unfavorable for online optimization and control applications. As a result, the
data-driven approach based on building operation data and intelligent machine learning algorithms
is attracting increasing interests (Fan, Sun et al., 2019; Fan, Wang et al., 2019; Fan et al., 2017,
Rahman et al., 2018). However, most research and applications on data-driven prediction mainly
deal with information-rich buildings with sufficient high-quality building operational data to train
the data-driven models (Amasyali and EI-Gohary 2018). Without sufficient training data, the
performance of the data-driven models may significantly deteriorate, owing to under-fitting or
local minimum (Goodfellow et al. 2016). For those information-poor buildings, such as new
buildings with very little historical data, and existing buildings without installing advanced
building automation systems (BASS), the development of data-driven energy prediction models

remains a big challenge.

Transfer learning is a machine learning technique initially motivated by difficulties in accessing a
large amount of training data for training models in some applications, such as image recognition
and natural language processing (Silver et al. 2013). Transfer learning aims at applying knowledge
gained in solving one problem (i.e., the source task) to a different but related problem (i.e., the
target task) (Weiss et al. 2016). The concept of transfer learning and related algorithms have been
widely used in many fields, including software engineering (Ma et al. 2012), voice processing (Hu
et al. 2015), image processing (Li et al. 2014), and natural language processing (Hosseinzadeh et

al. 2016). Hu et al. (2015) implemented transfer learning-based Logistic Regression (LR)



classifiers to improve mispronunciation detection performance. The shared hidden layers of this
neural network-based classifier for extracting useful speech features were pre-trained using
training data. The new LR classifier streamlined training multiple individual classifiers separately
by learning the common feature representation via the shared hidden layer. The proposed method
showed a 7.4% improvement of the precision and recall rate than the conventional model. Shin et
al. (2016) adopted transfer learning to fine-tune convolutional neural network (CNN) models pre-
trained using natural image datasets and then used the tuned/target models to classify medical
images. The target models retained the structure of the pre-trained CNN models and showed
superior in detecting some diseases. Previous research on transfer learning has proved that, if
appropriately implemented, it has the following advantages: (1) reducing the amount of training
data required for the development of the target model; (2) saving time for constructing and training

models; and (3) improving prediction performance.

In recent years, several studies have focused on applying transfer learning to data-driven building
energy prediction considering insufficient training data and taking advantage of additional datasets
from other buildings (Ribeiro et al. 2018; Hooshmand and Sharma 2019; Perera et al. 2019).
Ribeiro et al. (2018) developed a neural network model for electricity consumption prediction of
a newly built school (i.e., the target building) by transferring knowledge learned from the three
years’ data of the other four similar schools in the same area (i.e., the source buildings). There
were only one-month data available in the target building. The authors proposed a novel transfer
learning method, namely Hephaestus, to remove seasonal and trend effects, and prepare time-
independent features as model inputs. The results showed that prediction accuracy increased by up
to 11.2% using transfer learning compared with the model that was trained using the one month of

data of the target building. Hooshmand and Sharma (2019) proposed a transfer learning-based



framework for short-term electricity load forecasting. A CNN model was designed to predict the
next 24 hours of electricity demand of target building using its energy consumption data in the
past four weeks. The CNN model was pre-trained by public repository datasets which include data
of 370 different buildings (i.e., the source buildings) and then fine-tuned by four months’ data
from the target building, which showed lower error than other baseline cases. Fan et al. (2020)
proposed a transfer learning-based methodology for 24-hour ahead building energy demand
prediction. A public-available dataset composed of more than 400 different buildings was used in
this research. He tested the methodology by developing a pre-trained model using data retrieved
from 80% of the buildings, and evaluating the pre-trained model on target domain formed by the
other 20% buildings. The results showed that approximately 15% to 78% of prediction errors can

be reduced by the transfer learning-based methodology, compared with standalone models.

