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Deep Learning for Visual Localization
and Mapping: A Survey

Changhao Chen , Bing Wang, Chris Xiaoxuan Lu , Niki Trigoni , and Andrew Markham

Abstract— Deep-learning-based localization and mapping
approaches have recently emerged as a new research direc-
tion and receive significant attention from both industry and
academia. Instead of creating hand-designed algorithms based
on physical models or geometric theories, deep learning solutions
provide an alternative to solve the problem in a data-driven
way. Benefiting from the ever-increasing volumes of data and
computational power on devices, these learning methods are fast
evolving into a new area that shows potential to track self-motion
and estimate environmental models accurately and robustly for
mobile agents. In this work, we provide a comprehensive survey
and propose a taxonomy for the localization and mapping meth-
ods using deep learning. This survey aims to discuss two basic
questions: whether deep learning is promising for localization and
mapping, and how deep learning should be applied to solve this
problem. To this end, a series of localization and mapping topics
are investigated, from the learning-based visual odometry and
global relocalization to mapping, and simultaneous localization
and mapping (SLAM). It is our hope that this survey organically
weaves together the recent works in this vein from robotics,
computer vision, and machine learning communities and serves
as a guideline for future researchers to apply deep learning to
tackle the problem of visual localization and mapping.

Index Terms— Deep learning, global localization, visual odom-
etry (VO), visual simultaneous localization and mapping (SLAM),
visual-inertial odometry (VIO).

I. INTRODUCTION

LOCALIZATION and mapping serve as essential require-
ments for both human beings and mobile agents. As a

motivating example, humans possess the remarkable ability to
perceive their own motion and the surrounding environment
through multisensory perception. They heavily rely on this
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awareness to determine their location and navigate through
intricate 3-D spaces. In a similar vein, mobile agents, encom-
passing a diverse range of robots such as self-driving vehicles,
delivery drones, and home service robots, must possess the
capability to perceive their environment and estimate posi-
tional states through onboard sensors. These agents actively
engage in sensing their surroundings and autonomously make
decisions [1]. Equivalently, the integration of emerging tech-
nologies such as augmented reality (AR) and virtual reality
(VR) intertwines the virtual and physical realms, making
it imperative for machines to possess perceptual awareness.
This awareness forms the foundation for seamless interaction
between humans and machines. Furthermore, the applications
of these concepts extend to mobile and wearable devices,
such as smartphones, wristbands, and Internet-of-Things (IoT)
devices. These devices offer a wide array of location-based ser-
vices, ranging from pedestrian navigation and sports/activity
monitoring to emergency response.

Enabling a high level of autonomy for these and other
digital agents requires precise and robust localization while
incrementally building and maintaining a world model, with
the capability to continuously process new information and
adapt to various scenarios. In this work, localization broadly
refers to the ability to obtain internal system states of robot
motion, including locations, orientations, and velocities, while
mapping indicates the capacity to perceive external envi-
ronmental states, including scene geometry, appearance, and
semantics. They can act individually to sense internal or exter-
nal states, respectively, or can operate jointly as a simultaneous
localization and mapping (SLAM) system.

The problem of localization and mapping has been studied
for decades, with a range of algorithms and systems being
developed, for example, visual odometry (VO) [2], visual-
inertial odometry (VIO) [3], image-based relocalization [4],
place recognition [5], and SLAM [6]. These algorithms and
systems have demonstrated their efficacy in supporting a wide
range of real-world applications, such as delivery robots, self-
driving vehicles, and VR devices. However, the deployment
of these systems is not without challenges. Factors such
as imperfect sensor measurements, dynamic scenes, adverse
lighting conditions, and real-world constraints somewhat hin-
der their practical implementation. In light of these limitations,
recent advancements in machine learning, particularly deep
learning, have prompted researchers to explore data-driven
approaches as an alternative solution. Unlike conventional
model-based approaches that rely on concrete and explicit
algorithms tailored to specific application domains, learning-
based methods leverage the power of deep neural networks
(DNNs) to extract features and construct implicit neural
models. By training these networks on large datasets, they
learn to obtain the ability to generate poses and describe
scenes, even in challenging environments such as those char-
acterized by high dynamics and poor lighting conditions.
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Fig. 1. Taxonomy of deep-learning-based visual localization and mapping. Individual modules can be integrated together into a complete deep-learning-based
SLAM system. It is not mandatory to include all modules for the system to function effectively. In the diagram, rounded rectangles represent function modules,
and arrow lines depict the connections between these modules for data input and output.

Consequently, deep-learning-based localization and mapping
methods exhibit good robustness and accuracy compared to
their traditional counterparts. Deep-learning-based localization
and mapping remain active areas of research, and further
investigations are necessary to fully understand the strengths
and limitations of different approaches.

In this article, we extensively review the existing deep-
learning-based visual localization and mapping approaches,
and try to explore the answers to the following two questions.

1) Is deep learning promising for visual localization and
mapping?

2) How can deep learning be applied to solve the problem
of visual localization and mapping?

The two questions will be revisited by the end of this survey.
As vision is the major information source for most mobile
agents, this work will focus on vision-based solutions. The
field of deep-learning-based localization and mapping is still
relatively new, and there are a growing number of different
approaches and techniques that have been proposed in recent
years. Notably, although the problem of localization and
mapping falls into the key notion of robotics, the incorporation
of learning methods progresses in tandem with other research
areas, such as machine learning, computer vision, and even
natural language processing. This cross-disciplinary area,
thus, imposes nontrivial difficulty when comprehensively
summarizing related works into a survey paper. We hope that
our survey can help to promote collaboration and knowledge
sharing within the research community, foster new ideas, and
facilitate interdisciplinary research on deep-learning-based
localization and mapping. In addition, this survey can help
to identify key research challenges and open problems in
the field, guide future research efforts, and provide guidance
for researchers and practitioners who are interested in using
deep learning solutions in their works. To the best of our
knowledge, this is the first survey article that thoroughly and
extensively covers existing work on deep learning for visual
localization and mapping.

As an established field, the development of the SLAM prob-
lem has been well summarized by several survey papers in the
literature [8], [14], with their focus lying in the conventional
model-based localization and mapping approaches. The sem-
inal survey [11] provides a thorough discussion of existing
SLAM works, reviews the history of development, and charts
several future directions. Although this article contains a

section that briefly discusses deep learning models, it does
not overview this field comprehensively, especially due to the
explosion of research in this area over the past five years.
Other SLAM survey papers only focus on individual flavors
of SLAM systems, including the probabilistic formulation of
SLAM [7], VO [10], pose-graph SLAM [9], and SLAM in
dynamic environments [12]. We refer readers to these surveys
for a better understanding of the conventional solutions to
SLAM systems. On the other hand, [1] has a discussion on the
applications of deep learning to robotics research; however, its
main focus is not on localization and mapping specifically but
a more general perspective toward the potentials and limits
of deep learning in a broad context of robotic policy learn-
ing, reasoning, and planning. A recent survey [13] discusses
deep-learning-based perception and navigation. Compared
to [13] that throws a broader view on environment perception,
motion estimation, and reinforcement learning-based control
for autonomous systems, we provide a more comprehensive
review and deep analysis of odometry estimation, relocaliza-
tion, mapping, and other aspects of visual SLAM.

II. TAXONOMY OF EXISTING APPROACHES

From the perspective of learning approaches, we provide a
taxonomy of existing deep-learning-based visual localization
and mapping to connect the fields of robotics, computer vision,
and machine learning. Based on their main technical contri-
butions toward a complete SLAM system, related approaches
can be broadly categorized into four main types in our context:
incremental motion estimation (VO), global relocalization,
mapping, and loop closing and SLAM back ends, as illustrated
by the taxonomy shown in Fig. 1:

A. Incremental Motion Estimation
It concerns the calculation of the incremental change in

pose, in terms of translation and rotation, between two or more
frames of sensor data. It continuously tracks self-motion and
is followed by a process to integrate these pose changes with
respect to an initial state to derive a global pose. Incremental
motion estimation, i.e., VO, can be used in providing pose
information in a scenario without a prebuilt map or as an
odometry motion model to assist the feedback loop of robot
control. Deep learning is applied to estimate motion transfor-
mations from various sensor measurements in an end-to-end
fashion or extract useful features to support a hybrid system.
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TABLE I
SUMMARY OF DEEP-LEARNING-BASED VO (INCREMENTAL MOTION ESTIMATION) METHODS (SEE SECTION III)

B. Global Relocalization
It retrieves the global pose of mobile agents in a known

scene with prior knowledge. This is achieved by matching
the inquiry input data with a prebuilt map or other spatial
references. It can be leveraged to reduce the pose drift of
a dead reckoning system or retrieve the absolute pose when
motion tracking is lost [7]. Deep learning is used to tackle
the tricky data association problem that is complicated by the
changes in views, illumination, weather, and scene dynamics,
between the inquiry data and map.

