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Abstract: Buildings with cleanrooms and spaces requiring strict temperature and humidity controls, 

such as pharmaceutical cleanrooms and semiconductor/microchip factories, have been growing very 

quickly in terms of total floor area and energy consumption. In such buildings, much of the energy is 

unnecessarily wasted due to the incoordination of system design and operation/control, especially 

under “off-design” and ever-changing ambient and load conditions. This paper, therefore, proposes a 

probabilistic optimal design method for cleanroom air-conditioning systems facilitating optimal 

ventilation control strategies under uncertainties. To consider the effects of asynchronous loads in 

different zones/spaces with reduced computation demand, a probabilistic diversity factor method is 

proposed which is a simplified method to quantify the effects of uncertainties of space load diversities 

in multiple zones/spaces using diversity factors. The proposed design method is implemented and 

validated in the design optimization of air-conditioning systems for implementing four different 

ventilation control strategies considering possible and uncertain off-design conditions. The energy 

and economic performance as well as service satisfaction of the air-conditioning systems are also 

evaluated and compared. Results show that the proposed design method can obtain the optimal air-

conditioning systems with minimum life-cycle cost and superior satisfaction of service. 
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Nomenclature   

ADV Adaptive full-range decoupled ventilation 
AHU Air-handling unit 
IC Interactive control  
DV Dedicated outdoor air ventilation 
MAU Make-up air-handling unit 
PAU Primary air-handling unit 
PD Partially decoupled control 
SHR Sensible heat ratio 
COT Overall annualized total cost (USD) 
CC Capital cost (USD) 
CM Maintenance cost (USD) 
CO Operation cost (USD) 
CP Penalty cost (USD) 
COPc Overall coefficient of performance of cooling system 
COPhe Overall coefficient of performance of heating system 
CRF Capital recovery factor 
Dsen Sensible cooling demand of zones (W/m2) 
Dlat Latent cooling demand of zones (W/m2) 
Etot The total cost of electricity (USD) 
h Enthalpy of air (kJ/kg) 
hfg Latent heat of vaporization (kJ/kg) 
Δp Total pressure rise (kPa) 
Qsen Space sensible cooling load (W/m2) 
Qlat Space latent cooling load (W/m2) 
Qtot Space total cooling load (W/m2) 
Qcc,MAU Cooling coil thermal load of make-up air-handling unit (kW) 
Qcc,AHU Cooling coil thermal load of supply air-handling unit (kW) 
Qhe,AHU Heating thermal load of supply air-handling unit (kW) 
T Temperature (°C) 
w Humidity ratio (kg/kg) 
Wf Fan power (kW) 
i’ Real discount rate 
id Discount rate 
ie Energy inflation rate 
ig General inflation rate 
i’’ Effective discount rate 
N Lifetime (year) 
V Air volumetric flow rate (m3/s) 
Zsen Zone sensible cooling load (W/m2) 
Zlat Zone latent cooling load (W/m2) 
    
Greek letters   
γpen Penalty price ratio 
β Diversity factor 
ηf Fan efficiency 
£ Price 
    
Subscripts   
ave Average 
cc Cooling coil 
ele Electricity  
f Fan 
he Heating system 
lat Latent 
pen Penalty 
sen Sensible 
t Total 
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1. Introduction 

Buildings with spaces requiring strict temperature and humidity controls, such as pharmaceutical 

cleanrooms, semiconductor/microchip factories and hospitals, have been growing very fast in terms 

of total floor area and energy consumption worldwide [1]. In the Pearl Delta Region (South China), 

a subtropical region, the increase is even faster due to the rapid increase of semiconductor fabrication 

[2]. The energy intensity of air-conditioning systems in such buildings is usually 10-100 times greater 

than the average energy intensity in commercial buildings [3].  

Due to this high energy intensity as well as the complexity of system design and control, buildings 

for such applications consume high and rapidly increasing amount of energy. Much of the energy is 

unnecessarily wasted due to improper system design and control in engineering practice. For example, 

system retrofitting work in pharmaceutical factory buildings in Hong Kong achieved up to 42% of 

annual energy savings by optimizing/retrofitting the system control strategies only, without hardware 

modification [4]. This indicates that the energy saving potential of such air-conditioning systems is 

very high when strict and simultaneous temperature and humidity control is required. However, many 

problems need to be solved in order to realize this energy saving potential, due to the complexity of 

air-conditioning systems and their operation/control. The challenges in solving these problems are 

particularly associated with ever-changing working conditions and the uncertainties of information 

used for the air-conditioning system design. For cleanroom air-conditioning, selection of the system 

configuration is key to achieving high energy efficiency due to the required high recirculation airflow 

rate and high-pressure losses at filters [5]. For instance, a system configuration, with a make-up air-

handling unit (MAU) integrating with local axial fans and dry cooling coils, is recommended by some 

design guides because of its low-pressure drop characteristics [6][7]. However, such a configuration 

is not widely used due to the high initial cost and system complexity (e.g., the need for dual-

temperature chillers and additional duct installations) and the inconvenience of maintenance. The 

combined use of a MAU together with several air-handling units (AHUs) is still the mainstream 

configuration in real applications [8][9].  

Although there are generic air-conditioning system design approaches as summarized by ASHRAE 

[10], very few studies have addressed the component design of cleanroom air-conditioning systems. 

Some researchers have developed optimal design methods to enhance the performance of the air-side 
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components of cleanroom air-conditioning systems, such as cooling coils [11], MAU fans [12] and 

humidifiers [13]. Nevertheless, although these components may be well designed, their performance 

in practice often deviates significantly from expected performance due to the fact that they cannot be 

adjusted to “off-design” and ever-changing ambient and load conditions. Particularly, the mismatch 

between system design and operation/control still widely exists because the coordination and 

interaction among these components/processes in different off-design conditions are not considered 

sufficiently. For example, a cleanroom facility site study [7] shows that the actual cooling load of the 

MAU in operation was only about one-fourth of its design value. Improper system designs lead to 

improper controls and low energy efficiency in operation, which are often observed and well-

understood by engineers today. At the design stage, the air-conditioning systems need to be designed 

with sufficient consideration on their coordination with certain properly selected optimal and energy-

efficient ventilation strategy to facilitate the systems to be adaptive to different off-design conditions. 

However, such a design method coordinating the design effectively with certainly preferred 

ventilation strategy for cleanroom air-conditioning systems is not available.   

Another challenge encountered in practice is due to the fact that even well-selected data/information 

used as design inputs can be rather different from that in real operation. Such inherent deviations are 

regarded as “uncertainties”. In conventional design practice, the capacities of the air-conditioning 

components for a building is determined under the design condition which is certain and presumed 

in a climate region [14]. Due to the existence of uncertainty issues, the actual conditions of air-

conditioning systems in operation often deviate significantly from those projected at the design stages. 

Without proper means to consider and handle these uncertainties, it is very difficult to ensure the 

actual operating performance of air-conditioning systems will be up to expectations. For the design 

of building air-conditioning systems, cooling load calculation considering uncertainties have been 

considered when conducting performance estimates or optimizing the design of building energy 

systems [15]. Accurate and reliable prediction of cooling/heating loads is very important for building 

energy system design [16], and uncertainties in predicting cooling/heating loads have been studied 

widely to solve the widely existed under-sizing and over-sizing problems in practical applications 

[17][18]. Domínguez et.al [19] quantified the uncertainties of building models and divided the input 

factors into three groups: certain factors, scenario elements, and uncertain factors. Sun et al. [20] 



5 

 

proposed a design method to size building energy systems considering uncertainties in weather 

conditions, building envelope and internal loads. The co-author of this paper also considered the 

impacts of the cooling load uncertainties on the design optimization of building central cooling plant 

systems in previous studies [21, 22]. Nevertheless, the cooling loads of different spaces in a zone 

could have large discrepancies at any moment and change with time [23]. The load diversities of 

multiple spaces (including sensible and latent loads), which are the key sources of uncertainty in the 

performance of air-conditioning systems [24-26], are usually neglected in system design. The 

diversity of cooling loads could greatly affect the cooling demands on the air-conditioning 

subsystems associated with a zone, and the component capacities needed eventually. However, the 

effective method to quantify the cooling/heating load uncertainties of multiple zones/spaces for 

design applications still cannot be found. 

One more challenge is the need of an effective ventilation strategy that could achieve optimal and 

energy-efficient operation/control of the air-conditioning systems for cleanrooms/spaces requiring 

strict and simultaneous humidity and temperature controls under different off-design and ever-

changing conditions. The very commonly-used ventilation strategy today is the “interactive control 

(IC)” [27][28], which employs cooling (or sub-cooling) and reheating processes to eliminate the 

coupling between temperature and humidity control loops while the counteraction of the sub-cooling 

and reheating processes causes a great amount of energy waste. The “dedicated outdoor air ventilation 

strategy” [9][29] fully decouples cooling and dehumidification to avoid sub-cooling and reheating 

processes. For a system adopting this ventilation strategy, the MAU handles all the latent heat and 

part of space sensible heat while the AHUs remove the rest of space sensible heat. However, to 

remove moisture produced by machines/processes/occupants, the necessary outdoor airflow rate may 

exceed, from time to time, the outdoor airflow rate required to maintain acceptable indoor air quality 

and/or positive pressure. Thus, a large MAU cooling capacity is usually required to meet the high 

outdoor air cooling demand [30]. A “partially-decoupled control strategy” [4] was proposed by the 

co-authors to overcome the drawbacks of the fully-decoupled ventilation strategy. It decouples the 

dehumidification/cooling processes while working at the required minimum outdoor airflow. 