It is observed that previous studies on transfer learning-based building energy prediction usually
transferred the knowledge, such as model structures and parameters. The source dataset is usually
composed of, based on engineering experience, one or a small number of buildings with similar
building industry and scale and in the same climate area to the target building (Ribeiro et al. 2018),
or a great number of buildings of different scales and types (Hooshmand and Sharma 2019; Fan et
al. 2020). It is well known that building energy/electricity consumption is influenced by multiple
factors, including building design, location, usage, weather conditions, occupant behavior, energy
systems, operation strategies and etc. In principle, the more similar the source buildings are to the
target building, the better the prediction results can be obtained. Selecting sources buildings in
transfer learning based on this principle would require a substantial amount of information about
the sources buildings and the target building. However, it is not well studied in previous research

whether the knowledge learnt from source buildings, whose usages, scales and locations are



different from the target building, are valuable and transferrable to the target building, for example,
using datasets from residential buildings to pre-train the prediction model of a non-residential
building. And there are few experiences and guides on how to select source dataset for pre-training
building energy prediction models. To well leverage transfer learning for building energy
prediction model development, the guides on how to select dataset for pre-training models are in

urgent need.

This study aims to develop an ANN-based building energy model by transferring the knowledge
about energy consumption learned from information-rich buildings to buildings with limited
operational data. As Keogh and Kasetty (2003) highlighted, the contribution of many studies
would have been dwarfed by the variance that would have been observed by testing on many real-
world datasets, or the variance that would have been observed by changing minor (unstated)
implementation details. Using a large, consistent benchmark dataset to test different data-driven
and machine learning algorithms can generate more generic comparisons of accuracy, speed, and
ease-of-use, and consequently provide more convincing general conclusions. This paper tests
implement transfer learning on one open-source benchmarking dataset, the Building Data Genome
Project (Miller and Meggers 2017b). Annual energy consumption data of total 404 buildings are
used as source data separately. The knowledge about the Back Propagation Neural Network
(BPNN) models developed using the data from 404 buildings is transferred to the BPNN models
developed for the target buildings, which are assumed to have only several days’ operation data.
The influence of different building factors on the performance of transfer learning is discussed
with the aim to share experiences and provide useful guide in selecting proper source buildings

and source datasets in using transfer learning for building energy prediction.



The remaining part of the paper is constructed as follows. Chapter 2 introduces the research outline
and gives a brief overview of transfer learning. Chapter 3 presents the performance of ANN-based
building energy consumption prediction models, and analyses the influence of different factors

(pre-train data volume, train data volume, and building features). Chapter 4 concludes the paper.

2. Methodology

2.1 Research outline

The prediction task in this research is to predict one-hour ahead building energy consumption by
using previous 24-hour energy consumption data. This type of prediction was widely used in
building energy management and building-grid interactive management (Zhao and Magoules
2012). The benchmark database used in this research is developed by the Building Data Genome
Project (Miller and Meggers 2017b). It contains hourly electrical power consumption data and
weather data of more than four hundred non-residential buildings in America and Europe. The
buildings in this database are mainly college and primary/secondary school buildings. Brief
building information is also recorded, including its area, primary use type (e.g., office, laboratory,
classroom and dormitory) and building industry (e.g., education and government). The datasets in
this database have been used to predict building use type, performance class and operations

strategy (Miller and Meggers 2017a), and load forecasting (Nichiforov et al. 2018).

As shown in Fig.1, the research methodology consists of the following parts: 1) Using the datasets
from the information-rich buildings (i.e., source dataset) to pre-train a base model; 2) Using the
training dataset from the information-poor building (i.e., target training dataset) to fine-tune the
pre-trained model; 3) Using the test dataset from the information-poor building (i.e., target test
dataset) to validate the target model. In principle, transfer learning can work with a diversity of

predictive machine learning algorithms, like CNN (Hooshmand and Sharma 2019), RNN (Fan,



