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Abstract 

Buildings have a significant impact on global sustainability. During the past decades, 

a wide variety of studies have been conducted throughout the building lifecycle for 

improving the building performance. Data-driven approach has been widely adopted 

owing to less detailed building information required and high computational 

efficiency for online applications. Recent advances in information technologies and 

data science have enabled convenient access, storage, and analysis of massive on-site 

measurements, bringing about a new big-data-driven research paradigm. This paper 

presents a critical review of data-driven methods, particularly those methods based on 

larger datasets, for building energy modeling and their practical applications for 

improving building performances. This paper is organized based on the four essential 

phases of big-data-driven modeling, i.e., data preprocessing, model development, 

knowledge post-processing, and practical applications throughout the building 

lifecycle. Typical data analysis and application methods have been summarized and 

compared at each stage, based upon which in-depth discussions and future research 

directions have been presented. This review demonstrates that the insights obtained 

from big building data can be extremely helpful for enriching the existing knowledge 

repository regarding building energy modeling. Furthermore, considering the 

ever-increasing development of smart buildings and IoT-driven smart cities, the big 

data-driven research paradigm will become an essential supplement to existing 

scientific research methods in the building sector. 
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1 Introduction 

Buildings represent a significant amount of total energy consumption in the world. 

According to the World Energy Balances (International Energy Agency (IEA), 2019), 

the building sector accounts for more than 30% of the final energy consumption 

globally and contributes to nearly 40% of global carbon-dioxide emissions. Energy 

consumption and carbon emissions are expected to continue increasing in upcoming 

years (IEA, 2019). As such, building energy performance modeling has proven to be 

an essential technique for evaluation and optimization of building design and 

operation (Harish & Kumar, 2016), thus improving the management of building 

energy system. 

Traditional physics-based building performance simulation (BPS) has been well 

researched and developed over the past 40 years (Foucquier et al., 2013), and widely 

applied to the assessment and optimization of building energy system design (Attia et 

al., 2012), the development and evaluation of operational control and optimization 

strategies of building systems (Coakley et al., 2014; Li & Wen, 2014), and policy 

making on building regulations and power grid operations (Chung, 2011). A series of 

BPS software programs have also emerged during the past several decades, including 

EnergyPlus (Crawley et al., 2001), DeST (Yan et al., 2008), and ESP-r (Strachan, 

Kokogiannakis & Macdonald, 2008). BPS typically builds upon physical principles 

and thermodynamics as well as heat and mass transfer, and relies heavily on 

meteorological data and detailed building information, including the building 
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envelope configuration and properties, the air conditioning system design and 

operational parameters, and energy-related behaviors of occupants. Although BPS has 

made significant contributions to improvements in building performance in terms of 

building energy efficiency (Fesanghary et al., 2012), indoor environments (Tian et al., 

2018), and policy effectiveness (Gao et al., 2014), it has encountered new challenges, 

facing increasingly large and complex buildings and building energy systems, along 

with a characterization of realistic occupant behaviors.  

With the development of urbanization and advancements in building technologies, 

large high-rise buildings with complicated structures and multiple functions have 

emerged in recent years. The preparation of inputs for the BPS of such buildings has 

become an overwhelming and time-consuming task (Amasyali & El-Gohary, 2018). 

Meanwhile, large buildings are served by complex energy systems to provide desired 

indoor environment (Zhao & Magoulès, 2012). The increasing complexity of the 

coupled effects of the building envelope, energy systems (e.g., air conditioning and 

thermal storage), automated control systems, and climate conditions have brought 

about a significant challenge to efficient building energy modeling (Xiao & Fan, 

2014). Moreover, occupants’ energy related behaviors are among the most essential 

factors in overall building energy performance modeling (Yan et al., 2015). Previous 

studies on building occupant behavior has improved general understanding of its 

impact on building energy (Yan et al., 2017); however, at the same time exhibits the 

complexity of building-occupant interactions (Hong et al., 2017). In this context, little 
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confirmed knowledge regarding occupant behavior in large and new buildings is 

available. For advanced building systems with feedback control, the integration of 

occupant behavior and building components has been significantly enhanced (Day & 

Gunderson, 2015), resulting in more complicated nonlinear building dynamics and 

significant difficulties in building energy performance modeling. 

The ever-growing complexity of building energy systems and continually enhanced 

interactions between occupant behavior and building components have brought major 

challenges to building performance modeling. Under these circumstances, data-driven 

approach is of particular interest as it requires little priori knowledge of building and 

energy system configurations and integrations, and the building energy behavior can 

be quickly learned from the building operation data (Amasyali & El-Gohary, 2018; 

Bourdeau et al., 2019). The development of sensing technologies and building 

automation systems has provided reliable sources for big data on building operations, 

and advanced data mining and machine learning algorithms offer significant technical 

support for big data analytics of building energy use. Big-data-driven analytics is 

attracting growing interest in terms of building energy performance modeling (Wang 

& Chen, 2019) for building design (Ahmad et al., 2018; Wei et al., 2018), operation 

control (Maddalena et al., 2020; Schmidt & Åhlund, 2018; Mehmood et al., 2019; Fan 

et al., 2018), and policy making process (Hu et al., 2020). 

In view of the challenges and perspectives mentioned above, this paper offers a 

review of big-data-driven modeling and analysis of building performance. First, the 
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general structure and framework of data-driven analytics are described, followed by a 

review of the data sources and data pre-processing techniques. After a technical 

review of big-data-driven modeling and the associated model evaluation and 

interpretation, the current applications regarding the building design, operation 

control, and policy making, are reviewed. The final section provides critical 

discussions from different perspectives and offers an outlook of the development and 

enhancement of data analytics in building energy performance analytics. 

 

 

2 Framework for data-driven model development 

A significant amount of R&D has been conducted on data-driven modeling of the 

building performance. It was found that the majority of studies have followed a 

general framework, as shown in Figure 1, which consists of four major phases. The 

first is a data pre-processing, which serves as an initial step to transforming raw data 

into useful information for predictive modeling. Typical tasks for data pre-processing 

include data cleaning, reduction, transformation, and partitioning. The second step is 

to develop data-driven models using different machine learning algorithms and 

training schemes. The main target is to develop robust and reliable models with 

sufficient capabilities in terms of modeling static and dynamic relationships. Once the 

data-driven models are constructed, a knowledge post-processing is conducted to 

evaluate the model generalization performance and its underlying inference 
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mechanisms. The insights obtained will be helpful in evaluating the validity of the 

model and extending its practicality. Finally, data-driven models are applied to 

facilitate the decision making of various building energy management tasks, such as 

fault detection and diagnosis and optimal controls. In light of this general framework, 

this paper reviews the representative studies conducted on the four phases above. 

 

Figure 1 General framework for data-driven model development 

3 Data sources and data preprocessing 

3.1 Data source 

Data are the fuel of all data-driven approaches and techniques. In existing studies on 

data-driven building energy analysis and modeling, the data sources can be classified 

into two main categories, i.e., measured and simulated data, as shown in Table 1. 
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Table 1 Data sources used in building energy modeling 

 Measured data Simulated data 

Private data 

• Experimental data 
• Monitored data 

e.g., BASs, weather 
stations, energy meters, IoT 
sensors (Bottaccioli et al. 
2017; Brundu et al. 2016), 
onsite surveys (Raftery et 
al. 2011) 

DeST (Li et al. 2009a, 2009b), 
Energyplus (Zhao & Magoulès, 2010; 
Yezioro et al. 2008; Wong et al. 2010), 
TRNSYS (Du et al. 2014), 
Ecotect (Tsanas & Xifara 2012), 

eQuest (Yezioro et al. 2008), etc 

Public-available 
data 

Great Building Energy 
Predictor Shootout (Karatasou 
et al. 2006), Building data 
genome project (Miller & 
Meggers 2017), UCI machine 
learning repository (Tsanas et 
al. 2012; Marino et al. 2016), 
NOAA online climate data 
(NOAA, 2013),etc. 