However, this strategy is only applicable to systems serving spaces with relatively low internal latent 

loads due to the fact that simultaneous cooling and reheating would occur when the internal latent 
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load is high.” To address this challenge, the authors of this paper have proposed and developed an 

“adaptive full-range decoupled ventilation strategy” (ADV strategy) [31] with very promising energy 

saving potentials and the strategy is applicable for the buildings and spaces requiring strict 

temperature and humidity controls. This strategy can identify the best operation mode with superior 

energy efficiency over the full range of internal load and weather conditions by compromising 

properly “ inducing more outdoor air” and “sub-cooling and reheating process with minimum 

outdoor airflow”. For different ventilation strategies, the system sizing may be different due to the 

different cooling demands on air-conditioning components. However, air-conditioning systems of 

proper design are essential to achieve the goal of this strategy in practical applications.     

This paper, therefore, proposes a probabilistic optimal design method for cleanroom air-conditioning 

systems facilitating optimal ventilation control strategies under uncertainties. The main focuses of 

this study include: 1) optimal design of air-conditioning systems (i.e., optimal component sizing) that 

fully fulfill the needs for implementing the ADV strategy. 2) developing a simplified method for the 

quantification of various uncertainties associated to the design of air-conditioning systems for 

multiple zones/spaces. To consider the effects of asynchronous loads in different zones/spaces with 

reduced computation demand, a probabilistic diversity factor method is proposed, which is a 

simplified method to quantify uncertain space load diversities by introducing two probabilistic 

diversity factors for sensible and latent loads respectively. The proposed design method is 

implemented and validated in the design optimization of air-conditioning systems for implementing 

four different ventilation control strategies (including ADV strategy) with full consideration of 

possible and uncertain off-design conditions. The cleanrooms in a pharmaceutical building (located 

in Hong Kong, a humid sub-tropical city), which requests strict indoor environment control, is 

selected for the validation case studies. The energy and economic performance as well as service 

satisfaction of the designed air-conditioning systems, facilitating different ventilation control 

strategies, are also evaluated and compared. 

2. Optimal design of multi-zone air-conditioning systems concerning uncertainties 

2.1 Outline of the proposed design method 

Fig. 1 shows the typical configuration of the cleanroom air-conditioning systems concerned, which 

serve multiple spaces requiring strict temperature and humidity controls. It consists of a MAU and a 
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few AHUs. Each AHU might serve a few spaces. The MAU consists of a cooling coil, a centrifugal 

fan and filters for conditioning make-up air. Each AHU contains a cooling coil, a heater, an axial fan, 

a humidifier and filters for conditioning the supply air. Due to the high supply air flowrate 

requirements of cleanrooms to meet the air cleanness, the cooling/heating demands can be met even 

under the lower-limit of supply air flowrate (i.e., 20 ACH for the Class ISO 8 cleanrooms [32]). The 

cleanroom air-conditioning systems of such configuration are usually designed as constant air volume 

(CAV) systems. 

 

Fig. 1. System configuration of a typical multi-zone air-conditioning system 

Fig. 2 presents the process and major steps of the proposed design method for multi-zone cleanroom 

air-conditioning systems. The objective of the design optimization is to minimize the life-cycle cost 

and provide systems with the robustness to operate at high energy efficiency under ever-changing 

dynamic working conditions. The main challenges to be addressed are associated with the impacts 

of: (1). Variation of working conditions due to changes of ambient and internal loads; (2). The 

diversities of space latent and sensible loads, particularly sensible heat ratios (SHRs), among different 

spaces; (3). The uncertainties of the ambient conditions and internal loads as well as their diversities. 

 



8 

 

Fig. 2. Process and steps of proposed robust optimal design method using a probabilistic approach  

The objective function for optimization is the overall annualized total cost (COT,a) (i.e., Eq. 1), which 

includes the annualized values of capital cost (CC,a), maintenance cost (CM,a), operation (or energy) 

cost (CO,a) and penalty cost (CP,a). The operation cost includes the total cost of electricity consumed 

by air-conditioning components (Etot). The penalty cost is introduced to consider the impacts of 

insufficient cooling and dehumidification capacities to ensure the designed systems with a high level 

of service satisfaction. The system optimal design consists of three major steps involving 

quantification of these variations/diversities and their inherent uncertainties. In the first step, the 

design inputs (involving uncertainties) and design constraints are selected, including building 

envelope parameters, design indoor and weather conditions, assumed efficiency and air-conditioning 

system constraints as well as the search ranges for the system design parameters (i.e., component 

capacities) to be optimized. The purpose of this step is to obtain the required information for design 

optimization. In the second step, the annual overall probabilistic sensible/latent cooling demands of 

individual AHUs in each zone are obtained, which involve quantified uncertainties and diversities of 

spaces. The design input uncertainties (i.e., outdoor weather, building construction and indoor 

conditions) are considered in the overall zone cooling load calculation with different trials. The 

diversities of spaces in a zone are considered by adopting a simplified method (namely ‘probabilistic 

diversity factor method’). Two probabilistic load diversity factors are introduced in this method. The 

probabilistic sensible and latent cooling demands (Dsen, Dlat) are then obtained by calculating the 

space sensible and latent load distributions within a zone (Zsen, Zlat) multiplied by the space sensible 

and latent load diversity factors (with quantified distributions), as shown in Eqs.2-3. The probabilistic 

diversity factors (βd,sen, βd,lat) represent the design input uncertainties during sensible and latent load 

calculations and their asynchrony in multiple spaces. The purpose of this step is to effectively 

quantify the design input uncertainties and the uncertainties due to the asynchronous behaviors of 

multiple spaces. In the third step, an “optimizer” determines the optimal component capacities by 

evaluating the overall system performance with various trials of component capacities within their 

search ranges. The purpose of this step is to find the optimal sizes for air-conditioning components 

based on the probabilistic cooling load profiles. A system energy model (Eq. 4), which is a function 

of dynamic cooling demands of zones (Dsen, Dlat), is used to estimate the energy consumption (Etot) 

of the systems adopting a selected optimal ventilation control strategy (e.g. adaptive full-range 
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decoupled ventilation strategy) [31]. Here COPc and COPhe are the overall coefficients of 

performance for the central cooling and heating systems, respectively. In this paper, for the central 

cooling system, the overall coefficient of performance of the central cooling system (COPc) 

including the pumps and the chiller is assumed to be constant as 2.5 when calculating the overall 

electricity use [33][34]. COP of the heating system (COPhe) is assumed to be constant as 1.0 due to 

the heating energy is provided by the electric heaters.Wf,MAU and Wf,AHU are the fan powers of the 

MAU and AHUs, respectively. Qcc,MAU and Qcc,AHU are the MAU and AHU cooling loads, respectively. 

Qhe,AHU is the AHU heating load. The detailed optimization process is shown in Fig. 2 and elaborated 

as follows. 

 𝐶𝑂𝑇,𝑎 = (𝐶𝐶,𝑎 + 𝐶𝑀,𝑎 + 𝐶𝑂,𝑎) + 𝐶𝑃,𝑎                  (1) 

 𝐷𝑠𝑒𝑛 = 𝑍𝑠𝑒𝑛 ∗ 𝛽𝑑,𝑠𝑒𝑛   (2) 

 𝐷𝑙𝑎𝑡 = 𝑍𝑙𝑎𝑡 ∗ 𝛽𝑑,𝑙𝑎𝑡    (3) 

𝐸𝑡𝑜𝑡 =
𝑄𝑐𝑐,𝑀𝐴𝑈

𝐶𝑂𝑃𝑐
+ 𝑊𝑓,𝑀𝐴𝑈 + ∑ (

𝑄𝑐𝑐,𝐴𝐻𝑈,𝑖

𝐶𝑂𝑃𝑐
+

𝑄ℎ𝑒,𝐴𝐻𝑈,𝑖

𝐶𝑂𝑃ℎ𝑒
+ 𝑊𝑓,𝐴𝐻𝑈,𝑖)𝑘

𝑖=1 = 𝑓(𝐷𝑠𝑒𝑛,𝑖 , 𝐷𝑙𝑎𝑡,𝑖)    (4) 

For the retrofitting of existing buildings, the improper sizing problems can be easily addressed 

through the analysis of the operation data. However, for new buildings in the design phase, various 

inherent uncertainties exist which need to be considered for accurate load estimations. With the 

probabilistic estimates of cooling load distributions, the air-conditioning components are of higher 

probability to be properly designed, to avoid both under-sizing and over-sizing problems. Compared 

to current engineering practice involving detailed design calculation [19][20][35], no additional 

information is required at the design stage except the information or assumption on the load 

diversities among multiple zones/spaces. In the design stage, the model inputs required for design 

include the space control requirements, building layout, envelop parameters, historical weather, 

internal load conditions and possible distributions of concerned parameters, which are all the same 

as needed in current design practice when detailed design calculation is conducted. The users can 

obtain the information from the planning guide, local standards and regulations. However, for the 

multi-zone air-conditioning systems, each zone may contain several spaces. If the uncertainties in 

spaces were all considered individually, the calculation process would be very complicated. 

Therefore, to consider the effects of asynchronous loads in different zones/spaces with reduced 
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computation demand, a probabilistic diversity factor method is proposed, which offers a simplified 

method to quantify the effects of uncertainties of space load diversities in multiple zones/spaces using 

diversity factors. More detailed descriptions are shown in Section 2.2 and 2.3. 

