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Abstract 

Modern buildings are expected to be not only energy efficient but also energy flexible 

to facilitate reliable integration of intermittent renewable energy sources into smart 

grids. Estimating the aggregate energy-flexibility potential at a cluster level plays a key 

role in assessing financial benefits and service area for energy-flexibility services at 

design stage and determining real-time pricings at operating stage. However, most 

existing studies focused on the energy flexibility of individual buildings rather than 

building clusters. In addition, due to the intrinsic uncertainty in building envelope 

parameters, performance of building energy systems, and occupancy and occupant 

behavior, it is necessary to quantify the uncertainty in aggregate energy flexibility. In 

this study, we developed an approach to quantifying the uncertainty in the aggregate 

energy flexibility of residential building clusters using a data-driven stochastic 

occupancy model that can capture the stochasticity of occupancy patterns. A 

questionnaire survey was carried out to collect occupancy time-series data in Hong 

Kong for occupancy model identification. Aggregation analysis was conducted 

considering various building archetypes and occupancy patterns. The uncertainty in 

aggregate energy flexibility was then quantified based on the proposed performance 

indices using Monte Carlo technique. With the scaling up of building clusters, the 

estimated energy-flexibility potential became steady and the weekly energy flexibility 

stayed around 12.40%. However, the weekly uncertainty of aggregated energy 

flexibility exponentially decreased from 19.12% for 8 households to 0.74% for 5,120 
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households, which means that the estimate of a building cluster’s energy flexibility is 

more reliable than that of a single building.  

Keywords: Energy flexibility; Load aggregation; Uncertainty analysis; Stochastic 

occupant behavior; Building clusters. 

Nomenclature 

A area, m2 

A system matrix in state-space model 

AC air conditioner 

B input matrix in state-space model 

C equivalent overall thermal capacitance, J/K 

cap cooling capacity of the air conditioner 

COP coefficient of performance 

CV coefficient of variance 

d disturbance vector 

DEF deterministic energy flexibility 

E energy consumption during a period 

E disturbance matrix in state-space model 

EF energy flexibility 

EIR energy input ration of the air conditioner 

f conversion coefficients for heat gains 

HVAC heating, ventilation and air conditioning system 

I global solar radiation 

k time step 

MCMC Markov Chain Monte Carlo model 

N normal distribution 

n sampling times 

p transition probability 

P transition probability matrix 

Q heat gains, W 

R equivalent overall thermal resistance, K/W 

RC resistance-capacitance model 

RES renewable energy sources 

RMSE root mean square error 

s occupancy state 

S operating signal of AC 

T temperature, ℃ 

T triangular distribution 

T system state vector 

t a specific time 

TRN TRNSYS 

u input vector 



U uniform distribution 

UEF uncertainty of energy flexibility 

X Markov-chain, a time sequence 

x the element in Markov-chain 

Greek symbols 

δ control dead-band 

δ standard deviation 

μ mean value 

Subscripts 

db dry-bulb temperature 

ext external surface of wall 

in indoor air 

int internal surface of wall 

inter internal heat gains 

m internal thermal mass 

o outdoor air 

rated the rated operation condition of the air conditioner 

set set-point 

solar solar radiation 

w wall 

win window 

1. Introduction 

Renewable energy sources (RESs) have increasingly penetrated electric grids and 

energy markets in recent years to displace the use of fossil fuels and reduce greenhouse 

gas emissions. The wide integration of RESs, however, influences the reliability of 

power systems because RESs are intrinsically intermittent and difficult to forecast [1-

3]. The peak power consumption at the demand side under severe hot or cold weather 

conditions sometimes causes a power imbalance, which also adversely affects the 

reliability of power systems [4]. Buildings are responsible for around 40% of the total 

energy consumption worldwide and consume over 90% of the total electricity in Hong 

Kong [5, 6]. As the major end users of electricity, buildings have significant potential 

to provide peak power reduction and alleviate the power imbalance. In this context, 

modern buildings are expected to be not only energy efficient but also energy flexible 

and grid-responsive [7].  

1.1. Energy-flexible buildings and building clusters 

As defined in IEA EBC Annex 67, the energy flexibility of a building refers to “the 

ability to manage its demand and generation according to local climate conditions, 



user needs, and energy network requirements” [8]. Energy systems in buildings play a 

significant role in providing energy flexibility because they account for substantial 

electricity consumption, which can be reduced by using building energy management 

systems [4].  

Over the last few years, many studies have focused on the investigation of energy 

flexibility of energy systems in individual buildings. Dréau and Heiselberg [9] 

investigated the flexibility potential of two residential houses with different levels of 

insulation and air-tightness considering both energy performance and occupants’ 

thermal comfort. The passive house with its higher heating inertia was found to have a 

larger influence on the control strategies for energy flexibility. Shafie-khah et al. [10] 

applied hybrid phase-change materials (PCMs) in a residential building to provide 

demand flexibility. Their results showed that the integration of PCMs affected the 

indoor thermal dynamics and the electricity cost savings under various demand 

response programs. Three different thermal energy storage tanks, i.e., water, PCMs, and 

thermochemical material tanks, were integrated with the heating system in an office 

building to provide demand flexibility [11]. Some studies have put emphasis on the 

development of energy-flexibility control strategies for heating, ventilation, and air-

conditioning (HVAC) systems in individual buildings. Temperature set-point reset [12, 

13] and pre-cooling/heating [14, 15] are two common control strategies for providing 

load reduction and shifting. Yin and Kara et al. [12] applied a set-point change strategy 

to cooling systems in both residential and commercial buildings to reduce load during 

on-peak hours. The hourly power reduction potential of HVAC systems for each type 

of building was assessed under various thermostat adjustment strategies. Hu and Xiao 

et al. [13, 14] combined temperature set-point reset and pre-cooling strategies for 

residential air conditioners to shift the energy consumption from high-price to low-price 

time periods using a genetic algorithm. An advanced model predictive control method 

was developed by Hu and Xiao et al. [16] for a floor heating system to provide energy 

flexibility during on-peak hours. Their model simultaneously considered weather 

conditions, occupancy, and dynamic electricity prices from electric utilities.  

Compared with the studies on individual buildings, fewer studies have focused on 

energy flexibility at the building cluster/community/neighborhood level. Vigna and 

Pernetti et al. [17] proposed a new definition of building cluster, identified the concept 

of an energy-flexible building cluster, and reviewed several candidate indicators for 



evaluating energy flexibility at the building cluster level. Taniguchi et al. [18] 

investigated the peak power reduction potential of 5,000 residential households in Japan 

using various energy-saving measures. A bottom-up energy performance model was 

developed to assess energy flexibility that considered household composition, floor area, 

insulation level, etc. Perfumo and Kofman et al. [19] developed a mathematical model 

to characterize the aggregate dynamics of thermostatically controlled loads on a large 

scale (10,000 air conditioners) and proposed a control strategy based on the developed 

model to conduct demand-side load management. Goy and Finn [20] noted that 

differences in building thermal characteristics, end-use equipment, and occupant 

behavior need to be considered when estimating energy-flexibility potential on a large 

scale.  

To sum up, investigating the aggregate energy-flexibility potential of thousands of 

buildings at the cluster/neighborhood/community scale is more meaningful in practice,  

because the estimation of such amount of flexibility can help system operators assess 

whether it is financially worthwhile to provide energy-flexibility services, plan how 

large the service area needs to be at the design stage, and determine the real-time penalty 

signals (e.g., prices and CO2) to end-use customers at the operating stage [17, 21]. 