C. Mapping
It builds and reconstructs a consistent environmental model

to describe the surroundings. Mapping can be used to pro-
vide environment information for human operators or high-
level robot tasks, constrain the error drifts of self-motion
tracking, and retrieve the inquiry observation for global local-
ization [11]. Deep learning is leveraged as a useful tool to

discover scene geometry and semantics from high-dimensional
raw data for mapping. Deep-learning-based mapping methods
are subdivided into geometric, semantic, and implicit mapping,
depending on whether the neural network learns the explicit
geometry, or semantics of a scene, or encodes the scene into
implicit neural representation.

D. Loop Closing and SLAM Back Ends
They detect loop closures and optimize the aforemen-

tioned incremental motion estimation, global localization, and
mapping modules to boost the performance of an SLAM
system. These modules perform to ensure the consistency of
the entire system as follows: local optimization ensures the
local consistency of camera motion and scene geometry; once
a loop closure is detected by the loop-closing module, system
error drifts can be mitigated by global optimization.

Besides the modules mentioned above, other modules that
also contribute to an SLAM system include the following.
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Fig. 2. Typical structure of supervised learning of VO (reprint from DeepVO [15]), self-supervised learning of VO (reprint from SfmLearner [16]), and
hybrid VO (reprint from D3VO [17]). (a) Supervised learning approaches. (b) Self-supervised learning approaches. (c) Hybrid approaches.

III. INCREMENTAL MOTION ESTIMATION

We begin with incremental motion (odometry) estimation,
i.e., VO, which continuously tracks camera egomotion and
yields motion transformations. Given an initial state, global
trajectories are reconstructed by integrating these incremental
poses. Thus, it is critical to keep the estimate of each motion
transformation accurate enough to ensure high-prevision local-
ization on a global scale. This section presents deep learning
approaches to achieve VO.

Deep learning is capable of extracting high-level feature
representations from raw images directly and, thereby, pro-
vides an alternative to solve VO problems, without requiring
handcrafted feature detectors. Existing deep-learning-based
VO models can be categorized into end-to-end VO and hybrid
VO, depending on whether they are purely DNN-based or a
combination of classical VO algorithms and DNNs. Depending
on the availability of ground-truth labels in the training phase,
end-to-end VO systems are further classified into supervised
VO and unsupervised VO. Table I lists and compares deep-
learning-based VO methods.

A. Supervised Learning of Visual Odometry
Supervised learning-based VO methods aim to train a DNN

model on labeled datasets to construct a function from consec-
utive images to motion transformations, instead of exploiting
the geometric structures of images as in conventional VO
algorithms [10]. At its most basic, the input to the DNN
consists of a pair of consecutive images, while the output
corresponds to the estimated translation and rotation between
the two frames of images.

One of the early works in this area is [18]. Their approach
formulates VO as a classification problem and predicts the
discrete changes of direction and velocity from input images
using a convolutional neural network (ConvNet). However,
this method is limited in its ability to estimate the full
camera trajectory and relies on a series of discrete motion

estimates instead. Costante et al. [19] propose a method
that overcomes some of the limitations of the Konda and
Memisevic [18] approach by using dense optical flow to
extract visual features and then using a ConvNet to estimate
the frame-to-frame motion of the camera. This method shows
performance improvements over the Konda and Memisevic
approach and can generate smoother and more accurate camera
trajectories. Despite the promising results of both approaches,
they are not strictly an end-to-end learning model from images
to motion estimates and still fall short of traditional VO algo-
rithms, e.g., VISO2 [20], in terms of accuracy and robustness.
One limitation of both methods is that they do not fully exploit
the rich geometric information contained in the input images,
which is crucial for accurate motion estimation. Furthermore,
the datasets used to train and evaluate these approaches are
limited in their diversity and may not generalize well to
different scenarios.

To enable end-to-end learning of VO, DeepVO [15] uti-
lizes a combination of ConvNet and the recurrent neural
network (RNN). Fig. 2(a) shows the architecture of this typical
RNN + ConvNet-based VO model, which extracts visual fea-
tures from pairs of images via a ConvNet and passes features
through RNNs to model the temporal correlation of features.
Its ConvNet encoder is based on a FlowNet [21] structure
to extract visual features suitable for optical flow and self-
motion estimation. The recurrent model summarizes history
information into its hidden states so that the output is inferred
from both past experience and current ConvNet features from
sensor observations. DeepVO is trained on datasets with
ground-truthed poses as training labels. To recover the optimal
parameters θ∗ of this framework, the optimization target is
to minimize the mean square error (mse) of the estimated
translations p̂ ∈ R3 and Euler angle-based rotations ϕ̂ ∈ R3

θ∗
= arg min

θ

1
N

N∑
i=1

T∑
t=1

∥p̂t − pt∥
2
2 + ∥ϕ̂t − ϕt∥

2
2 (1)
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where (p̂t , ϕ̂t ) are the estimates of relative pose from DNN
at the timestep t , (p, ϕ) are the corresponding ground-truth
values, θ are the parameters of the DNN framework, and N is
the number of samples. This data-driven solution reports good
results in estimating the pose of driving vehicles on several
benchmarks. On the KITTI odometry dataset [22], it shows
competitive performance over conventional monocular VO,
e.g., VISO2 [20] and ORB-SLAM (without loop closure) [6].
It is worth noting that supervised VO naturally produces
trajectory with absolute scale from a monocular camera, while
the classical monocular VO algorithm is scale-ambiguous.
This is probably because DNN implicitly learns and maintains
the global scale from large collections of images. Although
DeepVO reports good results in experimental scenarios,
its performance has still not been extensively evaluated
by large-scale datasets (e.g., across cities) or real-world
experiments/demonstrations in the wild.

Enhancing the generalization capability of supervised VO
models and improving their efficacy for operating in real
time on devices with limited resources are still formidable
challenges. While supervised learning-based VO is trained on
extensive datasets of image sequences with ground-truth poses,
not all sequences are equally informative or challenging for the
model to learn. Curriculum learning is a technique that gradu-
ally elevates the complexity of the training data by initially
presenting simple sequences and progressively introducing
more challenging ones. In [24], curriculum learning is inte-
grated into the supervised VO model by increasing the amount
of motion and rotation in the training sequences, enabling the
model to learn to estimate camera motion more robustly and
generalize better to new data. Knowledge distillation is another
approach that can be introduced to improve the efficiency of
supervised VO models by compressing a large model by teach-
ing a smaller one. This method is applied in [26], reducing the
number of network parameters and making the model more
suitable for real-time operation on mobile devices. Compared
to pure supervised VO without knowledge distillation, this
method significantly reduces network parameters by 92.95%
and enhances computation speed by 2.12 times.

Furthermore, to enhance the localization performance,
a memory module that stores global information about the
scene and camera motion is introduced in [25]. The back-
ground information is then utilized by a refining module that
enhances the accuracy of the predicted camera poses. In addi-
tion, attention mechanisms have been implemented to weigh
the inputs from different sources and enhance the efficacy of
supervised VO models. For example, DAVO [28] integrates
an attention module to weigh the inputs from semantic seg-
mentation, optical flow, and RGB images, leading to improved
odometry estimation performance. Despite the promising end-
to-end learning performance achieved on publicly available
datasets by these supervised VO frameworks, their deployment
performance in real-world scenarios remains to be further
verified as of the writing of this survey.

Overall, supervised learning-based VO models primarily
rely on ConvNet or RNN to learn pose transformations
automatically from raw images. Recent advancements in
machine learning, including attention mechanisms, GANs,
and knowledge distillation, have allowed these models to
extract more expressive visual features and accurately model
motion. However, these learning methods often require a
vast amount of training data with precise poses as labels to
optimize model parameters and improve robustness. While
supervised learning-based VO models have demonstrated
promising end-to-end learning performance on publicly avail-
able datasets, their deployment performance in real-world

scenarios requires further validation. In addition, obtaining
labeled data is often time-consuming and costly, and inaccurate
labels can occur. In Section III-B, we will discuss recent efforts
to address the issue of label scarcity through self-supervised
learning techniques.

B. Self-Supervised Learning of Visual Odometry
There are growing interests in exploring self-supervised

learning of VO. Self-supervised solutions are capable of
exploiting unlabelled sensor data, and thus, it saves human
efforts. Compared with supervised approaches, they normally
show better adaptation ability in new scenarios, where no
labeled data are available. This has been achieved in a self-
supervised framework that jointly learns camera ego-motion
and depth from video sequences, by utilizing view synthesis
as a self-supervisory signal [16].

As shown in Fig. 2(b), a typical self-supervised VO frame-
work [16] consists of a depth network to predict depth
maps and a pose network to produce motion transformations
between images. The entire framework takes consecutive
images as input, and the supervision signal is based on novel
view synthesis—given a source image Is , the view synthesis
task is to generate a synthetic target image It . A pixel of source
image Is(ps) is projected onto a target view It (pt ) via

ps ∼ KTt→sDt (pt )K−1 pt (2)

where K is the camera’s intrinsic matrix, Tt→s denotes the
camera motion matrix from the target frame to the source
frame, and Dt (pt ) denotes the per-pixel depth maps in the tar-
get frame. The training objective is to ensure the consistency of
the scene geometry by optimizing the photometric reconstruc-
tion loss between the real target image and the synthetic one

Lphoto =

∑
<I1,...,IN >∈S

∑
p

|It (p) − Îs(p)| (3)

where p denotes pixel coordinates, It is the target image, and
Îs is the synthetic target image generated from the source
image Is .