2.2 Qualification of design input uncertainties in zone cooling load calculation  

The uncertainties in design inputs are quantified by adopting the commonly-used Monte Carlo 

method [36][37]. Based on inputs (x1, x2, …, xn), the outputs Q (i.e., sensible/latent cooling loads of 

a space) are obtained as Eq. 5. The design inputs involving uncertainties (X) are generated by Monte 

Carlo simulation as Eq. 7, according to their probability distributions (G). The probabilistic cooling 

loads of a zone (Z), which are usually regarded as the sum of the cooling loads of the corresponding 

spaces, are then obtained using building energy simulation software. 

 𝑄 = [𝑞1, 𝑞2, … , 𝑞8760] = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)   (5) 

 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑛]   (6) 

 𝑋𝑖 = [𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑚]𝑇 , 𝑋𝑖~𝐺𝑖 | 𝑗 = 1,2, … , 𝑛   (7) 

 𝑍 = [𝑄1, 𝑄2, … , 𝑄𝑚]𝑇 = 𝑓(𝑋1, 𝑋2, … 𝑋𝑛)    (8) 

Three groups of variables X, including outdoor weather, building construction and indoor conditions, 

are selected and quantified as the design inputs. For the outdoor weather, historical measurements of 

weather data in 38 years (i.e., 1979–2016) are used, which is proved to be a better way to account for 

the weather uncertainties [20]. For other variables, triangular distributions, normal distributions and 

uniform distributions are used respectively according to the characteristics of their variations. Latin 

Hypercube Sampling (LHS) method is used to improve the calculation efficiency [38]. By importing 

the samples into the cooling load calculation software, both the sensible and latent cooling load of 

the multiple spaces can be obtained. 

2.3 Qualification of multi-space diversity effects concerning uncertainties 

As a major task and challenge, the diversities of sensible and latent cooling loads of the multiple 

spaces in a zone are quantified to take their effects and uncertainties into account. To reduce the 

computation complexity, a probabilistic diversity factor method is proposed, which is a simplified 

method to quantify uncertain space load diversities by introducing two probabilistic diversity factors 
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(βd,sen, βd,lat) for sensible and latent loads respectively. These diversity factors are defined as the ratio 

of actual sensible (or latent) cooling demand (due to the need for over-cooling) to the sum of the 

cooling loads of all spaces concerned (Eqs. 9-10). Probabilistic diversity factors are introduced to 

quantify the load diversity effects of multiple spaces under possible load profiles in a zone. Here 

AHU supply air temperature (ts) and humidity (ws) of a zone are determined according to the air state 

of the critical space (associated to the zone) in each time step (Eqs. 11-12). ms is the supply airflow 

rate (kg/m3). tspace is the actual space temperature (°C). tset is the space temperature set-point (°C). 

wspace is the actual space humidity (kg/kg). wset is the space humidity set-point (kg/kg). k is the number 

of a space in a zone. Qsen,k and Qlat,k are the sensible and latent cooling load of space k (kW), 

respectively. cp is the air specific heat ratio (kJ/(m3•°C). hfg is the latent heat of vaporization (kJ/kg).  

 𝛽𝑑,𝑠𝑒𝑛 =
∑ 𝑚𝑠,𝑘(𝑡𝑠𝑝𝑎𝑐𝑒,𝑘−𝑡𝑠)

∑ 𝑚𝑠,𝑘(𝑡𝑠𝑒𝑡,𝑘−𝑡𝑠)
= 𝑓1(𝑄𝑠𝑒𝑛,𝑘)      | 𝑘 = 1,2, … , 𝑚  (9) 

 𝛽𝑑,𝑙𝑎𝑡 =
∑ 𝑚𝑠,𝑘(𝑤𝑠−𝑤𝑘)

∑ 𝑚𝑠,𝑘(𝑤𝑠−𝑤𝑠𝑒𝑡,𝑘)
= 𝑓2(𝑄𝑠𝑒𝑛,𝑘, 𝑄𝑙𝑎𝑡,𝑘)    | 𝑘 = 1,2, … , 𝑚 (10) 

 𝑡𝑠 = 𝑚𝑖𝑛 (𝑡𝑠𝑝𝑎𝑐𝑒,𝑘 −
𝑄𝑠𝑒𝑛,𝑘

𝑐𝑝𝑚𝑠,𝑘
)   | 𝑘 = 1,2, … , 𝑚     (11)  

 𝑤𝑠 = 𝑚𝑖𝑛 (𝑤𝑠𝑝𝑎𝑐𝑒,𝑘 −
𝑄𝑙𝑎𝑡,𝑘

ℎ𝑓𝑔𝐺𝑠,𝑘
) | 𝑘 = 1,2, … , 𝑚  (12)  

Both diversities and their probability distributions considering uncertainties among different spaces 

in a zone will be identified according to the main steps using the probabilistic diversity factor method 

shown in Fig. 3. Based on the sensible and latent cooling load profiles of multiple spaces (i.e., the 

uncertain load data generated by Monte Carlo simulation in this study) and design constraints, the 

parameters of two diversity factor models are identified by the “model identification” scheme 

involving four steps as follows. In the first step, the diversity factors of both sensible and latent loads 

(SLDF/LLDF) are calculated based on the individual space loads as shown in Eqs. 9-10. In the second 

step, the diversity factors are classified into different clusters using the k-means clustering algorithm 

[39]. In the third step, the correlations between the diversity factors and working conditions are 

identified using the decision-tree method [40], which is one of the most commonly-used data mining 

approaches. In the fourth step, the probability distributions of two diversity factors in each cluster are 

quantified by fitting the data using typical distribution functions. The detailed approaches for the 

qualification of load diversities of multiple spaces in a zone considering uncertainties are elaborated 
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as follows. 

 

Fig. 3. The main steps of the proposed probabilistic diversity factor method 

2.3.1 Clustering the load diversity factors 

The task of this step is to categorize the data of the load diversity factors into proper 

clusters/subgroups, according to their magnitude and pattern. The k-means algorithm [39] is 

employed to ensure: (i) instances in the same cluster have high similarity and, (ii) instances in 

different clusters have low similarities. In the clustering process, the dissimilarity of the diversity 

factors is evaluated using the Euclidean distance [41] and the optimal number of clusters is evaluated 

by the Calinski-Harabasz (C-H) criterion [42]. 

2.3.2 Identification of the correlations between the diversity factors and working conditions 

The task of this step is to create a decision tree model that predicts the value of target variables based 

on predicted variables of the dataset. The target variables of the decision tree are the number of a 

cluster (i.e., Cluster 1, 2, …, n), which are identified in Section 2.3.1. The predicted variables are the 

weather and internal load conditions, including the mean outdoor air temperature (Tavg), humidity 

(Wavg) and sensible heat ratio (SHRsum) during the operating period (i.e., 9:00-18:00) of a day. Here 

SHRsum is the ratio of the total sensible cooling load to the total cooling loads of all spaces associated 

to an AHU, as shown in Eq. 13.   

 𝑆𝐻𝑅𝑠𝑢𝑚 =
∑ 𝑄𝑠𝑒𝑛,𝑘

𝑚
𝑘=1

∑ 𝑄𝑡𝑜𝑡,𝑘
𝑚
𝑘=1

     (13) 

The dataset (including predicted variables and target variables) is automatically and randomly split 

into two subsets, marked as “training set” (i.e., 3/5 of total data) and “testing set” (i.e., 2/5 of total 

data). The standard classification and regression trees (CART) algorithm [43] is employed to generate 

the decision tree using the training set. The decision tree is validated by cross-validation (using the 
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test set) to estimate the statistical performance of the classification. 

2.3.3 Fitting of the probability distribution for clusters 

The task of this step is to fit the probability distributions for each cluster. For each cluster, the 

probability distributions of diversity factors (in each hour) are firstly fitted using four commonly-

used probability density functions (PDFs): i.e., Normal distribution, Gamma distribution, Weibull 

distribution and Lognormal distribution [44]. The detailed functions can be found in Table A.1. The 

parameters defining these four PDFs are estimated based on the commonly-used the maximum 

likelihood method 45] while the Kolmogorov-Smirnov (K-S) test is introduced as the error metric to 

evaluate the fitness of each PDF [46]. The minimum K-S error of the four distributions is then 

selected as the target distribution function. Here ‘K-S error’ is the maximum absolute difference 

between the CDFs of the distributions of the two data vectors, as shown in Eq. 14. 