However, it is not yet sufficiently addressed, and more research efforts are needed. A 

big remaining challenge is the quantification of the uncertainty in the aggregate energy 

consumption and energy flexibility at an area level considering the increasing number 

of building clusters and various influential uncertainty sources (e.g., building design 

parameters and occupancy). There was a lack of an effective approach to addressing 

this challenge in the existing research on energy flexibility.  

1.2. Uncertainty analysis in building energy assessment 

Assessing building energy performance is uncertain because the variables that influence 

performance, i.e., weather conditions, the thermal parameters of the building envelope, 

the parameters and control methods of building energy systems, and occupancy and 

occupant behavior, are intrinsically uncertain. Uncertainty analysis in building energy 

assessment therefore has attracted increasing attention in recent years.  

A large portion of existing studies on the uncertainty analysis of building energy 

performance focus on the uncertainty of building envelope parameters [22] and HVAC 

system configurations [23]. Domínguez-Munoz et al. [24] evaluated the effects of the 



uncertainty of building envelopes on building peak cooling load based on a simplified 

resistance and capacity (RC) thermal model. After the sensitivity analysis, they found 

that the dominant uncertainties were internal mass and the convective heat transfer 

coefficient between the internal mass and the air. Huang et al. [25] quantified the 

uncertainty in building peak load by considering 12 uncertain input parameters, 

including the physical parameters of the envelope. The uncertainty in peak load was 

then used to size a HVAC system with the assistance of a multi-criterion decision-

making technique. In [23], uncertainty in the performance of chillers, cooling towers, 

pumps, and fans in HVAC systems was considered in the life-cycle analysis of near-

zero energy buildings. Wilde et al. [26] proposed a method to predict uncertainty-based 

life-cycle building energy performance, which considered property changes due to the 

deterioration of components, maintenance procedures, etc. Moreover, occupancy and 

occupant energy-related behavior are also recognized as major sources of uncertainty. 

These sources represent more than 30% of the discrepancy in building energy 

performance [27]. Several comprehensive literature reviews on state-of-the-art research 

of occupancy behavior in buildings have been published in the past three years [28-30]. 

To capture the stochasticity and diversity of occupant behavior, various stochastic 

occupancy modeling methods have been developed and applied to building 

performance simulations, including Markov chains [31, 32], the Bernoulli process [33], 

and survival analysis [34].  

Like building energy consumption, energy flexibility is also uncertain because it is 

essentially the energy consumption deviation between the baseline case and the energy-

flexible case. Although there have been extensive studies on the uncertainty analysis of 

building energy performance, few studies have focused on the analysis of the 

uncertainty in aggregate energy consumption and energy flexibility at the 

cluster/community/neighborhood level. Moreover, considering that occupant energy-

related behavior is a major source of uncertainty, stochastic occupancy modeling 

methods need to be used in the uncertainty analysis of the aggregate energy flexibility 

of building clusters [22].  

1.3. Innovations and contributions 

To address the aforementioned problems and challenges, we developed an approach to 

quantifying the uncertainty in the aggregate energy flexibility of residential building 

clusters using a data-driven stochastic occupancy model. The major contributions of 



this study are: (1) a data-driven stochastic occupancy model was developed and 

identified using questionnaire survey data to capture the dynamics, stochasticity, and 

diversity in occupancy patterns in today’s Hong Kong residential buildings with typical 

household sizes and composition types; (2) aggregation analysis was conducted to 

quantify the aggregate energy flexibility of residential building clusters based on 

various types of building archetypes and occupancy patterns. For each air-conditioned 

room, the developed stochastic occupancy model was integrated with the data-driven 

building thermal model developed in our previous work [13] to predict building energy 

performance under the baseline case and energy-flexible case, resulting in the energy 

flexibility potential; and (3) Performance indices are proposed to quantify the 

uncertainty in energy flexibility at a specific time (e.g., hourly and sub-hourly) and 

during a particular time period (e.g., daily and weekly). Based on the proposed 

performance indices, the uncertainty in the aggregate energy flexibility of various 

scales of building clusters was quantified using the Monte Carlo sampling technique. 

The rest of this paper is organized as follows. Section 2 introduces the overview of the 

proposed uncertainty quantification method for the aggregated energy flexibility of 

residential building clusters. Section 3 presents the development of the data-driven 

stochastic occupancy model, building thermal model, and the detailed method for 

quantifying the uncertainty in the aggregate energy flexibility. The validation and test 

conditions for the proposed method are presented in Section 4. In Section 5, the 

performances of the data-driven occupancy model and the building thermal model are 

first tested. The deterministic and uncertainty-based energy flexibility of building 

clusters of various scales are then investigated. Finally, conclusions are presented in 

Section 6. 

2. Overview of the proposed uncertainty quantification method 

The aggregated energy-flexibility potential of building clusters in a residential 

community is uncertain due to the stochastic nature of various influential variables, 

including weather conditions, building envelope parameters, performance of building 

energy systems, and occupancy and occupant behavior. An approach is proposed in this 

paper for quantifying the uncertainty in energy flexibility of scaled-up building clusters. 

As shown in Fig. 1, the developed approach consists of four steps: (1) development of 

data-driven models, including a stochastic occupancy model trained using 

questionnaire survey data and a building thermal model trained using TRNSYS data; 



(2) energy performance analysis of a single air-conditioned room based on the 

developed data-driven models; (3) aggregation analysis of the energy performance of 

building clusters of increasing scale; (4) uncertainty analysis of aggregate energy 

performance (energy consumption and energy flexibility) of the various building 

clusters using the Monte Carlo sampling technique. 

 

Fig. 1. Flowchart of the proposed approach for quantifying the uncertainty in the aggregate energy 

flexibility of building clusters. 



In Step 1, a Markov-chain Monte Carlo (MCMC) data-driven occupancy model was 

first developed and then identified using the occupancy time-series data collected by a 

questionnaire survey. The collected occupancy data were categorized by household size 

(3-person/4-person), room function (living room/bedroom), and day of the week 

(weekday/weekend). Considering the computational efficiency for large-scale 

prediction, a simple data-driven building thermal model (RC model) developed in our 

previous study [13] was used to predict the building thermal response. Building 

performance data from either field tests or simulation platforms can be used to identify 

the parameters in the RC model. In Step 2, An air-conditioner energy performance 

model was integrated with the building thermal model to predict the dynamic energy 

consumption of the air-conditioner under changing weather conditions. The developed 

MCMC occupancy model was used to generate the stochastic occupancy profile as an 

input of the building thermal model. For comparison, baseline and energy-flexible cases 

with different indoor air temperature set-points were carried out, resulting in different 

profiles of indoor air temperature and energy consumption. In Step 3, the energy 

consumption profiles of all air-conditioned rooms generated in Step 2 were aggregated 

according to various building archetypes and occupancy patterns to obtain the total 

energy consumption profile of building clusters in a residential community. In Step 4, 

the uncertainty in energy consumption and energy flexibility of building clusters was 

quantified considering the uncertainty sources, including the building envelope 

parameters, air-conditioner (AC) energy performance, occupancy, and occupancy 

behavior. 

3. Development of models and method for quantifying uncertainty in aggregate 

energy flexibility  

3.1. Data-driven stochastic occupancy modeling 

Occupant behavior is a major factor in assessing the uncertainty of building energy 

performance. Occupancy models are normally developed and integrated with building 

energy modeling tools to better predict building energy consumption and assess energy 

management strategies. Occupancy models can be categorized into three basic types 

based on the occupancy resolution: (1) the occupancy status of a space 

(occupied/unoccupied), (2) the number of occupants in a space, and (3) the location 

tracking of an occupant [28, 33]. In this study, the occupancy status information of a 

space was accurate enough for the energy-flexibility analysis of residential buildings. 



