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Abstract 

In the context of smart grids, residential air conditioners, as the major contributors to home electricity 

bills and loads on electrical grids, need to be not only energy-efficient, but also grid-responsive to 

relieve power supply-demand imbalance. Existing demand response control strategies for residential 

air conditioners focus on single-speed type and mainly adopt temperature set point reset to respond 

to hourly day-ahead electricity prices. This study represents the first attempt to directly control the 

operating frequency of inverter air conditioners in response to high-granularity electricity price 

signals, i.e., 5-minute real-time electricity prices, using model predictive control method. A simplified 

room thermal model in the stochastic state-space representation and performance maps of an inverter 

air conditioner are developed and integrated for predicting the coupled thermal response of an air-

conditioned room. A demand response-enabled model predictive controller is designed based on the 

coupled model to optimally control the operating frequency of the inverter air conditioner while 

taking account of all the influential variables including weather conditions, occupancy, and 5-min 

real-time electricity prices. A Kalman filter is adopted to estimate the unmeasurable variables and 

remove the noises in measurements. A TRNSYS-MATLAB co-simulation testbed is developed to test 

the thermal and energy performances of the model predictive controller. Results show that compared 

to the PID controller, the demand response-enabled model predictive controller can implement 
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automatic and optimal precooling to improve occupant’s thermal comfort at the beginning of 

occupancy. Moreover, it can also reduce average power consumption during peak demand periods by 

17.31% to 38.86% compared with the PID controller and reduce all-day electricity costs by 0.42% to 

22.16%. The frequency-based model predictive control method enables residential inverter air 

conditioners to be more grid-friendly and cost-efficient. 

Keywords: Inverter air conditioners; Model predictive control; Real-time electricity prices; Gray-box 

room thermal model; Demand response; Smart grid. 

Nomenclature 

A area, m2 

A system matrix in state-space model 

AC air conditioner 

B input matrix in state-space model 

C equivalent overall thermal capacitance, J/K 

C output matrix in state-space model 

DAP day-ahead electricity pricing 

DR demand response 

E disturbance matrix in state-space model 

e slack variable 

ERCOT Electric Reliability Council of Texas  

GA genetic algorithm 

HVAC heating, ventilation and air conditioning 

MIMO multiple-input multiple-output  



MPC model predictive control 

N operating frequency of compressor motor, Hz 

N prediction horizon 

P power consumption, W 

P covariance matrix of state estimate error 

PID proportional–integral–derivative control 

Q cooling capacity of AC, W 

Q heat gains, W 

Q covariance matrix of process noise 

R equivalent overall thermal resistance, K/W 

R covariance matrix of measurement noise 

RC resistance-capacitance room thermal model 

RMSE root mean square error 

RTP real-time electricity pricing 

T temperature, ℃ 

TMY typical meteorological year  

TRN TRNSYS 

v measurement noise 

w process noise 



y observed output vector in state-space model 

Greek symbols 

 

ρ penalty to the slack variable 

Subscripts 

 

comp Compressor 

cp cumulative probability 

d discrete-time 

ext external surface of wall 

in indoor air 

int internal surface of wall 

inter internal heat gains 

k sampling time step 

lb lower bound 

m internal thermal mass 

max Maximum 

o outdoor air 

solar heat gain from solar radiation 

thsh Threshold 

ub upper bound 



w Wall 

win Window 

1. Introduction 

The increasing penetration of renewable energy resources at supply side and plug-in electric vehicles 

at demand side are exacerbating the power imbalance in today’s electrical grids. The power imbalance 

will result in the severe consequences in terms of the power quality and reliability, such as voltage 

fluctuations and even power outages. Demand response (DR) has been considered as an effective and  

promising solution to the power imbalance issue in recent years, which refers to changes in electric 

usage made by end-users in response to changes in the electricity prices over time when system 

reliability is jeopardized [1]. Buildings, as the major end users of electricity, have great potential to 

provide peak power reductions and to improve the grid reliability. As the Federal Energy Regulation 

Committee reported, residential buildings would provide the greatest DR potential and the residential 

customers would be able to provide more than 45% of the total potential DR resources in 2019 [2]. 

Many studies have focused on DR management of residential ACs, and optimal scheduling of the 

indoor air temperature set points is a common DR control method for residential ACs.  

During the optimal scheduling, dynamic electricity prices from electric utilities were usually 

considered in the objective function to minimize the all-day electricity cost while still satisfying the 

occupant’s thermal comfort. The optimal scheduling usually involves two major tasks: development 

of the thermal response model of an air-conditioned room and the optimization problem formulation 

and solving. Chen et al. [3] optimized the on/off schedule of home electrical appliances by using 

stochastic and robust optimization methods. A simplified one-order model was used to describe the 

relationships among indoor air temperature, out air temperature, and energy consumption of AC. 

Hubert et al. [4] formulated a mixed-integer linear programming problem, which was solved using 

GUROBI software, to minimize the electricity cost by on/off control of the AC. The air-conditioned 

room was modeled as a three-order thermodynamic system. Li et al. [5] used a heuristic method and 

particle swarm optimization to schedule the optimal set points of the indoor air temperature for on/off 

control of ACs. The operating costs under various dynamic electricity prices and environmental 

conditions were compared with the assistance of the eQUEST simulation. Thomas et al. [6] developed 



an intelligent AC controller that can provide the end-use customers with optimal trade-offs between 

comfort and cost by scheduling the on/off status of AC. A two-order equivalent thermal parameter 

model was used to represent the room thermal dynamics. Some other algorithms were used for energy 

consumption forecasting and energy dispatch, such as backtracking search algorithm [7], artificial 

cooperative search algorithm [8], and optimized gene expression programming [9]. Most residential 

ACs concerned in the previous studies were single-speed ACs with on-off control. 