Open AI (U.S. Department of energy) 
(https://openei.org/doe-opendata/dataset) 

Measured data can be obtained from experiments and on-site measurements. On-site 

measurement data are directly collected from building automation systems (BASs), 

energy meters, weather stations, on-site surveys, and IoT sensors. Measurement data 

can reveal and reflect the real operational conditions of buildings and their energy 

systems. However, the quality of the measured data is typically low owing to the 

presence of measurement noises, uncertainties, sensor faults, and insufficient 

calibrations. Sensor-based data collection approaches require examining and verifying 

the quality of the data, which are the main tasks of data cleaning described below. 

Simulation data are collected from physics-based models and simulation tools of 
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either real or virtual buildings. Simulation tools commonly used in previous research 

have adopted a data-driven approach, and include DeST (Li et al., 2009a, 2009b), 

TRNSYS (Du et al., 2014), Energyplus (Zhao & Magoulès, 2010; Yezioro et al., 2008; 

Wong et al., 2010), Ecotect (Tsanas & Xifara, 2012), and eQuest (Yezioro et al., 2008). 

The simulated data should be noise free and without measurement errors, operational 

mistakes, or faults. However, the modeling accuracy, simulation assumptions (e.g., 

occupancy schedule), and ideal operational conditions (e.g., without considering a 

performance degradation) indicate that the simulation data do not represent the actual 

building operations or performance in a meaningful way. Li et al. (2015) found that 

current building energy simulation tools have limited reliability in terms of a 

performance assessment of energy conservation measures, considering using the 

assumed occupancy data and adopting a single energy model for cross-estimation.  

An increasing number of publicly available datasets (sometimes called benchmarking 

datasets), which may consist of either measured or simulation data, have been created 

in recent years by a number of research institutions, companies, and academics. The 

open-source building energy datasets employed in previous research into building 

energy analytics include ASHRAE’s Great Building Energy Predictor Shootout 

(Karatasou et al., 2006), the Building Data Genome Project (Miller & Meggers, 2017), 

and the UCI machine learning repository (Tsanas et al., 2012; Marino et al., 2016). In 

addition, the National Oceanic and Atmospheric Administration provides public 

access to high-quality historical weather data all around the world (NOAA, 2013). 
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These datasets allow researchers to make comparisons of different algorithms or 

models using the same datasets, and obtain more general conclusions and insight. 

Once the raw data are collected, the data must be provided in the proper amount, 

structure, and format that perfectly suit each data analytic task (Garcia et al., 2015). 

Data pre-processing aims to fulfill this requirement, for which four tasks are mainly 

carried out, i.e., data cleaning, data transformation, data reduction, and data 

partitioning, as shown in Figure 2. Data cleaning aims to enhance the data quality by 

filling in missing values and removing outliers. Data transformation is conducted 

when a proper data attribute (e.g., numerical and categorical) or data scale is required 

by specific modeling algorithms. Data reduction aims to identify the most 

relevant/influential factors/variables in modeling, reduce the dimensions of the 

datasets, and improve the calculation efficiency. Data partitioning aims to divide a 

large dataset into several small datasets, which can be analyzed separately to improve 

the sensitivity and robustness of the model. It is worth mentioning that these four data 

pre-processing tasks are not compulsory for big-data-driven analytics. Researchers 

can design their own data pre-processing procedures based on individual requirements 

and conditions. The following sections introduce each task successively. 
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Figure 2 Typical data preprocessing tasks for building energy modeling 

Once the raw data are obtained, the next step is to preprocess the data for use in the 

development of predictive models. The input data must be provided in the proper 

amount, structure, and format that perfectly suit each data analytic task (Garcia et al., 

2015). 
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3.2 Data cleaning 

Data cleaning aims to enhance the data quality. The accuracy and reliability of 

data-driven modelling are largely determined by the quality of the data. Two typical 

problems with automatically measured data are missing values and outliers, and thus 

two main tasks of data cleaning are the handling of missing values and outlier 

detection and removal. 

Missing values, or missing data, occur when no data values are stored for the variable 

for a short time period owing to sensor faults or communication problems. Missing 

values can be filled in using the global constant, moving average, imputation, or 

inference-based model (Hastie et al., 2009). Outliers are observations which appear to 

be inconsistent with the remainder of a specific dataset (Barnett & Lewis, 1994). 

Outliers may arise for various reasons, such as human mistakes, instrument errors, 

and a sudden change in the system behavior. Outliers can be identified based on 

domain expertise (Fan et al., 2015), or using unsupervised clustering, supervised 

classification, or semi-supervised recognition (Maimon & Rokach, 2010). Fan et al. 

(2014) employed the generalized extreme studentized deviate algorithm to detect 

outliers in a feature space. In addition, Xiao and Fan (2014) used the interquartile 

range rule to detect outliers in raw BAS datasets. 

3.3 Data transformation 

Data transformation consists of data attribute/type transformation and data scaling. 
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Building operational data consist of both numerical (quantitative) and categorical 

(qualitative) data. Typical examples of numerical data include temperature 

measurements, power consumption, the flow rate, and water pressure. Typical 

examples of categorical data are the ON/OFF control and state signals and 

time-related indicators. Many data-driven models and techniques have special 

requirements in terms of the data format required. For example, association rule 

mining (ARM) algorithms, such as a priori and frequent-pattern growth algorithms, 

can only handle categorical data, and numerical data should therefore be transformed 

into categorical data before applying the ARM. Numerous methods for discretizing 

data from a numeric form into a categorical form are available. Equal-width and 

equal-frequency methods have been widely used owing to their simplicity and 

reliability (Hastie et al., 2009). An equal-width binning method divides the data into 

m intervals of equal size, whereas an equal-frequency method divides the data into 

m groups containing approximately the same number of observations. Capozzoli et al. 

(2018) also adopted a symbolic aggregate approximation (SAX) to transform a time 

series into a symbolic string. Some machine learning algorithms cannot operate on 

categorical data directly (e.g., an artificial neural network), and require all input and 

output variables to be numeric. One-hot encoding is usually adopted to transform 

categorical data into a numerical form (Fan et al., 2019). Some predictive data-driven 

techniques (e.g., a support vector machine and an artificial neural network) perform 

better if the input data have similar scales. However, the scales of BAS data are 
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extremely different owing to the different units used. For instance, the power 

measurements may change for 0 to 4,000 kW, the temperature measurements may 

change from 0 °C to 40 °C, and a typical control signal usually changes from 0 to 1. 

Therefore, scaling methods should be applied during the data preprocessing. 

Commonly used scaling methods include max–min normalization (Xu et al., 2019), 

Z-score normalization (Miller et al., 2015), and standardization (Fan et al. 2019). 

3.4 Data reduction 

Building operational data are usually stored in such a format that each column 

represents the values of a variable at consecutive time instants, and each row 

represents an observation sampled at a specific instant in time (Fan et al., 2015). 

Current BASs monitor and control hundreds and even thousands of devices and items 

of equipment used in buildings. The volume of the stored data continues to increase 

over time during the building lifecycle. As a result, the building operational data 

become highly dimensional in temporal (number of rows) and spatial spaces (number 

of columns). Using all influential variables as model inputs might increase the risk of 

over-fitting and result in unaffordable computational costs. Redundant variables in the 

input dataset will decrease the accuracy, stability, and effectiveness of the model. 

Data reduction (also called feature engineering in big data analytics) aims to identify 

the most relevant/influential factors/variables, reduce the dimensions of the datasets, 

minimize the risk of over-fitting, improve the calculation efficiency, and meanwhile 

retain or improve the model performance. In general, there are three commonly used 
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approaches to selecting a model input.  

The first is to select the variables of interests based on domain knowledge and 

engineering expertise. In a typical engineering method, several influential variables 

(e.g., weather information, occupancy pattern, or HVAC operational signal), or the 

k-most recent historical data, are selected as model inputs, or a candidate input pool is 

formed for further feature selection/extraction.  