Sun et al. 2020) and LR (Hu et al. 2015), this study selects back-propagation neural network
(BPNN) to develop the prediction model considering its simplification and popularity in building
energy prediction. To fulfill the aim of this research, i.e. to investigate the influences of source
building type, scale and usage, pre-training data volume, and training data volume on the
performance of the transfer learning, a large number prediction models (i.e., n in Fig. 1) are
developed using different pairs of source and target buildings extracted from the Genome database.
The influences of multiple factors concerned on transfer learning are then analyzed based on

performance evaluation of all models.
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Fig.1 Research outline

Before the data are used to develop prediction models, they are pre-processed as shown in Fig.2,
including data cleaning, data transformation and normalization. Data cleaning methods are
implemented to detect outliers and fill missing values in order to improve data quality. After data
cleaning, data transformation methods are needed to transform the data format, for example

transferring numerical data (e.g., building type, location) into categorical data and prepare proper



data format for the next stage, since some machine learning algorithms can only deal with
categorical data. Data normalization is to eliminate the influence of the scales of data/measurement.
The min-max normalization methods, as shown in Eq. (1), is adopted in this research to adjust the
values of power consumption from buildings with different scales considering that larger buildings

have larger values of power consumption.

x; — min(x)
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- max(x) — min(x)

where x = {x4, x,, ..., x,} and y; is the normalized data of x;.
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Fig.2 Data preparation

After data are pre-processed, 404 buildings in total are selected to form the pool of source buildings,
which provide the source datasets. In addition, 20 buildings of different scales, primary usages,
and weather conditions are selected as target buildings. Their information is shown in Table 1.
These buildings are considered as information-pool buildings by assuming that only several days’

energy data are available for developing the prediction models. For each case of developing



prediction models, one source dataset is extracted from the source building dataset pool, while the
target train dataset and target test dataset are extracted from the target building dataset pool. As a
result, for each target building, 404 prediction models are developed corresponding to each source

building.

Table 1. Information of 20 target buildings

Buildin Outdoor Relative Size
g Building No.  Location Vintage Temperature Humidity )
OF-1 Phoenix, USA 1930s 17.9 41.9 6,892
OF-2 Los Angeles, USA 1960s 5.52 67.2 21,948
Office (OF)  OF-3 London, EU Pre 1100s 13 76.8 122,223
OF-4 Chicago, USA NA 0.6 60.9 14,636
OF-5 Zurich, EU NA 5.3 84.1 9,244
PC-1 New York, USA NA 11.2 73.7 8,070
Primary PC-2 New York, USA NA 7.9 79.3 8,747
Cllaléssroom PC-3 New York, USA NA 104 74.7 21,652
(PC) PC-4 New York, USA NA 7.3 76.3 10,877
PC-5 London, EU Pre 1910s 12 86 1,597
DO-1 Phoenix, USA 1960s 17.9 41.9 10,340
) DO-2 Phoenix, USA 1930s 17.9 41.9 3,051
(Dgg;“tory DO-3 New York, USA 1970s 6.9 78.8 6,100
DO-4 London, EU 1960s 13 76.8 6,181
DO-5 Chicago, USA NA 0.6 60.9 16,495
University ~ UL-L Phoenix, USA 1950s 17.9 41.9 8,480
(LStSfatofy UL-2 Phoenix, USA 2010s 17.9 41.9 30,403

UL-3 Los Angeles, USA 1960s 55 67.2 11,608



UL-4 New York, USA 1980s 6.9 78.8 6,930
UL-5 London, EU 1990s 13 76.8 7,715
Note: The average outdoor dry-bulb temperature and relative humidity within the sampling time period

2.2 Transfer learning
Transfer learning aims to improve the learner (e.g. the prediction model) in a target domain using

the knowledge from other domains and learning tasks (Weiss et al. 2016; Pan and Yang 2009).

Definition. Given a source domain Dg and a learning task Ts, a target domain Dy and a learning
task T, transfer learning aims to improve the learning of the target predictive function f(-) in Dy

using the knowledge in Dg and T, where Dg # Dy, or T # T (Weiss et al., 2016).