However, there are basically two main problems that remain
unsolved in the original work [16].

1) This monocular image-based approach is not able to
provide pose estimates on a consistent global scale. Due
to the scale ambiguity, no physically meaningful global
trajectory can be reconstructed, limiting its real usage.

2) The photometric loss assumes that the scene is static
and without camera occlusions. Although the authors
propose the use of an explainability mask to remove
scene dynamics, the influence of these environmental
factors is still not addressed completely, which violates
the assumption.

To solve the global-scale problem, Li et al. [29] and
Zhan et al. [31] propose to utilize stereo image pairs to
recover the absolute scale of pose estimation. They introduce
an additional spatial photometric loss between the left and
right pairs of images, as the stereo baseline (i.e., motion
transformation between the left and right images) is fixed
and known throughout the dataset. Once the training is
complete, the network produces pose predictions using only
monocular images. Compared with [16], they are able to
produce camera poses with a global metric scale and higher
accuracy. Another approach is to use virtual stereo data from
the simulator to recover the absolute scale of pose estimation
in VRVO [44]. It utilizes a generative adversarial network
(GAN) to generate virtual stereo data that are similar to real-
world data. By bridging the gap between virtual and real data
using adversarial learning, the pose network is then trained
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using the virtual data to recover the absolute scale of pose
estimation. Bian et al. [37] tackle the scale issue by introducing
a geometric consistency loss, which enforces the consistency
between predicted depth maps and reconstructed depth maps.
The framework transforms the predicted depth maps into a 3-D
space and projects them back to produce reconstructed depth
maps. By doing so, the depth predictions can remain scale-
consistent over consecutive frames, enabling pose estimates
to be scale-consistent as well. Different from previous works
that either use stereo images [29], [31] or virtual data [44],
this work successfully produces scale-consistent camera poses
and depth estimates only using monocular images.

The photometric consistency constraint is based on the
assumption that the entire scene consists only of rigid static
structures, such as buildings and lanes. However, in real-world
applications, the presence of environmental dynamics, such as
pedestrians and vehicles, can cause distortion in the photomet-
ric projection, leading to reduced accuracy in pose estimation.
To address this concern, GeoNet [30] divides its learning
process into two subtasks by estimating static scene structures
and motion dynamics separately through a rigid structure
reconstructor and a nonrigid motion localizer. In addition,
GeoNet enforces a geometric consistency loss to mitigate
the issues caused by camera occlusions and non-Lambertian
surfaces. Zhao et al. [23] add a 2-D flow generator along with
a depth network to generate 3-D flow. Benefiting from a better
3-D understanding of the environment, this framework is able
to produce more accurate camera poses, along with a point
cloud map. GANVO [33] employs a generative adversarial
learning paradigm for depth generation and introduces a
temporal recurrent module for pose regression. This method
improves accuracy in depth maps and poses estimation, as well
as tolerating environmental dynamics. Li et al. [54] also utilize
a GAN to generate more realistic depth maps and poses, and
further encourage more accurate synthetic images in the target
frame. Unlike handcrafted metrics, a discriminator is used to
evaluate the quality of synthetic image generation. In doing
so, the generative adversarial setup facilitates the generated
depth maps to be more texture-rich and crisper. In this way,
high-level scene perception and representation are accurately
captured, and environmental dynamics are implicitly tolerated.
Zhao et al. [40] introduce a masked GAN into joint learning
of depth and VO estimation, addressing influences from light-
condition changes and occlusions. By incorporating MaskNet
and a Boolean mask scheme, it mitigates the impacts of
occlusions and visual field changes, improving adversarial loss
and image reconstruction. A scale-consistency loss ensures
accurate pose estimation in long monocular sequences. Sim-
ilarly, Sun et al. [55] introduce hybrid masks to mitigate the
negative impact of dynamic environments. Cover masks and
filter masks alleviate adverse effects on VO estimation and
view reconstruction processes. Both approaches demonstrate
competitive depth prediction and globally consistent VO esti-
mation in car-driving scenarios.

Recent attempts [38], [42] design online learning strategies
that enable the learned model to adapt to new environments.
These approaches allow the learning model to automatically
update its parameters and learn from new data without forget-
ting the previously learned knowledge. Collaborative learning
of multiple learning tasks, such as optical flow, depth, and
camera motion estimation, has also been shown to improve the
performance of self-supervised VO [41]. By jointly optimizing
the different learning targets, it exploits the complementary
information between them so that learns more robust rep-
resentations for pose estimation. To further improve VO,

Dai et al. [43] propose a self-supervised VO with an attention
mechanism and pose graph optimization. The introduced atten-
tion mechanism is sensitive to geometrical structure and helps
to accurately regress the rotation matrix.

As demonstrated in Table I, self-supervised VO still cannot
compete with supervised VO in performance; its concerns of
scale metric and scene dynamics problem have been largely
resolved with the efforts of many researchers. With the benefits
of self-supervised learning and ever-increasing improvement
in performance, self-supervised VO would be a promising
solution to deep-learning-based SLAM. Currently, end-to-end
learning-based VOs have not been proved to surpass the state-
of-the-art model-based VOs in performance. Section III-C will
show how to combine the benefits from both sides to construct
hybrid approaches.

C. Hybrid Visual Odometry
Unlike end-to-end approaches that rely solely on a DNN to

interpret pose from data, hybrid approaches combine classical
geometric models with a deep learning framework. The DNN
is used to replace part of a geometry model, which allows for
more expressive representations.

One of the key challenges in traditional monocular VO is
the scale-ambiguity problem, where monocular VOs can only
estimate relative scale. This poses a problem in scenarios
where an absolute scale is required. One way to solve this
issue is to integrate learned depth estimates into a classical VO
algorithm, which helps to recover the absolute scale metric of
poses. Depth estimation is a well-established research area in
computer vision, and various methods have been proposed to
tackle this problem. For instance, Godard et al. [56] proposed
a deep neural model that predicts per-pixel depths on an
absolute scale. The details of depth learning are discussed in
Section V-A1.

In [46], a ConvNet produces coarse depth values from
raw images, which are then refined by conditional random
fields (CRFs). The scale factor is calculated by comparing
the estimated depth predictions with the observed point posi-
tions. Once the scale factor is obtained, the ego-motions with
absolute scale are obtained by multiplying the scale factor
and estimated translations from a monocular VO algorithm.
This approach mitigates the scale problem by incorporating
depth information. In addition, Barnes et al. [47] propose the
integration of predicted ephemeral masks (i.e., the area of
moving objects) with depth maps in a traditional VO system
to enhance its robustness to moving objects. This method
enables the system to produce metric-scale pose estimates
using a single camera, even when a significant portion of the
image is obscured by dynamic objects. Wagstaff et al. [52]
propose to combine a classical VO with learned pose correc-
tions, which largely reduces the error drifts of classical VOs.
Compared with pure learning-based VOs, instead of directly
regressing interframe pose changes, this approach regresses
pose corrections from data, without the need to pose ground
truth as training data. Similarly, Sun et al. [53] propose to
improve classical monocular VO with learned depth estimates.
This framework consists of a monocular depth estimation
module with two separate working modes to assist localization
and mapping, and it demonstrates strong generalization abil-
ity to diverse scenes compared with existing learning-based
VOs. Furthermore, Zhan et al. [51] integrate learned depth
and optical flow predictions into a conventional VO model.
Specifically, this framework uses optical flow and single-view
depth predictions from deep ConvNets as intermediate outputs
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to establish 2-D–2-D/3-D–2-D correspondences, and the depth
estimates with consistent scale can mitigate the scale drift
issue in monocular VO/SLAM systems. By integrating deep
predictions with geometry-based methods, the study shows
that deep VO models can complement standard VO/SLAM
systems.

D3VO [17] is proposed to incorporate the predictions of
depth, pose, and photometric uncertainty from DNNs into
direct VO (DVO) [57]. In D3VO, a self-supervised framework
is employed to learn depth and ego-motion jointly, similar
to the approaches discussed in Section III-B. D3VO employs
the uncertainty estimation method proposed by Kendall and
Gal [58] to generate a photometric uncertainty map that
indicates which parts of the visual observations can be trusted.
As illustrated in Fig. 2(c), the learned depth and pose estimates
are integrated into the front end of a VO algorithm, and
the uncertainties are used in the system back end. This
method shows impressive results on the KITTI [22] and
EuroC [59] benchmarks, surpassing several popular conven-
tional VO/VIO systems, e.g., DSO [60], ORB-SLAM [6], and
VINS-Mono [3]. This indicates the promise of integrating
learning methods with geometric models.

