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Abstract 

The management of demand-side flexibility plays a key role in reliable integration of 

intermittent renewable energy sources into residential microgrids. Residential 

microgrid is a dynamic and complex cyber-physical system, which consists of multiple 

cooperative, non-cooperative and even conflicting entities. Random and separate 

demand-side management of the multiple entities may have detrimental effects on the 

grid reliability like the peak “rebound” issue and on the economic benefits for both 

utilities and consumers.  Harmonized coordination, not merely unorganized 

cooperation, among cooperative entities and negotiation among non-cooperative 

entities based on information sharing are therefore needed to achieve the neighborhood-

level optimal solutions in a residential microgrid. This paper comprehensively reviews 

the state-of-the-art classification, technologies, architectures, and techniques for 

neighborhood-level coordination and negotiation in residential microgrids. Various 

types of coordination and negotiation behaviors are first categorized. The technologies, 

i.e., demand-side flexible resources involved in coordination and negotiation, are then

summarized and introduced, including flexible loads, storage, and distributed 

generations. The typical architectures for coordination and negotiation are then 

classified into centralized, decentralized, hierarchical distributed, and non-hierarchical 

distributed architecture. Last, the major coordination and negotiation techniques, 

including multi-agent system, optimization and game theory, are reviewed and 
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summarized. The challenges and opportunities for each technique are identified and 

critically discussed. 

Keywords: coordination and negotiation; demand-side flexibility; multi-agent system; 

game theory; distributed optimal control. 

Highlights 

• Various coordination and negotiation behaviors in microgrids are categorized.

• Demand-side flexible loads, storage, and generations are summarized.

• Typical architectures for coordination and negotiation problems are classified.

• Techniques, i.e., multi-agent system, optimization and game theory, are reviewed.

Nomenclature 

ABM agent-based modeling  

AC air conditioner 

ADMMs alternating direction method of multipliers 

BESS battery energy storage system  

CCHP combined cooling, heating and power system 

CoHEM coordinated home energy management 

DR demand response 

DSF demand-side flexibility 

ESS energy storage systems  

EV electric vehicle 

G game 

G2V grid-to-vehicle 

GA genetic algorithm  

HAN home area network 

HEMS home energy management system 

HVAC heating, ventilation, and air conditioning 

ICT information and communications technology  

l total load of a household (kW) 

LP linear programming  

MAS multi-agent system  

MILP mixed integer linear programming  

MINP mixed integer nonlinear programming  

MIQP mixed integer quadratic programming  

MPC model predictive control  

N player set in a game 

NAN neighborhood area network 

NE Nash equilibrium 

NEMS neighborhood energy management system 

PAR peak-to-average ratio  



PCM phase-change material 

PHEV plug-in hybrid electric vehicle 

PSO particle swarm optimization  

RES renewable energy source 

S strategy set in a game 

SA simulated annealing  

SM smart meter 

t time slot 

TCL thermostatically controlled load 

TESS thermal energy storage system  

U payoff set in a game 

V2G vehicle-to-grid  

WAN wide area network 

x power consumption 

Subscripts 

a Electric appliance number 

n household number 

 

1. Introduction 

Global energy consumption has been rapidly increasing due to the population growth, 

economic development, and accelerated urbanization over recent decades. In 2018, 

energy consumption worldwide increased by 2.3%, nearly twice as high as the average 

growth rate since 2010 [1]. Such large energy consumption resulted in a 1.7% increase 

in global energy-related CO2 emissions in 2018, which hit the historic high and 

exacerbated the global warming issue. As reported by the Intergovernmental Panel on 

Climate Change in 2018, the global warming of 1.5 ℃ has irreversible and destructive 

influences on the fragile ecosystems and societies; and to limit global warming to 1.5 ℃, 

decarbonization actions need to be urgently taken to mitigate the greenhouse gas 

emissions by 2030 [2]. To achieve this, the utilization of renewable energy sources 

(RESs) has been identified as one of the key solutions. As indicated by the International 

Renewable Energy Agency in 2019, the percentage of RESs in global annual electricity 

generation needs to grow from 25% today to 86% in 2050 [3].  However, this goal is 

challenging because RESs are difficult to be effectively and reliably integrated into 

electrical grids/microgrids due to the intrinsic intermittency and uncertainty [4, 5]. To 

overcome this challenge, demand-side flexibility (DSF) management has been 

proposed and implemented as an effective and sustainable measure to facilitate the 

penetration of RESs in smart grids. 