3.1.1. A heterogeneous Markov-chain occupancy model 

Occupancy can be modeled as a stochastic process, which characterizes the randomness 

of people entering or leaving a specified space at a particular time. A first-order 

Markov-chain technique is widely used to simulate that process and to generate 

stochastic occupancy patterns [32, 35-37].  

Here, it is assumed that an air-conditioned space has two states {𝑠0 𝑠1}, representing 

binary occupancy, i.e., unoccupied and occupied. Define a Markov-chain 𝑋 as a time 

sequence {𝑥1 𝑥2 ⋯ 𝑥𝑘}, where the Markov chain can take values from the states 

{𝑠0 𝑠1} at each time step. The key assumption of a first-order Markov-chain method 

is that the present state of the occupant is influenced only by the previous state (called 

a Markovian property). Thus, the probability of state transition from s𝑖 to s𝑗 at time 

step 𝑘, i.e., transition probability 𝑝𝑖,𝑗(𝑘), can be given by Eq. (1-a). 

𝑝𝑖,𝑗(𝑘) = 𝑝(𝑥𝑘+1 = 𝑠𝑗|𝑥𝑘 = 𝑠𝑖)                   (1-a) 

where 𝑝(𝑥𝑘+1 = 𝑠𝑗|𝑥1, 𝑥2, … , 𝑥𝑘) = 𝑝(𝑥𝑘+1 = 𝑠𝑗|𝑥𝑘) . When the transition 

probabilities vary in time, the Markov process is called a heterogeneous Markov chain. 

The transition probabilities between various states at time step 𝑘 can be ordered in a 

transition matrix 𝑷(𝑘) , as shown in Eq. (1-b). Then, starting from 𝑘 = 1 , the 

probabilities of occupancy states at each time step are given by Eq. (1-c). 

𝑷(𝑘) =  [
𝑝00(𝑘) 𝑝01(𝑘)
𝑝10(𝑘) 𝑝11(𝑘)

]                       (1-b) 

[𝑝0(𝑘) 𝑝1(𝑘)] = [𝑝0(1) 𝑝1(1)]∏ 𝑷(𝑛)𝑘−1
𝑛=1               (1-c) 

where ∑ 𝑝𝑖𝑗
1
𝑗=0 = 1 for each 𝑖 ∈ [0,1]. Assume that the total number of changes from 

state 𝑖 is 𝑛𝑖(k) = ∑ 𝑛𝑖𝑗(𝑘)
1
𝑗=0 , then the transition probability is estimated by Eq. (1-

d). 

𝑝𝑖,𝑗(𝑘) =  
𝑛𝑖𝑗(𝑘)

𝑛𝑖(k)
                          (1-d) 

The transition probability matrix 𝑷(𝑘)  at each time step can be derived from the 

surveyed occupancy data. During the forward occupancy prediction, a uniform 

distribution is used to generate a random number between 0 and 1. The random number 

is then compared with the transition probabilities to determine which transition is taking 

place. This is commonly known as the MCMC technique [31]. 



3.1.2. Questionnaire survey for occupancy data collection 

Occupancy time-series data needed to be collected and processed to identify the 

transition probability matrices in the Markov-chain model. A questionnaire survey was 

used in this study to obtain the typical occupancy patterns of the residents of high-rise 

residential buildings in Hong Kong. A questionnaire survey is effective and reliable, 

and it reduces occupants’ concerns over privacy issues compared with real-time 

monitoring. 

Hong Kong has its own special domestic housing types, household sizes, and household 

composition types, all of which had an influence on the selection of the occupancy 

survey samples. The total number of domestic housing units in Hong Kong was 

2,534,700 in 2017 [38]. The major housing types are private permanent housing 

(53.7%), public rental housing (30.5%), and subsidized home ownership housing 

(14.9%). Compared with the other housing types, public rental housing households 

have standardized architectural designs because they are planned and constructed by 

the Housing Department of the Hong Kong SAR government. The average domestic 

household size is 2.8 persons per household among all housing types and 3.4 persons 

per household for public rental housing. Regarding the household composition, 64% of 

households in Hong Kong in 2016 were a nuclear family household, which is defined 

as a household comprising a couple/a couple with unmarried child(ren)/a lone parent 

with unmarried child(ren) [39]. In light of the housing and household characteristics in 

Hong Kong, considering the standardized architectural design of public rental housing, 

3-person/4-person public housing households were chosen to represent occupancy 

patterns in Hong Kong. 

Before the distribution of the formal questionnaires, a pre-test survey involving 10 

households was carried out to improve the final questionnaire design. The formal 

questionnaire was divided into two sections. Section A collected basic household 

information, including housing type, household size, household composition type, floor 

area, numbers of living/dining rooms and bedrooms, etc. In Section B, the respondents 

were required to indicate the occupancy status of each room in their flats on an hourly 

basis for both weekdays and weekends/holidays. The occupancy patterns in summer 

were requested because air conditioners are normally not operated in winter in Hong 

Kong. To avoid misunderstandings and ensure the effectiveness of the survey, the 



content and objectives of the questionnaire were explained to at least one household 

member before they started to answer the questionnaire.  

3.2. Data-driven building thermal model and AC performance model 

3.2.1. Building thermal model 

Predicting the energy consumption of AC systems requires a building thermal model 

that can characterize the building thermal dynamics when subjected to changing 

influential factors such as weather condition, occupant behavior, and control variable 

adjustment. Building thermal models can be categorized as white-box, gray-box, or 

black-box models. White-box models, such as the building thermal models in 

EnergyPlus and TRNSYS, are labor-intensive and time-consuming. Black-box models 

are purely data-driven and mainly use statistical tools and machine-learning techniques 

to analyze large amounts of historical data. Gray-box models, a hybrid of white-box 

and black-box models, combines basic prior knowledge of building thermal features 

with a reasonable amount of measured data. They have been proven to be effective and 

reliable for predicting building thermal responses, with limited need for physical 

knowledge and training data [40]. RC (resistance and capacity) thermal network gray-

box models are widely used to describe space thermal dynamics [41]. 

A gray-box RC room thermal model was developed, identified, and validated in our 

previous study [13]. The model can learn the thermal characteristics of the to-be-

controlled space by analyzing the data collected from smart in-home sensors. The RC 

model was developed to capture the thermal dynamics of four major components, i.e., 

the external wall surface 𝑇𝑤,𝑒𝑥𝑡 , internal wall surface 𝑇𝑤,𝑖𝑛𝑡 , indoor air 𝑇𝑖𝑛 , and 

internal thermal mass 𝑇𝑚. The energy balances of the components are given by Eqs. 

(2-a)–(2-d). 