From the definition above, a domain D is defined as a pair D = {y, P(X)}, where y is a feature
space with n dimensions; X is a learning sample such that X = {x,,.,x,} € x, and P(X) is the
marginal is the marginal probability distribution of X. A task T is defined as T = {Y, P(Y|X)},
where Y represents the label space and P(Y|X) represents the conditional probability of Y given X.
Given a source domain D (the information-rich buildings in this research) and a corresponding
source task T (building energy consumption prediction), a target domain D; (the information-poor
building) and a target task T; (building energy consumption prediction), transfer learning aims to
learn the target conditional probability distribution P(Y;|X;) in D, with the help of knowledge

learnt from D, and T, where D, and Dy, T, and T; are not identical.

2.3 Artificial neural network
The back-propagation neural network (BPNN) was initially developed by Rumelhart et al. (1986)
as a solution to the problem of training multi-layer perceptron (MLP). In the area of building

energy consumption prediction, BPNN is one of the most popular neural network models because



of its simple architecture yet powerful problem-solving ability (Bourdeau et al. 2019). The
prediction task concerned in this study is to use the previous 24-hour building power consumption
to predict the power consumption in the next hour. Therefore, the input layer of the BPNN contains
24 nodes, corresponding to the previous 24-hour power consumption. The output layer contains
one node, i.e., the next hour power consumption. Considering the volume of the source and target
dataset, a four-layer BPNN model structure was found to be suitable. The first hidden layer
contains 24 nodes, and the second hidden layer contains 12 codes. Rectified Linear Unit (ReLU)
and Adam algorithm (Kingma and Ba 2014) are selected as the activation function and optimizer
respectively. The rectifier is an activation function defined as the positive part of its argument, as

shown in Eq. (2).

f () = max(0, x) (2)

RelLU was first introduced to develop a dynamical network by Hahnloser et al. in 2000 with strong
biological motivations and mathematical justifications (Hahnloser et al. 2000). ReLU is the most
popular activation function for deep neural networks in 2017 (Ramachandran et al. 2017). Adam
is an adaptive learning rate optimization algorithm which finds individual learning rates for each
parameter (Kingma and Ba 2014). It has several attractive benefits, including easy-to-implement,
computationally efficient and little memory requirements. And this optimization algorithm
released in Dec 2014 has been used in around 23% of papers according to a survey in 2017

(Karparthy 2017). The loss function used in network work training is the mean squared error.

2.4 Implementation strategies for transfer learning
Network-based transfer learning is one category of transfer learning (Weiss et al. 2016). The usual

network-based transfer learning approach is to train a base neural network and then copy its first



n layers to the first n layers of a target network. The remaining layers of the target network are
then randomly initialized and trained using the target train dataset in the target task. There are two
methods to handle the first n layers in the target network (Yosinski et al. 2014). The first method
is to back-propagate the errors in the target network/model into the base (copied) features to fine-
tune them to suit the target task. The second method is to freeze the transferred layers, which means
that they do not change during training in the target task. Usually, the selection of these two
methods depends on the overfitting problem (Yosinski et al. 2014). In this research, the model is
fine-tuned using the former way, considering that the number of features is rather small so that

overfitting is not a problem.

After fine-tuning, the model will be validated by the target test dataset. It is assumed that transfer
learning works well when the source domain is related or similar to the target domain because the
knowledge learned from the source domain may be applicable to the target domain due to the
relevance or similarity. However, when the source domain is not closely related or similar to the
target domain, the target model could be negatively impacted, which is the so-called negative
transfer (Weiss et al. 2016). The consequence of negative transfer is that the target model’s
prediction accuracy is lower than that of the base model trained by using only the target building

dataset. The negative transfer ratio is defined as shown in Eq. (3).

Neative t ¢ tio = Number of transfer learning cases « 100% 3)
ceative ransier fato = o4 (the number of source building pool) 0

3. Results and discussions
As explained in 2.1, a pair of one source building and one target building is used in each prediction
task, and 8080 (404x20) tasks in total are performed. The results are analyzed and compared to

obtain more generic conclusions regarding the applicability and performance of transfer learning



in building energy prediction, taking into account the volumes of source data and target data,
different building locations, scales, and usages. Performance indicators used in this research
include Mean Absolute Percentage Error (MAPE) and Mean Square Error (MSE). MAPE
expresses average absolute error as a percentage, whereas MSE measures the average of the

squares of the errors. MAPE and MSE are calculated as by Eq. (4) and Eq. (5), respectively.