Driven by sustainability initiatives and advances in information and communications 

technology (ICT), today’s buildings not only consume energy but also produce energy, 

transforming from energy consumers to energy prosumers. DSF has different 

definitions in the literature depending on whether the building is a consumer or 

prosumer. When buildings act as energy consumers, DSF has a narrow meaning, and 

demand-side flexible resources only include demand-side 

flexible/controllable/schedulable loads as defined in [6, 7], such as heating/cooling 

loads and electric vehicles. Note that the narrow definition of DSF is quite close to the 

conception of demand response (DR), which is widely adopted in the United States [8] 

and focuses on adjusting electricity usages in buildings in response to dynamic 

electricity prices or incentives when grid system reliability is jeopardized [9]. When 

buildings act as prosumers, DSF has a broad meaning, and demand-side flexible 

resources consist of flexible loads, demand-side generations, and flexible storage as 

defined in [10-12]. In this review paper, the broad definition of DSF is adopted, and the 

DSF potential takes account of flexible loads, storage and on-site generations at the 

demand side. 

DSF has received considerable attention worldwide over the last few decades. The 

United States is at the forefront of the research, development, and standardization of 

DSF technologies. With the increasing penetration rate of smart meters nationwide 

(51.9% by 2017) and technology standardization (Open Automated DR 2.0 [13]) in the 

U.S., the retail demand response programs provided 31,508 MW peak reductions in 

2017, and the residential sector provided 28.5% of the total peak savings [14]. 

Regarding DSF status in Europe, EU countries were classified into three groups by the 

Joint Research Centre of Europe Commission in 2016 [15, 16]: 1) countries, including 

Portugal, Spain, Bulgaria, etc., who have yet to reform the market and regulatory 

structures to facilitate the participation of demand-side flexibility; 2) countries, such as 

Germany, the Netherlands and the Nordics, where demand-side services are ongoing 

but can only be provided by electricity retailers and the aggregators are not allowed to 

provide independent services; 3) countries, including the UK, Ireland, France and 

Belgium, where both DR and independent aggregation can be achieved in open markets. 

It is worthwhile to mention that the independent aggregators play a critical role in 

achieving DSF potential because the demand-side services require specialized 



knowledge of mechanical and automation engineering, which is not the retailer’s 

expertise. 

1.1. From individual-level to neighborhood-level management of demand-side 

flexibility 

A considerable amount of literature has investigated the demand-side flexibility in 

individual residential buildings. In [17], the energy flexibility of two Danish residential 

houses (a poorly-insulated house and a highly-insulated house) was investigated and 

compared by using different DSF control strategies. Simulation results indicated that 

the flexibility potential was significantly influenced by the insulation levels and air-

tightness of buildings. In [18], phase-change materials (PCMs) were applied to 

residential buildings to provide DSF. It was found that the use of PCMs had effects on 

the building thermal dynamics and the economic benefits of electricity consumers in 

presence of various dynamic electricity pricings in smart grids. Yin and Kara et al. [19] 

employed temperature setpoint reset strategies for the heating, ventilation, and air 

conditioning (HVAC) systems in both residential and commercial buildings to shift the 

power consumption from on-peak to off-peak time periods. Simulation results showed 

that the energy flexibility of buildings varied with different adjustments of temperature 

setpoints. In [20, 21], temperature set-point reset strategy and pre-cooling strategy were 

proposed to help air conditioners in high-rise residential buildings achieve DSF. With 

the assistance of a grey-box building thermal model and genetic algorithm, the proposed 

DSF control strategies could help reduce the power consumption during on-peak hours 

and reduce the electricity bills of homeowners. When individual home or building was 

considered in the management of demand-side flexibility, saving of electricity cost 

without sacrificing thermal comfort was the major objective. However, the influence of 

individual home/building energy flexibility is too small to be considered in a residential 

grid. Investigating the aggregate DSF at a community/neighborhood/cluster level is 

more meaningful, which can help service providers assess the environmental and 

financial benefits of energy-flexibility services before real implementation, and 

determine feasible real-time electricity prices for end-use electricity consumers at the 

implementing stage [22, 23]. 