However, on-off control carries the great disadvantage of undesired current peaks during state 

transitions [10]. Meanwhile, single-speed ACs are also being gradually replaced by inverter ACs, 

which have greater energy efficiency in partial-load conditions. Inverter ACs can operate within a 

wide range of frequencies (20 to 100 Hz), which is accompanied by large variations in power 

consumption. The control algorithms of inverter ACs are more complicated than those of single-speed 

ACs. Besides, previous studies on DR control of residential appliances mainly targeted at day-ahead 

electricity prices (DAPs), which are at hourly intervals and usually announced to the end-users one 

day ahead at midnight, rather than real-time electricity prices (RTPs), e.g., the high-granularity RTPs 

at 5-min intervals [11]. Three challenging issues remain to be addressed in response to real-time 

electricity prices. First, the dynamics of the indoor air temperature is much slower than the response 

of an AC due to thermal mass of the building. As a result, the indoor air temperature could not track 

the frequently changed set points when the temperature set points are adjusted every 5 minutes. It 

means the conventional DAP-based optimal scheduling of the temperature set points doesn’t work 

well with 5-minute RTPs. Second, computation load becomes critical in responding to RTPs because 

of the shorter interval of the changes of electricity prices. The sophisticated modeling and 

optimization techniques used in DAP-based DR strategies may not be suitable for RTP-based DR 

strategies. Third, for inverter ACs, direct control of the compressor frequency, which largely 

determines the AC power consumption, is more effective in responding to RTPs every 5 minutes and 

regulating power consumption. Therefore, a new frequency-based DR control method is needed for 

residential inverter ACs to respond to 5-min RTPs and it is the research focus of the present study. 

Model predictive control (MPC) is a promising method for frequency-based DR control of residential 

inverter ACs in response to 5-min RTPs. It is an intuitive and well-established approach for 

constrained control, which was initially applied in the process industries, such as petroleum refineries 



and chemical plants, in the late 1970s [12]. It has received increasing and extensive research interests 

in the field of building and HVAC system control in the last decade. Both experimental [13, 14] and 

simulation [15, 16] attempts have been made to apply MPC method to building environmental control. 

According to different control goals and optimization functions, they can be categorized into: 

maximizing occupants’ thermal comfort [17, 18]; minimizing total energy consumptions [13, 19], 

operational costs [20, 21], or greenhouse gas emissions [22]; minimizing peak load demands [23, 24]; 

and maximization of the productivity of renewable energy sources [25, 26]. MPC is particularly 

suitable for frequency-based DR control of inverter ACs because it can output optimal operating 

frequency while simultaneously considering all the influential factors including weather conditions, 

occupancy and 5-min RTPs. 

This paper presents a novel MPC-based frequency control method for inverter ACs, which directly 

control the operating frequency of compressor in response to 5-minute RTPs. The present study is an 

extension of our previous work [27], in which we developed a model-based optimal control method 

for inverter ACs in response to hourly DAPs. Specifically, we make new contributions in two respects. 

First, we develop a computationally efficient simple-structured room thermal model in the stochastic 

state-space form for MPC. The state-space model is chosen because it is beneficial to formulate a 

convex and easily solved optimization problem. Random white noise is added to the model to make 

it more realistic. Second, we develop a novel DR-enabled MPC controller to directly control the 

operating frequency of inverter ACs in response to high-granularity electricity prices, i.e. 5-min RTPs. 

The proposed DR-enabled MPC controller enables the inverter AC to be price-responsive and grid-

interactive and can efficiently reduce power consumptions during peak demand periods and reduce 

electricity costs without sacrificing thermal comfort. A Kalman filter is used to estimate the 

unmeasurable variables and to filter the noises in measurements. To the best of our knowledge, the 

proposed frequency-based MPC controller in this work is the first of its kind for DR control of 

residential inverter ACs to provide quick response to the 5-minute RTPs.  

The remainder of this paper is organized as follows. Section 2 introduces the general implementation 

structure of the proposed MPC method for inverter ACs. The development and validation of offline 

data-driven system models are presented in Section 3. The proposed online MPC methods are 

introduced in Section 4. In Section 5, we test and compare the performances of the integrated building 



energy system under on-off controller, PID controller and two types of MPC controllers on the 

TRNSYS-MATLAB co-simulation testbed. Finally, our conclusions are presented in Section 6. 

2. Overview of the proposed MPC method for residential inverter ACs 

Before the development of MPC controllers for inverter ACs is described, the fundamentals behind 

MPC are briefly discussed in this section. MPC is an advanced control method that can systematically 

take account of future predictions during the control design stage while satisfying the system 

operating constraints. The main idea is to use system models to predict the evolution of the system 

under the predicted operating conditions. During each sampling interval, beginning at the current 

state, an optimal control problem is formulated and solved over a finite horizon. MPC is intrinsically 

a feedback control that incorporates iterative optimizations over moving prediction horizons. The 

optimization result is a trajectory of future control inputs into a system that satisfy the system 

dynamics and time-varying constraints. However, only the first control signal is adopted by the 

system at the next sampling time, whereas the rest of the sequence is discarded. At the following time 

step, the optimization is repeated based on the updated current state over the next prediction horizon. 

The formulations of cost function, system dynamics, and constraints play significant roles in the 

performance of an MPC scheme. To obtain simple optimization problems, most cost functions that 

describe desired performance are convex, such as quadratic costs and linear costs. Instead of using 

the concept of a specific set point for the controlled variables, the specified constraints of the 

optimization problem are chosen to fulfill the control targets. A range of constraints, including linear 

constraint, convex quadratic constraint, switched constraint, and nonlinear constraint, are used in 

practice. Due to the computational simplicity, linear constraint is the most common type of constraint, 

in which the upper and lower bounds of variables are normally used as optimization constraints. The 

system dynamic model, as the cornerstone of the MPC, is used to predict the future system outputs. 