N
IN =%
MAPE = —Z | | 4
N L Vi )
=1
1 N
MSE =~ (i = ) (5)
i=1

where y; is the actual energy consumption, ¥, is the predicted energy consumption, and N is the

number of observations.

3.1 The effects of transfer learning

To test the effects of transfer learning on the model performance, the data volumes of source
dataset for pre-training, target train dataset and target test dataset are set at 20, 2 and 20 days,
respectively, the performance of the 8084 models developed for 20 target buildings without and
with transfer learning was compared in Fig.3. The horizontal axis represents the 20 target buildings.
The red points in Fig.3-a represent the accuracy of models developed using only the target 2-day
train dataset and without using transfer learning, which serves as the baseline cases. In most
baseline cases, the models’ performance is undesirable, with MAPE higher than 50%. The
boxplots represent the performance of the models of the 20 target buildings, which are pre-trained
by source datasets from 404 sources buildings and then trained/fine-tuned by the target train data

by adopting transfer learning. Each boxplot (or vertical column in the figure) represents the 404



models of the corresponding target building (shown on the x-axis). Remarkable improvements in
prediction accuracy can be seen after applying transfer learning. For every target building, the
average model performance of all 404 cases is calculated and shown in Table.2. For 13 target
buildings, the average MAPE is lower than 10%, and the average MAPE for target building 7 and

15 are 13% and 12% respectively, which are very close to 10%.

To better investigate the influences of transfer learning, the prediction accuracy of cases using
transfer learning is normalized by the accuracy of the corresponding baseline case. Fig.3.b
provides the normalized results. As can be seen from the figure, most source and target building
pairs can help improve the prediction performance. And the negative transfer phenomenon only
occurs for three target buildings. These results suggest that when the available training data is
somewhat limited, the mechanism of transfer learning works well in most source-target building

pairs. In such cases, the effects of weight initialization outperform the impact of data distribution

differences.
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Fig.3 (a) Model performance of different source-target building pairs
(b) Normalized model performance (by baseline cases)

Table 2. Model performance with and without using transfer learning



. Performance without Performance with transfer
Target building

transfer learning (MAPE) learning (MAPE)

1 26% 9%
2 99% 8%
3 125% 8%
4 95% 9%
5 7% 6%
6 71% 46%
7 136% 13%
8 447% 7%
9 105% 3%
10 54% 42%
11 375% 929%
12 16% 6%
13 16% 3%
14 52% 6%
15 147% 12%
16 11% 4%
17 7% 2%
18 30% 44%
19 27% 6%
20 51% 5%

3.2 The effects of train data volume

When the available data from target building increases, the model performances in terms of
normalized MAEP are shown in Fig.4. The twenty black polylines in the figure represent the
average MAPE (normalized by baseline cases) of all source-target building pairs for twenty target
buildings. And the green line shows the overall average prediction accuracy of the 8040 models
when using different train data volumes, as indicated on the x-axis. When the volume of training
dataset increases, transfer learning still shows a positive contribution to the prediction task, but the
proportion of improvement, which is the model using transfer learning over the model without
using transfer learning, shows a gradual decline. Fig.5 presents the negative transfer ratio with
different train dataset volume. An overall slight uptrend of the negative transfer ratio can be

observed as the volume of the train dataset increases. The most likely cause of the aforementioned



phenomenon is that, when the train data volume is small, the pre-trained dataset provides
somewhat reasonable weights and biases for the neural network (the weight initialization process);
when the train data volume increases, the difference of the data distribution between the source
dataset and target dataset plays an increasingly important role, which negatively influences the
prediction accuracy. In general, the less available training data, the better the effect of transfer

learning.
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3.3 The effects of pre-train dataset volume

The impact of different pre-train data samples (train dataset are still retrieved come from 2 days)
is studied in this chapter. The model performance, normalized performance by baseline cases and
negative transfer ratio with 10 days, 20 days, and 30 days’ pre-train data are presented in Table.3,
Fig.6 and Fig.7, respectively. It can be seen that when the pre-train data sample increases from 10
days to 30 days, the average prediction accuracy is slightly increased, and the negative ratio shows
a slight drop. The consistency of the source dataset may have been an important influential factor;

thus, the model cannot learn much more new knowledge from the increased pre-train data.