𝐶𝑤
𝑑𝑇𝑤,𝑒𝑥𝑡

𝑑𝑡
=  

𝑇𝑜−𝑇𝑤,𝑒𝑥𝑡

𝑅𝑤,𝑜
+
𝑇𝑤,𝑖𝑛𝑡−𝑇𝑤,𝑒𝑥𝑡

𝑅𝑤
+ 𝑄𝑠𝑜𝑙𝑎𝑟,𝑤                 (2-a) 

𝐶𝑤
𝑑𝑇𝑤,𝑖𝑛𝑡

𝑑𝑡
= 

𝑇𝑤,𝑒𝑥𝑡−𝑇𝑤,𝑖𝑛𝑡

𝑅𝑤
+
𝑇𝑖𝑛−𝑇𝑤,𝑖𝑛𝑡

𝑅𝑤,𝑖𝑛
                           (2-b) 

𝐶𝑖𝑛
𝑑𝑇𝑖𝑛

𝑑𝑡
=  

𝑇𝑚−𝑇𝑖𝑛

𝑅𝑖𝑛,𝑚
+
𝑇𝑤,𝑖𝑛𝑡−𝑇𝑖𝑛

𝑅𝑤,𝑖𝑛
+
𝑇𝑜−𝑇𝑖𝑛

𝑅𝑤𝑖𝑛
+𝑄𝑖𝑛𝑡𝑒𝑟,𝑖𝑛 +𝑄𝐻𝑉𝐴𝐶      (2-c) 

𝐶𝑚
𝑑𝑇𝑚

𝑑𝑡
=
𝑇𝑖𝑛−𝑇𝑚

𝑅𝑖𝑛,𝑚
+ 𝑄𝑠𝑜𝑙𝑎𝑟,𝑚 + 𝑄𝑖𝑛𝑡𝑒𝑟,𝑚                        (2-d) 



where R and C represent the overall heat resistance and capacitance, respectively; T 

denotes temperature; the subscripts in, o, w, int, ext, win, and m indicate indoor air, 

outdoor air, exterior wall, internal wall surface, external wall surface, window, and 

internal mass, respectively; f denotes the conversion coefficients for the heat gains, 

which are also identified together with R and C; Qinter denotes the internal heat gains, 

which consist of the heat to indoor air (𝑄𝑖𝑛𝑡𝑒𝑟,𝑖𝑛 = 𝑓𝑖𝑛𝑡𝑒𝑟,𝑖𝑛𝑄𝑖𝑛𝑡𝑒𝑟) and internal thermal 

mass (𝑄𝑖𝑛𝑡𝑒𝑟,𝑚 = 𝑓𝑖𝑛𝑡𝑒𝑟,𝑚𝑄𝑖𝑛𝑡𝑒𝑟 ); Qsolar denotes the heat gains from solar radiation, 

which include the effects on external wall surfaces (𝑄𝑠𝑜𝑙𝑎𝑟,𝑤 = 𝑓𝑠𝑜𝑙𝑎𝑟,𝑤𝐴𝑤𝐼𝑠𝑜𝑙𝑎𝑟) and 

internal thermal mass (𝑄𝑠𝑜𝑙𝑎𝑟,𝑚 = 𝑓𝑠𝑜𝑙𝑎𝑟,𝑚𝐴𝑤𝑖𝑛𝐼𝑠𝑜𝑙𝑎𝑟 ); Isolar denotes the global solar 

radiation; and A denotes the geometric area. The detailed model identification methods 

can be found in our previous publication [13]. 

Considering building clusters comprising thousands of households, Eqs. (2-a)–(2-d) 

were converted into a state-space formulation for computational efficiency, as shown 

in Eq. (3).  

𝑑𝑇 = (𝐴𝑇 + 𝐵𝑢 + 𝐸𝑑)𝑑𝑡                        (3) 

where the system state 𝑇 = [𝑇𝑤,𝑒𝑥𝑡 𝑇𝑤,𝑖𝑛𝑡 𝑇𝑖𝑛 𝑇𝑚]𝑇; the input vector 𝑢 = 𝑄𝐻𝑉𝐴𝐶; 

the disturbance vector 𝑑 = [𝑇𝑜 𝐼𝑠𝑜𝑙𝑎𝑟 𝑄𝑖𝑛𝑡𝑒𝑟]
𝑇 ; the system matrix 𝐴 =

(

 
 
 
 

−1

𝐶𝑤𝑅𝑤,𝑜
+
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𝐶𝑤𝑅𝑤
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0 0
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+

−1
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1
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 ; the 

input matrix 𝐵 = (0 0 1 𝐶𝑖𝑛⁄ 0)𝑇 ; and the disturbance matrix 𝐸 =

(
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4×3

 . Note that Eq. (3) is a continuous-time state-

space model, which needs to be discretized. 

3.2.2. AC performance model 

AC units are widespread in residential flats in subtropical Hong Kong to ensure the 

thermal comfort of occupants during the hot and humid summer. Household air 



conditioners are the dominant electricity consumers, representing 35% of the total 

electricity used in the residential sector in 2018 [6]. The cooling capacity and power of 

air conditioners for living/dining rooms and bedrooms are normally determined to 

match the peak cooling loads of the rooms. According to an earlier questionnaire-based 

study in Hong Kong [42], the average power ratings of air conditioners in living/dining 

rooms and bedrooms are 1.56 kW and 0.63 kW, respectively, which helped determine 

the probability distribution of the parameters of AC performance in this study. 

An energy performance model of residential ACs was needed for integration with the 

building thermal model to predict energy consumption. The empirical model provided 

by DOE-2 was used in this study to predict AC performance under different operating 

conditions [13, 43]. The cooling capacity and energy input ratio (EIR) under specific 

operating conditions are given by Eqs. (4-a)–(4-b). A basic on/off control was used as 

the AC control algorithm. For this type of AC, the energy consumption during a period 

is mainly determined by the accumulated on-state time. Its state depends on the 

thermostat set-point and dead-band (δ = 1℃), as shown in Eq. (5). To protect the 

compressor, one state must last for at least three minutes before it is switched to another 

state.  

𝑐𝑎𝑝 = (−0.0092𝑇𝑜,𝑑𝑏 + 1.3243)𝑐𝑎𝑝𝑟𝑎𝑡𝑒𝑑               (4-a) 

𝐸𝐼𝑅 = (0.0193𝑇𝑜,𝑑𝑏 + 0.3259)𝐸𝐼𝑅𝑟𝑎𝑡𝑒𝑑                (4-b) 

𝑆 = 1,  𝑇𝑖 > 𝑇𝑠𝑒𝑡 + 𝛿 2⁄                               (5-a) 

𝑆 = 0,  𝑇𝑖 ≤ 𝑇𝑠𝑒𝑡 − 𝛿 2⁄                               (5-b) 

where cap and EIR denote the cooling capacity and energy input ratio (the inverse of 

COP) of the AC, respectively; rated indicates the rated operating condition [44]; and 

𝑇𝑜,𝑑𝑏, S, and 𝛿 denote the dry-bulb temperature of the outdoor air, operating signal, 

and control dead-band, respectively. 

3.3. Quantification of the uncertainty in the aggregate energy flexibility of building 

clusters 

3.3.1. Energy-flexibility control strategy  

As the major electricity consumers in buildings, AC systems and equipment play 

significant roles in providing demand flexibility. Zone temperature set-point reset is a 

commonly used control strategy to reduce/shift the power consumption during on-peak 



hours and to provide energy flexibility [4]. In this study, we investigated the energy 

flexibility of residential building clusters under the temperature set-point reset strategy.  

3.3.2. Uncertainty quantification using the Monte Carlo method 

Building energy consumption and energy flexibility have considerable uncertainty due 

to the uncertainty in outdoor weather conditions, building design/construction, HVAC 

system performance, occupant behavior, etc. When building clusters are scaled up, the 

influence of these uncertain sources on the aggregate energy flexibility is thought to 

change, which is not reported in the existing literature. The uncertainty qualification for 

various scales of building clusters can help electric utilities select a feasible service area 

size to provide energy-flexibility services and alleviate the power imbalance. 

To combine the influence of all uncertain inputs on the system output, i.e., energy 

consumption/energy flexibility, the uncertainty of the input variables was first 

quantified based on their probability distributions. Based on the existing studies on 

sensitivity analysis on building design parameters [23, 24, 45], four groups of major 

input variables, i.e., building design, AC system design, occupancy, and occupant 

behavior, were selected and quantified. The quantification of uncertainty for these 

inputs is summarized in Table 1. A stochastic occupancy profile was then generated 

using the identified MCMC model. Occupancy behavior consists of two parameters: (1) 

the temperature set-point in the baseline case, which shows an occupant’s use of their 

cooling system under normal conditions; and (2) the increase in temperature set-point 

during on-peak hours, which represents an occupant’s willingness to respond to penalty 

signals from system operators. The commonly used Monte Carlo method [46], a 

sampling-based technique, was used in this study to sample over the ranges of all inputs 

and import the samples into the building thermal model for energy performance 

analysis.  