The second approach is to adopt a feature extraction method, such as a principal 

component analysis, in which the new low-dimensional variables are linear 

combinations of the original high-dimensional variables. By projecting onto the first 

few principal directions, a new set of data with lower dimensions is obtained through 

a linear combination of the original data. Fan et al. (2017) adopted four feature 

extraction methods, namely, engineering, statistical, structural, and deep learning 

feature extraction, for the measurements taken during the previous 24 h for 

comparison. Ribeiro et al. (2018) also extracted statistical features (the maximum, 

mean, and minimum values of the weather variables) as model input. The newly 

extracted features can be directly used as model input or added into the candidate 

input pool for feature selection. One disadvantage of a feature extraction method is 

that none of the original data can be abandoned, and it may be difficult to interpret the 

inputs (Guyon et al., 2003).  

The third approach is to use a feature selection method in which the variables most 

relevant to the current problem are chosen (Xu et al., 2019). This type of method 
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relies on the concept of subset selection. Commonly used feature selection methods 

can be further classified into filter, wrapper, and embedded methods. With a filter 

method, features are ranked and selected according to certain univariate metrics, such 

asPearson’s correlation coefficient. Dodier et al. (2004) used Wald’s test to evaluate 

the relevance of the input variables, including environmental variables, time-related 

variables, and time-lag variables, for building energy prediction. Chae et al. (2016) 

adopted a random forest algorithm to assess the importance of the variables by 

measuring the candidate parameters in terms of their impact on the prediction 

response, and ranked the variables based on both the permutation importance and Gini 

importance. Fan et al. (2019) employed partial autocorrelation functions to select the 

maximal time lag considered. The disadvantage of a filter method lies in the possible 

redundancy of the subset selected. A wrapper method is used to evaluate the 

usefulness of a subset by considering a certain learning algorithm. Fan et al. (2014) 

employed a recursive feature elimination (RFE) algorithm to extract 12 out of a total 

of 96 features to represent the daily energy consumption. Kolter et al. (2011) adopted 

a forward selection method in which the features were selected based on how much 

they will reduce the root mean square error (RMSE) of a linear regression predictor 

for the forecasting of building energy consumption. Because exhaustive searches of 

the subsets must be conducted, the wrapper method may incur a dramatic increase in 

the computational costs. Alternatively, an embedded method, which also applies a 

variable selection based on a certain learning algorithm, may be more efficient 
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because it is carried out by directly optimizing a two-part objective function with a 

goodness-of-fit and a penalty for a large number of input variables (Guyon et al., 

2003). 

3.5 Data partitioning 

Most building service systems are highly dynamic and inter-correlated (Fan et al., 

2015). The values of the variables and the relationships between them may vary 

significantly under different occupancy patterns and operating and weather conditions. 

Therefore, analyzing massive amounts of building operational data simultaneously 

may result in significant information loss. Data partitioning, or data sub-setting, is 

used to separate a large BAS dataset into several subsets of unique patterns, which is 

important for enhancing the efficiency and reliability of the knowledge discovery by 

separately analyzing the data in each subset. 

Some researchers partition the datasets into weekdays and weekends (Yang et al., 

2005), or into different months (Shi et al., 2016), based on their understanding of the 

building operational patterns. However, this approach may be unreliable if the 

building is a multi-functional complex that does not exhibit such periodic operational 

patterns. A clustering analysis is frequently used in data partitioning. Jetcheva et al. 

(2014) adopted k-means clustering to cluster the daily building load profile and 

temperature data and train a neural network for each cluster to find the best 

performing neural network. Xiao and Fan (2014) used entropy weighted k-means 

clustering to identify typical building energy consumption profiles and group similar 
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profiles for further analysis. In addition, Xu et al. (2019) conducted a sensitivity 

analysis and a linear regression successively to partition the load dataset. 

 

4 Data analytics for model development 

4.1 Single- and ensemble-model based approaches 

The increased interest in machine learning has provided numerous algorithms for 

data-driven model development. Machine learning is a rather broad category which 

consists of statistical algorithms ranging from conventional linear algorithms (e.g., 

multiple linear regression and autoregressive models) to complicated nonlinear 

algorithms (e.g., decision trees and support vector machines) [James et al., 2017; 

Hastie et al., 2010]. Nonlinear machine learning algorithms are more capable of 

capturing complicated and dynamic relationships in building systems and therefore, 

have been widely adopted in recent studies to achieve better generalization 

performance. The following section mainly reviews studies based on nonlinear 

machine learning algorithms. 
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Figure 3 Single- and ensemble-model based approaches 

As shown in Figure 3, the research trend in the building sector is in accordance with 

the developments in computer science and artificial intelligence, i.e., the modeling 

approach has gradually changed from single-model based approaches to 

ensemble-model based approaches. At the early stage, the majority of studies in the 

building sector adopted a single-model based approach (Wei et al., 2018; Amasyali & 

El-Gohary, 2018). In other words, such an algorithm will only derive a single model 

based on the training data. Artificial neural networks have gained great popularity 

owing to their wide applicability in analyzing different types of data (Goodfellow, 

Bengio & Courville, 2016; Fan et al., 2020). In addition to conventional fully 

connected networks, convolutional networks can be used to analyze image data, 

whereas recurrent networks are capable of analyzing sequential and time series data. 
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A support vector machine is another popular machine learning technique that can be 

used for both regression and classification problems (Cortes & Vapnik, 1995). Such 

models can be developed based on a hard or soft margin mechanism. Different kernel 

functions can be utilized to enhance the predictive power for nonlinear relationships, 

e.g., polynomial and radial basis kernel functions. A decision tree model adopts a 

tree-like graph to present the inference mechanism and can be used for either 

classification or regression problems (Breiman, 2001). Different metrics can be 

applied for splitting the tree model, e.g., the Gini impurity index, entropy, or 

misclassification rate (Hastie et al., 2009). Despite the encouraging results obtained, 

the generalization performance of a single-model based approach can be poor when 

applied to new datasets because each algorithm has its own intrinsic limitations and 

data assumptions. For instance, the decision boundary of a single decision tree model 

can only be rectangular and thus may be unsuitable for problems with an intrinsically 

smooth decision boundary (Hastie et al., 2009).  

Ensemble modeling has also been proposed to enhance the robustness and reliability 

in data-driven models (Dietterich, 2000; Fan et al., 2014). The main idea here is to 

develop a set of base models, based upon which the final prediction is made. There 

are two general methods for developing a base model. The first method is to 

artificially manipulate the training data for base model development. A prominent 

technique is called bootstrap aggregating, which utilizes the bootstrap sampling 

method to create training samples for parallel base model development (Hastie et al., 
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2009). The main aim is to reduce the variance in the predictions. The popular random 

forest algorithm can be regarded as a variation of the bootstrap aggregating technique 

(Breiman, 2001). Here, each base model is a decision tree model developed based on 

the bootstrapped training data. Extra randomness is introduced by considering a 

random subset of variables when applying node splitting. Another popular technique 

belonging to this category is called boosting, which aims to reduce the biases 

occurring in the predictions (Hastie et al., 2009). In such a case, base models are 

developed in a sequential manner, each with the aim to reduce the prediction errors 

resulting from the previous model. Some representative algorithms include adaptive 

boosting trees (Freund & Schapire, 1999) and extreme gradient boosting trees (Chen 

& Guestrin, 2016).  

The second method is to adopt different supervised learning algorithms for the 

base model development. As a result, a set of heterogenous base models can be 

obtained based on the same training dataset. The final prediction can be obtained by 

either simply averaging the predictions from the base models or using a so-called 

stacking strategy to develop a meta-model for the final predictions. 