In recent years, more attention has focused on the DSF at a neighborhood level [23, 24]. 

Taniguchi et al. [25] used a bottom-up energy modeling method to investigate the DSF 

of 5,000 Japanese households. Various influential factors were considered to capture 



the diversity of energy consumption patterns, including floor area, household 

composition type, building insulation level, etc. In [26], a demand-side load 

management strategy was proposed for 10,000 residential air conditioners using a 

developed mathematical model of the aggregate dynamics. Hu and Xiao [22] evaluated 

the uncertainty in the aggregate DSF of a residential community based on a stochastic 

Markov-chain occupancy model. Simulation results indicated that the uncertainty of the 

aggregated DSF decreased when the building clusters scaled up. 

1.2. The needs of coordination and negotiation behaviors 

All entities in residential microgrids, including in-home loads, energy storage systems, 

distributed generations and utilities, are not independent but interconnected with each 

other. The conventional and separate demand-side management of multiple entities 

may result in detrimental effects on the grid reliability and the economic benefits for 

both utilities and consumers. For example, in a residential microgrid, random and 

unorganized responses of  all demand response participants may result in peak 

“rebounds” at low-price periods, if they are given the same dynamic price profile and 

simultaneously schedule their loads during on-peak hours [27, 28]. Harmony 

coordination among participating customers, therefore, is needed to solve the peak 

rebound issues and to improve the reliability of electrical grids.  

Besides coordination in a cooperative sense, another social behavior, i.e., negotiation, 

is also desirable to solve the conflicts among multiple entities in a non-cooperative 

environment [29, 30]. Effective negotiations can solve the conflicting goals among 

multiple entities, such as the conflicts between utility and end-use consumers  (i.e., 

maximization of the payoffs of both sides) [31] and the competitions among  multiple 

energy generators (i.e., maximization of their generations) [32, 33]. In summary, 

coordination and negotiation play a significant role in the management of DSF in 

residential microgrids. The present study therefore focuses on investigating the existing 

technologies and techniques of coordination and negotiation in residential microgrids. 

1.3. Summary of previous related reviews and scope of this paper 

With the increasing attention to demand-side flexibility in residential buildings, several 

studies have summarized the recent research and development in this hot topic, but with 

different focuses. The studies of [34-37] focused on review of the integration of thermal 

energy storage systems for demand-side management. The technologies of renewable 



energy sources for demand response were reviewed in [38-40]. The studies of [41, 42] 

reviewed the modeling/quantifying methods for the demand-side flexibility in 

residential buildings. In [43, 44], more attention was paid to the existing control and 

management strategies for exploiting the demand-side flexibility, but the interactions 

among multiple entities were neglected. To sum up, there is a lack of comprehensive 

literature review on coordination and negotiation techniques in residential microgrids, 

which are desired to harmonize the behaviors of multiple entities in microgrids in 

cooperative/non-cooperative environments. 

To bridge the research gaps, the present study aims to review the state-of-the-art 

classification, technologies (i.e., demand-side flexible resources), architectures, and 

techniques of neighborhood-level coordination and negotiation in residential 

microgrids.  Specifically, as shown in Fig. 1, the following aspects are addressed in the 

present paper:  

• Classification of coordination and negotiation; 

• Technologies for coordination and negotiation, i.e., participating demand-side 

flexible resources; 

• Architectures of coordination and negotiation; 

• Techniques/methodologies of coordination and negotiation. 



 

Fig. 1. Overview of the reviewed topics in the present work   

The rest of the paper is structured as follows. In Section 2, various types of coordination 

and negotiation behaviors are classified. In Section 3, a bibliometric analysis is carried 

out to identify the key technologies and techniques in the field of coordination and 

negotiation in residential microgrids. Section 4 introduces the demand-side flexible 

resources involved in coordination and negotiation. Section 5 presents the coordination 

architectures for demand-side flexibility in residential neighborhoods. In Section 6, the 

key coordination and negotiation techniques for demand-side coordination and 

negotiation are introduced. Section 7 discusses the challenges and opportunities in this 

research topic. In Section 8, the concluding remarks are delivered. 