They are usually represented in the forms of impulse response, step response, transfer function, and 

state space. For multiple-input multiple-output (MIMO) systems, the state space model is commonly 

used [16] to describe system dynamics. Moreover, the state space model can be used to formulate 

convex and easily solved optimization problems. 



 

Fig. 1. Block diagram of implementation structure of MPC for inverter ACs. 

The implementation structure of MPC for inverter ACs, as shown in Fig. 1, includes two main parts: 

offline data-driven model development and online MPC. The system of interest in this study is an 

integrated building energy system that includes an air-conditioned room and an inverter (variable-

speed) AC. Considering the computational efficiency for online MPC-based DR control, control-

oriented models of both the room and the inverter AC are required. In this study, we develop a 

stochastic state-space model of room thermal dynamics and 3-dimensional performance maps of 

inverter ACs, based on the detailed physical models developed in our previous work [27], for online 

prediction of the system’s evolution under the influence of predicted future exogenous variables such 

as weather conditions, occupancy, and RTP. The output of the MPC controller is the control signal of 

operating frequency of the AC, which is used to control the compressor speed directly.   

3. Development of data-driven model for online MPC 

System modeling consumes the largest portion of time in the process of developing an MPC controller, 

typically around 80% in the industrial process field [28] and 60% in the built-environment field [29]. 

MPC of inverter ACs in response to 5-minute RTP requires fast and accurate dynamic models. To 



balance model accuracy and computational efficiency, we adopted a general approach to develop 

models (i.e., from relatively detailed models with sophisticated physical meanings to simplified data-

driven models). 

3.1. Room thermal model 

3.1.1. Model development 

The building models in commonly used simulation software such as TRNSYS, EnergyPlus, and 

eQUEST cannot be readily used for model-based control methods because they are complex and 

usually time-consuming. In previous studies [30], we developed, identified, and validated a gray-box 

RC room thermal model. The structure of the gray-box model is illustrated in Fig. 2. The gray-box 

room thermal model can learn the thermal characteristics of the to-be-controlled room by analyzing 

the data collected from smart in-home sensors. Due to the simplicity of the model structure, the 

developed room thermal model can be easily integrated in the model-based controller to effectively 

predict the room’s thermal dynamics. The energy balance for the external and internal walls, indoor 

air, and internal thermal mass are given by Eqs. (1) - (4). 

 

Fig. 2. Schematic of the gray-box RC room thermal model. 
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where R and C represent the overall heat resistance and capacitance; T denotes temperature; the 

subscripts in, o, w, int, ext, win, and m indicate indoor air, outdoor air, exterior wall, internal wall 

surface, external wall surface, window, and internal mass, respectively; Qinter denotes the internal heat 

gain, Isolar denotes the global solar radiation, A denotes the geometric area, and f denotes the 

conversion coefficients for the heat gains, which are also identified together with R and C. The 

detailed model identification methods can be found in our previous publication [30]. 

3.1.2. Model linearization and discretization 

The dynamic room thermal model, as described by differential equations (1) – (4), is an MIMO system. 

State space models are commonly used to model MIMO systems because of their advantage in 

explicit expression of the relationships between the outputs and inputs. They can also be used to 

formulate convex optimization problems that can generally be solved conveniently with state-of-the-

art optimization techniques. To make the model more realistic, white Gaussian noise is added into the 

system model. Eqs. (1) – (4) can be converted into a continuous-time state-space model with 

stochastic noise, as shown in Eq. (5). 

𝑑𝑇 = (𝐴𝑇 + 𝐵𝑢 + 𝐸𝑑)𝑑𝑡 + 𝑑𝑤(𝑡)                        (5) 

Where the system state 𝑇 = [𝑇𝑤,𝑒𝑥𝑡 𝑇𝑤,𝑖𝑛𝑡 𝑇𝑖𝑛 𝑇𝑚]𝑇 ; the input vector 𝑢 =  𝑄𝐻𝑉𝐴𝐶 ; the 

disturbance vector 𝑑 = [𝑇𝑜 𝐼𝑠𝑜𝑙𝑎𝑟 𝑄𝑖𝑛𝑡𝑒𝑟]
𝑇 ; the system matrix 𝐴 =

(
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 ; the input matrix 𝐵 =

(0 0 1 𝐶𝑖𝑛⁄ 0)𝑇; the disturbance matrix 𝐸 =

(
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; w(t) is a Wiener 

process, which is a stochastic process with independent normal distributed increments. 

In practical applications, the stochastic continuous-time state-space model needs to be discretized, 

and the stochastic discrete-time state-space model is given by Eqs. (6) and (7). 



𝑇𝑘+1 = 𝐴𝑑𝑇𝑘 + 𝐵𝑑𝑢𝑘 + 𝐸𝑑𝑑𝑘 + 𝑤𝑘                      (6) 

𝑦𝑘 = 𝐶𝑑𝑇𝑘 + 𝑣𝑘                                      (7) 

where Ad, Bd, and Ed are the corresponding matrices of the discrete-time state-space model, which 

depend on the sampling time. The observed output vector 𝑦𝑘 = 𝑇𝑖𝑛; and the output matrix 𝐶𝑑 =

(0 0 1 0) . The random variables wk and vk represent the process and measurement noises, 

respectively, which are assumed to be independent and white and to have normal distribution 

probabilities (i.e., 𝑤𝑘~𝑁(0,𝑄) and 𝑣𝑘~𝑁(0, 𝑅)). Q and R are the covariance matrices of the process 

noise and the measurement noise, respectively. Eqs. (6) and (7) are used in the MPC controller to 

online predict the system evolution. 