4.2 Static and temporal relationship modeling strategies 

There are two general types of modeling tasks. The first focuses on revealing the 

static relationships between the model inputs and outputs, while neglecting the 

temporal dependencies in the building operations. One such example is building 

energy consumption predictions based on the building-level variables, e.g., the 
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physics of the building envelopes, the primary building usage type, and the indoor 

occupancy (Zhao et al., 2020). Similar studies have been carried out at the system or 

component level. For instance, the power consumption of a chiller can be described 

by its operating parameters at the same time, e.g., the temperatures of the chilled 

water supplied and the returned condensing water (Chou, Hsu & Lin, 2014). 

 

Figure 4 Strategies for multi-step-ahead predictions 

By contrast, the second type focuses on revealing the temporal relationships in the 

building operational data. A typical task is to apply one-step or multi-step ahead 

predictions on the building operations (Rahman, Srikumar & Smith, 2018; Fan et al., 

2019). Taking the building energy consumption as an example, the modeling task is to 

predict the building energy consumptions in the next m timesteps (e.g., m = 1 if 

one-step ahead is used) given the historical measurements of the previous n timesteps. 

The most essential key in dynamic modeling is to accurately capture the temporal data 

dependencies. As illustrated in Figure 4, there are three strategies for multi-step ahead 

predictions in general. The first is called a recursive strategy. The main idea here is to 

develop a one-step ahead prediction model and use it recursively for generating 

multi-step ahead predictions (Fan, Xiao & Zhao, 2017; Deb et al., 2016). Such a 
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strategy is easy to implement. However, the strategy suffers from an error 

accumulation problem, i.e., the prediction made at time T will be used as an input for 

following predictions, and thus prediction errors will gradually accumulate along the 

prediction time horizon. The second is called a direct strategy, where separate models 

are developed for each time step along the prediction horizon (Taieb et al., 2012). 

Such a strategy is highly compatible with algorithms allowing multiple outputs. For 

instance, an artificial neural network with m neurons at the output layer can be 

designed for m-step ahead predictions. Compared with a recursive strategy, a direct 

strategy is less affected by the error accumulation problem. The main limitation is that 

the predictions are made in a parallel manner and are thus essentially independent 

from each other and may seem to be incoherent or disconnected. The third strategy is 

called multi-input and multi-output (MIMO), and has been proposed to better describe 

the stochastic dependencies in multi-step ahead predictions (Bontempi, 2008). In 

theory, it can avoid the error accumulation problem in a recursive strategy while 

overcoming the conditional independency assumption used in a direct strategy (Taieb 

et al., 2012). Recurrent neural networks, which are specially designed for analyzing 

sequential data, have been widely used in a MIMO strategy (Chollet & Allaire, 2018). 

One popular MIMO learning scheme is called encoder–decoder learning. The main 

idea here is to develop two recurrent neural networks for input encoding and output 

decoding, respectively. The input data are transformed into a hidden state, based upon 

which the decoder is used to generate multi-step ahead predictions. Fan et al. 
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conducted a study to investigate the performance of these three strategies in 24-h 

ahead building energy predictions (Fan et al., 2019). Recurrent neural networks have 

also been used for the development of a prediction model. The results show that a 

direct strategy can achieve the best performance, whereas a recursive strategy leads to 

the worst performance. 

 

5 Knowledge post-mining: Model evaluation and interpretation 

One of the most essential advantages of a data-driven model is its flexibility in terms 

of model development. Indeed, given sufficient data measurements, functional 

data-driven models can be developed in a fairly straightforward manner with little 

domain expertise on the building physics. Nevertheless, it also imposes greater 

challenges in a model performance evaluation and model interpretation, which are the 

two main tasks in knowledge post-mining. 

 

Figure 5 Data-driven model evaluation and interpretation 

5.1 Model evaluation 

The performance of a data-driven model is mainly evaluated based on the accuracy 
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metrics. To ensure the unbiasedness of the accuracy metrics in reflecting the actual 

generalization performance, it is essential to apply data partitioning before the model 

development.  

A common approach is to divide the data into three separate datasets, namely, training, 

validation, and testing datasets. In such a case, a number of predictive algorithms are 

applied on the training data to derive a set of candidate models. The validation data 

are then used for a model comparison, where the best predictive algorithm along with 

its optimal parameter settings are determined. The testing data are used for an 

accuracy metric calculation, and the results serve as estimates for the generalization 

performance. Such a data partitioning approach may not be optimal when the data at 

hand are limited and the data acquisition costs are relatively high. One possible 

solution is to integrate a k-fold cross validation technique into the model training 

process. In such a case, the entire dataset is divided into two sets, i.e., training and 

testing sets. The training data are further divided into k equal-sized data folds, where 

k-1 folds are used for model training and the remaining serve as the validation data. 

The process is repeated k times such that each data sample is used in both model 

training and validation. Once the best predictive algorithm and its parameters are 

determined, the generalization can be assessed using the remaining testing data. It 

should be mentioned that any accuracy metrics reported based on the training and 

validation datasets should be regarded as invalid because they are optimistic estimates 

for practical applications (Hastie et al., 2009).  
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The accuracy metrics can be broadly divided into two groups, one for regression 

problems and the other for classification. The accuracy metrics for regression tasks 

can be further divided into two types, i.e., scale-dependent and scale-independent 

metrics. Scale-dependent metrics have the same units as the target variables. The most 

commonly used scale-dependent metrics include the root mean squared error (RMSE) 

and the mean absolute error (MAE). Such metrics are helpful for reflecting the error 

scales. However, they are inapplicable for comparing the model performance using 

different datasets. By contrast, scale-independent metrics, which present prediction 

errors using relative proportions, are more suitable for evaluating data-driven models 

derived from different datasets. Example metrics include the mean absolute 

percentage error (MAPE) and the coefficient of variance of the root mean squared 

error (CV-RMSE). Another popular metric is the coefficient of determination (R2), 

which has been widely adopted to reflect the fitting performance of linear regression 

models. It can be calculated based on Eq. (6), where TSS is the total sum of squares of 

the target variable, ESS is the explained sum of squares, and RSS is the residual sum 

of squares. It should be noted that such a metric is generally invalid for nonlinear 

models because the TSS may not be equivalent to the sum of the ESS and RSS. 



29 

 

 
2ˆ( )i iy y

RMSE
n
−

= ∑
 (1) 

  
ˆ| |i iy y

MAE
n
−

= ∑  (2) 

  
ˆ| | /i i iy y y

MAPE
n
−

= ∑  (3) 

  

2ˆ( )

( )

i i

i

y y
nCV RMSE y
n

−

=

∑

∑
 (4) 

  
2 recall precisionF measure

recall precision
× ×

− =
+  (5) 

  
2 2

2
2 2

ˆ ˆ( ) ( )
1 1

( ) ( )
i i i

i i

y y y yESS RSSR
TSS y y TSS y y

− −
= = = − = −

− −
∑ ∑
∑ ∑  (6) 

  

There are a variety of accuracy metrics for evaluating the classification performance. 

The basic metric is the accuracy, which is defined as the ratio between the correct 

predictions and all predictions. Such a metric can only provide a high-level 

description of the classification model. In-depth metrics are often needed to provide a 

comprehensive model evaluation. Taking the two-class classification problem as an 

example, a confusion matrix is typically used, as shown in Table 2. Four in-depth 

metrics can be formulated to describe the classification performance for each class. 

The positive predicted value (PPV) is also known as the precision, which describes 

the ratio between the true positive examples and the total number of predicted positive 

samples. The sensitivity or recall defines the model capability in predicting true 
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samples out of all actual true samples. These metrics are particularly useful when 

dealing with imbalanced datasets. For instance, a high recall and low precision 

indicate that most of the actual positive examples can be successfully identified, yet at 

the cost of a high false-positive rate. By contrast, a low recall and high precision 

indicate that the model cannot adequately identify actual positive examples and thus 

should have a high number of false negatives. The F-measure is formulated by 

considering both the recall and precision. As shown in Eq. (5), this measure is the 

harmonic mean of the recall and precision and should always be closer to the smaller 

value. Compared with conventional accuracy metrics showing one aspect of the 

model performance, the F-measure can provide a more comprehensive evaluation on 

the classification performance. 