2. Classification of coordination and negotiation in residential microgrids 

Residential microgrid is a multi-entity and complex system, in which all entities, 

including loads, energy storage systems, distributed generations and utilities, are 

interconnected with each other. The interactions among various entities can be 

described in a way similar to individual’s social behavior in a society. Two types of 

major social behavior of flexible entities in the microgrids are found in the literature: 



coordination and negotiation. From extensive literature review, the following two 

observations are raised first:  

• The terms of “cooperation”, “coordination”, and “negotiation” are widely used in 

related studies. The differences among them need to be clearly identified for better 

understanding of their mechanisms and applications. 

• Multiple types of coordination and negotiation behaviors exist in the residential 

microgrids. There is a lack of detailed classification of coordination and negotiation 

in the literature. 

In view of this, this section aims to shed some light on the above two observations. 

2.1. Differences among cooperation, coordination and negotiation 

• Cooperation vs. coordination: cooperation and coordination are the two facets of 

collaboration. Cooperation refers to voluntary efforts of individuals to work 

together with the intention of helping each other. Coordination is an arrangement 

of group efforts to harmonize individual efforts in pursuit of common goals [45]. 

Random cooperation without coordination is likely to result in unbalanced 

outcomes. For example, in the field of residential microgrids, random and 

unorganized cooperation among all demand response participants may result in 

peak “rebounds” at low-price periods, if they are given the same dynamic price 

profile and simultaneously schedule their loads during on-peak hours [27, 28]. 

Coordination, which can be regarded as well-organized cooperation, can contribute 

to prevent peak rebounds and to flatten the aggregate load profile of a large number 

of entities/homes/buildings. Hence, coordination is more important than 

cooperation in operation of neighborhood-level microgrids. 

• Coordination vs. negotiation: Unlike coordination in a cooperative sense, 

negotiation is a more sophisticated social behavior to solve the conflicts among 

multiple entities in a non-cooperative environment [29, 30]. Various conflicting 

situations exist in residential microgrids, which need to be effectively solved by 

rational negotiation. For example, the utility and buildings need to negotiate to solve 

their conflicting goals, i.e., maximize the payoffs of both sides [31]. Negotiation 

also exists among multiple energy generators, which competitively manage to 

maximize their generations [32, 33]. In the domain of residential microgrids, game-

theory based techniques are normally used to solve the conflicting situations.   



2.2. Classification of coordination and negotiation 

 

Fig. 2. Multiple types of coordination and negotiation in a cyber-physical multi-entity residential 

microgrid. 

Multiple coordination and negotiation behaviors can be found in a cyber-physical 

multi-entity residential microgrids, as illustrated in Fig. 2. Table 1 lists selected 

references for various coordination and negotiation behaviors in residential microgrids. 

Coordination can generally be classified into three types at different levels: ⅰ) device-

to-device coordination; ⅱ) home-to-home coordination; and ⅲ) Utility-home-generator 

coordination.  

• Device-to-device coordination: Device-to-device or component-to-component 

coordination can be implemented in an individual home, mainly the optimal 

scheduling of the loads, distributed generations, and energy storage by using local 

coordinators in smart homes [46-49]. The device-to-device coordination is 



implemented via home area network (HAN) in home energy management system 

(HEMSs) 

• Home-to-home coordination: Each home in a residential neighborhood is selfish 

in a sense and only interested in the minimization of its own electricity bill in nature. 

As observed in [28, 50, 51], if all home owners are provided with the same dynamic 

price profile, the home energy management systems will simultaneously shift the 

loads to time periods with lower prices, which may result in some peak “rebounds” 

at low-price periods. In this regard, home-to-home coordination is an effective 

solution to solve the rebound issue by exchanging information and coordinating 

with neighboring homes [52, 53]. The home-to-home coordination is implemented 

via neighborhood area network (NAN). 