In addition to geometric models, there have been studies that
combine physical motion models with DNNs, such as through
a differentiable Kalman filter [45], [61] or a differentiable
particle filter [48]. In [45], a Kalman filter is transformed into
a differentiable module that is combined with DNNs for end-
to-end training. Chen et al. [61] propose DynaNet, a hybrid
model integrating DNNs and state-space models (SSMs) to
leverage their strengths. DynaNet enhances interpretability and
robustness in car-driving scenarios by combining powerful
feature representations from DNNs with explicit modeling
of physical processes from SSMs. The incorporation of a
recursive Kalman filter enables optimal filtering on the feature
state space, facilitating accurate positioning estimation, and
showcasing its ability to detect failures through internal filter-
ing model parameters, such as the rate of innovation (Kalman
gain). Instead of a Kalman filter, Jonschkowski et al. [48]
present a differentiable particle filter with learnable motion
and measurement models. The proposed differentiable particle
filter can approximate complex nonlinear functions, allowing
for efficient training of motion models by optimizing state esti-
mation performance. Both two works incorporate the physical
motion model of VO into the state update process of filtering.
Thus, the physical model serves as an algorithmic prior to
the learning process. Compared with ConvNet- or LSTM-
based models, differentiable filters improve the data effi-
ciency and generalization ability of the learning-based motion
estimation.

In summary, hybrid models that combine geometric or phys-
ical priors with deep learning techniques are generally more
accurate than end-to-end VO/SLAM systems and can even
outperform conventional monocular VO systems on common
benchmarks. Geometry-based models integrate DNNs into
VO/SLAM pipelines to improve depth and egomotion esti-
mation, and increase robustness to dynamic objects. Physical
motion-based models combine DNNs with physical motion
models, such as the Kalman filter or particle filter, to integrate
the physical motion model of VO/SLAM systems into the
learning process. Combining the benefits from combining
geometric or physical priors with deep learning, hybrid models
are normally more accurate than end-to-end VO at this stage,
as shown in Table I. It is notable that recent hybrid models
even outperform some representative conventional monocular

Fig. 3. Typical architectures of relocalization in 2-D map through (a) explicit
map-based localization, i.e., RelocNet [65], and (b) implicit map-based
localization, e.g., PoseNet [68].

VO systems on common benchmarks [17]. This demonstrates
the rapid rate of progress in this area.

IV. GLOBAL RELOCALIZATION

Global relocalization is the process of determining the
absolute camera pose within a known scene. Different from
incremental motion estimation (VO) that can perform in
unfamiliar environments, global relocalization relies on prior
knowledge of the scene and utilizes a 2-D or 3-D scene model.
Basically, it establishes the relation between sensor observa-
tions and the map by matching a query image or view against
a prebuilt model, followed by returning an estimate of the
global pose. According to the type of map used, deep-learning-
based methods for global relocalization can be categorized
into two categories: relocalization in a 2-D map, where input
2-D images are matched against a database of georeferenced
images or an implicit neural map; relocalization in a 3-D map,
where correspondences are established between 2-D image
pixels and 3-D points from an explicit or implicit scene model.
Tables II and III summarize the existing approaches in deep-
learning-based global relocalization within a 2-D map or a 3-D
map, respectively.

A. Relocalization in a 2-D Map
Relocalization in a 2-D map involves estimating the image

pose relative to a 2-D map. This type of map can be created
explicitly using a georeferenced database or implicitly encoded
within a neural network.

1) Explicit 2-D Map-Based Relocalization: Explicit 2-D
map-based relocalization typically represents a scene by a
database of geotagged images (references) [86], [87], [88].
Fig. 3(a) illustrates the two stages of this relocalization process
with 2-D references: image retrieval and pose regression.

In the first stage, the goal is to determine the most relevant
part of the scene represented by reference images to the visual
query. This is achieved by finding suitable image descriptors
for image retrieval, which is a challenging task. Deep-learning-
based approaches [89], [90] use pretrained ConvNets to extract
image-level features that are invariant to changes in viewpoint,
lighting, and other factors that can affect image appearance.
In challenging situations, local descriptors are extracted and
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TABLE II
SUMMARY ON EXISTING METHODS ON DEEP LEARNING FOR RELOCALIZATION IN 2-D MAP (SEE SECTION IV-A)

aggregated to obtain robust global descriptors. For instance,
NetVLAD [91] uses a trainable generalized vector of locally
aggregated descriptor (VLAD) layer (a descriptor vector used
in image retrieval) [92], while CamNet [66] applies a two-
stage retrieval approach that combines image-based coarse
retrieval and pose-based fine retrieval to select the most similar
reference frames for the final precise pose estimation.

The second stage of explicit 2-D map-based relocalization
aims to obtain more precise poses of the queries by performing
additional relative pose estimation with respect to the retrieved
images. Traditionally, this is tackled by epipolar geometry,
relying on the 2-D–2-D correspondences determined by local
descriptors [93], [94], [95]. In contrast, deep-learning-based
approaches regress the relative poses directly from pairwise
images. For example, NN-Net [62] uses a neural network to
estimate the pairwise relative poses between the query and
the top N ranked references, followed by a triangulation-based
fusion algorithm that coalesces the predicted N relative poses
and the ground truth of 3-D geometry poses to obtain the
absolute query pose. Alternatively, RelocNet [65] introduces a
frustum overlap loss to assist global descriptors’ learning that
is suitable for camera localization.

Explicit 2-D map-based relocalization is scalable and flex-
ible, as it does not require training on specific scenarios.
However, maintaining a database of geotagged images and
accurate image retrieval can be challenging, making it difficult
to scale to large-scale scenarios. Moreover, explicit 2-D map-
based relocalization is normally time-consuming compared to
implicit-map-based counterparts, which will be discussed in
Section IV-A2.

2) Implicit 2-D Map-Based Relocalization: Implicit 2-D
map-based relocalization directly regresses camera pose from
single images by implicitly representing a 2-D map inside a

DNN. The common pipeline is illustrated in Fig. 3(b)—the
input to a neural network is single images, while the output
is the global position and orientation of query images.

PoseNet [68] is the first approach to tackle the camera
relocalization problem by training a ConvNet to predict camera
pose from single RGB images in an end-to-end manner.
It leverages the main structure of GoogleNet [96] to extract
visual features and removes the last softmax layers. Instead,
a fully connected layer is introduced to output a 7-D global
pose, which consists of position and orientation vectors in 3-D
and 4-D, respectively. However, PoseNet has some limitations.
It is designed with a naive regression loss function that
does not take into account the underlying geometry of the
problem. This leads to hyperparameters requiring expensive
hand engineering to be tuned, and it may not generalize well
to new scenes. In addition, due to the high dimensionality
of the feature embedding and limited training data, PoseNet
suffers from overfitting problems.

Various extensions are proposed to enhance the original
pipeline, for example, by exploiting LSTM units to reduce
the dimensionality [74], applying synthetic generation to
augment training data [70], [73], [77], [97], replacing the
backbone [75], modeling pose uncertainty [69], [78], [98],
introducing geometry-aware loss function [72], and asso-
ciating features via an attention mechanism [82]. A prior
guided dropout mask is additionally adopted in RVL [80]
to further eliminate the uncertainty caused by dynamic
objects. VidLoc [71] incorporates temporal constraints of
image sequences to model the temporal connections of input
images for visual localization. Moreover, additional motion
constraints, including spatial constraints and other sensor
constraints from GPS or SLAM systems, are exploited in Map-
Net [76], to enforce the motion consistency between predicted
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TABLE III
SUMMARY ON EXISTING METHODS ON DEEP-LEARNING-BASED RELOCALIZATION IN A 3-D MAP (SEE SECTION IV-B)

poses. Similar motion constraints are also introduced by jointly
optimizing a relocalization network and a VO network [79],
[99], [100]. However, being application-specific, scene repre-
sentations learned from localization tasks may ignore some
useful features that they are not designed for. To this end,
VLocNet++ [101] additionally exploits the intertask rela-
tionship between learning semantics and regressing poses,
achieving impressive results. More recently, graph neural
networks (GNNs) are introduced to tackle the multiview cam-
era relocalization task in GR-Net [83] and PoGO-Net [102],
enabling the messages of different frames to be transferred
beyond temporal connections. MS-Transformer [84] extends
the absolute pose regression paradigm for learning a single
model on multiple scenes.

Both explicit and implicit 2-D map-based relocalization
methods exploit the benefits of deep learning in automati-
cally extracting crucial features for global relocalization in
environments lacking distinctive features. Implicit map-based
learning approaches directly regress the absolute pose of a
camera through a DNN, making them easier to implement and
more efficient than explicit map-based learning approaches.
However, current implicit map-based approaches exhibit per-
formance limitations, and their dependence on scene-specific
training prevents them from generalizing to unfamiliar scenes

without necessitating retraining. In Section IV-B, we will
introduce the concept of learning to match images against a
3-D model for global relocalization.

B. Relocalization in a 3-D Map
Relocalization in a 3-D map involves recovering the camera

pose of a 2-D image with respect to a prebuilt 3-D scene
model. This 3-D map is constructed from color images using
approaches such as structure-from-motion (SfM) [12] or range
images using approaches such as truncated-signed-distance
function (TSDF) [103]. As depicted in Fig. 4, 3-D map-
based methods establish 2-D–3-D correspondences between
the 2-D pixels of a query image and the 3-D points using
local descriptors [104], [105], [106], [107] or scene coordinate
regression [85], [108], [109], [110]. These 2-D–3-D matches
are then used to compute the camera pose by applying a
Perspective-n-Point (PnP) solver [111] within a RAndom
SAmple consensus (RANSAC) loop [112].