Table 2 An example confusion matrix for binary classification 

Predicted vs. 
Actual 

Actual values 
Metrics 

True False 

Predicted 
As True 

True positive (TP) False positive (FP) 
Positive predicted value 

TPPPV
TP FP

=
+

  

Predicted as False False negative (FN) True negative (TN) 
Negative predicted value 

TNNPV
TN FN

=
+

  

Metrics 
Sensitivity or Recall  

TP
TP FN

=
+

  
Specificity

TN
TN FP

=
+

  
Accuracy
TP TN

TP TN FP FN
+

=
+ + +

  

 

5.2 Model interpretation 

Compared with conventional statistical methods, advanced machine learning 
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algorithms are more capable of capturing complicated nonlinear relationships, 

although at the cost of a poor model interpretability. Model interpretability plays an 

essential role in knowledge post-mining and can significantly influence the model 

applicability in practice. First, accuracy metrics alone cannot fully justify the model 

validity. For instance, a naïve classification model, which simply makes predictions 

based on the majority class, can achieve an extremely high classification accuracy if 

the data are highly imbalanced. Nevertheless, such a model cannot be applied to 

practical applications. Second, building professionals cannot fully trust data-driven 

models unless the underlying inference mechanisms match their domain expertise. 

Therefore, it is essential to develop tools or methods to interpret the patterns or 

relationships learned through data-driven models.  

One possible solution is to adopt algorithms with high transparency for model 

development, e.g., multiple linear regression and decision trees (Lipton, 2016; 

Doshi-Velez & Kim, 2017). Such models are easy to interpret owing to their 

straightforward model architectures. However, the prediction accuracy may not be 

satisfactory, particularly when the relationships among variables are nonlinear and 

complicated.  

To tackle the intrinsic trade-off between the model complexity and model 

interpretability, an emerging research field called interpretable machine learning has 

become increasingly popular (Molnar, 2018). The main idea here is to develop 

methods for describing complicated data-driven models at different levels, i.e., global 
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and local levels. At the global level, the model is described in terms of its overall 

structure and parameters. Representative methods include partial dependency tests, 

individual conditional expectations, and the feature importance (Molnar, 2018). 

Global explanations are helpful for understanding the general model behaviors and 

the impact of individual variables to model the outputs. For instance, the random 

forest algorithm has significantly enhanced the accuracy of a single decision tree 

model. The importance of each input variable can be calculated based on the decrease 

in accuracy resulting from a random permutation. Such a variable importance can be 

used as a global explanation on the impact of model inputs to outputs. 

At the local level, explanations are provided to describe why a certain prediction is 

made for an individual observation. One representative technique is a local 

interpretable model-agnostic explanation (LIME) (Ribero, Singh & Guestrin, 2016). 

This method is called “model-agnostic” because it can be integrated with any 

supervised learning algorithm. The key idea is to build a local surrogate model using 

an algorithm with high transparency to describe the simplified local relationships 

among the data variables. Fan et al. developed a LIME-based method to provide 

explanations regarding building energy prediction models (Fan et al., 2019). The local 

surrogate model was developed based on the permuted data in interpretable 

representations. Based on the local interpretation results, the authors also developed a 

novel metric to evaluate the quality of each individual prediction. The method helps 

ensure the prediction accuracy while providing additional evidence for building 
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professionals to justify the model validity.  

From the authors’ perspective, model interpretability is a key challenge in integrating 

a state-of-the-art machine learning technique in the building field. A model-agnostic 

approach is one of most promising research directions in interpretable machine 

learning, because it helps break the trade-off between the model complexity and 

model interpretability. Compared with a global explanation, local explanations are 

more sophisticated yet helpful because they can provide in-depth insight into the 

underlying data structures and inference mechanisms. 

 

6 Application of data-driven models for improving building performances  

Data-driven models are applied in various aspects throughout the building lifecycle, 

including building design, operation, control, and policy making. At every different 

stage, data-driven models serve different purposes, focusing on different types of 

buildings, presenting different spatial and temporal scales, utilizing data from 

different sources, conducting different types of machine learning methods, and 

delivering different outputs. Table 3 summarizes the main features of the development 

and application of data-driven building energy models. 
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Table 3 Applications of data-driven methods in building performance modeling 

Application Building type Spatial 
scale 

Temporal 
scale 

Data 
source 

Data volume Methods Outputs References 

Parametric analysis in 
design 

Mostly 
residential 

Household Mostly 
hourly 

Smart 
meter data 

One year’s 
data 

Clustering 
methods 

Typical energy 
use profiles 

Wen et al., 2019; Yang et al., 2018; Fu et al., 
2018; Popoola & Chipango, 2020; Escobar et 
al., 2020; Quintana et al., 2020; Satre-Meloy 
et al., 2020;  
Zhou et al., 2017; Sala et al., 2019; An et al., 
2018; Rhodes et al., 2014; Zhou et al., 2017; 

Optimal simulation 
models in design 

Mostly 
non-residential 

Building Mostly 
hourly 

BMS data One year’s 
data 

ANN, SVM, etc. Simulated 
energy use or 
EUIs 

Neto & Fiorelli, 2008; Karatasou et al., 2006;  
Zhan et al., 2020; Yu, et al., 2010; Sha et al., 
2019; Kalogirou, 2000; Tian et al., 2020; 

Fault detection and 
diagnosis 

Mostly 
commercial 

Mostly on 
equipment 

Second Experiment 
data from 
laboratories 

Test data with 
7-8 faults 
conditions 

PCA, SVM, etc. Faulty samples 
and faulty types 

Andriamamonjy et al., 2018; Bonvini et al., 
2014; Cotrufo & Zmeureanu, 2016; Beghi et 
al., 2016; 
Li et al., 2016; Li & Wen, 2014; Tran et al., 
2015; Han et al., 2011; He et al., 2016; Li et 
al., 2016;  
Xia et al., 2020; Yan et al., 2018; Du et al., 
2014; Yoshida & Kumar, 2001; 

Thermal-comfort-based 
environment control 

Mostly office Room - ASHRAE 
Database 

21,000 sets of 
data 

ANN, SVM, etc. 
or 
probability-based 
methods 

Predicted 
thermal 
comfort and 
thermostat 
setpoint 

Ghahramani et al., 2015; Kim et al., 2018; 
Ghahramani et al., 2018; Zhou et al., 2020;  
Wang & Hong, 2020; Dai et al., 2017; 
Chaudhuri et al., 2018; 

Building energy system Mostly System Hourly Building Several Reinforcement Control Tang et al., 2020; Dalamagkidis et al., 2007; 
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control non-residential BMS data month’s data learning strategy of 
cooling plants 
and TES 

Zakula et al., 2014; Lee & Braun, 2008;  
Yuan et al., 2020; Vázquez-Canteli et al., 
2019;  
Chen et al., 2020; Yu & Dexter, 2010;  
Liu & Henze, 2006; Luo et al., 2017 

Retrofit analysis Mixed type Building Yearly Building 
EUI survey 
database 

Several 
hundred to 
thousand 
samples 

Clustering 
methods, 
classification 
methods 

Energy saving 
potential of 
retrofit 
measures 

Sanhudo et al., 2018; Re Cecconi et al., 2019; 
Marasco & Kontokosta, 2016; Geyer et al., 
2017; 

Benchmarking Mostly 
non-residential 

Building Yearly Building 
EUI survey 
database 

Several 
hundred to 
thousand 
samples 

Clustering 
methods, PCA, 
etc. 

Ratings of 
building energy 
efficiency 

Pérez-Lombard et al., 2009; Chung et al., 
2006;  
Yang et al., 2018; Yalcintas, 2006; Chung, 
2012; Wang, 2015; Papadopoulos & 
Kontokosta, 2019; 

Pricing mechanism Mostly 
residential 

Household Hourly Smart 
meter data 

One year’s 
data  

Clustering 
methods 

Optimal 
time-of-use 
tariff 

Fu et al., 2018; Yilmaz et al., 2019 
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6.1 Design Optimization 

Building performance simulation has always been an essential step in the building 

design phase. The current design process usually involves building performance 

simulation based on physics principles. With advances in big data in the building 

sector, data-driven analytics can support the detailed inputs for building simulation or 

optimize the entire simulation process. Enhancement of big data analytics applied to 

the building design process is achieved from two perspectives: supporting parametric 

analysis, and implementing data-driven approaches in the building design process. 