Overall, this difference is rather small, compared to the performance difference with and without
transfer learning. When the target building has limited training data, transfer learning can achieve
great accuracy improvement without using much pre-train data. It is worth mentioning that this

generalization of this conclusion remains uncertain.

Table 3. Model performance with different pre-train dataset volumes (train data sample: 2 days)

Target building  Without transfer learning 10 days 20 days 30 days




1 0.26 0.1 0.09 0.09
2 0.99 0.08 0.08 0.08
3 1.25 0.09 0.08 0.08
4 0.95 0.09 0.09 0.09
5 0.07 0.07 0.06 0.06
6 0.71 0.47 0.46 0.46
7 1.36 0.14 0.13 0.13
8 4.47 0.71 0.7 0.7
9 1.05 0.37 0.37 0.37
10 0.54 0.44 0.42 0.42
11 375 9.84 9.29 9.29
12 0.16 0.06 0.06 0.06
13 0.16 0.03 0.03 0.03
14 0.52 0.06 0.06 0.06
15 1.47 0.12 0.12 0.12
16 0.11 0.04 0.04 0.04
17 0.77 0.02 0.02 0.02
18 0.3 0.05 0.44 0.04
19 0.27 0.06 0.06 0.06
20 0.51 0.05 0.05 0.05
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Fig.6 Model performance (MAPE) with different pre-train data volume (train data volume: 2 days)
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Fig.7 Negative transfer ratio with different pre-train data volume (train data volume: 2 days)

3.4 The effects of different building features
In this section, the impact of different building features, including usage, industry, outdoor dry-
bulb temperature, and relative humidity, on the performance of transfer learning, will be analyzed

both individually and collectively.

In this study, for particular target building, the source-target building pair producing the most
accurate model using transfer learning is considered the most suitable source-target building pair.
In other words, the knowledge (i.e., the BPNN structure, as explained in Section 2.3) learned from
the source building is most valuable in developing the BPNN model for the target buildings using
transfer learning. The source-target building pairs producing the worst accurate model using
transfer learning can be defined as the most unsuitable source-target building pair. The top 3
suitable and unsuitable source-target building pairs are summarized in Table.4 and Table.5 (the
building names follow their usage). From Table.4, it can be found that for eight target buildings
(marked bold), using their own data as the source data to pre-train the BPNN model can achieve

the highest accuracy improvement. This finding validates the logical rationality of transfer



learning’s mechanism, as no other building has a more similar data distribution as the target

building than its own.

For top3 unsuitable source-target building pairs, interestingly, the dormitory buildings take up a
large share in Table 5. To dig out the underlying causes, the energy profiles of dormitory buildings
are analyzed. Fig.8 provides several examples of the typical dormitory energy profile. The
dormitory energy consumption patterns are very different from other types of buildings. The peak
and valley hours of the load curve are in the mid-night and noontime, respectively. The knowledge
learned from this type of energy profile can easily mislead the model for buildings with

conventional load curves, whose peak and valley hours are at noon and night, respectively.