• Utility-home-generator coordination: Unlike device-to-device coordination and 

home-to-home coordination, utility-home-generator coordination is implemented at 

the microgrid level involving district power generations  [54-57]. The utility-home-

generator coordination is usually implemented via wide area network (WAN). 

Table 1. Selected references for coordination and negotiation behaviors in residential microgrids. 

Type of interaction References 

Coordination 

 

Device-to-device [46-49] 

Home-to-home [28, 50-53] 

Utility-home-generator [54-57] 

Negotiation 

 

Utility-to-home [31] 

Generator-to-generator [32, 33] 

Utility-to-utility [58] 

Some interactions among utility, home, and generator in the residential microgrids are 

in a non-cooperative and even conflicting environment. In this regard, negotiations are 

needed to effectively solve the conflicting goals among the involved entities. As shown 

in Fig. 2, there are three types of negotiation behaviors: ⅰ) utility-to-home negotiation, 

ⅱ) generator-to-generator negotiation, and ⅲ) utility-to-utility negotiation. 

• Utility-to-home negotiation: Utility-to-home negotiation is used to solve the 

conflicting goals between utility and homes, i.e., maximization profits for both 

utility side and consumer side [31].  



• Generator-to-generator negotiation: Generator-to-generator negotiation is 

normally applied to deal with the conflict of maximizing generations for all 

generators [32, 33]. 

• Utility-to-utility negotiation: Utility-to-utility negotiation is used to solve the non-

cooperative problems when there are multiple utility companies connected to a 

residential microgrid. These utility companies all aim to maximize their payoffs 

[58]. 

Overall, multiple types of coordination and negotiation behaviors are found in the 

multi-entity and complex residential microgrid systems. To deal with the complex 

interactions among multiple entities, various techniques have been proposed in the 

existing literature pool. In the following section, the bibliometric analysis is used to 

identify major technologies and techniques for coordination and negotiation problems 

in residential microgrids. 

3. Bibliometric analysis for identifying key technologies and techniques 

Bibliometrics is an effective means to quantitatively explore the knowledge landscape 

and networks for a specific research field by analyzing published literature [59, 60]. In 

this paper, bibliometrics technique is used to analyze the research status in the field of 

coordination and negotiation in residential microgrids. VOSviewer, an open-source 

bibliometric software, is used in this study to create, visualize, and explore the scientific 

landscapes based on literature data [61].  

The online database Scopus by Elsevier was used to search the related academic 

literature published in English. The search fields include article title, abstract and 

keywords. The search terms were: {energy or demand or load or electricity or power} 

and {building or household or home or "residential community" or "residential 

neighborhood" or "residential area"} and {grid or utility or aggregator or microgrid} 

and {coordinat* or cooperat* or negotiat* or game or multi-agent}. The document type 

was limited to journal article or review. The published year starts from 2000. The 

searched data was retrieved on 9th January 2020. There are 741 entries found in total. 

Due to the irrelevance of the topic, 54 publications were manually excluded. Finally, 

the remaining 687 publications were used for the bibliometric analysis. 



 

Fig. 3. Related publications during each year from 2000 to 2019 

As shown in Fig. 3, there is an increasing trend in the yearly publications from 7 in 

2000 to 140 in 2019. Moreover, hot research keywords and the connections among 

them are identified and represented by networks, as shown in Fig. 4. All keywords with 

a minimum occurrence frequency of 6 are included in the networks. Each keyword is 

labelled with its name and represented by a circle. The circle’s size is related to the 

occurrence frequency of each keyword. The short distance between two keywords 

indicates the high probability of concurrence. In general, by the bibliometric analysis, 

hot keywords in that field can be identified, and they can be categorized by the 

following two points: 

• Demand-side flexible resources in grids/microgrids: renewable energy sources, 

distributed energy sources, distributed generation, plug-in electric vehicle, energy 

storage, etc. 

• Techniques/methodologies for coordination and negotiation in grids/microgrids: 

optimization, multi-agent system, game theory, Stackelberg game, model predictive 

control, etc. 