6.1.1 Parametric analysis at the design phase 

Building performance simulation requires detailed inputs, including building 

geometry, building envelope properties, occupancy schedules, etc. Among these 

aspects, occupancy schedule and appliance use schedule are two essential inputs 

requiring data-driven analysis of the typical profiles. Pattern identification is a major 

approach to understanding the occupant-behavior-related energy profiles in buildings 

(Wen et al., 2019; Yang et al., 2018; Quintana et al., 2020; Popoola & Chipango, 

2020), and is widely applied in both residential and non-residential buildings. This 

provides insight for distinguishing different types of users or understanding the 

distributions of different schedules at different time periods. 

Numerous researchers have studied the typical patterns of energy use. Most have 

focused on residential building profiles (Escobar et al., 2020; Sala et al., 2019). The 

promotion of smart meters in households has made it possible to acquire hourly or 
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sub-hourly data from massive number of households, which are used to support 

pattern analysis (Zhou et al., 2017). To acquire such data, some researchers also use 

electricity recorder installed in test households. All types of clustering-based 

algorithms are applied for the typical pattern analysis (Zhou et al., 2017), the most 

popular of which is K-means clustering (An et al., 2018; Rhodes et al., 2014). Many 

other types of big data algorithms have also been introduced to assist with the analysis, 

such as principle component analysis (PCA) and random forest classifier (RF) (Fu et 

al., 2018; Satre-Meloy et al., 2020). The output of such studies usually involves 

typical energy use profiles, which is a set of average energy use curves to improve the 

general understanding of the energy consumption of certain types of buildings, and 

are then used as the input schedule of the building energy models in simulation of the 

design phase. 

6.1.2 Data-driven models for building design 

In the building design process, most designers adopt physics-based building 

simulation models to predict and evaluate the energy efficiency of the design. 

Traditional physics-based model requires detailed inputs and is extremely 

time-consuming. Thus, some researchers have introduced data-driven models into the 

design phase as a substitute to physics-based models. To simplify the model, 

researchers conduct correlation analysis or sensitivity analysis to discover the most 

relevant features that affect the building energy consumption for a specific case. Then, 

data-driven models based on machine learning algorithms are trained and validated to 
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regress the energy consumption with selected features (Sha et al., 2019; Neto & 

Fiorelli, 2008; Karatasou et al., 2006). The training of the model utilizes building 

management system (BMS) data of existing buildings (Zhan et al., 2020). The 

proposed model will then be used to support the evaluation of energy efficiency in the 

design phase (Yu, Haghighat et al., 2010; Kalogirou, 2000), focusing on a single 

building or at an urban scale (Tian et al., 2020). It should be noted that, because the 

information and knowledge in the building design phase is quite limited, transfer 

learning is an optimal method used to store knowledge from existing buildings and 

applying it to new buildings under a similar context. Using transfer learning to build 

data-driven models for energy consumption prediction at the building design phase is 

a possible future research perspective. 

6.2 Benchmarking analysis 

Benchmarking refers to the evaluation and rating of the energy use efficiency of 

buildings by comparison with buildings of the same type (Pérez-Lombard et al., 2009). 

Benchmarking analytics are usually applied to commercial or public buildings (Chung 

et al., 2006; Yang et al., 2018), and requires understanding of current status of the 

building energy distribution. Big data analysis provides insight into this perspective. 

By regressing the building energy use indicators (EUIs) with independent variables 

such as the building properties and meteorological variables, the trained model can be 

used to predict the expected value or range of EUIs of the target building, based on 

which the energy efficiency of the building is rated (Papadopoulos & Kontokosta, 
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2019; Yalcintas, 2006). Chung (2012) also developed a fuzzy linear regression model 

to benchmark the energy efficiency of commercial buildings, and Wang (2015) 

developed a benchmarking model for residential buildings using PCA, multiple linear 

regression, and k-means clustering techniques. Big data used as building information 

and energy use indicators provide sources for data analytics, whereas regression 

methods support the development of models for benchmarking buildings at a regional 

scale. 

6.3 Control optimization 

Control optimization has always been a key issue in building energy system 

management. The control strategy, particularly a real-time control strategy, relies 

highly on big data analytics from the building energy systems. Control strategies are 

then applied to achieve both environmental comfort and energy efficiency. 

6.3.1 Thermal-comfort-based environment control 

One of the essential applications of building system control is real-time equipment 

management used to achieve a higher quality of indoor environment control and 

human comfort. Owing to the diversity and complexity of occupants’ thermal comfort 

preference, physics-based thermal balance model may not achieve significant 

accuracy in thermal comfort prediction. Data-driven models, however, predict the 

thermal comfort of the occupants from real monitoring data and environmental 

parameters (Dai et al., 2017; Ghahramani et al., 2015; Kim et al., 2018), and are 

capable of learning and correcting the models under a different application context 
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(Ghahramani et al., 2018). 

Most models use machine learning algorithms to regress the thermal sensation vote 

(TSV) with multiple features including environmental factors (e.g., temperature and 

humidity), metabolic rate, clothing condition, and air-conditioning modes (Chaudhuri 

et al., 2018). One of the most popular datasets used for such an analysis is the 

ASHRAE RP-884 dataset, which is a global thermal comfort database. Researchers 

have proposed different machine learning algorithms to improve the prediction 

accuracy of TSV in comparison with the traditional PMV-PPD model. Zhou et al. 

(2020) proposed a support vector machine (SVM)-based model to predict the thermal 

comfort of the occupants. Wang et al. (2020) introduced a Bayesian inference 

approach to predict the indoor thermal comfort and determine comfortable 

temperature for the occupants. Well-tuned data-driven thermal comfort models can be 

adopted in various types of buildings to determine the set-point temperature of 

thermostats and help improve the operation of HVAC systems (Delcroix et al., 2020). 

6.3.2 Energy-efficient-oriented system control optimization 

Control optimization based on building energy prediction models is adaptable to the 

predictive control of building energy systems. Building energy prediction requires a 

prior step before applying a strategic optimization, which has been a hot topic in 

recent studies. Many energy prediction models are data-driven (Tang et al., 2020), 

taking advantage of machine learning algorithms and integrating data with physics 

knowledge in buildings to improve the accuracy of the prediction, thus offering 
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reliable information for the next step of the control optimization (Zakula et al., 2014). 

Specifically, for control optimization, most studies have used deep reinforcement 

learning to build a step-forward prediction and optimization mechanism under 

practical control scenarios (Dalamagkidis et al., 2007; Lee & Braun, 2008; Yuan et al., 

2020; Chen et al., 2020). 

Researchers have developed numerous types of real-time controllers for building 

energy systems. Yu et al. (2010) proposed a fuzzy rule-based controller with 

reinforcement learning optimization to balance the energy costs and thermal 

discomfort in buildings. The results showed significant improvement in terms of 

low-energy building system performance. Vázquez-Canteli et al. (2019) also proposed 

a deep reinforcement learning approach for online learning and tuning of the 

controller for the heat pump system. The automatic control model also achieved 

moderate energy saving under different scenarios. 

Control optimization is specifically applicable for thermal storage system, such as 

ice-based cooling storage and battery-based electricity storage. The introduction of 

thermal storage or battery storage in buildings aims to utilize low-cost electricity 

during the night (valley period) and reduce the peak-period energy consumption, thus 

creating economic benefits from energy costs. This time-of-use tariff for electricity is 

applied as a stimulus for electricity users and benefits the power grid from shifting the 

peak loads to valley period. Within this procedure, precise prediction of the next-day 

energy consumption is the most essential part, followed by a control optimization 
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using reinforcement learning (Q-learning).  