Table 4. Top3 suitable source-target building pairs

Target building OF-1 OF-2 OF-3 OF-4 OF-5
Topl UL-84 OF-2 OF-3 UL-73 UL-82
Top2 UL-68 UL-95 UL-68 UL-76 UL-64
Top3 OF-1 UL-88 UL-5 UL-65 UL-78
Target building DO-1 DO-2 DO-3 DO-4 DO-5
Topl OF-142 UL-85 UL-78 UL-76 DO-5
Top2 UL-73 UL-93 UL-70 UL-69 UL-65
Top3 UL-84 UL-61 UL-81 UL-74 UL-88
Target building PC-1 PC-2 PC-3 PC-4 PC-5
Topl UL-74 PC-2 PC-3 UL-74 UL-5
Top2 UL-90 PC-27 UL-74 UL-95 PC-93
Top3 UL-95 UL-65 OF-87 PC-4 PC-71
Target building UL-1 UL-2 UL-3 uL-4 UL-5
Topl UL-67 UL-95 UL-86 UL-93 UL-5
Top2 UL-80 UL-60 UL-5 UL-69 UL-68

Top3 UL-78 UL-68 UL-74 UL-62 UL-93




Table 5. Top3 unsuitable source-target building pairs

Target building OF-1 OF-2 OF-3 OF-4 OF-5
Topl DO-19 DO-56 DO-26 UL-54 OF-34
Top2 DO-49 DO-63 UL-54 OF-135 PC-75
Top3 PC-22 DO-8 PC-49 UL-4 OF-119
Target building DO-1 DO-2 DO-3 DO-4 DO-5
Topl DO-58 DO-20 DO-51 DO-66 OF-46
Top2 UL-24 DO-51 DO-58 UL-21 DO-17
Top3 DO-63 DO-49 DO-56 DO-51 DO-49
Target building PC-1 PC-2 PC-3 PC-4 PC-5
Topl UL-29 DO-37 OF-66 UL-55 DO-43
Top2 UL-4 DO-24 DO-43 OF-75 UL-10
Top3 UL-24 OF-23 DO-37 PC-73 OF-109
Target building uUL-1 UL-2 UL-3 uL-4 UL-5
Topl UL-80 DO-58 DO-63 DO-43 DO-56
Top2 OF-116 DO-56 DO-56 OF-112 OF-33
Top3 OF-116 DO-39 UL-24 PC-8 OF-76
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Fig.8 Typical dormitory energy consumption profile
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Table 6. Kendall coefficient of different building features

Target building ~ Building type  Industry Scale  Temperature Humidity Euclidean distance

1 0.07 0.03 -0.04  -0.06 0.06 0.11
2 0.06 -0.18 0.02 -0.07 -0.07 -0.02
3 0.18 0.11 -0.02  -0.05 -0.03 0.24
4 0.19 -0.01 -0.11  0.02 0.02 0.17
5 0.06 0.04 -0.07  -0.02 0.04 0.05
6 0.32 0.32 0.13 -0.08 -0.16 0.20
7 0.39 0.39 0.1 -0.12 -0.18 0.17
8 0.28 0.27 0.08 -0.06 -0.08 0.14
9 0.22 0.21 0.11 -0.08 -0.08 0.21
10 0.39 0.38 0.14 -0.12 -0.19 0.38
11 -0.27 -0.24 0.12 -0.08 -0.19 0.01
12 -0.02 0.11 -0.08  -0.02 0.1 0

13 0.18 0.08 0.02 -0.02 0.04 0.04
14 0.01 0.13 -0.06  -0.02 0.08 -0.04
15 0.06 0.08 -0.09  0.02 0.09 -0.01
16 -0.01 0.03 -0.03  -0.05 0.07 -0.02
17 -0.01 -0.09 -0.05 0.01 0 0.10
18 0.1 0 -0.02 -0.09 0.06 0.01
19 0.06 0.03 0 0.01 0.01 0.05
20 -0.04 -0.21 -0.02  -0.07 -0.09 0.15

The impacts of different building features on transfer learning performance are analyzed, and the
results are presented in Fig.9-13. In Fig.9 and Fig.10, the performance of models trained by source-
target building pairs of same/different usage and subindustry is shown. In Fig.11, the red lines
represent the building scale of the target building and the black points represent the scale of the
source building. In Fig.12 and Fig.13, the average value (within the sample dataset) of outdoor
dry-bulb temperature and relative humidity are categorized into 5 subsets. The red lines represent

the target buildings’ outdoor dry-bulb temperature (or relative humidity).