 𝐾 − 𝑆 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥 (|�̂�1(𝑥) − �̂�2(𝑥)|)      (14) 

2.4 Design optimization of air-conditioning systems adopting ADV strategy 

Four energy models are developed in a preliminary study [31] to estimate the energy performance of 

the air-conditioning systems under different load and weather conditions, which have the 

configuration as shown in Fig.1 and are controlled ideally by the ventilation strategies concerned 

respectively. Optimal design of the system for implementing the “adaptive full-range decoupled 

ventilation strategy” (ADV strategy) is the focus of this study compared with that of the other three 

ventilation strategies. The ADV strategy is a recommended ventilation strategy for cleanrooms, 

which takes the interaction among different air-conditioning components/zones into account and 

provides systems with the robustness to operate at high energy efficiency under ever-changing 

dynamic working conditions. A Genetic Algorithm (GA) [47] is used to minimize the overall 

annualized total cost (COT,a) (i.e., the objective function: Eq.1). The capital cost (CC) includes the 

investment (CI) and installation cost (assumed as 30% of the investment cost as shown in Eq. 15 

[48]). The investment cost (CI) includes the costs of major components, such as fans, ducts, cooling 

coils, heaters, economizer, etc. The unit price of air-conditioning components in this study are 

presented in Appendix B. The annualized maintenance cost (CM,a , Eq.16) is assumed as 20% of the 

annualized capital cost [49]. The operation or energy cost (annualized as shown in Eq.17) includes 

the cost of electricity consumed by the cooling/heating equipment and fans, calculated according to 
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the air-handling processes of the selected ventilation strategy. The electricity cost is calculated using 

the local electricity price in Hong Kong, which takes the average price of 0.141 USD/kWh [50]. The 

penalty cost (CP) is introduced as a “virtual expense” to quantify the service quality dissatisfaction 

due to insufficient cooling or heating capacity. It is quantified by the accumulation of unmet demand 

multiplied by a penalty price (£pen) (Eq. 19), where CRF is the capital recovery factor, the weighting 

factor for calculating the present value of an annuity (a series of equal annual cash flows, Eq. 20). i’ 

is the real discount rate (Eq. 21) accounting for the general inflation rate (ig) and the discount rate 

(id). i’’ is the effective discount rate adjusted for energy inflation (Eq. 22) accounting for the general 

inflation rate (ig) and the energy inflation rate (ie). id, ig and ie are set as typical values of 8%, 4% and 

5% respectively [51]. N is the lifetime of air-conditioning systems, which is set as 20 years. 

 𝐶𝐶,𝑎 = 𝐶𝐶 ∙ 𝐶𝑅𝐹(𝑖′, 𝑁) = 𝐶𝐼(1 + 30%) ∙ 𝐶𝑅𝐹(𝑖′, 𝑁)     (15) 

 𝐶𝑀,𝑎 = 𝐶𝐶,𝑎 ∙ 20%     (16) 

 𝐶𝑂,𝑎 = 𝐶𝑂 ∙ [
𝐶𝑅𝐹(𝑖′,𝑁)

𝐶𝑅𝐹(𝑖′′,𝑁)
]     (17) 

 𝐶𝑃,𝑎 = 𝐶𝑃 ∙ [
𝐶𝑅𝐹(𝑖′,𝑁)

𝐶𝑅𝐹(𝑖′′,𝑁)
]     (18) 

 𝐶𝑃 = £𝑝𝑒𝑛 ∙ ∑ 𝑚𝑎𝑥(0, 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) − 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)8760
𝑗=1    (19) 

 𝐶𝑅𝐹(𝑟𝑎𝑡𝑒, 𝑦𝑒𝑎𝑟) =
𝑟𝑎𝑡𝑒∙(1+𝑟𝑎𝑡𝑒)𝑦𝑒𝑎𝑟

(1+𝑟𝑎𝑡𝑒)𝑦𝑒𝑎𝑟−1
     (20) 

 𝑖′ =
𝑖𝑑−𝑖𝑔

1+𝑖𝑔
     (21) 

 𝑖′′ =
𝑖𝑑−𝑖𝑒

1+𝑖𝑒
     (22) 

2.4.1 An outline of the mechanisms and applications of ventilation strategies concerned 

The preferred ADV strategy overcomes the limitations of the existing ventilation strategies, such as 

interactive control (IC), dedicated outdoor air ventilation (DV) and partially decoupled control (PD) 

[31]. The mechanisms and applications of all ventilation strategies concerned (including three other 

typical ventilation strategies for comparison) are highlighted in Table 1. The ADV strategy minimizes 

system energy consumption by avoiding sub-cooling and reheating as far as beneficial via the best 

use of MAU and economizer for cooling and dehumidification. As the ADV strategy offers superior 



15 

 

energy performance compared with other strategies, the study focuses on the optimal design of the 

air-conditioning systems for implementing this strategy. In fact, the optimal design method 

concerning uncertainties is the same for the design of the air-conditioning system to adopt other 

ventilation strategies. 

Table 1 Mechanisms and descriptions of four ventilation strategies [31] 

Operational strategy Mechanism Description Limitations/challenges 

Interactive control (IC) 

[27][28] 

Cooling (or sub-cooling) and 

reheating processes are adopted 

to eliminate the coupling 

between temperature and 

humidity control loops. 

Outdoor air is treated to be 

close to the indoor 

enthalpy. Outdoor airflow 

is always set at the 

minimum. 

Simultaneous cooling 

and reheating  

Dedicated outdoor air 

ventilation (DV) 

[9][29] 

MAU handles all the latent heat 

and part of space sensible heat 

while the AHUs remove the rest 

of space sensible heat. 

Outdoor air is treated 

below the indoor air dew-

point. Outdoor airflow can 

be set higher than the 

minimum. 

High ventilation 

energy demand 

Partially decoupled 

control (PD) [4] 

MAU handles all the latent heat 

and part of space sensible heat 

while the AHUs remove the rest 

of space sensible heat under low 

internal load condition. 

Outdoor air is treated 

below the indoor air dew-

point. Outdoor airflow is 

always set at the 

minimum. 

Simultaneous cooling 

and reheating under 

high internal latent 

load 

Adaptive full-range 

decoupled ventilation 

[31] 

The best operation mode is 

identified by comparing the 

energy performance of different 

control modes. 

Outdoor air temperature 

and flowrate are reset 

according to the identified 

optimal operation mode.   

Higher demands on 

system design and 

control  

2.4.2 Procedure and main steps of optimization 

Different from the ventilation strategies applied in general buildings, such as office buildings and 

commercial buildings, the ADV strategy is applicable for cleanrooms or spaces requiring strict 

humidity/temperature controls, such as pharmaceutical cleanrooms, semiconductor/microchip 

factories and hospitals. The key issue of the ADV strategy is to identify the optimal operation mode 

under different weather and internal load conditions. At the design stage, the optimal operation mode 

when adopting the ADV strategy can be identified based on the information of possible building 

cooling load profiles and weather conditions. For the design optimization of the air-conditioning 

systems facilitating the ADV strategy, an overall trade-off between the satisfaction of service and 

system costs is made as shown in Fig. 4. With the decrease of service satisfaction (or component 
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capacities), the operation (energy) cost increases first due to the limited choice of operation modes 

(from optimum to suboptimum) and then decreases due to the insufficient capacities (i.e., under-

provision). The overall total cost decreases first and then increases after it reaches the minimum at 

point “O”, which is the target point indicating the optimal capacity. Since the performance robustness 

of air-conditioning systems is the main concern in the design of cleanrooms, a higher penalty price 

(i.e., greatly larger than local electricity price in Eq.19) is usually set to avoid insufficient air-

conditioning component capacities. When the component capacities are relatively small (i.e., 

insufficient cooling/heating capacities), the penalty cost can be higher than the operation cost. The 

decrease in the total cost is mainly due to the decrease in the penalty cost. In contrast, when the 

component capacities become larger, the required cooling loads of MAU/AHU can be met at most of 

the operation period, and the penalty cost can be close to zero. The ADV strategy provides various 

operation modes and, in operation, the most economic mode will be selected in a particular working 

condition. The ADV strategy has lowest operation cost and superior energy performance compared 

with that of adopting other three existing ventilation strategies (i.e., IC, PD and DV) as presented by 

the previous research of the authors [31]. The optimal design method minimizes the overall 

annualized total life-cycle cost and therefore makes a proper compromise between the satisfaction of 

service and system life-cycle costs. 

The method and procedure to estimate the penalty cost due to insufficient capacity are shown in Fig.5. 

The actually available choices of operation modes in a particular load/weather condition are subject 

to the provision of sufficient capacities of all components needed for the operation modes concerned. 

At each time step of performance evaluation, for the trial component capacities given by the optimizer, 

the feasibilities of utilizing optimal/suboptimal operation modes are assessed by verifying whether 

the required component capacities are satisfied and the best available mode is chosen as the actual 

operation mode. If required component capacities of all operation modes cannot be satisfied, the 

system fails to provide satisfactory performance, a penalty cost (Cp) would be given (that hour is also 

called as ‘unmet hour’ (Uh)). Due to the different control modes provided by the ADV strategy, the 

ADV strategy can choose the optimal mode that can satisfy the control requirements under the given 

capacities of air-conditioning components and working conditions. This indicates the ADV strategy 

can offer superior service satisfaction (less unmet hour) due to the operation mode switching 
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compared with other ventilation strategies. 