For control optimization of the thermal storage system, Liu et al. (2006) proposed a 

simulated reinforcement learning controller to learn the pre-cooling mechanism of the 

cooling supply system and the control of the charging and discharging of the thermal 

energy storage system according to the utility rate. Luo et al. (2017) also developed an 

optimized sequential quadratic programming algorithm and several control strategies 

to minimize the energy cost of ice-based thermal energy storage system. 

One-day-ahead building cooling load prediction is an essential data analysis for 

control optimization of thermal energy storage system. 

6.4 Fault detection and diagnosis 

Fault detection and diagnosis (FDD) is a popular engineering application used to 

identify the type and location of the fault in a system. In building sector, this is 

essential for real-time building energy system management and is highly related to big 

data derived from the sensors of the system, including but not limited to the chiller, 

pumps, fans, AHUs, and indoor environmental parameters. Major applications of big 

data analysis of FDD involves two levels: the component level and building level. 

6.4.1 FDD at the component level 

The application of FDD at the component level refers to the identification of 

malfunctioning on energy system equipment. The objective of such research usually 

focuses on one single component itself, such as chiller or AHUs (Andriamamonjy et 

al., 2018), without consideration of the connections between each component or 
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within the system. Thus, FDD at the component level is usually applied to evaluate 

the values of the parameters independently, taking no account of the conflicts in the 

relations among the parameters of the different components. Popular FDD methods at 

component level include machine-learning algorithms (Bonvini et al., 2014). PCA 

(Cotrufo & Zmeureanu, 2016; Beghi et al., 2016; Li et al., 2016; Li & Wen, 2014) and 

an SVM (Tran et al., 2015; Han et al., 2011) are two of the most widely applied 

algorithms, considering their unique features of labeling and identifying samples. 

Most studies on chillers have utilized the ASHRAE project RP-1043 dataset (He et al., 

2016; Li et al., 2016; Xia et al., 2020). This dataset is a universal evaluation tool for 

chiller FDD, and the data are acquired from experiments conducted in laboratory (Yan 

et al., 2018). The major aspects of faults for chillers include fouling, refrigerant 

overcharging, refrigerant leakage, excessive oil, and reduced flow. 

Some studies have also utilized simulated data to test the FDD methods. TRNSYS is a 

commonly used simulation tool for component simulation. Numeral experiments are 

first conducted to acquire both normal and malfunctioning data. The simulated data 

are then used to train and test the FDD models (Du et al., 2014). Compared with the 

analysis of real experimental data in laboratories, numerical studies are more likely to 

be a theoretical analysis. 

6.4.2 FDD at the building level 

FDD at building level usually considers the energy consumption or indoor 

environment as a whole. Studies have mainly focused on identifying whether the 
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energy consumption or indoor environment is normal compared with the previous 

status (Du et al., 2014).  

One perspective on whole building FDD is the use of clustering-based methods to 

understand the typical energy use profiles (Yoshida & Kumar, 2001). The researchers 

tested whether the energy use curve of a certain day is identified as an outlier among 

the known typical profiles. A fault is detected by detecting outliers from the dataset. 

It should be noted that current studies have seldom focused on the FDD of integrated 

system or at the building level, taking into consideration the correlated faults of the 

parameters from different equipment. Moreover, few researchers have studied the 

application of FDD for the entire building management, which could therefore be a 

promising future research topic. 

6.5 Retrofit analysis 

Retrofitting analysis of existing buildings at a district or city scale has always been an 

important perspective for urban planning. Evaluation of different retrofitting measures 

requires cross comparison of different building properties. Researchers have trained 

data-driven models using building EUIs and building properties from massive 

samples to learn their correlations (Sanhudo et al., 2018). The energy saving potential 

can then be evaluated using the trained model.  

In the scope of a regional-scale retrofit analysis, Re Cecconi (2019) introduced 

different data-driven methods to support regional energy retrofit policy when applied 

to school buildings. The author used clustering-based algorithms to identify 
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homogenous classes of buildings, then trained artificial neural networks to evaluate 

the energy saving of possible retrofit cases. Marasco et al. (2016) introduced a 

machine learning classifier to evaluate the eligibility of various energy conservation 

measures for buildings in New York City. Geyer et al. (2017) also analyzed the 

application of clustering methods for building retrofitting measures.  

To conclude, the use of data-driven method is extremely cost-effective in evaluating 

energy saving potential of retrofitting measures for large numbers of buildings at 

regional scale. As the advantage of big data analytics, the model is trained using real 

energy consumption data of existing buildings, avoiding the gap between the 

simulated results and the real consumption. 

6.6 Pricing mechanism 

In the power grid system of certain cities, time-of-use tariff is an effective measure for 

the demand-side management of electricity consumption. The determination of the 

utility rates relies on the understanding of the current energy use profiles from the 

demand side. Thus, typical energy use profile analysis by clustering methods performs 

as the first step to determine the electricity pricing tariff. Fu et al. (2018) discussed a 

clustering-based load pattern analysis and machine-learning based short-term load 

prediction model for the evaluation of an increasing-block pricing tariff placed on 

electricity. Yilmaz et al. (2019) also developed a clustering-based model for 

residential electricity load profile characterization, based upon which the authors 

discussed its policy implementation for a time-of-use utility tariff determination. 
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Data-driven models perform efficiently in recognizing energy use characteristics and 

can significantly support an energy-related policy making process. 

 

7 Discussion 

7.1 Why is big data analytics being used as a new scientific method? 

Big data analytics has been widely adopted as a new research method in many fields, 

such as healthcare and the medical sector, business and finance, the Internet and social 

media, and smart cities. With a dramatic increase in data volumes from smart 

buildings and IoT-enabled environmental control devices, as well as the advancement 

of data mining and machine learning techniques, will big data analytics become a 

valuable and credible scientific method parallel to theory, simulation, and 

experimentation in the building sector? In this section, the essential differences and 

similarities compared with conventional scientific methods are discussed, including 

theoretical, experimental, and simulation methods. 

 

 

Figure 6 Relationship among big data analytics and three conventional research 

Experiment

Theory

Big data

Simulation

P
ar

am
et

er
s

V
er

ifi
ca

tio
n 

of
 b

ig
 d

at
a

Design experiment

Theory verification



47 

 

methods 

The knowledge obtained from big data analytics is a valuable supplementation to the 

exiting physics-based theory repository in the building sector, which has been proven 

in exiting research on big data from buildings. The data-driven knowledge obtained 

from big data analytics include the energy consumption patterns and building 

occupancy patterns at different time scales, e.g., hourly, daily, weekly, monthly, and 

annual (Wen et al., 2019; Satre-Meloy et al., 2020; Rhodes et al., 2014; Zhou et al., 

2017). With the help of big data analytics, we can better understand the dynamic 

correlations among building energy use across different systems, such as air 

conditioning, lighting, and lift systems (Fan et al., 2015; Xiao et al., 2014; Ren et al., 

2015), as well as the actual temporal and spatial distributions of occupant behavioral 

parameters and the equipment system performance, such as the distribution of 

air-conditioning setting temperatures across China (Hu et al., 2017; An et al., 2018), 

which are difficult to discover and quantify through a theoretical analysis. 

Big data analytics is used to analyze huge amounts of building data from various 

sources, which significantly exceed the data size available from experiments 

including both laboratory and on-site/field experiments. Buildings are extremely 

complex objects, the operational performances of which are influenced by numerous 

uncertainties, such as the configuration of the building envelope, occupant behavior, 

and equipment performance. Owing to the time and labor required, as well as various 

technical difficulties, it is extremely difficult to carry out experiments covering the 
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full variations of all influential parameters. Therefore, the experiment results cannot 

fully reflect the building/system/equipment performance in reality. However, big data 

on building operations, for example, operational data from the past several years, 

retrieved from a building automation system (or building management system) and 

IoT devices naturally cover almost all possible operating conditions, contributing to a 

better understanding of a building performance at different temporal and spatial 

scales. 