Table 1. Quantification of various uncertainty sources. 

Group Parameter Probability distribution 

Building design 

[24] 

Equivalent thermal capacitance in RC model (J/K) U (0.9Ctrained, 1.1Ctrained) 

Equivalent thermal resistance in RC model (K/W) U (0.9Rtrained, 1.1Rtrained) 

Air-conditioning 

system design 

[23] 

Rated cooling capacity of AC in living room (kW) N (3.9, 0.1952) 

Rated cooling capacity of AC in bedroom (kW) N (1.86, 0.0932) 

Rated COP of AC in living room (kW/kW) N (2.5, 0.1252) 

Rated COP of AC in bedroom (kW/kW) N (2.95, 0.1482) 



Occupancy Presence states MCMC model 

Occupant 

behavior 

Indoor air temperature set-point in the baseline case 

(℃) 

T (23, 24, 25)  

(at 0.5 ℃ intervals) 

Temperature set-point increase during on-peak hours 

(℃) 

T (0, 1.5, 2)  

(at 0.5 ℃ intervals) 

Note: for uniform distribution U (a, b), a is the lower limit and b is the upper limit; for normal 

distribution N (c, d), c is the mean value and d is the variance; for triangular distribution T (e, f, g), e 

is the lower limit, f is the peak location, and g is the upper limit. 

3.3.3. Development of performance indices for quantifying uncertainty in energy 

flexibility 

Load shedding is a common energy-flexibility measure. To measure load shedding, the 

power reduction percentage is normally used as a performance index to quantify the 

energy flexibility [8], which was also used in this study. However, use of a performance 

index to quantify the uncertainty in energy flexibility has not been reported in the 

literature. In this subsection, two performance indices are proposed to quantify the 

uncertainty in energy flexibility at a specific time slot (e.g., hourly and sub-hourly) and 

over a particular time period (e.g., daily and weekly). 

Fig. 2 illustrates the procedure for determining the uncertainty-based energy flexibility 

at a specific time and over a particular time period. Let the number of sampling times 

for uncertainty analysis be 𝑛 ∈ [1, 2, … , 𝑁]. Then, the deterministic energy flexibility 

(DEF) at a specific time 𝑡 ∈ [1, 2,… , 𝐾] at the nth sample can be given by Eq. (6). After 

N times of sampling, the uncertainty-based energy flexibility at a specific time t (𝐸𝐹𝑡
𝑛=𝑁) 

is assumed to follow the distribution of 𝐸𝐹𝑡
𝑛=𝑁~(𝜇𝐸𝐹,𝑡

𝑁 , 𝛿𝐸𝐹,𝑡
𝑁 ). Then, the uncertainty of 

energy flexibility (UEF) at a specific time t with N times of sampling (𝑈𝐸𝐹𝑡
𝑛=𝑁) can be 

determined using the coefficient of variance (CV), as shown in Eq. (7), which is a 

standardized measure of dispersion of a probability/frequency distribution. 

𝐷𝐸𝐹𝑡
𝑛 = 

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑎𝑠𝑒,𝑡
𝑛 −𝐸𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝑐𝑎𝑠𝑒,𝑡

𝑛

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑎𝑠𝑒,𝑡
𝑛                   (6) 

𝑈𝐸𝐹𝑡
𝑛=𝑁 =  𝐶𝑉𝐸𝐹,𝑡

𝑁 =
𝛿𝐸𝐹,𝑡
𝑁

𝜇𝐸𝐹,𝑡
𝑁                           (7) 

The energy flexibility during time period ∆t after N times of sampling (𝐸𝐹∆𝑡=[1,2,…,𝐾]
𝑛=𝑁 ) 

can then be described by Eq. (8), and the uncertainty of energy flexibility during that 

time period can be described by Eq. (9).  

𝐸𝐹∆𝑡=[1,2,…,𝐾]
𝑛=𝑁 ~(

∑ 𝜇𝐸𝐹,𝑡
𝑁𝐾

𝑡=1

𝐾
,
∑ 𝛿𝐸𝐹,𝑡

𝑁𝐾
𝑡=1

𝐾
)                (8) 



𝑈𝐸𝐹∆𝑡=[1,2,…,𝐾]
𝑛=𝑁 = 𝐶𝑉̅̅̅̅ 𝐸𝐹

𝑁 =  
1

𝐾
∑

𝛿𝐸𝐹,𝑡
𝑁

𝜇𝐸𝐹,𝑡
𝑁

𝐾
𝑡=1                (9) 

 

Fig. 2. Scheme of uncertainty-based energy flexibility at a specific time (e.g., hourly and sub-hourly) 

and over a particular time period (e.g., daily and weekly).  

4. Validation and test conditions 

• Description of the reference residential building clusters 

A typical public housing estate in Hong Kong, as shown in Fig. 3-a, was chosen in this 

study to validate the proposed approach to quantifying the aggregate energy flexibility 

in residential building clusters. The target housing estate consists of 16 blocks of high-

rise buildings, with standard block type of Concord-1 [47]. Each block has 40 floors 

and each floor consists of 8 flat units. The total number of households in the target 

residential community is 5120. As shown in Fig. 3-b, the flats in the east/west wings 

(Flats 1, 2, 5 and 6) have one living/dining room and three bedrooms, whereas the flats 

in the north/south wings (Flats 3, 4, 7, and 8) consist of one living/dining room and only 

two bedrooms. Both living/dining rooms and bedrooms are equipped with AC to 

provide thermal comfort during the hot and humid summer. The average household size 



for a public housing household is 3.4 persons per household [39]. It is reasonable to 

assume that the households with 2 bedrooms and 3 bedrooms are 3-person and 4-person 

households, respectively. Therefore, the occupancy model for 3-person and 4-person 

households was used to analyze the building energy performances in the case study. 

 

Fig. 3. a) Block layout of a typical public housing estate in Hong Kong (16 blocks; 40 floors per 

block); b) typical floor plan (8 flats per floor; standard block type: Concord-1). 

• Baseline case and energy-flexible case 

For comparison, the baseline AC power consumption under a conventional operating 

pattern, i.e., without any control strategies for energy flexibility, needed to be analyzed 

first. In the baseline case, the original indoor air temperature set-point of all air-



conditioned spaces was assumed to follow a triangular distribution, i.e., T (23, 24, 25) 

when the space is occupied. In the energy-flexible case, the increase in temperature 

during on-peak hours was also assumed to be subject to a triangular distribution, i.e., T 

(0, 1.5, 2), which shows an occupant’s willingness to respond to penalty signals from 

system operators during on-peak hours. In the present study, building energy flexibility 

was assumed to be required by the system operators from 18:00 to 21:00, during which 

time the electricity load on the utility grid is normally at a peak in Hong Kong. 

5. Results and discussion 

The performances of the data-driven occupancy model and the building thermal model 

were analyzed first. With the identified occupancy and building thermal models, the 

aggregate energy performances of scaled-up residential building clusters were then 

investigated under both the baseline case and the energy-flexible case. Last, the 

uncertainty in the energy consumption and energy flexibility of scaled-up building 

clusters was analyzed using the Monte Carlo sampling method. 