  

Fig. 4. Cost vs. capacity of air-conditioning 

systems facilitating ADV strategy 

Fig. 5. The procedure to estimate the penalty 

cost /unmet hour facilitating ADV strategy 

3. Building, air-conditioning system and energy models for design case study  

3.1 Building/system description and load characteristics 

A pharmaceutical factory building located in Tai Po district of Hong Kong is selected to demonstrate 

the use of the probabilistic optimal design method. It has five floors and the total cleanroom area is 

about 3620 m2. All the production areas are designed as Class ISO 8 cleanrooms [32]. For the 

cleanrooms concerned, the configuration of a typical cleanroom air-conditioning sub-system is 

selected as shown in Table 2. In this sub-system, a MAU serves 3 AHUs, and each AHU serves 

several cleanrooms at 2nd floor with constant air flowrate (i.e., 20ACH). The system configuration of 

the selected system is similar to Fig. 1, while the difference is that the humidifier is not adopted due 

to the humid weather conditions in Hong Kong.  
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Table 2 Cleanroom subsystem configuration and control requirements 

Floor area of the served zones 

Zone 1: Total 100.5 m2 (9 spaces served by AHU-1) 

Zone 2: Total 121 m2 (8 spaces served by AHU-2) 

Zone 3: Total 151 m2 (8 spaces served by AHU-3) 

Height of the served zones 2.8 m 

Operating period 9:00-18:00 

Installed fans specification 

MAU fan (centrifugal) pressure (Pa) 1600 

AHU fan (axial) pressure (Pa) 1350 

Fan efficiency (%) 60 

The overall coefficient of performance 

(COP) of systems  

Cooling system (central cooling) 2.5 (constant) 

Heating system (electric heater) 1.0 (constant) 

Space control requirements [32, 52, 53] 

Temperature (°C) 20±3 

Relative Humidity (%) 55±10 

Supply airflow rate (ACH) ≥20 

Outdoor airflow rate (ACH) ≥2 

TRNSYS 18 [54] is used to calculate the probabilistic sensible and latent cooling loads of the selected 

multi-zone cleanroom systems concerning weather, building and internal load uncertainties. Totally 

950 (38×25) sets of samples are used to obtain the uncertain sensible and latent cooling loads for 

spaces in each zone. The weather uncertainty is introduced by using historical weather data of 38 

years (1979 to 2016) instead of one typical year. Building parameter and internal load uncertainties 

are introduced by randomly sampling according to their distributions. Eventually, 25 sets of their 

samples are selected. The weather, building and load parameters and their uncertainties are shown in 

Table 3. It is worth noting that, the outdoor weather and building parameters are sampled and set as 

the same for all the spaces associated to a zone, while the internal loads are sampled independently 

for different spaces concerning their asynchronous behaviors.  
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Table 3 Weather, building and load parameters and their uncertainties for cooling load calculation 

Group Parameter 
Uncertainty analysis 

Distribution Values 

Outdoor weather 

Outdoor dry-bulb air temperature (°C) 

Actual data: 1979–2016 
Outdoor air relative Humidity (%) 

Global radiation (W/m2) 

Diffuse radiation (W/m2) 

Building parameter 

Internal shading coefficient Normal (0.5, 0.12) 

External shading coefficient Normal (0.2, 0.052) 

Conductivity of window (W/(m2·K)) Uniform (1.5,3) 

Indoor condition 

Occupant density (m2/person) Triangular 10*triangular (0.3, 1.2, 0.9) 

Lighting density (W/m2) Triangular 14*triangular (0.3,1.2, 0.9) 

Process sensible load (W/m2) Relative normal 45* normal (1,0.062) 

Process latent load (W/m2) Relative normal 15* normal (1,0.062) 

Fig. 6 shows the cumulative distribution functions (CDFs) of space/zone loads served by three AHUs. 

Although the spaces in a zone have similar functions, the cooling load profiles are different. The 

cooling load (W/m2) of a zone is the weighted average of the cooling loads of spaces in this zone. It 

can also be seen that the peak cooling load of a zone has a high probability to be lower than that of 

the simple sum of peak loads of individual spaces. In the air-conditioning design, the actual 

cooling/heating demands of the components (serve for a zone) are significantly influenced by the 

cooling load of the critical space particularly when both temperature and humidity are controlled. It 

is especially great for the cleanroom air-conditioning systems which have very high air flow rates 

and employ CAV systems [23]. This indicates if the total sensible and latent cooling loads of a zone 

are directly used for sizing the components, the systems are of high possibility to be undersized 

significantly. It confirms that the load diversity effects of multiple spaces should be taken into account 

in the system design.  
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Fig. 6. Distribution of cooling loads in multiple spaces/zones 

 

3.2 Air-conditioning subsystem energy models  

As mentioned in Section 2, the thermal loads of the all air-side components are converted into the 

electrical load for the convenience of operation cost calculation, which are the functions of dynamic 

cooling demands of zones (Dsen, Dlat). The total electrical load can be calculated using Eq. 4, which 

includes the (equivalent) electrical load of the MAU/AHU cooling coils, AHU heaters, make-up air 

fan and supply air fans. Several simplified models are used to evaluate the electrical loads of these 

components shown as follows.  

Fan model: The fan power of MAU/AHU fans is characterized by their volumetric flow rate, pressure 

rise and efficiency, as shown in Eq. 23. Here Wf is the total fan power (kW). V is the air volumetric 

flow rate (m3/s). Δp is the total pressure rise (kPa). ηf is fan efficiency.  

 𝑊𝑓 =
𝑉∆𝑝

𝜂𝑓
   (23) 

System energy balance model: With the quantification of the cooling demands of zones, the supply 

air state of each zone is calculated using Eqs. 24-25. The cooling loads of the air-conditioning 
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components are then determined based on the energy and mass balances, to process the air to the 

required supply air state. The equivalent electrical loads of cooling coils (Qcc) and heaters (Qhe) are 

calculated according to their inlet and outlet air states and the cooling/heating system overall COPs 

using Eqs. 26-28. Here mfh and ms are the outdoor air mass flowrate (kg/s) and AHU supply air mass 

flowrate (kg/s), respectively. hin and hout are the enthalpy of the inlet and outlet air, respectively (kJ/kg). 

It is worth noting that the air flowrates and inlet/outlet air states at each time step are determined 

according to the air-handling processes of the adopted ventilation strategy as presented in Ref. [31].  

 𝑡s = 𝑡𝑠𝑒𝑡 −
𝐷𝑠𝑒𝑛

𝑚𝑠𝑐𝑝
  (24) 

 𝑤s = 𝑤𝑠𝑒𝑡 −
𝐷𝑙𝑎𝑡

𝑚𝑠ℎ𝑓𝑔
    (25) 

 𝑄𝑐𝑐,𝑀𝐴𝑈 =
𝑄𝑐𝑐,𝑀𝐴𝑈

𝐶𝑂𝑃𝑐
=

𝑚𝑓ℎ(ℎ𝑜𝑢𝑡,𝑐𝑐,𝑀𝐴𝑈−ℎ𝑖𝑛,𝑐𝑐,𝑀𝐴𝑈)

𝐶𝑂𝑃𝑐
   (26) 

 𝑄𝑐𝑐,𝐴𝐻𝑈 =
𝑄𝑐𝑐,𝐴𝐻𝑈

𝐶𝑂𝑃𝑐
=

𝑚𝑠(ℎ𝑜𝑢𝑡,𝑐𝑐,𝐴𝐻𝑈−ℎ𝑖𝑛,𝑐𝑐,𝐴𝐻𝑈)

𝐶𝑂𝑃𝑐
   (27) 

 𝑄ℎ𝑒 =
𝑄ℎ𝑒

𝐶𝑂𝑃ℎ𝑒
=

𝑚𝑠(ℎ𝑜𝑢𝑡,ℎ𝑒,𝐴𝐻𝑈−ℎ𝑖𝑛,ℎ𝑒,𝐴𝐻𝑈)

𝐶𝑂𝑃ℎ𝑒
  (28) 

4. The design case study, results and analysis 

4.1 Training and validation of diversity factor models 

In this study, the datasets (e.g. weather, sensible load ratio and space loads) of Zone 1 are used to 

quantify the diversity factors and train the diversity factor models, while the datasets of Zone 2 and 

Zone 3 are used to validate the models.  

4.1.1 Model training 

Clustering the load diversity factors: Fig. 7 shows the distributions of space load diversity factors of 

Zone 1 calculated by Eqs. 9-12, by fully considering constraints/interaction among multiple spaces 

and the cooling loads of the critical space. It can be seen that estimated kernel density estimation 

functions well match the histograms of both the diversity factors. 95% confidence interval of 

sensible/latent cooling load diversity factors are in the range of [1.06, 1.38] and [1.48, 2.89], 

respectively. This indicates that the actual cooling demands are significantly larger than the cooling 

loads of the corresponding zone. Fig. 8 shows the clustering performance evaluated by the Calinski-

Harabasz criterion [55] using the Statistics and Machine Learning Toolbox™ in MATLAB. 
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Comparing the performance of clustering solutions containing two to six clusters, both the diversity 

factors of sensible cooling load and latent cooling load are grouped into two clusters/subgroups. Fig. 

9 shows the results of categorizing the diversity factors into an optimal number of clusters, where the 

blue line is the centroid curve of diversity factors in a cluster. 

 
Fig. 7. Histograms and Kernel density estimation functions of diversity factors  

 

Fig. 8. Clustering performance for different numbers of clusters  
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Fig. 9. Clustering results for each subgroup   

Correlations between the diversity factors and working conditions: Based on predicted variables (i.e., 

SHRsum, Tavg and Wavg), decision trees and decision rules can be utilized to predict target variables 

(i.e., the number of a cluster) as shown in Fig. 10. The accuracy of the decision trees should be 

evaluated before being applied to the datasets of other zones (i.e., Zone 2 and 3). Table 4 shows that 

91.6% and 87.0% of all the training records are correctly classified for the target clusters of sensible 

cooling load diversity factor (SLDF) and latent cooling load diversity factor (LLDF), respectively. 