1) Local Descriptor-Based Relocalization: Local
descriptor-based relocalization relies on establishing cor-
respondences between 2-D map inputs and the given
explicit 3-D model using feature descriptors. As the learning
of feature descriptor is typically coupled with keypoint



CHEN et al.: DEEP LEARNING FOR VISUAL LOCALIZATION AND MAPPING: A SURVEY 17009

Fig. 4. Typical architectures of 3-D Map-based relocalization through
(a) descriptor matching-based localization, i.e., HF-Net [120], and (b) scene
coordinate regression-based localization, i.e., Confidence SCR [135].

detection, existing learning methods can be divided into
three types: detect-then-describe, detect-and-describe, and
describe-then-detect, according to the role of detector and
descriptor in the learning process.

Detect-then-describe is a common pipeline for local
descriptor-based relocalization. This approach first performs
feature detection and then extracts a feature descriptor from
a patch centered around each keypoint [143], [144]. The
keypoint detector is responsible for providing robustness or
invariance against possible real issues, such as scale trans-
formation, rotation, or viewpoint changes by normalizing the
patch accordingly. However, some of these responsibilities
might also be delegated to the descriptor. The common
pipeline varies from using handcrafted detectors [145], [146]
and descriptors [147], [148], replacing either the descrip-
tor [118], [149], [150], [151], [152], [153], [154], [155], [156],
[157] or detector [158], [159], [160] with a learned alternative,
or learning both the detector and descriptor [161], [162],
[163], [164]. For efficiency, the feature detector often considers
only small image regions and typically focuses on low-level
structures, such as corners or blobs [165], while the descriptor
often captures higher level information in a larger patch around
the keypoint.

In contrast, detect-and-describe approaches advance the
description stage. By sharing a representation from DNN,
SuperPoint [116] and R2D2 [127] attempt to learn a dense
feature descriptor and a feature detector. However, they rely
on different decoder branches that are trained independently
with specific losses. On the contrary, D2-net [121] and
ASLFeat [128] share all parameters between detection and
description, and use a joint formulation that simultaneously
optimizes for both tasks. Different from these works, which
purely rely on image features, P2-Net [166] proposes a unified
descriptor between 2-D and 3-D representations for pixel and
point matching.

Alternatively, the describe-then-detect approach, e.g.,
D2D [167], postpones the detection to a later stage but applies
such detector on prelearned dense descriptors to extract a
sparse set of keypoints and corresponding descriptors.

In practice, descriptors are commonly used to perform
sparse feature extraction and matching for the requirement of
efficiency with a keypoint detector. Moreover, by disabling

the function of keypoint detector, dense feature extraction
and matching [114], [115], [168], [169], [170], [171], [172]
show better matching results than sparse feature matching,
particularly under strong variations in illumination [173].
More recently, new approaches have been proposed to estab-
lish correspondence for visual localization. For example,
CD-VLM [129] uses cross-descriptor matching to overcome
challenges in cross-seasonal and cross-domain visual localiza-
tion. VS-Net [130] proposes a scene-specific landmark-based
approach, which uses a set of keyframe-based landmarks to
establish correspondences in visual localization. These new
approaches offer promising alternatives for robust and accurate
visual localization.

2) Scene Coordinate Regression-Based Localization: Dif-
ferent from local descriptor-based relocalization that relies
on matching descriptors between images and an explicit 3-D
map to establish 2-D–3-D correspondences, scene coordinate
regression approaches eliminate the need for explicit 3-D map
construction and descriptor extraction, making it relatively
more efficient. Instead of relying on explicit 3-D maps, these
methods learn an implicit transformation from 2-D pixel
coordinates to 3-D point coordinates. By estimating the 3-D
coordinates of each pixel in the query image within the world
coordinate system (i.e., the scene coordinates [85], [174]),
these approaches allow for more flexibility in dealing with
different environments and scene structures. This makes scene
coordinate regression a promising alternative for relocalization
tasks, especially in scenarios where explicit 3-D maps may not
be available or accurate enough.

DSAC [131] is a relocalization pipeline that leverages a
ConvNet to regress scene coordinates and incorporates a novel
differentiable RANSAC algorithm to allow for end-to-end
training of the pipeline. This approach has been extended in
several ways to improve its performance and applicability.
For example, reprojection loss [132], [133], [175] and mul-
tiview geometric constraints [139] have been introduced to
enable unsupervised learning and joint learning of observa-
tion confidences [135], [137] to enhance sampling efficiency
and accuracy. Other strategies, such as Mixture of Experts
(MoE) [136] and hierarchical coarse-to-fine [140], [176], have
been integrated to eliminate environment ambiguities. Differ-
ent from these, KFNet [141] extends the scene coordinate
regression problem to the time domain, effectively bridging the
performance gap between temporal and one-shot relocalization
approaches. However, these methods are still limited to a
specific scene and cannot be generalized to unseen scenes
without retraining. To address this limitation, SANet [138]
regresses the scene coordinate map of the query by interpolat-
ing the 3-D points associated with the retrieved scene images,
making it a scene-agnostic method. Unlike the aforementioned
methods that are trained in a sparse manner, Dense SCR
and DSM [134], [142] perform scene coordinate regression
in a dense manner, making the computation more efficient
during testing. Moreover, they incorporate global context into
the regression process to improve robustness. Overall, these
advances in scene coordinate regression and relocalization
techniques offer promising avenues for improving localization
accuracy in diverse scenarios.

Scene coordinate regression-based methods can be more
efficient than local descriptor-based methods as they elimi-
nate the need for descriptor extraction and matching. These
methods can directly regress the corresponding 3-D point for
a given 2-D pixel, thus generating 2-D–3-D correspondences
efficiently. In addition, implicit 3-D map-based relocalization
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Fig. 5. Illustrations of scene representations on the Stanford Bunny
benchmark: (a) original model, (b) depth, (c) voxel (d) point, and (e) mesh
representations.

methods have shown promising results, exhibiting robust
and accurate performance in small indoor environments and
achieving comparable, if not better, performance than explicit
3-D map-based methods. It is worth noting, however, that
the effectiveness of these implicit methods in large-scale
outdoor scenes has not been demonstrated. This is due to their
dependence on learning a regression function that maps 2-D
image coordinates to 3-D scene coordinates, which may not
generalize well to outdoor scenes with diverse illumination,
weather conditions, and scene layouts.

V. MAPPING

Mapping refers to the ability of a mobile agent to perceive
and build a consistent environmental model to describe sur-
roundings. Deep learning has fostered a set of tools for scene
perception and understanding, with applications ranging from
depth prediction and object detection to semantic labeling
and 3-D geometry reconstruction. This section provides an
overview of existing works relevant to deep-learning-based
mapping (scene perception) methods. We categorize them into
geometric mapping, semantic mapping, and implicit mapping.

A. Geometric Mapping
Broadly, geometric mapping captures the shape and struc-

tural description of a scene. The classical mapping algorithms
can be categorized into sparse features or dense methods.
As deep-learning-based approaches mostly represent scenes
with dense representations, this section focuses on introduc-
ing relevant works in this area. Typical choices of dense
scene representations include depth, point, boundary, mesh,
and voxel. Fig. 5 visualizes these representative geometric
representations on the Stanford Bunny benchmark. Inspired by
Cadena et al. [11], we further divide the learning approaches
into two parts: raw dense representations and boundary dense
representations.

1) Raw Dense Representations: Conditioned on input
images, deep learning approaches are able to generate 2.5-D
depth maps or 3-D points as raw dense representations that
express scene geometry in high resolution. Such raw represen-
tations serve as fundamental components to constitute a scene
that is well-suited to robotic tasks, such as obstacle avoidance.
In SLAM systems, these raw dense mapping methods are
jointly used with motion tracking. For example, dense scene
reconstruction can be achieved by fusing per-pixel depth and
RGB images, such as DTAM [177], [178], [179].

a) 2.5-D depth representation: Learning depth from
raw images is a fast-evolving area in the computer vision
community. There are generally three main categories:
supervised learning-based self-supervised learning with spa-
tial consistency-based self-supervised learning with temporal
consistency-based depth estimation.

One of the earliest approaches is [180] that takes a single
image as input and processes to output per-pixel depths. It
uses two DNNs, i.e., one for coarse global prediction and the

other for local refinement, and applies scale-invariant error to
measure depth relations. This method achieves new state-of-
the-art performance on NYU Depth and KITTI datasets. More
accurate depth prediction is achieved by jointly optimizing
the depth and self-motion estimation [181]. This work learns
to produce depth and camera motion from unconstrained
image pairs via ConvNet-based encoder–decoder structure
and an iterative network that improves predictions. The net-
work estimates surface normals, optical flow, and matching
confidence, with a training loss based on spatial relative
differences. Compared to traditional depth estimation methods,
this approach achieves higher accuracy and robustness, and
outperforms single-image-based depth learning network [181]
by better generalizing to unseen structures. Liu et al. [182]
propose a ConvNet-based neural model to estimate depth
from monocular images by using continuous CRF learning
and a structured learning scheme that learns the unary and
pairwise potentials of continuous CRF in a unified deep CNN
framework. This model improves upon supervised learning-
based depth estimation and is relatively more efficient. While
these supervised learning methods have shown superior perfor-
mance compared to traditional structure-based methods, such
as [183], their effectiveness is limited by the availability of
labeled data during model training, making generalization to
new scenarios difficult.