3.1.3. Identification of model parameters  

A prototype room in a residential flat in Hong Kong is modeled in TRNSYS. The residential room (L 

× W × H: 4.8 × 3.6 × 3 m) has one south-facing exterior wall (3.6 × 3 m) and one east-facing exterior 

wall (4.8 × 3 m). Both exterior walls have single glazed windows and the window-wall-ratio of each 

wall is 0.2. The overall heat transfer coefficients of the exterior wall and the single glazed window 

are 2.57 and 5.69 W/(m2·K), respectively. Instead of using the default TMY weather data, real 

historical weather data at 1-minute intervals from the Hong Kong observatory are used in simulation 

tests. Four weeks (1 June to 29 June 2015) of indoor air temperature data at 1-minute intervals 

generated from TRNSYS are used to identify the room thermal model. The identification results are 

as follows: Cw = 8,381,606 J/K, Cin = 871,887 J/K, Cm = 13,904,351 J/K, Rwin = 0.0051 K/W, Rw = 

0.0060 K/W, Rw,o = 0.0010 K/W, Rw,in = 0.0041 K/W, Rin,m = 0.0023 K/W, fsolar,w = 0.4834, fsolar,m = 

0.0012, finter,in = 3.0367, and finter,m = 0.9976. Fig. 3 shows the outdoor air temperatures, solar radiation, 

and indoor air temperature generated from TRNSYS (Tin,TRN) and the RC model (Tin,RC). The results 

show that the RC room thermal model can predict the indoor air temperature with a relatively high 

degree of accuracy. 



 

Fig. 3. Weather conditions and indoor air temperature generated from TRNSYS and the RC model. 

With the identified RC values and a 5-minute sampling interval, the matrices in the discrete-time 

state-space model (i.e., Eqs. (6) and (7)) can be determined as follows: 

𝐴𝑑 = 10
−2(

95.809 0.5757 0.0023 0.0001
0.5757 98.573 0.7543 0.0600
0.0223 7.2508 73.899 13.012
0.0001 0.0362 0.8159 99.119

)

4×4

;   𝐸𝑑 = 10
−4(

361.21 3.4146 0.0001
3.7494 0.0101 0.0415
581.53 0.0004 9.0293
2.8933 0.0013 0.2591

)

4×3

; 

𝐵𝑑 = 10−5(0.0003 0.1367 29.686 0.1477)𝑇; 𝐶𝑑 = (0 0 1 0). 

3.2. Performance maps of an inverter AC 

AC models are generally classified into transient and steady-state models. The refrigerant dynamics 

in residential ACs are much quicker than the room’s thermal dynamics. The redistribution of 

refrigerant throughout the various AC components normally requires only around 100 seconds. 

Therefore, a steady-state AC model can predict the coupled dynamic behaviors of the room and the 

AC under time-varying internal and external conditions. However, for online MPC-based DR control 

in response to 5-minute RTP, the computation time of the detailed steady-state model is unaffordable.   

Therefore, we develop 3-dimensional performance maps of inverter ACs based on the steady-state 

inverter AC models developed in our previous work [27]. The model of inverter ACs was validated 

using the experimental data of a Mitsubishi split-type inverter AC. The rated cooling capacity of the 

tested inverter AC is 2.5 kW.  



Performance map is a kind of graphical representation designed to show the performances of a system 

at different levels of disturbances. Since the performance of inverter ACs is quantified by both its 

cooling capacity and COP, the performance maps of inverter-driven ACs include the cooling capacity 

map and the COP map. The typical operating conditions are the combinations of different compressor 

rotational speeds (Ncomp = [20, 30,…, 100]), indoor air temperature (Tin = [21, 24, 27, 30, 33, 36]) and 

outdoor air temperature (Tout = [23, 26, 29, 32, 35, 38]). The performance data of the inverter AC 

under the typical operating conditions are obtained from simulation tests conducted using the steady-

state inverter AC model developed in our previous work. With the performance maps, the cooling 

capacities and COP of the inverter AC at given indoor and outdoor conditions and compressor 

frequencies can be obtained by 3-dimensional interpolations. 

 

Fig. 4. Performance maps (cooling capacity and COP map) of the inverter AC at a range of compressor speeds. 

Fig. 4 shows the performance maps of the inverter AC at a range of compressor speeds, i.e., 20-100Hz. 

It can be found that the cooling capacity increases as the compressor speed increases, but the COP 

decreases as the compressor speed increases. The outdoor air temperature has a greater influence on 

the COP than the indoor air temperature. The performance maps of the inverter AC under the full 

range of operating conditions are used for online MPC in this study.  



4. Online model predictive control 

 

Fig. 5. Flow chart of online model predictive control for inverter ACs.  

For purposes of comparison, two types of MPC controllers are designed for inverter ACs: a DR-

enabled MPC controller with automatic response capability to RTP and an ordinary MPC controller 

without DR function. Three major steps are included in each time step of MPC, as shown in Fig. 5: 

(1) preparation/prediction of the exogenous input variables, including the weather, occupancy, and 

RTP; (2) solution of the optimization problem based on the predicted exogenous inputs and updated 



current state filtered by the Kalman filter; and (3) control implementation and measurement. Fig. 5 

illustrates the flows of both the DR-enabled MPC controller and the ordinary MPC controller without 

DR function. The RTP-related blocks (in yellow) are involved only in the DR-enabled MPC controller. 

4.1. Preparation/prediction of exogenous input variables 

4.1.1. Weather conditions and occupancy 

Weather conditions, such as the outdoor air temperature and the solar radiation, influence a room’s 

thermal dynamics and AC performance; these data may come from a local observatory or from 

prediction models [31]. The integrated building energy system model used in the MPC controllers in 

this study makes predictions regarding system dynamics based on local weather forecasts. Occupancy 

prediction plays a significant role in model-based building climate control. The occupancy pattern 

determines the internal heat gain and the control range of the indoor air temperature over the 

prediction horizon. In practical implementation, occupancy information can either be preset by the 

customers or obtained from smart mobile devices and Internet of Things devices [32]. In our 

simulation studies, the real-time weather forecast is obtained from the local observatory website, and 

the occupancy is pre-specified for the sake of simplicity.  