Accordingly, the obtained decision trees were applied to the testing sets and the results are also given 

in Table 4. The result shows that 91.0% and 86.0% of the testing records are correctly classified for 

the target clusters of SLDF and LLDF, respectively. This indicates a good accuracy of the decision 

tree models which can be further applied to a new dataset for classification and prediction. 
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Fig. 10. Decision trees for prediction of target clusters  

Table 4 Classification performance of the decision tree models 

Dataset Decision tree Predicted cluster Correct/total number Accuracy 

Training 

set 

Decision tree for prediction 

of target clusters (SLDF) 

Cluster A-1 141,919/151,046 
91.6% 

Cluster A-2 48,757/57,004 

Decision tree for prediction 

of target clusters (LLDF) 

Cluster B-1 52,630/62,913 
87.0% 

Cluster B-2 138,046/145,137 

Testing set 

Decision tree for prediction 

of target clusters (SLDF) 

Cluster A-1 111,783/119,762 
91.0% 

Cluster A-2 35,737/42,325 

Decision tree for prediction 

of target clusters (LLDF) 

Cluster B-1 38,885/47,822 
86.0% 

Cluster B-2 108,635/114,265 

The probability distribution for clusters/subgroups: The diversity factor in each cluster is then used 

to fit the probability distributions using the four alternative PDFs listed in Table A.1. By selecting the 

distributions with the minimum K-S error, the fitted PDFs and the identified parameter values of the 

diversity factors are listed in Table 5. 
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Table 5 Identified probability distribution functions and parameter values for the fitted probability 

density functions of the diversity factors 

Time 

Cluster A-1 Cluster A-2 Cluster B-1 Cluster B-2 

Distribution 

(Parameter) 

Distribution 

(Parameter) 

Distribution 

(Parameter) 

Distribution 

(Parameter) 

9:00 Logn (0.11,0.040) Logn (0.23, 0.062) Logn (0.77, 0.126) Logn (0.56 0.114) 

10:00 Logn (0.13,0.043) Logn (0.25, 0.058) Logn (0.84, 0.116) Gam (69.55, 0.026) 

11:00 Gam (497.7, 0.002) Logn (0.25, 0.056) Logn (0.90, 0.114) Norm (1.92, 0.246) 

12:00 Logn (0.14, 0.045) Logn (0.26, 0.054) Logn (0.93, 0.113) Gam (60.67, 0.032) 

13:00 Logn (0.14, 0.044) Gam (359.1, 0.004) Logn (0.95, 0.111) Gam (62.79, 0.032) 

14:00 Gam (561.9, 0.002) Logn (0.25, 0.052) Logn (0.94, 0.108) Gam (62.79, 0.030) 

15:00 Logn (0.13,0.040) Logn (0.25, 0.052) Logn (0.92, 0.105) Gam (65.82, 0.029) 

16:00 Logn (0.13,0.039) Gam (358.5, 0.004) Logn (0.89, 0.103) Gam (68.79, 0.027)  

17:00 Logn (0.12,0.039) Logn (0.24, 0.055) Logn (0.86, 0.110) Gam (71.67, 0.026) 

18:00 Logn (0.12,0.039) Logn (0.23, 0.059) Logn (0.80, 0.126) Logn (0.58 0.119) 

* Note: Logn, Gam, Norm represent Lognormal, Gamma and Normal distribution, respectively.   

4.1.2 Model validation 

The diversity factor models are validated using the datasets of Zones 2 and 3 (i.e., served by AHU-2 

and AHU-3 respectively). Fig. 11 shows the CDFs of cooling loads and demands of the two zones. 

The predicted cooling demands refer to the cooling demands calculated using the proposed 

probabilistic diversity factor method. The actual cooling demands refer to the cooling demands 

calculated by Eqs. 9-12 when fully considering constraints/interaction among multiple spaces and 

the cooling loads of the critical space. It can be seen that the distributions of cooling demands of 

these two zones are very close, while the values of the cooling demands are significantly larger than 

that of the cooling loads. The index of agreement (d) [56] is used to evaluate the similarity of the 

predicted and actual cooling demands, as shown in Eq. 29. The range of d lies between 0 and 1, with 

higher values signifying good fit between the model and data. Here A and P are the actual and 

predicted values respectively, sorted in ascending order. The actual average value of the cooling 

demand is denoted by Ā. 

 𝑑 = 1 −
∑ (𝐴𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖−�̅�|+|𝐴𝑖−�̅�|)2𝑛
𝑖=1

  (29) 

By calculating the index of agreement of predicted and actual sensible/latent cooling demands, it is 

found that the four indexes of cooling demands of two zones (also shown in Fig. 11) are all higher 

than 0.95. This confirms that the proposed probabilistic diversity factor method is deemed satisfactory, 
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which can be used to effectively quantify the diversity effects of multiple spaces.   

 

Fig. 11. The cumulative distribution functions (CDFs) of cooling loads and cooling demands  

4.2 Performance of air-conditioning systems designed for different ventilation strategies 

Referring the actual sizes of the air-conditioning systems and the actual energy consumption of the 

building, the search ranges for the cooling coil of MAU, the cooling coils of AHUs, the electric 

heaters of AHUs, and design outdoor air flowrate for different ventilation strategies are set between 

[0, 300] kW, [0,100] kW, [0, 50] kW and [0.58, 5.80] m3/s, respectively.  

As introduced in Section 2, the penalty price affects the design objective. Before a sensitivity study 

of the penalty price is conducted, the optimization based on a penalty price of 1.41 USD/kWh (i.e., 

penalty price ratio equals 10) is conducted first and the results are shown in Fig. 12. Here the “penalty 

price ratio” (γpen) is defined as a ratio of penalty price (£pen) to the local electricity price (£ele) as 

shown in Eq. 30. 

 𝛾𝑝𝑒𝑛 =
£𝑝𝑒𝑛

£𝑒𝑙𝑒
 (30) 

Fig. 12(A) presents the required cooling/heating capacities of the air-conditioning system adopting 

four different ventilation strategies (ADV, DV, PD and IC). In general, the capacities of components 

adopting ADV strategy are in-between that of the other three ventilation strategies. The DV strategy 
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requires the highest cooling capacity of MAU, which can be 2.4, 5.8 and 8.9 times that of the ADV, 

PD and IC strategy, respectively. The PD strategy requires the highest heating capacities while the 

IC strategy requires the highest cooling capacities of all three AHUs. Fig. 12 (B) shows the design 

outdoor air flowrate for different ventilation strategies. The IC strategy requires the largest design 

volume of outdoor airflow (i.e., 5.26 m3/s or 18 ACH) due to the involving of the enthalpy-based 

economizer. The PD strategy requires the minimum (i.e., 0.58m3/s or 2 ACH), while the design 

outdoor air flowrates for the ADV and DV strategy are 72.6% and 68.2% compared with that of IC 

strategy. The overall annualized mean total costs of adopting different ventilation strategies are 

shown in Fig. 12(C). It can be seen that the overall annualized mean total cost adopting ADV strategy 

is reduced by 18.2%, 13.6% and 6.5% compared with that of using the DV, PD and IC strategy 

respectively.  

 

Fig. 12. Optimal air-conditioning sizes and objective value adopting different ventilation strategies 

The optimal capacities of the air-conditioning system partially depend on the difference between the 

electricity price and the penalty price. Therefore, a sensitivity study is conducted to show the effect 

of the penalty price on the optimal capacities of the air-conditioning system adopting different 

strategies as shown in Fig. 13. It can be seen that with the increase of the penalty price ratio, the 

larger capacities of the components are required. However, when the penalty price ratio is larger than 

a certain value (i.e., 10), the capacities of air-side components adopting all ventilation strategies vary 

only with little difference. Under a certain penalty price ratio, the capacities of the components 

adopting ADV strategy are in-between that of the other three ventilation strategies. 
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Fig. 13. Optimal sizes at different penalty price ratio adopting different ventilation strategy 

In some practical cases, the number of hours when the cooling or heating capacity cannot meet the 

required demands (namely unmet hour) are also concerned by the designers to quantify the deficiency 

in the cooling or heating capacity (i.e., the dissatisfaction of service). It is worth noting that, in this 

study, the unmet hour is also affected by the ventilation strategy selected due to the coordination and 

interaction among these components/processes in different operation conditions. The overall 

annualized mean total cost (objective) and the corresponding annual mean unmet hour adopting the 

four ventilation strategies at different penalty price ratio are shown in Fig. 14. In general, the annual 

mean unmet hour decreases with the increase of the overall annualized mean total cost. However, 

both the overall annualized mean total cost and annual mean unmet hour of systems adopting ADV 

strategy are significantly lower than that of the other three strategies as shown in Fig. 14(A), 

especially for the cases with high penalty price ratios (i.e., larger than 2). This indicates the air-

conditioning system, which is designed for the ADV strategy using the proposed design method, can 

offer superior energy and economic performance as well as the satisfaction of service (represented 

by the unmet hour) than other three ventilation strategies. It is also worth noting that a higher penalty 

price would ensure the air-conditioning system with a higher level of service satisfaction (more 

0

40

80

120

160

200

240

280

320

D) IC strategy

B) DV strategy

C) PD strategy

C
ap

ac
it

y
 (

k
W

)
 AHU-3 electric heater  AHU-3 cooling coil  AHU-2 electric heater  AHU-2 cooling coil

 AHU-1 electric heater  AHU-1 cooling coil  MAU cooling coil

A) ADV strategy

0

1

2

3

4

5

6

 Outdoor airflow rate 

D
es

ig
n

 o
u

td
o

o
r 

ai
rf

lo
w

 (
m

3
/s

)

0

40

80

120

160

200

240

280

320

C
ap

ac
it

y
 (

k
W

)

0

1

2

3

4

5

6

D
es

ig
n

 o
u

td
o

o
r 

ai
rf

lo
w

 (
m

3
/s

)

2 4 6 8 1012141618202224262830
0

40

80

120

160

200

240

280

320

C
ap

ac
it

y
 (

k
W

)

Penalty price ratio

0

1

2

3

4

5

6

D
es

ig
n

 o
u

td
o

o
r 

ai
rf

lo
w

(m
3
/s

)

2 4 6 8 1012141618202224262830
0

40

80

120

160

200

240

280

320

C
ap

ac
it

y
 (

k
W

)

Penalty price ratio

0

1

2

3

4

5

6

D
es

ig
n

 o
u

td
o

o
r 

ai
rf

lo
w

 (
m

3
/s

)



29 

 

cooling/heating demands can be met and lower annual mean unmet hours). Under a low penalty price 

ratio (i.e., penalty price ratio =2), the annual mean unmet hour of the air-conditioning system adopting 

ADV strategy is about 468 h, slightly higher than that of adopting IC strategy (450 h), significantly 

lower than that adopting DV (1223 h) and PD strategies (856 h). When the penalty price ratio is larger 

than 10, the annual mean unmet hour is smaller than 35 h by adopting the ADV strategy, significantly 

lower than that associated to the other three ventilation strategies. This indicates that the penalty price 

ratio should be properly set especially for the cleanroom system requiring a high level of service 

satisfaction. 