5.1. Data-driven occupancy model and building thermal model 

5.1.1. Stochastic occupancy model 

To analyze the effect of occupancy on uncertainty in energy flexibility, a questionnaire 

survey was carried out to collect occupancy time-series data to identify the data-driven 

Markov-chain occupancy model. A total of 155 completed and usable questionnaires 

were collected and used for this analysis. The collected occupancy data were 

categorized by (1) household size (3-person or 4 person), (2) space function 

(living/dining room or bedroom), and (3) day of the week (weekday or 

weekend/holiday). The transition probabilities at each time step for each case were 

identified using Eq. (1-d). Then, based on Eq. (1-c), the occupation probabilities at each 

time step for living rooms/bedrooms in 3-person/4-person households on 

weekdays/weekends were determined.  

As shown in Fig. 4, the bedrooms had higher probabilities of being occupied on 

weekend mornings than on weekday mornings. For living rooms, the probability 

profiles of being occupied on weekend mornings showed certain time lags compared 

with those on weekday mornings, which conforms with the common practice where 

residents normally sleep longer on weekends and enter the living room later in the day. 



 

Fig. 4. Probabilities of being occupied for living room/bedroom in 3-person/4-person households on 

weekdays/weekends. 

With the identified probabilities of occupancy states, the MCMC occupancy model was 

used to obtain stochastic occupancy time-series data for large-scale investigation. Fig. 

5 shows the stochastic occupancy time-series data for 100 living rooms/bedrooms in a 

week generated by the proposed MCMC occupancy model. Living rooms have larger 

stochasticity in occupancy states than bedrooms because living rooms normally 

accommodate multiple living activities for household members. Compared with 3-

person households, the occupancy states of living rooms/bedrooms in 4-person 

households are more uncertain due to the larger household size. 



 

Fig. 5. Stochastic occupancy time-series data for 100 living rooms/bedrooms for a week generated by 

the MCMC occupancy model. 

5.1.2. Building thermal model 

• Data generation for various groups of rooms 

The building thermal model (RC model) proposed in this study is a gray-box model, 

the parameters of which needed to be identified before applying it in forward 

predictions. The building thermal performance data generated from TRNSYS were 

used in this study to identify the RC model. To investigate differences in the thermal 

performance of the flats in different wings, a typical floor with eight flat units was 

chosen for a simulation-based case study in TRNSYS. The weather conditions 

consisted of outdoor air temperature and solar irradiation with various azimuth angles, 

as shown in Fig. 6-a. Azimuth angle-based solar irradiation was used as a model input 

(i.e., 𝐼𝑠𝑜𝑙𝑎𝑟  in disturbance vector 𝑑), which helped improve the model accuracy. The 

simulation duration was two weeks at 2-min intervals. 

The thermal performances of the 16 air-conditioned rooms in the east and west wings 

were classified into two groups, Group 1 and Group 2, as shown in Fig. 6-b. The thermal 



performances of all living rooms and non-master bedrooms in Flat 1, Flat 2, Flat 5 and 

Flat 6 were almost the same, and they belong to Group 1 because these rooms have 

north-/south-facing exterior walls and windows and solar irradiation on north-/south-

facing surfaces differs little, as shown in Fig. 6-a. Group 2 includes the thermal 

performances of all master bedrooms in the east/west wings, which differ from those in 

Group 1 due to the east-/west-facing exterior walls. 

Unlike the rooms in the east/west wings, the thermal performances of the 12 air-

conditioned rooms in the north/south wings were classified into four groups (Groups 

3–6), as shown in Fig. 6-c. The thermal performances of the living rooms and non-

master bedrooms in Flat 3/Flat 8 (Group 3) differed from those in Flat 4/Flat 7 (Group 

4) due to large variations in solar irradiation on the east-/west-facing surfaces, as shown 

in Fig. 6-a. Group 5 and Group 6 represent the thermal performances of the master 

bedrooms in Flat 3/Flat 8 and Flat 4/Flat 7, respectively, which differed from those in 

Group 3 and Group 4 due to the north-/south-facing exterior walls. 

 

Fig. 6. (a) Weather condition, (b) thermal performances of the flats in the east and west wings, and (c) 

thermal performances of the flats in the north and south wings. 

• Model identification for various groups of rooms 



Each group of indoor air temperature profiles at 2-min intervals generated from 

TRNSYS was used to identify the building thermal model. The identified R and C 

values in the RC model for each group of buildings are listed in Table 2. The root-mean-

square errors (RMSEs) between the performance data from TRNSYS and those from 

the RC model for two weeks were 0.305℃, 0.403℃, 0.479℃, 0.450℃, 0.493℃, and 

0.462℃ for Groups 1–6, respectively. As shown in Fig. 7, the results show that the RC 

room thermal model can predict the indoor air temperature with a relatively high degree 

of accuracy. 

Table 2. Identified R and C values in RC models for various groups of rooms. 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

Cw (J/K) 218,817  735,823  218,817  218,817  364,089  364,089  

Cin (J/K) 306,776  295,118  205,164  236,933  194,032  181,696  

Cm (J/K) 7,001,954  3,727,102  7,536,269  6,829,379  3,677,106  3,098,612  

Rwin (K/W) 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 

Rw (K/W) 0.0406 0.0406 0.0406 0.0406 0.0406 0.0406 

Rw,o (K/W) 0.0035 0.0038 0.0059 0.0051 0.0026 0.0032 

Rw,in (K/W) 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 

Rin,m (K/W) 0.0054 0.0062 0.0067 0.0065 0.0069 0.0076 

fsolar,w 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

fsolar,m 0.1100 0.0000 0.1343 0.1357 0.0650 0.0418 

finter,in 2.0000 2.0000 2.5927 2.6804 2.0015 2.2479 

finter,m 2.0000 2.0000 1.7746 1.6621 2.4762 2.3630 

RMSE (℃) 0.305 0.403 0.479 0.450 0.493 0.461 

 

Fig. 7. Comparison between the thermal performances by TRNSYS and the RC model for various 

groups of rooms in (a) east/west wings and (b) north/south wings. 



5.2. Deterministic energy flexibility of building clusters of various scales 

With the developed data-driven stochastic occupancy model and building thermal 

model, the deterministic aggregate energy performances of scaled-up building clusters 

were analyzed under both the baseline case and energy-flexible case. The energy 

performance is called deterministic because the sampling and simulation were 

conducted only once. The case studies were carried out for one week, and the weather 

conditions from Day 8 to Day 14 in Fig. 6-a were used to test the energy performance 

of the building clusters. For comparative study, the scales of the building clusters were 

increased from 8 households (1 floor) to 80 households (10 floors), 320 households (40 

floors, 1 block), 640 households (80 floors, 2 blocks), 1280 households (160 floors, 4 

blocks), 2560 households (320 floors, 8 blocks) and 5,120 households (640 floors, 16 

blocks). Note that for better illustration, the simulation results with the sizes of 640, 

1280 and 2560 households are not plotted in some figures. 

5.2.1. Deterministic energy consumption in baseline case 

Fig. 8 shows the thermal and energy performances of individual living rooms/bedrooms 

and the aggregate energy performances for scaled-up building clusters in the baseline 

case. As shown in Fig. 8-a (8 households), different patterns of the indoor air 

temperature were found due to different designs of building envelope parameters and 

building orientations, which validates that the developed model is sensitive to different 

building designs and weather conditions. When the living rooms/bedrooms were 

occupied, the indoor air temperature was maintained around the set-point, which was 

subject to the triangular distribution of T (23, 24, 25), to provide indoor thermal comfort. 

The power consumption of individual ACs around noon was higher than that during 

other time periods because the higher outdoor temperature at noon resulted in higher 

AC energy consumption, which validates that the AC model used in this study is 

sensitive to outdoor air conditions. Compared with bedrooms, living rooms had more 

stochasticity in their thermal and energy performances because the occupancy states of 

living rooms were more stochastic. Regarding the aggregated power profile, ACs in 

living rooms accounted for the majority of electricity use in the daytime, whereas ACs 

in bedrooms represented the majority of electricity use at nighttime. Also, ACs in both 

living rooms and bedrooms consumed more electricity on weekends than on weekdays 

because residents generally stayed home more on weekends. 