4.1.2. RTP and dynamic power thresholds  

The typical RTP at 5-minute intervals is considered in the development of the DR-enabled MPC 

controller for inverter ACs. Fig. 6 shows the historical nodal dynamic RTPs of the Electric Reliability 

Council of Texas (ERCOT) in June 2016 [33] to illustrate the large daily fluctuations in typical daily 

RTP profiles. 

 

Fig. 6. Daily RTP profiles in the ERCOT retail market on typical days of June 2016. 



To achieve supply-demand balance in electrical grids, grid operators usually increase the RTP to 

prompt DR program participants to reduce power consumption during peak demand periods. To 

obtain effective responses, a power constraint based on dynamic pricing is usually adopted in DR 

control methods for residential appliances. When the RTP is high, a low operating power threshold 

can be set for electric appliances to provide DR resources and reduce operating costs. In a similar 

way, when the RTP is low, a high operating power threshold can be adopted. Based on this idea, a 

“Price-to-Power Threshold” model for inverter ACs is formulated in this study. The cumulative 

probability distribution of RTP, which is obtained by analyzing the historical RTP database, can help 

us develop the model. The cumulative probability of RTP refers to the likelihood that the RTP is less 

than or equal to a specified value of RTP. Fig. 7 shows the probabilities and cumulative probability 

distribution of RTPs in the ERCOT retail market in June 2016. Taking as an example the point denoted 

by the triangle symbol in Fig. 7-b, the cumulative probability is explained here. The point (24.97, 

70%) means that the probability is 70% when the RTP is 24.97 cents/kWh or less (i.e., RTPcp=0.7 = 

24.97). 

 

Fig. 7. (a) Probabilities and (b) cumulative probability distribution of RTPs in the ERCOT retail market in June 2016. 

Using the cumulative probability distribution of RTP, we propose a scheme to determine dynamic 

power thresholds for the DR-enabled MPC control that can be mathematically described by Eq. (16). 

𝑃𝑡ℎ𝑠ℎ,𝑖 =

{
 
 

 
 100% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑖 ≤ 𝑅𝑇𝑃𝑐𝑝=0.7
85% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑐𝑝=0.7 < 𝑅𝑇𝑃𝑖 ≤ 𝑅𝑇𝑃𝑐𝑝=0.85
70% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑐𝑝=0.85 < 𝑅𝑇𝑃𝑖 ≤ 𝑅𝑇𝑃𝑐𝑝=0.95
55% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑖 ≥ 𝑅𝑇𝑃𝑐𝑝=0.95

           (16) 



where Pmax refers to the maximum operating power of an inverter AC; Pthsh,i denotes the dynamic 

power threshold at time step i; and RTPcp=0.7, RTPcp=0.85, and RTPcp=0.95 are the RTPs when the 

cumulative probabilities (cp) are 0.7, 0.85, and 0.95, respectively. The dynamic power thresholds are 

used as a time-varying constraint in the DR-enabled MPC controller to limit the maximum operating 

power of AC during peak demand periods. 

4.2. Formulation and solving of optimization problem 

For purposes of comparison, a DR-enabled MPC controller and an ordinary MPC controller without 

DR function are developed in this study to fulfill different tasks. A general MPC framework includes 

four parts: cost function, constraints, system dynamics, and current state [16]. The difference between 

the two MPC controllers is the construction of cost function and constraints. 

4.2.1. DR-enabled MPC controller responding to RTP 

The objective of the DR-enabled MPC controller is to minimize the operating costs of the inverter 

AC over the prediction horizon N while keeping the indoor air temperature within a pre-specified 

range. The optimization problem is formulated as Eqs. (17) - (22).  

 min
𝑃1,𝑃2,…,𝑃𝑁−1

 ∑ 𝑃𝑘∆𝑡 ∙ 𝑅𝑇𝑃𝑘 + 𝜌𝑒𝑒𝑘
𝑁−1
𝑘=1                            (17) 

subject to           𝑇𝑘+1 = 𝐴𝑑 ∙ 𝑇𝑘 + 𝐵𝑑 ∙ 𝐶𝑂𝑃𝑘 ∙ 𝑃𝑘 + 𝐸𝑑 ∙ 𝑑𝑘 + 𝑤𝑘          (18) 

𝑦𝑘 = 𝐶𝑑𝑇𝑘 + 𝑣𝑘                                    (19) 

𝑦𝑙𝑏,𝑘 − 𝑒𝑘 ≤ 𝑦𝑘 ≤ 𝑦𝑢𝑏,𝑘 + 𝑒𝑘                         (20) 

𝑒𝑘 ≥ 0                                           (21) 

𝑃𝑘 = 0  or  𝑃𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑡ℎ𝑠ℎ,𝑘                       (22) 

where N is the prediction horizon; Δt is the prediction interval; Pk and COPk are the AC power 

consumption and COP at time step k, respectively; Pthsh,k is the dynamic power threshold; Tk, yk, and 

dk are the state vector, output vector, and disturbance vector in the state-space system model, 

respectively; wk and vk are the process and measurement noise, respectively, which are assumed to be 

independent and white and to have a normal distribution. Ad, Bd, Cd, and Ed are the state-space 

matrices of the discrete-time state-space model.  