 

Fig. 14. Overall annualized mean total cost and annual mean unmet hour at different penalty price 

ratios   

5. Conclusions and discussion 

A probabilistic optimal design method of air-conditioning systems is developed for 

cleanrooms/spaces requiring strict temperature and humidity controls, which facilitates optimal 

ventilation control strategies to be implemented successfully under uncertainties. To consider the 
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for implementing four different ventilation control strategies with full consideration of possible and 

uncertain off-design conditions. Based on the results and analysis of a case study, detailed 

conclusions can be made as follows.  

o The proposed probabilistic optimal design method offers optimal and energy-efficient alternatives 

for cleanroom air-conditioning system design, facilitating different ventilation control strategies. 

o The air-conditioning system, which is designed for the “adaptive full-range decoupled ventilation 

strategy” (ADV strategy) using the proposed design method, offers the superior economic 

performance and satisfaction of service compared with systems designed for other ventilation 

strategies. The overall annualized mean total cost of the system designed for ADV strategy can be 

reduced by 18.2%, 13.6% and 6.5% compared with that of the systems designed for the DV, PD 

and IC strategy respectively in the selected case. 

o The diverse behavior of multiple zones/spaces has significant effects on the cooling demand of 

components, and thus the sizing of optimal design. The design approach without considering the 

diverse behavior of multiple spaces will result in undersized problems for some components. It is 

recommended to conduct uncertainty quantification of load diversity when estimating the cooling 

loads of system and components at the design stage. 

o The introduction of two probabilistic diversity factors using the proposed probabilistic diversity 

factor method is very effective to quantify the effects of load diversities in multiple zones/spaces. 

o The optimal capacities of the components are affected significantly by penalty prices. The optimal 

component capacities become larger at higher prices. When the penalty price ratio is larger than 

10, the optimal design capacities of air-side components vary only within a small range. The 

penalty price ratio needs to be properly set, in order to obtain a system with desirable life-cycle 

costs and satisfaction of service. 

It is worth noting that the diversity factor models are trained using the building simulation tools and 

validated in specific cases in this study. To improve/ensure the accuracy of the diversity factor models 

in a particular application, operation or simulation data of typical representative working conditions 

relevant to the application case are needed for the model training. To obtain more generic models to 

extend their application scope, different types of building data, such as the number of spaces, zone 

orientation, space function, working schedules, etc., are also needed for training the models. 
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It is also worth noting that, in this study, the design optimization of the cleanroom air-conditioning 

systems is conducted under the condition that ideal controls are adopted to achieve the intended 

operation of specific ventilation strategies. For the ADV strategy, the required system configuration 

is the same as that of the existing ventilation strategies. However, the successful implementation of 

the ADV strategy requires the supervisory controller to identify the best operation mode. In actual 

applications, an online control strategy is needed to ensure the actual achievement of the ventilation 

strategy systems concerning measurement uncertainties and component degradation, which needs 

further investigations.  
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Appendix A Descriptions of the four commonly-used probability distribution functions 

The formula and detailed coefficient descriptions of each of the four commonly-used probability 

distribution functions are shown in Table A.1. 

Table A.1 Detailed descriptions of the four commonly-used probability distribution functions 

Distribution Probability density function Coefficient description 

Normal 𝑓(𝑥|𝜇, 𝛿) =
1

𝛿√2𝜋
𝑒

−(𝑥−𝜇)2

2𝛿2  
μ is the mean parameter, and σ is the standard 

deviation parameter. 

Lognormal 𝑓(𝑥|𝛾, ∅) =
1

𝑥∅√2𝜋
𝑒

−(𝑙𝑛𝑥−𝛾)2

2∅2  
γ is the mean parameter of ln(x) and ∅ is the 

standard deviation parameter of ln(x) 

Gamma 𝑓(𝑥|𝛼, 𝛽) =
𝑥𝛼−1𝑒

(−
𝑥
𝛽

)

𝛽𝛼𝛤(𝛼)
 

α is a shape parameter, β is an inverse scale 

parameter, and Γ(α) is a complete Gamma 

function 

Weibull 

 

𝑓(𝑥|𝜆, 𝑘) =
𝑘

𝜆
(
𝑥

𝜆
)𝑘−1𝑒(−

𝑥
𝜆

)𝑘

 

λ is the scale parameter, and k is the shape 

parameter 

Appendix B The investment of components 

The investments of air-side components are the function of the corresponding component capacities 

in this study. The initial cost of the centrifugal fan, axial fan, duct, coil, and electric heater can be 

estimated by Eqs. A.1-5 based on RSMeans Mechanical Cost Data [57]. The initial cost of the 

economizer is estimated as 8 USD/m2 of the floor area considering the installation of additional 

dampers, sensors and actuators [58].    

                             𝐼𝐶𝑐𝑒𝑛,𝑓𝑎𝑛 = 1125.9𝑓𝑙𝑜𝑤 + 3375.1                           𝑓𝑙𝑜𝑤 ∈ [0.5, 6]   (A.1)  

                             𝐼𝐶𝑎𝑥𝑖,𝑓𝑎𝑛 = 296.97𝑓𝑙𝑜𝑤 + 1406.4                              𝑓𝑙𝑜𝑤 ∈ [0.5, 6]   (A.2)  

  𝐼𝐶𝑑𝑢𝑐𝑡 = (3.0𝑓𝑙𝑜𝑤3 − 29.2𝑓𝑙𝑜𝑤2 + 138.9𝑓𝑙𝑜𝑤 + 7.68) × 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑢𝑐𝑡  𝑓𝑙𝑜𝑤 ∈ [0.5, 6]   (A.3)  

          𝐼𝐶𝑐𝑜𝑖𝑙 = −1.3313𝐶𝐴𝑃𝑐𝑜𝑖𝑙
2 + 165.09𝐶𝐴𝑃𝑐𝑜𝑖𝑙 + 1746.7         𝐶𝐴𝑃𝑐𝑜𝑖𝑙 ∈ [2, 55]     (A.4)  

                   𝐼𝐶𝑒𝑙𝑒,ℎ𝑒𝑎𝑡𝑒𝑟 = 221.01𝐶𝐴𝑃𝑒𝑙𝑒,ℎ𝑒𝑎𝑡𝑒𝑟 + 211.05                  𝐶𝐴𝑃𝑒𝑙𝑒,ℎ𝑒𝑎𝑡𝑒𝑟 ∈ [0.5,20]    (A.5)  

Here ICcen,fan , ICaxi,fan, ICduct , ICcoil and ICele,heater (USD) are the initial cost of centrifugal fan, axial 

fan, duct, cooling coil and electric heater. CAPcoil (kW), CAPele,heater (kW) and flow (m3/s) are the 
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capacity of the cooling coil, electric heater and design outdoor airflow, respectively. lengthduct is the 

length of the MAU duct, set as 15 m. It should be noted that when the design capacities of the cooling 

coil and electric heater are larger than the upper limit of the ranges (i.e., 55 kW for cooling coil, and 

20 kW for the electric heater), multiple same cooling coils and electric heaters would be selected. For 

example, if the design cooling coil capacity is 100 kW, the initial cost of the cooling coil is the sum 

of the initial costs of two cooling coils, each with the capacity of 50 kW. 

Reference 

[1] Mills E, Bell G, Sartor D, Chen A, Avery D, Siminovitch M, et al. Energy Efficiency in California 

Laboratory-Type Facilities. Lawrence Berkeley National Laboratory Report; 1996. 

[2] Li H, He H, Shan J, Cai J. Innovation efficiency of semiconductor industry in China: A new 

framework based on generalized three-stage DEA analysis. Socio-Economic Planning Sciences. 

2018. 

[3] Tschudi W, Xu T. Cleanroom energy benchmarking results, ASHRAE Transactions. 2003; 109 

(2):733–739. 

[4] Shan K, Wang SW. Energy efficient design and control of cleanroom environment control 

systems in subtropical regions–A comparative analysis and on-site validation. Applied Energy. 

2017;204:582-595. 

[5] Xu T. Efficient Airflow Design for Cleanrooms Improves Business Bottom Lines. IEST 

Proceedings of The 49th Annual Technical Meeting. 2003. 

[6] Hu S-C, Tsao J-M. A comparative study on energy consumption for HVAC systems of high-tech 

FABs. Applied Thermal Engineering. 2007;27:2758-2766. 