For comparison analysis, the thermal and energy performances of individual rooms and 

the aggregate energy performance of the baseline case scaled up to 80, 320, and 5,120 

households were tested, and the results are shown in Fig. 8-b, Fig. 8-c, and Fig. 8-d, 

respectively. The aggregate power consumption increased when the building cluster 

was scaled up. Moreover, the aggregate power consumption of the larger scales of 

building clusters showed less fluctuation/volatility compared with that of small scales 

of building clusters. 

 



Fig. 8. Deterministic baseline case: thermal (indoor air temperature) and energy performances of 

individual living rooms/bedrooms and aggregate energy consumption for building clusters of various 

scales for one week: (a) 8 households, (b) 80 households, (c) 320 households, and (d) 5,120 

households. 

5.2.2. Deterministic aggregate energy flexibility 

Fig. 9 shows the thermal and energy performances of individual living rooms/bedrooms 

and the aggregate energy performance for scaled-up building clusters in the energy-

flexible case. The temperature set-points in the living rooms/bedrooms were increased 

during on-peak hours (18:00–21:00) in the energy-flexible case. The increase in 

temperature set-point followed a triangular distribution, i.e., T (0, 1.5, 2). As shown in 

Fig. 9-a, the indoor air temperature in the living rooms/bedrooms increased somewhat 

during energy-flexible hours, resulting in power reductions. Like the baseline case, the 

aggregate power consumption profiles of the larger scales of building clusters 

fluctuated less, as shown in Figs. 9-b–9-d. 

After obtaining the energy performance profiles of the baseline and energy-flexible 

cases, the deterministic energy flexibility of various scales of building clusters were 

quantified using Eq. (6). As shown in Fig. 10, the daily deterministic energy flexibility 

in a week was 9.81%–16.7% for 8 households, 10.07%–15.69% for 80 households, 

10.04%–16.11% for 320 households, and 9.99%–16.01% for 5,120 households. A 

power spike occurred right after implementation of energy-flexible control strategies, 

while aggregating the power consumption of the building clusters. This power spike is 

often called ‘‘power rebound’’, which has adverse effects on the power grid and needs 

to be addressed in future work. 



 

Fig. 9. Deterministic energy-flexible case: thermal (indoor air temperature) and energy performances 

of individual living rooms/bedrooms and aggregate energy consumption for building clusters of various 

scales for one week: (a) 8 households, (b) 80 households, (c) 320 households, and (d) 5,120 

households. 



 

Fig. 10. Deterministic energy flexibility: quantification of the aggregate energy flexibility for building 

clusters of various scales for one week: (a) 8 households, (b) 80 households, (c) 320 households, and 

(d) 5,120 households. 

5.3. Uncertainty-based energy flexibility of building clusters of various scales 

To quantify the uncertainty in aggregate energy consumption and energy flexibility, the 

energy performance of various scales of building clusters were simulated 1,000 times. 

Each time, the building envelope parameters, AC rated performance, occupancy, and 

occupancy behavior were sampled using the Monte Carlo method.  

5.3.1. Uncertainty in aggregate energy consumption  

Fig. 11 shows the uncertainty in the aggregate energy consumption of scaled-up 

building clusters in the baseline and energy-flexible cases. The width of the uncertainty 

“band” decreases as the building cluster is scaled up. For specific comparison, the 

uncertainty of energy consumption each hour was quantified using the index of CV and 

the results are plotted in Fig. 12. The uncertainty of energy consumption for 8 

households is much larger than that for the scaled-up households. The hourly 

uncertainty during the day normally reached a peak around noon due to the high 

transition probability of occupancy, as shown in Fig. 5, and the high power consumption 

of AC at noon. The energy consumption on weekends has a flatter profile of uncertainty 

compared with that on weekdays. 



 

Fig. 11. Uncertainty-based energy consumption: hourly uncertainty-based energy consumption in the 

baseline and energy-flexible cases for building clusters of various scales: (a) 8 households, (b) 80 

households, (c) 320 households, and (d) 5,120 households. 

 

Fig. 12. Hourly uncertainty of aggregate energy consumption for building clusters of various scales. 

5.3.2. Uncertainty in aggregate energy flexibility 

The hourly energy flexibility was derived based on the hourly energy consumption in 

the baseline and energy-flexible cases. Only the energy flexibility and its uncertainty 

during energy-flexible hours (18:00–21:00) were taken into consideration. Fig. 13 

shows the hourly uncertainty-based energy flexibility for building clusters of various 

scales. Table 3 shows the maximum and minimum hourly uncertainty of energy 

flexibility (UEF) of scaled-up building clusters. As we can see from Fig. 13 and Table 

3, at the same scale of household, the hourly UEF differed over the time because it was 

affected by the weather conditions, occupancy and occupant behavior. When the 

buildings cluster was scaled up, the hourly uncertainty of aggregated energy flexibility 



had a significant decrease on the same day. For example, on Day 7, the maximum hourly 

uncertainty of energy flexibility, UEFhourly,max, decreased from 25.01% for 8 households 

to 1.00% for 5120 households. 

 

Fig. 13. Uncertainty-based energy flexibility: hourly uncertainty-based energy flexibility for building 

clusters of various scales: (a) 8 households, (b) 80 households, (c) 320 households, and (d) 5,120 

households. 

Table 3. Hourly uncertainty of aggregate energy flexibility of scaled-up building clusters 

  Number of Households 

8 80 320 640 1280 2560 5120 

Day 1 𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑖𝑛 14.12% 4.46% 2.27% 1.55% 1.10% 0.79% 0.53% 

𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥  19.38% 6.07% 3.06% 2.18% 1.52% 1.12% 0.73% 

Day 2 𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑖𝑛 15.04% 4.86% 2.33% 1.66% 1.20% 0.82% 0.59% 

𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥  20.60% 6.17% 3.17% 2.17% 1.57% 1.11% 0.80% 

Day 3 𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑖𝑛 17.86% 5.20% 2.65% 1.84% 1.33% 0.95% 0.67% 

𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥  21.73% 6.68% 3.49% 2.35% 1.69% 1.17% 0.82% 

Day 4 𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑖𝑛 18.95% 5.91% 3.04% 2.18% 1.51% 1.03% 0.76% 

𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥  22.99% 6.97% 3.57% 2.54% 1.81% 1.27% 0.90% 

Day 5 𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑖𝑛 15.34% 4.74% 2.49% 1.70% 1.23% 0.88% 0.61% 

𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥  20.26% 6.28% 3.24% 2.24% 1.60% 1.15% 0.82% 

Day 6 𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑖𝑛 16.20% 5.18% 2.47% 1.81% 1.29% 0.91% 0.63% 

𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥  23.79% 7.13% 3.57% 2.44% 1.77% 1.24% 0.84% 

Day 7 𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑖𝑛 18.31% 5.56% 2.80% 1.94% 1.42% 1.00% 0.71% 

𝑈𝐸𝐹ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥  25.01% 7.94% 4.01% 2.67% 1.94% 1.36% 1.00% 

Based on the hourly performance, the daily aggregate energy flexibility and its 

uncertainty were calculated using the proposed performance index, i.e., Eqs. (8) and 

(9). The detailed results are listed in Table 4 and plotted in Fig. 14. As shown in Table 