The objective function, Eq. (17), aims to minimize the operating costs over the prediction horizon. If 

the constraints are not violated, the optimal power consumption remains at 0 kW, i.e., the AC is turned 

off. Eqs. (18) - (19) depict the system dynamics in a state-space form. The input variable, the cooling 

capacity (QHVAC,k), is obtained by the product of COPk and power consumption (Pk). Eq. (20) is a 

dynamic soft constraint that maintains the indoor air temperature within a certain range. During 

unoccupied hours, it is supposed that the AC is turned off and that the optimized power consumption 

is 0 kW. To achieve that goal, a wide temperature range is normally set, e.g., 20℃ to 30℃, as a result, 

the indoor air temperature is always within the range and AC remains off during the unoccupied 

period. When the room is occupied, a narrow temperature range is set to ensure thermal comfort (i.e., 

22°C to 24°C when the occupants are awake and 24°C to 26°C while the occupants sleep). However, 

the temperature constraint may not be satisfied in practice even if the AC runs at its full cooling 

capacity, such as on an extremely hot day. This situation may lead to a failure to solve the optimization 

problem. To address this issue, we can relax the MPC problem by introducing a slack variable ek. The 

hard constraint is then converted to a soft constraint, which has a similar function as the dead-band 

plays in the on-off control. To ensure that the preset temperature range is met most of the time (i.e., 

ek = 0), an especially large penalty ρe can be imposed on the slack variable ek in the objective function. 

Eq. (22) is a time-varying hard constraint to limit the maximum power consumption of AC based on 

the RTP from electric utilities. An inverter AC has a minimum operating frequency (e.g., 20 Hz) and 

corresponding minimum power consumption Pmin. Therefore, the power consumption should range 

between Pmin and Pthsh,k, which can be determined by Eq. (16) or equal zero when it is turned off. 

The prediction horizon N and prediction interval Δt play significant roles in MPC controllers. The 

optimal prediction horizon is a trade-off between the accuracy of the predictions of exogenous inputs 

and a sufficient length of the prediction horizon. A long horizon also increases the computation time 

for each optimization step. For the MPC of radiant heating systems, the prediction horizon is normally 

set as 6 to 48 hours because the rooms have large thermal masses and respond very slowly to the 

heating system [13, 34-37]. However, the room concerned in this study is located in a cooling-

dominated district and has a relatively small thermal mass. In addition, the inverter AC delivers 

cooling to the space via heat convection, which is a direct and quicker mode of heat transfer than heat 

radiation in a radiant heating system. Considering the short thermal response time of the target room 



to the cooling system, the prediction horizon N in this study is set to 3 hours, which is sufficient for 

the inverter AC to respond in advance to upcoming disturbances. The prediction interval is the 

frequency at which the optimization problem is solved and at which the actuator receives the control 

signal. Considering the room’s thermal response time and the compressor motor’s life expectancy, 

the compressor’s rotational speed is allowed to change every 5 minutes (i.e., the prediction interval 

of the MPC controller in our study is 5 minutes). 

4.2.2. Ordinary MPC controller without DR function 

Compared with the DR-enabled MPC controller, the ordinary MPC controller without DR function 

does not consider the dynamic RTP in formulating the optimization problem. The optimization 

problem of the ordinary MPC scheme, which aims to save the energy use, can be described by the 

objective function Eq. (23), and the constraints including Eqs. (18) - (21) and Eq. (24). In contrast to 

the time-varying constraint (Eq. (22)), in the DR-enabled MPC controller, Eq. (24) is a static 

constraint that limits power consumption in a constant power range. 

 min
𝑃1,𝑃2,…,𝑃𝑁−1

 ∑ 𝑃𝑘∆𝑡 + 𝜌𝑒𝑒𝑘
𝑁−1
𝑘=1                                 (23) 

𝑃𝑘 = 0  or  𝑃𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑚𝑎𝑥                       (24) 

4.2.3. Current state estimation using the Kalman filter 

At the beginning of each optimization step, the current state is needed as the starting point for 

optimization. In our case, the system state includes four variables: 𝑇 = [𝑇𝑤,𝑒𝑥𝑡 𝑇𝑤,𝑖𝑛𝑡 𝑇𝑖𝑛 𝑇𝑚]𝑇. 

However, only the indoor air temperature Tin is measured in real applications. To address this issue, 

the Kalman filter is commonly used to estimate the immeasurable variables and to filter the noise in 

measurements [38, 39]. The Kalman filter is an algorithm that provides a computationally efficient 

solution to estimate the state of a process in a manner that minimizes the prediction mean squared 

error. The solution is recursive in such a way that each updated estimate of the state is computed from 

the previous estimate and the new measured data. As shown in Fig. 8, each Kalman filter cycle 

includes two steps: time update (priori estimate) and measurement update (posteriori estimate). P, Q, 

and R are the covariance matrices of the state estimate error, the process noise, and the measurement 

noise, respectively. �̂�𝑘
′ denotes a priori state estimate at time step k. �̂�𝑘 denotes the posteriori state 



estimate given measurement yk (i.e., indoor air temperature Tin) at time step k. Kk is the Kalman gain 

determined by solving an algebraic Riccati equation. I is an identity matrix. 

 

Fig. 8. Kalman filter cycle for current state estimate in MPC. 

4.3. Implementation of frequency signal from MPC controllers 

The actuator in an inverter AC is the variable frequency driver of the compressor, which usually 

adopts the frequency as the control signal. In the development of the MPC controller for residential 

ACs, the AC power consumption, rather than the AC frequency, is chosen as the variable to be 

optimized because most incentives (e.g., DAP and RTP) for DR are set for power shifting and power 

shaving. It is more straightforward to use power consumption in the objective function. The 

optimization result (i.e., the power of the AC), needs to be converted into frequency signals to 

implement DR control. The performance maps of inverter ACs can be used in an inverse manner to 

determine the corresponding frequency. 