[7] PG&E. A design guideline sourcebook: High performance cleanrooms. Available from: 

<https://www.pge.com/includes/docs/pdfs/mybusiness/energysavingsrebates/incentivesbyindus

try/Cleanrooms_BestPractices.pdf>: San Francisco: Pacific Gas and Electric Company; 2011. 

[8] Shiue A, Den W, Kang Y-H, Hu S-C, Jou G-t, Lin C, et al. Validation and application of 

adsorption breakthrough models for the chemical filters used in the make-up air unit (MAU) of 

a cleanroom. Building and Environment. 2011;46:468-477. 

[9] Li H, Lee WL, Jia J. Applying a novel extra-low temperature dedicated outdoor air system in 

office buildings for energy efficiency and thermal comfort. Energy Conversion and Management. 

2016;121:162-173. 

[10] ASHRAE Handbook. Fundamentals. American Society of Heating, Refrigerating and Air 

Conditioning Engineers, Atlanta. 2013;111. 

[11] Sekhar S, Tan L. Optimization of cooling coil performance during operation stages for improved 

humidity control. Energy and Buildings. 2009;41:229-233. 

[12] Tsao J-M, Hu S-C, Chan DY-L, Hsu RT-C, Lee JC-C. Saving energy in the make-up air unit 

(MAU) for semiconductor clean rooms in subtropical areas. Energy and Buildings. 

2008;40:1387-1393. 

[13] Jo M-S, Shin J-H, Kim W-J, Jeong J-W. Energy-Saving Benefits of Adiabatic Humidification in 

the Air Conditioning Systems of Semiconductor Cleanrooms. Energies. 2017;10:1774. 

[14] Lu, YQ. Practical design handbook of heating and air conditioning. Architecture & Building 



34 

 

Press: Beijing, China. 2008. 

[15] De Wit S, Augenbroe G. Analysis of uncertainty in building design evaluations and its 

implications. Energy and Buildings. 2002;34:951-958. 

[16] Huang P, Huang G, Sun Y. Uncertainty-based life-cycle analysis of near-zero energy buildings 

for performance improvements. Applied Energy. 2018;213:486-498. 

[17] Hopfe CJ, Augenbroe GL, Hensen JL. Multi-criteria decision making under uncertainty in 

building performance assessment. Building and environment. 2013;69:81-90. 

[18] Brohus H, Frier C, Heiselberg P, Haghighat F. Quantification of uncertainty in predicting 

building energy consumption: A stochastic approach. Energy and Buildings. 2012;55:127-140. 

[19] Domínguez-Muñoz F, Cejudo-López JM, Carrillo-Andrés A. Uncertainty in peak cooling load 

calculations. Energy and Buildings. 2010;42:1010-1018. 

[20] Sun Y, Gu L, Wu CJ, Augenbroe G. Exploring HVAC system sizing under uncertainty. Energy 

and Buildings. 2014;81:243-252. 

[21] Gang WJ, Wang SW, Xiao F, Gao DC. Robust optimal design of building cooling systems 

considering cooling load uncertainty and equipment reliability. Applied energy. 2015;159:265-

275. 

[22] Cheng Q, Wang SW, Yan CC, Xiao F. Probabilistic approach for uncertainty-based optimal 

design of chiller plants in buildings. Applied Energy. 2017;185:1613-1624. 

[23] Yan D, Jiang Y, Shi X. Influence of asynchronous demand behavior on overcooling in multiple 

zone AC systems. Building and Environment. 2016;110:65-75. 

[24] Virote J, Neves-Silva R. Stochastic models for building energy prediction based on occupant 

behavior assessment. Energy and Buildings. 2012;53:183-193. 

[25] Yu Z, Fung BC, Haghighat F, Yoshino H, Morofsky E. A systematic procedure to study the 

influence of occupant behavior on building energy consumption. Energy and Buildings. 

2011;43:1409-1417. 

[26] An J, Yan D, Hong T, Sun K. A novel stochastic modeling method to simulate cooling loads in 

residential districts. Applied energy. 2017;206:134-149. 

[27] Wu XP, Peter J, and Aliakbar A. Application of heat pipe heat exchangers to humidity control in 

air-conditioning systems. Applied Thermal Engineering. 1997; 17(6): 561-568. 

[28] Mossolly, M., K. Ghali, and N. Ghaddar. Optimal control strategy for a multi-zone air 

conditioning system using a genetic algorithm. Energy. 2009; 34(1): 58-66. 

[29] Tsao, J. M., Hu, S. C., Xu, T., & Chan, D. Y. Capturing energy-saving opportunities in make-up 

air systems for cleanrooms of high-technology fabrication plant in subtropical climate. Energy 

and Buildings, 2010; 42(11), 2005-2013. 

[30] Brown, W. K. Makeup air systems energy-saving opportunities. ASHRAE Transactions, 1990; 

92(2): 609-615. 

[31] Zhuang CQ, Wang SW, Shan K. Adaptive Full-range Decoupled Ventilation Strategy and Air-

conditioning Systems for Cleanrooms and Buildings Requiring Strict Humidity Control and 

Their Performance Evaluation. Energy. 2018;168:883-896. 

[32] International Organization for Standardization (ISO): Geneva, Switzerland. ISO 14644-1:2015 

Cleanrooms and associated controlled environments--Part 1: Classification of air cleanliness by 

particle concentration. 2015. 

[33] Stetiu C. Energy and peak power savings potential of radiant cooling systems in US commercial 

buildings. Energy and Buildings. 1999; 30:127–38. 

[34] Sun ZW, Wang SW, Zhu N. Model-based optimal control of outdoor air flow rate of an air-



35 

conditioning system with primary air-handling unit. Indoor and Built Environment. 

2011;20:626–37.  

[35] Gang, WJ, Wang, SW, Shan, K., & Gao, DC. Impacts of cooling load calculation uncertainties

on the design optimization of building cooling systems. Energy and Buildings. 2015; 94: 1-9.

[36] Janssen H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling

convergence. Reliability Engineering & System Safety. 2013;109:123-132.

[37] Doucet A, De Freitas N, Gordon N. An introduction to sequential Monte Carlo methods. In:

Doucet A dFJ, Gordon NJ., editor. Sequential Monte Carlo methods in practice: Springer; 2001.

[38] Saltelli A, Tarantola S, Campolongo F. Sensitivity anaysis as an ingredient of modeling.

Statistical Science. 2000;15:377-395.

[39] Meesrikamolkul W, Niennattrakul V, Ratanamahatana CA. Shape-based clustering for time

series data. In: Tan PN. CS, Ho C.K., Bailey J., editor. Pacific-Asia Conference on Knowledge

Discovery and Data Mining: Springer; 2012;530-541.

[40] Quinlan JR. Induction of decision trees. Machine learning. 1986;1:81-106.

[41] Han J, Pei J, Kamber M. Data mining: concepts and techniques: Elsevier; 2011.

[42] Maulik U, Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity

indices. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002;24:1650-1654.

[43] Breiman L. Classification and regression trees: Routledge; 2017.

[44] Forbes C, Evans M, Hastings N, Peacock B. Statistical distributions: John Wiley & Sons; 2011.

[45] Holland DM, Fitz-Simons T. Fitting statistical distributions to air quality data by the maximum

likelihood method. Atmospheric Environment. 1982;16:1071-1076.

[46] Weber MD, Leemis LM, Kincaid RK. Minimum Kolmogorov–Smirnov test statistic parameter

estimates. Journal of Statistical Computation and Simulation. 2006;76:195-206.

[47] Vose MD. The simple genetic algorithm: foundations and theory: MIT Press, Cambridge, MA.

1999.

[48] Hang Y, Qu M, Winston R, Jiang L, Widyolar B, Poiry H. Experimental based energy

performance analysis and life cycle assessment for solar absorption cooling system at University

of Californian, Merced. Energy and Buildings. 2014;82:746-757.

[49] Henning H-M. Solar-assisted air-conditioning in buildings: a handbook for planners: Springer

Vienna Architecture; 2004.

[50] CLP Hong Kong. 2017 Tariff Review Presentation. Available from:

<https://www.hkelectric.com/en/InvestorRelations/Documents/SOC%20Information/2017/TR2

017%20Presentation_EN.pdf>2017.

[51] Daud A-K, Ismail MS. Design of isolated hybrid systems minimizing costs and pollutant

emissions. Renewable energy. 2012;44:215-224.

[52] ASHRAE. Standard 62.1-2016. Ventilation for acceptable indoor air quality, Atlanta, GA.

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 2016.

[53] ASHRAE Handbook. HVAC applications. American Society of Heating, Refrigerating and Air

Conditioning Engineers, Atlanta. 2015.

[54] TRNSYS 16: a transient system simulation program. Madison (USA): Solar Energy Laboratory,

University of Wisconsin. 2007. Available from: < http://sel.me.wisc.edu/trnsys/>.

[55] Caliński T, Harabasz J. A dendrite method for cluster analysis. Communications in Statistics-

theory and Methods. 1974;3:1-27.

[56] Heo Y, Choudhary R, Augenbroe G. Calibration of building energy models for retrofit analysis

under uncertainty. Energy and Buildings. 2012;47:550-560.



36 

 

[57] Mossman MJ. RSMeans Mechanical Cost Data. 31st Annual edition. A Division of Reed 

Construction Data Construction Publishers & Consultants, Kingston. 2008. 

[58] Fisk WJ, Black D, Brunner G. Changing ventilation rates in US offices: Implications for health, 

work performance, energy, and associated economics. Building and environment. 2012;47:368-

372. 

 