4, the daily energy flexibility ( 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 ) in one week were 10.06%–16.05% for 8 

households, 10.01%–15.95% for 80 households, 10.01%–15.98% for 320 households, 

and 10.01%–15.97% for 640, 1280, 2560 and 5,120 households. The weekly energy 



flexibility ( 𝜇̅𝐸𝐹,𝑤𝑒𝑒𝑘𝑙𝑦 ) was 12.39% for 8 households and 12.35% for scaled-up 

households. Regarding the uncertainty of energy flexibility , the daily uncertainty of 

energy flexibility (𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦) in one week was 17.08%–21.33% for 8 households, 5.37%–

6.63% for 80 households, 2.67%–3.28% for 320 households, 1.87%-2.38% for 640 

households, 1.33%-1.65% for 1280 households, 0.96%-1.17% for 2560 households and 

0.64%–0.83% for 5,120 households. As shown in Fig. 14, the daily uncertainty of 

aggregate energy flexibility exponentially decreased with the scaling up of building 

clusters. The weekly uncertainty of energy flexibility (𝑈𝐸𝐹𝑤𝑒𝑒𝑘𝑙𝑦 ) was 19.12% for 8 

households, 5.91% for 80 households, 2.95% for 320 households, 2.08% for 640 

households, 1.48% for 1280 households, 1.05% for 2560 households, and 0.74% for 

5,120 households.  

In conclusion, when the building clusters were scaled up, the daily/weekly energy 

flexibility exhibited little change. The daily energy flexibility was 10%–16% and the 

weekly energy flexibility remained around 12.40%. Unlike the energy flexibility, the 

uncertainty of energy flexibility (𝑈𝐸𝐹 ) exhibited a significant decrease when the 

number of aggregate buildings increased. The weekly uncertainty of energy flexibility 

(𝑈𝐸𝐹𝑤𝑒𝑒𝑘𝑙𝑦) exponentially decreased from 19.12% for 8 households to 0.74% for 5,120 

households. 

Table 4. Daily and weekly uncertainty of aggregate energy flexibility of scaled-up building clusters. 

 Number of Households 

8 80 320 640 1280 2560 5120 

Day 1 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 16.05% 15.95% 15.98% 15.97% 15.97% 15.97% 15.97% 

𝜎𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 2.74% 0.86% 0.43% 0.30% 0.21% 0.15% 0.10% 

𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦 17.08% 5.37% 2.67% 1.87% 1.33% 0.96% 0.64% 

Day 2 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 13.49% 13.49% 13.49% 13.50% 13.50% 13.50% 13.50% 

𝜎𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 2.49% 0.76% 0.38% 0.26% 0.19% 0.13% 0.10% 

𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦 18.47% 5.66% 2.79% 1.95% 1.41% 0.99% 0.70% 

Day 3 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 11.31% 11.31% 11.31% 11.31% 11.31% 11.31% 11.31% 

𝜎𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 2.26% 0.69% 0.35% 0.24% 0.17% 0.12% 0.09% 

𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦 20.00% 6.08% 3.07% 2.16% 1.52% 1.09% 0.76% 

Day 4 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 10.06% 10.01% 10.01% 10.01% 10.01% 10.01% 10.01% 

𝜎𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 2.13% 0.64% 0.33% 0.24% 0.17% 0.12% 0.08% 

𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦 21.17% 6.40% 3.28% 2.38% 1.65% 1.15% 0.82% 

Day 5 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 13.03% 13.05% 13.04% 13.04% 13.04% 13.04% 13.04% 

𝜎𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 2.40% 0.74% 0.37% 0.26% 0.19% 0.13% 0.10% 

𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦 18.40% 5.68% 2.87% 2.01% 1.43% 1.02% 0.73% 

Day 6 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 12.53% 12.45% 12.46% 12.46% 12.46% 12.46% 12.46% 

𝜎𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 2.37% 0.74% 0.36% 0.26% 0.18% 0.13% 0.09% 



𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦 18.96% 5.96% 2.92% 2.07% 1.47% 1.04% 0.74% 

Day 7 𝜇̅𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 10.23% 10.16% 10.18% 10.17% 10.17% 10.17% 10.17% 

𝜎𝐸𝐹,𝑑𝑎𝑖𝑙𝑦 2.18% 0.67% 0.33% 0.23% 0.17% 0.12% 0.08% 

𝑈𝐸𝐹𝑑𝑎𝑖𝑙𝑦 21.33% 6.63% 3.28% 2.31% 1.65% 1.17% 0.83% 

Average  𝜇̅𝐸𝐹,𝑤𝑒𝑒𝑘𝑙𝑦 12.39% 12.35% 12.35% 12.35% 12.35% 12.35% 12.35% 

𝜎𝐸𝐹,𝑤𝑒𝑒𝑘𝑙𝑦 2.37% 0.73% 0.36% 0.26% 0.18% 0.13% 0.09% 

𝑈𝐸𝐹𝑤𝑒𝑒𝑘𝑙𝑦 19.12% 5.91% 2.95% 2.08% 1.48% 1.05% 0.74% 

 

 

Fig. 14. Daily uncertainty of aggregate energy flexibility for various scales of building clusters. 

6. Conclusions 

In this study, we developed an approach for quantifying the uncertainty in the aggregate 

energy flexibility of residential buildings at a cluster/community/neighborhood level. 

The aggregation and uncertainty analyses were conducted based on the development of 

a data-driven stochastic occupancy model and a data-driven building thermal dynamics 

model. The major conclusions of this study are as follows: 

• A data-driven stochastic occupancy model was developed based on the Markov-

chain Monte Carlo method. Because Hong Kong has its own special domestic 

housing types, household sizes, and household composition types, a customized 

questionnaire survey was carried out to collect occupancy time-series data to 

determine the occupancy model. The developed occupancy model captured the 

dynamics, stochasticity, and diversity in occupancy patterns considering the effects 

of household size (3-person or 4 person), space function (living/dining room or 

bedroom), and day of the week (weekday or weekend/holiday) in Hong Kong. This 

model can be integrated into building energy performance simulation tools such as 

EnergyPlus and HK-BEAM to consider the uncertainty in occupancy.  



• Aggregation analysis was conducted to quantify the aggregate energy flexibility of 

residential building clusters considering various types of building archetypes and 

occupancy patterns. For each air-conditioned room, the developed stochastic 

occupancy model was integrated with the data-driven building thermal model 

developed to predict building energy performance under a baseline case and an 

energy-flexible case, resulting in the energy-flexibility potential. 

• Performance indices were proposed to quantify the uncertainty in energy flexibility 

at a specific time (e.g., hourly and sub-hourly) and the uncertainty during a 

particular time period (e.g., daily and weekly). Based on the proposed performance 

indices, the uncertainty in the aggregate energy flexibility of various scales of 

building clusters was quantified using the Monte Carlo sampling technique. The 

results showed that when the building cluster were scaled up, the energy flexibility 

remained almost unchanged and the weekly energy flexibility remained around 

12.40%. However, when the number of aggregate buildings increased, the 

uncertainty of energy flexibility significantly decreased. The weekly uncertainty 

exponentially decreased from 19.12% for 8 households to 0.74% for 5,120 

households. 

Due to the intrinsic uncertainty in building envelope parameters, the performance of 

building energy systems, and occupancy and occupant behavior, it is necessary to 

quantify the uncertainty in the aggregate energy flexibility of building clusters. The 

proposed method can help energy providers/load aggregators consider the uncertainty 

in the aggregate energy flexibility potential. The uncertainty analysis results can assist 

them with the planning of energy-flexibility services at the design stage and the 

development of real-time penalty signals (e.g., prices and CO2) at the operating stage. 

In the future, an advanced control strategy needs to be further developed to address the 

‘‘power rebound’’ issue, which was found by aggregation analysis in this study. 
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