5. Test results and discussions 

5.1. TRNSYS-MATLAB co-simulation testbed and test conditions 

Computer-based dynamic simulation is usually considered an effective and reliable approach to test 

control performance under various conditions. Building energy simulation programs like EnergyPlus 

and TRNSYS are commonly used to simulate a building’s thermal performance and the energy 

performance of its HVAC system. To take advantage of the powerful computation capabilities of 



MATLAB, the steady-state AC model and the MPC controllers are programmed in MATLAB. 

TRNSYS and MATLAB are combined in this study, as illustrated in Fig. 9. In the integrated building 

energy system, the air-conditioned room is coupled with an inverter AC. The building model (Type 

56) in TRNSYS is used to characterize the building’s thermal performance under the influences of 

weather, occupancy, and AC. The output of the controller is the compressor motor’s operating 

frequency. The inverter AC then uses the operating frequency to determine the corresponding cooling 

capacity and delivers it to the building component in TRNSYS. In this study, the component of Type 

155 is used to establish the communication between the models in TRNSYS 18 (32-bit) and 

MATLAB 2014a (32-bit) in the Windows 10 64-bit operating system. The MPC controller is 

implemented in MATLAB using the YALMIP optimization toolbox [40] with the Gurobi optimization 

solver [41]. 

 

Fig. 9. TRNSYS-MATLAB co-simulation testbed for integrated building energy system. 

Weather forecast data from a local observatory, occupancy profiles, and RTPs from electric utilities 

are the exogenous inputs of the MPC controllers. The variables for three typical summer days are 

shown in Fig. 10 and are used to test the performances of the MPC controllers in this study. It can be 

seen that RTP at 5-minute intervals from the ERCOT retail market varies throughout the day and 

normally reaches a peak around 16:00, which prompts DR from residential ACs. A fluctuant 

occupancy pattern is defined to simulate the time-changing occupancy patterns. The room is assumed 

to be occupied from 12:00 to 18:00 and from 20:00 to 08:00. The simulation begins at 08:00. It is 



assumed that the room’s thermal response is stabilized after one night of AC operation at 08:00. Thus, 

the AC temperature set point is used as the initial value of the indoor air temperature in the simulation. 

 

Fig. 10. Weather conditions and RTP from ERCOT on three sequential typical summer days. 

5.2. Comparisons between on-off and PID control methods 

System performances under on-off and PID control methods are first tested and compared. To meet 

the maximum cooling load of the target room, a single-speed AC with a nominal cooling capacity of 

3.62 kW and a nominal COP of 2.52 is chosen. The adopted on-off control algorithm for the single-

speed AC is the same as that in the baseline case of our previous study [30]. For the inverter AC, a 

PID controller is used to control the frequency of the inverter AC to maintain the indoor temperature 

at the set point. The indoor air temperature set point in both cases is 24℃ from 12:00 to 18:00 and 

from 20:00 to 24:00 and 26℃ from 24:00 to 08:00 to reflect the common practice of setting the indoor 

temperature higher at night. In this case, RTP is used only to calculate electricity costs and is not 

involved in the control algorithm. The simulation time step is 1 minute. 



 

Fig. 11. (a) RTPs and system performance under on-off and PID control, including (b) indoor air 

temperature, (c) power consumption, and (d) electricity costs. 

Fig. 11 shows the performances of the AC under on-off and PID control. As can be seen from 11-b, 

when the room is occupied, both the on-off and PID controller can maintain the indoor air temperature 

at its set point most of the time. The ACs are switched off from 18:00 to 20:00 and from 08:00 to 

12:00 because it is assumed that the room is unoccupied during the periods. Compared with the single-

speed AC, the inverter AC can provide a more accurate control of indoor air temperature, since it can 

work at low operating frequencies and supply low cooling loads when the cooling demands decrease. 

Besides, the inverter AC is more energy-efficient and cost-efficient than the single-speed AC. 

Compared with the single-speed AC, the inverter AC can provide 27.61% reduction in the total energy 

consumption and 16.91% reduction in total electricity cost for 3 days.  

However, even using the inverter AC under PID control, the occupants still suffer from a period of 

thermal discomfort at the beginning of occupancy, because the inverter AC takes some time to remove 



the accumulated heat gain and bring the indoor temperature to the set point. Besides, the inverter AC 

under PID control is not grid-friendly and cannot make response to RTPs. It can be found that the 

inverter AC runs at high frequencies when RTP is high around 16:00, which is a disadvantage to the 

power grid considering the large population of residential ACs operating at the same time. It is also a 

disadvantage to residential users due to the high electricity cost. 

To conclude, the inverter AC with PID control is more energy-efficient and cost-efficient than the 

single-speed AC with on-off control, but it is not grid-interactive and cannot provide energy flexibility 

for grids. The present study focuses on the inverter AC, and the case under PID control is regarded as 

a reference case and will be compared with the following MPC cases. 

5.3. Comparisons between reference case and MPC cases 

The simulation tests with the two types of MPC controllers are conducted separately under conditions 

identical to those used in the reference case (PID case). The simulation time step in TRNSYS is set 

as 5 minutes, and at each time step the MPC controller in MATLAB is called by TRNSYS, and the 

frequency control signal is sent to the inverter AC model. 



5.3.1. Ordinary MPC controller without DR function 

 

Fig. 12. (a) RTPs and system performance under PID control and ordinary MPC without DR function, including (b) 

indoor air temperature, (c) power consumption, and (d) electricity costs. 

Fig. 12 shows the system performances under the ordinary MPC without DR function. For easy 

comparison, the RTP and the performances under the PID control are shown in the same figure. Fig. 