On the other side, recent advances in this field focus on
unsupervised solutions, by reformulating depth prediction as a
novel view synthesis problem. Garg et al. [184] utilize photo-
metric consistency loss as a self-supervision signal for training
neural models. With stereo images and a known camera
baseline, it synthesizes the left view from the right image
and the predicted depth maps of the left view. By minimizing
the distance between synthesized images and real images, i.e.,
the spatial consistency, the parameters of the networks are
recovered via this self-supervision in an end-to-end manner.
Similarly, Godard et al. [56] propose a single image depth
estimation model that uses binocular stereo footage instead
of ground-truth depth data. Their approach utilizes an image
reconstruction loss to generate disparity images and enforces
consistency between disparities produced relative to both the
left and right images to improve performance and robustness,
outperforming [182] and [184].

In addition to spatial consistency, temporal consistency can
also be used as a self-supervised signal [16]. These approaches
synthesize the image in the target time frame from the source
time frame while simultaneously recovering egomotion and
depth estimation. Importantly, this framework only requires
monocular images to learn both depth maps and egomotion.
As we have discussed this part in Section III-B, we refer the
readers to Section III-B for more details.

The learned depth information can be integrated into SLAM
systems to address some limitations of classical monocular
solutions. For example, CNN-SLAM [185] utilizes the learned
depths from single images into a monocular SLAM framework
(i.e., LSD-SLAM [186]). It shows how learned depth maps
contribute to mitigating the absolute scale recovery problem
in pose estimates and scene reconstruction. With the dense
depth maps predicted by ConvNets, CNN-SLAM provides
dense scene predictions in textureless areas, which is normally
hard for a conventional SLAM system.

b) 3-D points’ representation: Deep learning techniques
have also been introduced to generate 3-D points from raw
images. The point-based formulation represents the 3-D coor-
dinates (x, y, z) of points in 3-D space. While this formulation
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is straightforward and easily manipulated, it encounters the
challenge of ambiguity, wherein different configurations of
point clouds can represent the same underlying geometry.

The pioneer work in this domain is PointNet [187] that
directly operates on point clouds, without the need for
unnecessary conversion to regular 3-D voxel grids or image
collections. PointNet is specifically designed to handle the
permutation invariance of points in the input, and its appli-
cations span various tasks, such as object classification,
part segmentation, and scene semantic parsing. Furthermore,
Fan et al. [188] develop a deep generative model that can
generate 3-D geometry in point-based formulation from single
images. In their work, a loss function based on the earth
mover’s distance is introduced to tackle the problem of data
ambiguity. However, their method has only been validated
on the reconstruction task of single objects. As of now,
no research on point generation for scene reconstruction has
been found, primarily due to the large computational burden
associated with such endeavors.

2) Boundary and Spatial-Partitioning Representations:
Beyond unstructured raw dense representations (i.e., 2.5-D
depth maps and 3-D points), boundary representations express
the 3-D scene with explicit surfaces and spatial partitioning
(i.e., boundaries).

a) Surface mesh representation: Mesh-based formulation
naturally captures the surface of a 3-D shape. It encodes the
underlying surface structure of 3-D models, such as edges,
vertices, and faces. Several works consider the problem of
learning mesh generation from images [189], [190] or point
clouds data [191], [192], [193]. However, these approaches
are only able to reconstruct single objects and are limited
to generating models with simple structures or from familiar
classes. To tackle the problem of scene reconstruction in
mesh representation, Mukasa et al. [194] integrate the sparse
features from monocular SLAM with the dense depth maps
from ConvNets to the update 3-D mesh representation. In this
work, SLAM-measured sparse features and CNN-predicted
dense depth maps are fused to obtain a more accurate 3-D
reconstruction; a 3-D mesh representation is updated by inte-
grating accurately tracked sparse feature points. The proposed
work shows a reduction in the mean residual error of 38%
compared to ConvNet-based depth map prediction alone in 3-
D reconstruction. To allow efficient computation and flexible
information fusion, Bloesch et al. [195] utilize 2.5-D mesh to
represent scene geometry. In this approach, the image plane
coordinates of mesh vertices are learned by DNNs, while
depth maps are optimized as free variables. A factor graph is
utilized to integrate information in a flexible and continuous
manner through the use of learnable residuals. Experimental
evaluation of synthetic and real data shows the effectiveness
and practicability of the proposed approach.

b) Surface function representation: This representation
describes the surface as the zero-crossing of an implicit func-
tion. A popular choice is the signed distance function (SDF),
a continuous volumetric field, in which the magnitude of a
point is the distance to the surface boundary and the sign deter-
mines whether it is inside or outside. DeepSDF is proposed to
learn to generate such a continuous field by a classifier, indi-
cating which boundary is the shape surface [196]. Specifically,
DeepSDF is a learned continuous SDF representation of a class
of shapes, which enables high-quality shape representation,
interpolation, and completion from partial and noisy 3-D input
data. It represents a shape’s surface by a continuous volumetric
field and explicitly represents the classification of space as

being part of the shape’s interior or not. DeepSDF can repre-
sent an entire class of shapes and has impressive performance
in learning 3-D shape representation and completion while
reducing the model size by an order of magnitude compared
with previous works. Another approach, occupancy networks
generate a continuous 3-D occupancy function with DNNs,
representing the decision boundary with neural classifier [197],
a description of the 3-D output at infinite resolution with-
out excessive memory footprint. The effectiveness of this
approach has been validated for 3-D reconstruction from single
images, noisy point clouds, and coarse discrete voxel grids
and demonstrates competitive results over baselines. To fur-
ther improve occupancy networks, convolutional occupancy
networks [198] combine convolutional encoders with implicit
occupancy decoders. This method is empirically validated
through experiments reconstructing complex geometry from
noisy point clouds and low-resolution voxel representations.
In addition, Mildenhall et al. [199] leverage the deep fully
connected neural network to optimize a radiance field function
to represent a scene. Their experiments demonstrate good
performance in novel view synthesis tasks. Compared with
raw representations, surface function representation reduces
storage memory significantly. Different from the aforemen-
tioned methods that are limited to closed surfaces, NDF [200]
is proposed to predict unsigned distance fields for arbitrary
3-D shapes, which is more flexible in practical usage.

c) Voxel representation: Similar to the usage of pix-
els (i.e., 2-D element) in images, the voxel is a volume
element in a 3-D space. Previous works explore to use
multiple input views and reconstruct the volumetric repre-
sentation of a scene [201], [202] and objects [203]. For
example, SurfaceNet [201] learns to predict the confidence
of a voxel to determine whether it is on the surface or
not and reconstruct the 2-D surface of a scene. SurfaceNet
is based on a 3-D convolutional network that encodes the
camera parameters together with the images in a 3-D voxel
representation, allowing for the direct learning of both photo-
consistency and geometric relations of the surface structure.
This framework is evaluated on the large-scale scene recon-
struction dataset, demonstrating its effectiveness for multiview
stereopsis. RayNet [202] reconstructs the scene geometry by
extracting view-invariant features while imposing geometric
constraints. It encodes the physics of perspective projection
and occlusion via Markov random fields while utilizing a
ConvNet to learn view-invariant feature representations. Some
works focus on generating high-resolution 3-D volumetric
models [204], [205]. For example, Tatarchenko et al. [205]
design a convolutional decoder based on the octree-based
formulation to enable scene reconstruction in much higher
resolution. This network predicts the structure of the octree and
the occupancy values of individual cells, making it valuable for
generating complex 3-D shapes. Unlike standard decoders with
cubic complexity, this architecture allows for higher resolution
outputs with a limited memory budget. Others can be found
on scene completion from RGB-D data [206], [207]. One
limitation of voxel representation is its high computational
requirement, especially when attempting to reconstruct a scene
in high resolution.

Choosing the optimal representation for mapping is still
an open question. The choice of scene representation for
SLAM depends on a range of factors, including the sen-
sor modality, the level of detail required, the computational
resources available, and the size and complexity of the envi-
ronment. In general, dense representations, such as depth maps
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or point clouds, offer a comprehensive and detailed view
of the scene but incur a high computational and memory
cost. This renders them more suitable for small-scale scenes.
On the other hand, boundary representations, such as mesh and
surface function-based formulations, are preferred for large-
scale outdoor environments due to their ability to capture the
scene’s structure and geometry while keeping memory and
computational requirements within feasible limits.

B. Semantic Map
Semantic mapping connects semantic concepts (i.e., object

classification and material composition) with environment
geometry. The advances in deep learning greatly foster the
development of object recognition and semantic segmentation.
Maps with semantic meanings enable mobile agents to have
a high-level understanding of their environments beyond pure
geometry and allow for a greater range of functionality and
autonomy.