Simulations can cover all possible operational conditions but involves too many 

assumptions and simplifications, which have difficulty reflecting the actual behavior 

and performance, incurring uncertainties and inevitable errors. For example, typical 

hourly occupancy schedules (ASHRAE, 2019) have been widely adopted in 

simulation programs to represent the number of occupants in a space at different times. 

Because the occupant presence and behavior have a significant influence on the 

building energy performance, using more realistic occupancy patterns learned from 

big data on the building operations (Jiefan et al., 2018) enables a BPS software to 

produce more reliable estimations of the building energy performance. Big data 

analytics can provide more realistic parameters with probabilistic distributions as 

simulation inputs and settings (Feng et al., 2016; Wilke et al., 2013; Foteinaki et al., 

2019).   

As illustrated in Figure 6, theory, experimentation, and simulations together with big 

data analytics support each other, greatly enriching the existing knowledge repository 
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of the building sector. 

 

7.2 What are the differences between big data-driven and data-driven 

modeling? 

Data-driven modeling has been widely adopted toward the development of building 

and building system models for several decades (Bourdeau et al., 2019; Ruch et al., 

1993). However, the data used have usually been from a short time period, i.e., from 

serval days to several months, as indicated in Section 6. The data series used to 

develop such models has typically been less than 1 month long when the sampling 

interval is between 1 and 10 min. If a data series of longer than 1 year is used, the 

sampling interval is typically hourly or daily. Data sampled hourly, or at even longer 

intervals, have difficulty revealing the thermal dynamics of real buildings. However, 

longer datasets with shorter intervals adversely increase the computational load, 

which may exceed the capability of most existing data analysis algorithms or cause an 

overfitting problem. In addition, when the operating conditions are outside the range 

of the training data, the models become unreliable (Kramer, et al., 2012; Afram, et al., 

2017). When increasing the size of the dataset, e.g., 1 year of operational data, the 

models suffer from a degraded accuracy owing to the large variations in the data, as 

well as a low computational efficiency from the inability of conventional data 

analytics to deal with large datasets. Moreover, the generalization of the models and 

modeling methods remains questionable. 
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With the significantly increasing volume of building data and the rapid advances in 

big data analytics, a general transition can be observed in the evolution of the 

data-driven modeling of a building performance, i.e., the entire process becomes 

increasingly data-driven and involves less domain knowledge. The selection of model 

inputs is becoming more data-driven. Earlier, domain knowledge was heavily 

involved. For example, domain knowledge tells us that the outdoor air temperature 

significantly influences the cooling load, and thus it was chosen as a single input. 

However, in recent studies, the input selection process has relied more on feature 

extraction from big data on the building operations, bringing forth new and valuable 

information. Features may be individual variables or a combination of multiple 

variables (Fan et al., 2014). For example, unsupervised deep learning models, such as 

autoencoders, have been used to develop features as inputs for the predictive models 

used in the building sector (Zou et al., 2018). Such an approach is particularly useful 

for constructing high-level features from long and noisy time series data (Bonfigli et 

al., 2018) and significantly reduces the computational load. By contrast, when big 

data are used for model development, the model performance evaluation becomes a 

challenging issue, and thus more research on data-driven modeling has focused on 

performance metrics, as reviewed in Section 5.1. As more powerful data analytics 

algorithms, such as deep learning and ensemble learning, are adopted to develop 

building models based on big data, the models become “blacker,” which means they 

are more difficult to understand. Therefore, a model interpretation has become a hot 
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research topic in recent years and the major studies in this area are summarized in 

Section 5.2. 

7.3 What are the scientific contributions of big data-driven methods 

when using different data sources? 

 

Figure 7 Comparison among different data sources for big data-driven analytics on 

scientific research contributions 

As mentioned in section 3, there are three types of data, i.e., simulation data, 

experiment data, and on-site measurement data, which are widely used in data-driven 

building energy analyses. 

Some researchers have utilized simulated data from BPS tools, such as TRNSYS and 

EnergyPlus, to carry out a statistical analysis (Du et al., 2014; Edwards et al., 2017). 

These tools usually adopt physics-based models, which are based on existing 

knowledge including physical equations and empirical parameters, and thus the 

simulation results can be clearly understood and explained. Therefore, what we get 
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from big data-driven analytics of simulation data is the regression results of 

physics-based models, which are more useful when building performance prediction 

requires fast speed yet less accuracy. Overall, we can hardly acquire new knowledge 

when using simulation data for big data-driven analytics. 

In addition, most studies on FDD have utilized experiment data in HVAC systems for 

model training with machine learning algorithms, and the trained models have been 

used for a fault diagnosis of equipment during the operational stage and energy use 

prediction (D. Li et al. 2016; G. Li et al. 2016; Tran et al. 2015; Yan et al. 2018). In 

general, the amount of experiment data has been limited, and such data have been 

unable to reflect a degradation in the equipment performance or the behavior 

differences during a practical operation. Therefore, big data-driven models derived 

from experiment data cannot guarantee the prediction accuracy for complex practical 

processes even when sufficient experimental data have been available. 

Compared with the other two data sources, on-site measurement data can reveal and 

reflect the real operational conditions of buildings (or systems and equipment), which 

are useful in big data-driven analytics in terms of scientific discovery. 

7.4 What are the influences of data veracity on big data-driven 

analytics? 
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Figure 8 Influence of data veracity and volume on the predicted results 

With the rapid development of sensing and communication technologies, it has 

become easier and less expensive to obtain and store massive amounts of data. Big 

data have also brought about a new problem, i.e., a larger dataset has a greater 

possibility to contain errors. Therefore, the data quality is becoming an important 

issue. Mayer-Schönberger and Cukier (2013) concluded that even massive error-prone 

datasets are more reliable than accurate but small samples. If there is only one sample 

applied, we must confirm its accuracy because any errors will result in a poor 

outcome; however, when the data volume is extremely large, even if some incorrect 

data are present, the aggregation of massive data will provide a result closer to reality.  

However, this conclusion is based on the assumption that the data do not have 

systematic errors. In general, the data related to building energy performance are 

uncertain, such as the heat transfer coefficient of the envelope and the outdoor 
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temperature, and these uncertainties are usually random. For data having only random 

errors, a larger data size can contribute to more accurate results. However, there also 

exist numerous data with systematic errors owing to the measurement devices used 

and the participants collecting the data, thereby producing incorrect results regardless 

of how large the data volume is. IBM first brought up veracity as an important data 

characteristic in the big data field, which has attracted wide attention from the 

research community (Sivarajah et al. 2017). Data veracity is critical to the prediction 

fidelity. Therefore, we should improve the data veracity and eliminate false and 

erroneous data before conducting a data analysis to make the results more accurate 

and reliable. 

 

 

8 Conclusion 

Building performance simulations have proven to be an extremely important tool for 

improving the energy efficiency, indoor environment quality, and thermal comfort of 

buildings, as well as the reliability and efficiency of a building-grid eco-system. 

Data-driven modeling plays a significant role in a BPS when facing large complex 

buildings with limited information. Most modern non-residential buildings are 

equipped with an advanced BAS capability for real-time monitoring and control, 

allowing huge amounts of building operational data to be stored. In IoT-driven smart 

cities, numerous IoT sensors monitor and collect data from distributed environmental 
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control devices, such as residential air conditioners. As a result, the data volume 

available for building performance modeling is becoming much larger and continues 

to increase. Big data analytics, with challenges in terms of the volume, variety, and 

velocity of the data applied, is a valuable way to develop more powerful and 

computationally efficient data-driven models for a BPS. From the comprehensive 

review and critical discussions presented in this paper, a new paradigm for data-driven 

modeling, i.e., big-data-driven modeling, is emerging as a valuable supplementation 

to existing scientific research methods in the building sector, and is greatly enriching 

the exiting knowledge repository for improving the performance of modern buildings. 
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