For each target building, the mean MAPE of models trained by source buildings of the same
usage/subindustry is normalized by the mean MAPE of different usage/subindustry. It can be seen
that, in most cases, the source-target building pairs of the same usage (or subindustry) get better
results compared to the building pairs of different usage (or subindustry). However, the influence
of source-target building pairs’ outdoor climates seems relatively small. And the Kendall
correlation coefficients of different building features are calculated and presented in Table 6. The
Kendall rank correlation coefficient, also referred to Kendall’s tau coefficient, is a statistic used to
measure the ordinal association between two measure quantities (Kendall 1938). The Kendall t

coefficient can be determined using Eq. (6).

_ (number of concordant pairs) — (number of discordant pairs)

t= nn-—1) (6)

2

The coefficient must be in the range [-1,1]. If the agreement between the two rankings is perfect
(i.e., the two rankings are the same), the coefficient has value 1. If the disagreement between the
two rankings is perfect (i.e., one ranking is the reverse of the other), the coefficient has value —1.

If two rankings are independent, the coefficient is expected to be approximately zero.

It can be summarized from the aforementioned results, among these five features, the building’s
primary usage and industry show the most significant influence on the effect of transfer learning.
That is, if the source dataset has the same building usage (or subindustry) as the target building
dataset, the implementation of transfer learning may bring greater accuracy improvement. This
phenomenon is easy to explain that buildings with the same usage have a higher probability of
having similar energy consumption patterns. However, no significant and consistent correlation

was found between the other three features and the transfer learning-based model accuracy. This



may conflict with traditional domain expertise that the weather condition and building scale all
have substantial impacts on the building energy consumption. A possible explanation is that the
building energy consumption data in this study are all normalized to adjust the values in different
scales. The weather condition and building scale affect the energy profile more in terms of scale
(absolute magnitude), while the building usage and industry affect the energy profile more in terms

of shape (pattern). Therefore, the effects of these factors on transfer learning may be insignificant.

Based on the individual and general result analysis, it seems that the similarity of the load profile
is the most influential factor in the effect of transfer learning. To further validate this assumption,
the Euclidean distance between the source building and target building’s average energy

consumption profile is calculated by Eq. (7).

24
Euclidean distance = Z(Esource,t - Etarget,t)z (7)

t=1

The Kendall correlation coefficient between the energy profile Euclidean distance and the transfer
learning-based model accuracy is shown in Table 6. The results show that, for more than one-third
of the target buildings, the model pre-trained by more similar source building energy consumption

profiles can lead to higher accuracy.

4. Conclusions

Building energy consumption prediction plays a crucial role in evaluating different building design
alternatives, developing energy efficiency-optimal control and diagnosis strategies, and
developing the demand and supply management in power grids. For information-poor buildings

such as new-built buildings with limited historical data, or already-built buildings with under-



developed building automation systems, the energy consumption prediction task remains a
significant challenge. This paper implemented transfer learning to improve energy consumption
prediction accuracy for a target building with limited available data, with the help of additional
data from other buildings. A three-layer BPNN model is developed and tested using a large public
benchmark dataset — Building Data Genome Project. The effects of transfer learning with different
source building data samples, different target building data samples, different source-target
building pairs are investigated and compared. To sum up, the contributions of this study are
summarized as follows: 1) When the available training data is very limited, transfer learning can
increase the prediction accuracy with most source datasets, no matter the sources buildings are
similar or not. 2) The less the available training data are, the more accuracy improvement
(compared with the baseline model) transfer learning can bring about to building energy prediction
modeling; 3) When the target building has limited training data, increasing pre-train data samples
from 10 days to 30 days make little difference; 4) The most influential building features on the
transfer learning are the building usage and industry (which has the most significant effect on the
building energy consumption pattern), compared to outdoor dry-bulb temperature, relative
humidity, and building scale. When selecting the information-rich buildings as source buildings,

it is recommended to pay attention to the building usage and industry.
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