SemanticFusion [209] is one of the early contributions
that combine semantic segmentation labels obtained from
deep ConvNet with dense scene geometry derived from an
SLAM system. This integration is achieved by probabilistically
associating 2-D frames with a 3-D map, thereby incrementally
incorporating per-frame semantic segmentation predictions
into the dense 3-D map. The combined framework not only
generates a map enriched with useful semantic information
but also shows that the integration with an SLAM system
enhances single-frame segmentation. However, in Semantic-
Fusion, the two modules, i.e., semantic segmentation and
SLAM, are loosely coupled. Ma et al. [210] propose a self-
supervised network that predicts consistent semantic labels for
a map, by imposing constraints on the coherence of semantic
predictions across across different viewpoints. DA-RNN [211]
introduces recurrent models into the semantic segmentation
framework, enabling the learning of temporal connections
across multiple view frames, and producing more accurate
and consistent semantic labeling for volumetric maps. Another
recent work [212] proposes a framework that builds a compact
semantic map using crowd-sourced visual data. Localization is
achieved by matching current feature points against the built
semantic map via the iterative closest point (ICP) method.
Unlike previous approaches that are evaluated on a room
level, this work provides a lightweight semantic mapping
and localization that performs well in large-scale city scenes.
Yet, it is worth noting that these semantic segmentation-based
methods do not provide information about object instances.
Therefore, they are unable to distinguish between different
objects belonging to the same category.

With the advances in instance segmentation, semantic map-
ping has evolved to operate at the instance level. A notable
example is [213] that offers object-level semantic mapping
by employing a bounding box detection module and an
unsupervised geometric segmentation module to identify indi-
vidual objects. Grinvald et al. [214] present a framework that
achieves instance-aware semantic mapping and enables novel
object discovery within the mapped environment. Unlike other
dense semantic mapping approaches, Fusion++ [215] builds
a semantic graph-based map that specifically predicts object
instances and maintains a consistent map via loop closure
detection, pose-graph optimization, and further refinement.
In order to leverage learned object information more effec-
tively, Doherty et al. [216] present a probabilistic framework
within the context of SLAM. It introduces object detectors

as semantic landmarks into a factor graph, enabling the joint
optimization of pose estimation, landmark positions/classes,
and data association. This integration helps address ambigu-
ous data association challenges encountered in the mapping
process.

Recently, panoptic segmentation [208] attracts attention.
PanopticFusion [217] represents an advancement in semantic
mapping that extends to the level of stuff and things classifi-
cation. In this context, stuff classes encompass static objects,
such as walls, doors, and lanes, while things classes include
accountable objects, such as moving vehicles, humans, and
tables.

C. Implicit Map
In addition to explicit geometric and semantic map repre-

sentations, deep learning models are able to encode the entire
scene into an implicit representation, known as a neural map.
This neural map representation captures the underlying scene
geometry and appearance in an implicit manner.

1) Autoencoder-Based Scene Representation: Deep autoen-
coders offer the capability to automatically discover high-
level compact representations of high-dimensional image data.
A notable example is CodeSLAM [218] that encodes observed
images into a compact and optimizable representation to
contain the essential information of a dense scene. The learned
implicit representation is then utilized within a keyframe-based
SLAM system to infer both camera poses and depth maps. The
reduced size of learned representation in CodeSLAM enables
efficient optimization of camera motion tracking and scene
geometry, facilitating global consistency in visual localization
and mapping.

2) Neural Rendering-Based Scene Representation: Neural
rendering models form a distinct category of research that
leverages view synthesis as a self-supervision signal to implic-
itly learn and model the 3-D structure of a scene. These models
aim to reconstruct a new scene from an unknown viewpoint.

A notable example is the generative query network
(GQN) [219] that learns to capture a neural implicit
representation and utilizes it to render new scenes. GQN
consists of a representation network and a generation network.
The representation network encodes observations from refer-
ence views into a scene representation, while the generation
network, based on a recurrent model, reconstructs the scene
from a new view conditioned on the scene representation
and a stochastic latent variable. By taking observed images
from multiple viewpoints and the camera pose of a new
view as inputs, GQN predicts the physical scene of the
new view. Through end-to-end training, the representation
network can capture the necessary and important factors of
the 3-D environment for the scene reconstruction task via the
generation network. GQN has been extended to incorporate a
geometric-aware attention mechanism to allow more complex
environment modeling [220]. Furthermore, the integration of
multimodal data for scene inference has been explored to
enhance the capabilities of GQN [221].

Recently, NeRF [199] is proposed to explicitly encode the
radiance fields of complicated 3-D scenes into the weights
of MLPs. It delivers impressive realism for demanding 3-D
situations by utilizing volume rendering to generate new views
for 2-D supervision. However, there are three main limitations:
1) because each 3-D scene is stored into all MLP weights,
the trained network (i.e., a learned radiance field) can only
represent a single scene and is hard to generalize to novel
circumstances; 2) as a single camera ray requires tens or even
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hundreds of the evaluations of the 3-D neural scene repre-
sentation, NeRF-based approaches are highly computational,
leading to slow rendering time; and 3) due to the fact that each
spatial 3-D location along a light ray is only optimized by the
available pixel RGBs, the learned implicit representations of
that site lack the general geometric patterns, resulting in less
photorealistic synthetic images. To address these limitations,
several works have been proposed, including those that focus
on generalization [222], [223], efficiency [224], [225], and
geometry [226], [227]. NeRF can also be combined with a
semantic map, as seen in Semantic-NeRF [228], which jointly
encodes semantics with appearance and geometry, exploiting
the intrinsic multiview consistency and smoothness of NeRF
to benefit semantics.

In addition, NeRF is also introduced to build SLAM
systems, such as iMAP [229] and NICE-SLAM [230]. Specif-
ically, iMAP [229] employs a multilayer perceptron (MLP)
as the sole scene representation in an SLAM system, which
is trained in live operation without prior data. iMAP designs
a keyframe structure, multiprocessing computation flow, and
dynamic information-guided pixel sampling for speed, achiev-
ing tracking at 10 Hz and global map updating at 2 Hz.
Compared to standard dense SLAMs, iMAP has efficient
geometry representation with automatic detail control and
smooth filling-in of unobserved regions. To overcome the limi-
tations of oversmoothed scene reconstructions and difficulty in
scaling up to large scenes in SLAM, NICE-SLAM [230] has
been proposed as an efficient and robust dense SLAM system.
It incorporates multilevel local information through a hierar-
chical scene representation and is optimized with pretrained
geometric priors, resulting in more detailed reconstruction on
large indoor scenes.

VI. LOOP CLOSING AND SLAM BACK ENDS

Simultaneously tracking self-motion and building environ-
mental structures construct an SLAM system. The localization
and mapping methods discussed in Sections III and IV can
be considered as individual modules within comprehensive
SLAM frameworks. This section overviews deep-learning-
based loop closure detection and SLAM back ends.

A. Loop-Closure Detection
The loop-closing (or place recognition) module determines

whether a particular location has been visited previously. Upon
detecting a loop closure, global optimization is performed to
ensure the overall consistency of motion tracking and the map.
For a more comprehensive discussion on this topic, readers are
referred to the survey [5].

Conventional works typically rely on the bag-of-words
(BoW) to store and use visual features extracted from hand-
designed detectors. However, real-world scenarios often intro-
duce complications such as changes in illumination, weather
conditions, viewpoints, and the presence of moving objects.
To address these challenges, researchers have proposed to use
the ConvNet features that are from pretrained neural models
on large-scale generic image processing datasets. In [236],
by adapting object proposal techniques and utilizing ConvNet
features, potential landmarks within an image can be identified
for place recognition. This method does not require any form
of training, and the system’s components are generic enough
to be used off-the-shelf, resulting in performance improvement
over current state-of-the-art techniques. Other representative
works, e.g., [237], [238], and [239], are built on a deep

autoencoder structure to extract a compact representation that
compresses scenes in an unsupervised manner. Specifically,
Gao and Zhang [237] utilize a stacked denoising autoencoder
(SDA) that learns a compressed representation from raw input
data in an unsupervised manner, allowing for complex inner
structures in image data to be learned without the need
for manual visual feature design. Merrill and Huang [238]
leverage an unsupervised autoencoder architecture, trained
with randomized projective transformations to emulate natural
viewpoint changes and histogram of oriented gradients (HOG)
descriptors for illumination invariance. It is without the need
for labeled training data or environment-specific training and
is capable of closing loops in real time with no dimensionality
reduction. Reference [239] is based on a super dictionary,
which is more memory-efficient than traditional BoW dic-
tionaries. The proposed model uses two DNNs to speed up
the loop closure detection and to ignore the effect of mobile
objects. Experimental results show that it performs robustly
and is significantly faster.

B. Local Optimization

When jointly optimizing estimated camera motion and scene
geometry, SLAM systems enforce them to satisfy a certain
constraint. It is done by minimizing a geometric or photo-
metric loss to ensure their consistency in the local area—the
surroundings of camera poses. This is a bundle adjustment
(BA) problem [240]. Learning-based approaches predict depth
maps and ego-motion through two individual networks trained
above large datasets [16]. During the testing procedure when
deployed online, there is a requirement that enforces the
predictions to satisfy some local constraints. To enable local
optimization, traditionally, the second-order solvers, e.g., the
Gauss–Newton (GN) method or the Levenberg–Marquardt
(LM) algorithm [241], are applied to optimize motion trans-
formations and per-pixel depth maps.