12-b shows that the MPC controller, as a new optimal control method for inverter ACs, satisfactorily 

maintains the indoor air temperature between the upper and lower limits, although the temperature 

fluctuates due to the uncertain noise. The results also show that the ordinary MPC controller naturally 

implements the precooling strategy, which obviously improves thermal comfort at the beginning of 

occupancy. On Day 1, the prediction made by the MPC controller at 10:00 indicates that the indoor 

air temperature will exceed the upper boundary (i.e., 24℃) at 12:00. Hence, the inverter AC begins 

to run at 10:00 to precool the room before it is occupied so that the indoor air temperature is at a 

comfortable level at the beginning of occupancy. In the PID case, the temperature deviations from the 



set point evaluated by the mean absolute error (MAE) from 12:00 to 14:00 are 0.39℃, 0.78℃, and 

0.96℃ on Days 1, 2 and 3, respectively, which are greater than those in the MPC case (i.e., 0.06°C, 

0.17°C, and 0.18°C, respectively). Moreover, precooling is an optimal solution because the objective 

of the ordinary MPC is to minimize the energy consumption in the horizon. The ordinary MPC 

controller automatically implements precooling with different start-up times and durations on the 

three days because the weather conditions differ. In this way, the ordinary MPC controller solves the 

problem of determining the start-up time for precooling, which was challenging for most previous 

studies in which a precooling strategy was developed [42, 43]. Precooling may result in an increase 

in energy consumption, which can be observed in the test results shown in Fig. 14-b. The AC under 

the ordinary MPC control consumes more energy than that under the PID control on these three days. 

However, the daily operating costs may be reduced, as shown in Fig. 14-d, because the MPC 

controller allows a higher indoor air temperature than the PID controller. 

5.3.2. DR-enabled MPC controller responding to RTP 

The DR-enabled MPC controller considers the RTP in the optimization process. Dynamic power 

thresholds can be generated using Eq. (16) according to the RTP signals from the electric utility. The 

dynamic power threshold acts as a time-varying constraint in the solution of the optimization problem. 



 

Fig. 13. (a) RTPs and system performances under PID control, ordinary MPC without DR function, and DR-enabled 

MPC, including (b) indoor air temperature, (c) power consumption, and (d) electricity costs. 

Fig. 13 shows the system performances under the PID control, the ordinary MPC without DR function, 

and the DR-enabled MPC. Like the ordinary MPC controller without DR function, the DR-enabled 

MPC controller can implement automatic and optimal precooling. However, the DR-enabled MPC 

controller adopts longer and deeper precooling to limit power consumption during peak demand 

periods. It starts the inverter AC to precool the room to a lower temperature so that the AC power 

consumption and operating frequency can be limited around 16:00, when the RTP is very high. 

Thermal comfort can be maintained due to the cooling energy stored in the thermal mass during the 

precooling period. As can be seen from Fig. 14-c, compared with the PID case, that the average power 

consumption from 15:00 to 17:00 is reduced by 17.31% on Day 1, 31.00% on Day 2, and 38.86% on 

Day 3, in the DR-enabled MPC control case. Because the DR-enabled MPC controller effectively 

shifts power consumption from high-RTP periods to low-RTP periods, the all-day electricity costs are 



reduced by 0.42% on Day 1, 13.75% on Day 2, and 22.16% on Day 3. The electricity cost saving is 

influenced by the weather conditions and RTP profiles. For example, the weather on Day 1 is cooler 

than that on Days 2 and 3 and the RTP curve is flatter, so the electricity cost saving is less. Meanwhile, 

as shown by Fig. 14-b, the daily energy consumption of the AC under the DR-enabled MPC may 

exceed that under the PID control. This is the price paid to achieve power reductions during the peak 

demand hours via precooling. From the prospective of power grids, it is more important to provide a 

stable power reduction as required.  

 

Fig. 14. System performances under PID control, ordinary MPC without DR function, and DR-enabled MPC. 

 



 

Fig. 15. Frequency distribution of computation time of the ordinary MPC controller without DR function (left) and the 

DR-enabled MPC controller (right) at each time step. 

Fig. 15 shows the computation time required to solve the optimization problem at each time step 

using a PC with Intel Core i7-4600U 2.70 GHz. The computation time is less than 5 seconds, which 

is shorter than the prediction interval of 5 minutes. Therefore, the MPC controllers are competent in 

real-time online control. 

6. Conclusions 

In this study, we propose an advanced demand response-enabled model predictive control method to 

directly control the operating frequency of inverter air conditioners in response to 5-min real-time 

electricity prices, which is largely different from most of the previous demand response control 

methods that focus on single-speed air conditioners and respond to hourly day ahead electricity prices 

by resetting indoor air temperature set points.  

The test results show that, compared with the PID controller, the demand response-enabled model 

predictive controller can reduce the power consumption during peak demand periods by 17.31% to 

38.86% and reduce all-day electricity costs by 0.42% to 22.16%. The percentages of peak power 

reduction and cost savings are influenced by the room’s thermal mass, the weather conditions, and 

the real-time electricity prices. The total energy consumption of inverter air conditioners under the 

model predictive control may exceed that under PID control because the model predictive controller 

adopts precooling to shift power demands during peak demand periods. The thermal comfort at the 

beginning of occupancy under the model predictive control is improved by automatic precooling. The 



test results also show that the computation time of the model predictive controllers is suitable for 

online real-time control. 

Due to the simple structure and moderate computation time, both the simplified room thermal model 

and the performance maps of inverter air conditioner can be used in smart home energy management 

system for model-based optimal control to reduce electricity bills. The simplified models can also be 

used by grid operators to investigate the demand response potential of a large population of air 

conditioners. Demand curve flattening achieved by the proposed control method can provide financial 

benefits to the grid operators. It can help to avoid additional generation capacity and the upgrade of 

distribution and transmission infrastructure considering the great contribution of power reduction 

from a huge number of residential air conditioners. Moreover, since the operating frequency of 

compressor is closely related to the power consumption of inverter air conditioners, the frequency-

based control method can provide fast demand response, maintain the grid operating frequency, and 

improve the grid reliability. 
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