To this end, LS-Net [242] tackles this problem via a
learning-based optimizer by integrating analytical solvers into
its learning process. It learns a data-driven prior, followed by
refining neural network predictions with an analytical opti-
mizer to ensure photometric consistency. It can optimize sum-
of-squares objective functions in SLAM algorithms, which are
often difficult to optimize due to violated assumptions and
ill-posed problems. BA-Net [243] integrates a differentiable
second-order optimizer (LM algorithm) into a DNN for end-to-
end learning. Instead of minimizing geometric or photometric
error, BA-Net is performed on feature space to optimize the
consistency loss of features from multiview images extracted
by ConvNets. This feature-level optimizer can mitigate the
fundamental problems of geometric or photometric solutions
(e.g., some information may be lost in the geometric optimiza-
tion, while environmental dynamics and lighting changes may
impact the photometric optimization). This work combines
domain knowledge of SLAM with deep learning and achieves
successful results on large-scale real data, outperforming
conventional SLAM with geometric or photometric BA and
deep-learning-based methods, e.g., Zhou et al. [16].

These learning-based optimizers provide an alternative to
solve local BA problems. By integrating analytical solvers
and differentiable second-order optimizers into their learning
processes, these methods have demonstrated the potential to
improve SLAM performance by mitigating challenges such as
violated assumptions and ill-posed problems or information
loss during optimization. Consequently, they are able to offer
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promising results for enhancing the accuracy and robustness
of local optimization in SLAM systems.

C. Global Optimization
Incremental motion estimation (VO) suffers from accu-

mulative error drifts during long-term operation. This issue
stems from the inherent problem of path integration, where
the system’s errors progressively accumulate without effec-
tive constraints. To address this challenge, graph-SLAM [9]
constructs a topological graph to represent camera poses or
scene features as graph nodes, which are connected by edges
(measured by sensors) to constrain the poses. This graph-
based formulation can be optimized to ensure the global
consistency of graph nodes and edges, mitigating the possible
errors in pose estimates and the inherent sensor measurement
noise. A popular solver for global optimization is through LM
algorithm.

In the era of deep learning, DNNs excel at extracting
features and constructing functions from observations to poses
and scene representations. A global optimization of the DNN
predictions is necessary to reduce the drifts of global trajecto-
ries and support large-scale mapping. Compared with a variety
of well-researched solutions in classical SLAM, optimizing
deep predictions globally is underexplored.

Various studies have explored the integration of learning
modules into classical SLAM systems at different levels.
At the front end, DNNs generate predictions, which are then
incorporated into the back end for optimization and refinement.
One good example is CNN-SLAM [185], which uses learned
per-pixel depths to support loop closing and graph optimiza-
tion in LSD-SLAM, a complete SLAM system [186]. The joint
optimization of camera poses, scene representations, and depth
maps in CNN-SLAM produces consistent scale metrics. This
method has been evaluated for estimating the absolute scale
of the reconstruction and fusing semantic labels, which results
in semantically coherent scene reconstruction from a single
view. CNN-SLAM is capable of producing pose and depth
estimates consistently in low-textured areas where traditional
SLAM systems tend to fail by utilizing depth predictions
from neural networks. In DeepTAM [244], the depth and
pose predictions from DNNs are integrated into a classical
DTAM system [177], where the system estimates small pose
increments and accumulates information in a cost volume to
update the depth prediction. Depth measurements and image-
based priors are combined for optimization, which results
in more accurate scene reconstruction and camera motion
tracking. Few images are required, and the system is robust to
noisy camera poses. Similarly, in [35], unsupervised learning-
based VO is combined with a graph optimization back end.
This method generates a windowed pose graph consisting of
multiview constraints and uses a novel pose cycle consis-
tency loss to improve performance and robustness. Conversely,
DeepFactors [245] integrates the learned optimizable scene
representation (their so-called code representation) into a prob-
abilistic factor graph-based back end for global optimization.
The advantage of the factor-graph-based formulation is its
flexibility to include sensor measurements, state estimates, and
constraints. It is comparably easy and convenient to add new
sensor modalities, pairwise constraints, and system states into
the graph for optimization.

VII. CONCLUSION AND DISCUSSION

This survey comprehensively overviews the area of deep
learning for visual localization and mapping, and provides

a taxonomy to cover the relevant existing approaches from
robotics, computer vision, and machine learning communities.
The fast development of deep learning provides an alternative
to solve this problem in a data-driven way and, meanwhile,
paves the road toward the next-generation AI-based spatial
perception solution.

The two questions posted at the beginning of this article
are visited here, and the limitations of current learning-based
approaches are summarized as follows.

A. Is Deep Learning Promising to Visual Localization
and Mapping?

SLAM systems have progressed fast over the past decades
and shown great successes in real-world deployment. Exam-
ples can be witnessed from delivery robots to mobile and
wearable devices. Admittedly, predominant SLAM systems
without embracing deep learning have already met many
needs in certain conditions by exploiting physical laws or
geometry heuristics to build up models and algorithms. Nev-
ertheless, the final answer to the promise of deep learning for
SLAM depends on application scenarios from a general view.
We believe that the three particular properties listed below
could make deep learning a unique direction toward a general-
purpose SLAM system in the future.

1) First, deep learning offers powerful perception tools that
can be integrated into the visual SLAM front end to
extract features in challenging areas for odometry esti-
mation or relocalization and provide dense depth [16],
[180] and semantic labeling [209], [210] for map-
ping. Deep learning has been largely embraced by the
computer vision community, leading to state-of-the-art
methods in a number of computer vision tasks, e.g.,
object detection, image recognition, and semantic seg-
mentation. Some works have already introduced learning
algorithms as a “black box” module to solve important
and useful perception problems for SLAM [17], [244].

2) Second, deep learning enables high-level understand-
ing and interaction for robots. Neural networks are
known to be powerful in connecting abstract elements
with human-understandable terms [209], [210], such
as labeling scene semantics in a mapping or SLAM
system, which is normally hard to describe in a formal
mathematical way. Deep-learning-enabled scene under-
standing, on the other hand, is able to support high-level
robotic tasks, for example, a service robot searches for
an apple in the kitchen by leveraging fine-grained indoor
semantics.

3) Third, learning methods allow SLAM systems or indi-
vidual localization/mapping algorithms to learn from
past experience and actively exploit new information for
self-learning and adapting to new environments. Beyond
performing in restricted areas, future SLAM systems are
believed to undertake more indispensable roles in unseen
scenarios, e.g., nuclear waste disposal. By leveraging
self-supervised learning [16] or reinforcement learn-
ing [231], [232], [233], it would offer opportunities to
self-update system (neural network) parameters and be
promising to enhance the adaptation ability of mobile
agents to unseen scenarios without human intervention.

B. How Can Deep Learning be Applied to Solve Visual
Localization and Mapping?

1) Deep learning is used as a universal approximator
to describe certain functions of SLAM or individual
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localization/mapping algorithms. For example, VO can
be achieved by building an end-to-end DNN model
to directly approximate the function from images to
pose [15], [23], [24], [25], [26]. The advantage here is
that the learned models can be inherently incorporated
and resilient to certain circumstances, e.g., featureless
areas, dynamic lightning conditions, and motion blur
that are typically difficult to model.

2) Deep learning is applied to solve the association prob-
lem in SLAM. Relocalization needs to connect an
image with a prebuilt map and retrieves its pose [65].
Semantic mapping or SLAM needs to tackle the complex
semantics labeling that associates pixels with their
semantic meaning [209], [210]. Loop-closure detection
requires recognizing whether the observed scene is rel-
evant to the place visited previously [236].

3) Deep learning is leveraged to automatically discover
features relevant to the task of interest. For example,
features suitable to BA are extracted to SLAM, show-
ing performance improvement [243]. In [251], features
relevant to sensor fusion are extracted for VIO. Rein-
forcement learning-based navigation also utilizes the
discovered features to constitute an implicit map for path
planning and task-driven navigation [231], [232], [233].

4) By exploiting prior knowledge, e.g., the geometry con-
straints, a self-learning framework can be set up for
SLAM to automatically update parameters based on
input images. For instance, novel view synthesis can
serve as a self-supervision signal to recover self-motion
and depth from unlabelled videos [16], [23], [29], [30],
[31], [33], [35], [37], [49], [54], [256], thereby support-
ing localization tasks.

5) Deep learning can be utilized to tackle some intrin-
sic problems of conventional SLAM or localization/
mapping algorithms. For instance, the scale-ambiguity
problem of monocular SLAM is mitigated by using
learned depth estimates with the absolute scale from
DNNs [47], [49], [50], [185]. Furthermore, the photo-
metric uncertainties of scenes produced by DNNs can be
introduced into VO in order to encourage the framework
to leverage features that can be trusted and, thus, further
enhance pose estimation performance [17].
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