Moreover, Fig. 5 shows the research trend in the field of coordination and negotiation 

for residential microgrids by the evolution of hot topics from 2015 to 2018. It can be 

found that the topics of multi-agent system and game theory gain increasing attention. 

In the next sections, the key technologies and techniques found by the bibliometric 

analysis are comprehensively reviewed. 



 

Fig. 4. Visulaztion of the networks of the keywords 

 

Fig. 5. Evolution of the hot topics from 2015 to 2018. 

4. Demand-side flexible resources in residential microgrids 

In this section, a comprehensive review of various manageable flexible 

entities/resources in residential buildings is carried out. As shown in Fig. 6., the 

demand-side flexible resources involved in coordination and negotiation can be 



classified into three groups, i.e. flexible loads, flexible storage and demand-side 

generations.   

• Flexible loads: schedulable/controllable power consumption of electrical 

appliances;  

• Flexible storage: thermal and battery energy storage systems; 

• Demand-side generations: on-site distributed power generations. 

 

Fig. 6. Classification of demand-side flexible resources in a residential building 

4.1. Flexible loads 

Optimal scheduling of electrical appliances is the fundamental and leading approach to 

achieving residential DSF potential. Electrical appliances such as refrigerator, 

television and microwave, are non-schedulable because the reduction or deferment of 

their loads have direct impacts on occupants’ comfort and life quality level. Schedulable 

electrical appliances refer to appliances whose loads can be reduced or shifted in DR 

events, e.g., AC, water heater, EV and washing machine.  

4.1.1. HVAC loads 

In the literature on optimal scheduling of residential electrical appliances, numerous 

studies focused on thermostatically controlled loads (TCLs), e.g., water heaters and 

ACs, since they are the major contributors to the home electricity bills and peak power 

in grids. Besides, TCLs are prime candidates to provide DR resources due to their 

inherent thermal storage. TCLs can reduce or shift their power consumption while still 

satisfying the requirements of temperature ranges.  



With regard to residential space cooling/heating, zone temperature reset, and pre-

cooling/pre-heating are the two most common DSF management strategies for 

residential ACs in the dynamic pricing environment. In [62], a smart AC controller was 

proposed to make the optimal trade-offs between the occupant’s thermal comfort and 

electricity costs. Li et al. [63] proposed a range of DR control strategies for residential 

ACs and compared the performance under various types of dynamic electricity prices 

using the simulation tool eQUEST. Yoon et al. [64] proposed a simple control strategy 

to enable residential HVAC system to adjust the temperature set-point when the 

electricity price exceeded the preset price. The proposed price-responsive controller 

could help save up to 10.8% of electricity costs and reduce 24.7% of peak power in 

grids. Chassin et al. [65] designed a new residential thermostat which can provide a 

considerable amount of fast and reliable aggregate DR resources for ancillary services. 

The developed thermostat could provide 10%-25% of load elasticity during on-peak 

times, which can facilitate the integration of renewables. Besides single-speed ACs, the 

DSF management of variable-speed ACs/heat pumps has also been investigated. Kim 

et al. [66] developed a dynamic model of a variable-speed heat pump and used that 

model to evaluate the feasibility of direct load control strategy and grid frequency 

regulation for variable-speed heat pumps. Hu et al. [67] developed a novel frequency-

based model predictive control (MPC) method for variable-speed ACs in response to 

real-time prices at 5-min intervals. Compared with PID controller, the proposed MPC 

made the residential variable-speed ACs grid-interactive and cost-efficient, which can 

reduce average power consumption during on-peak hours by up to 38.86% and save all-

day electricity bills by up to 22.16%.  

4.1.2. PHEV/EV 

Vehicle electrification is an indispensable trend in the near future. Plug-in hybrid 

electric vehicles (PHEVs) or electric vehicles (EVs) can help reduce greenhouse gas 

emissions and save the cost of transportation when compared with gasoline vehicles. 

For most EVs, a mile of driving normally requires 0.2-0.3 kWh of charging power [68]. 

According to the U.S. Transportation Department, approximately 70% of EVs are 

charged at home [69]. This will result in higher peak demand at residential distribution 

feeders considering the increasing penetration of PHEVs/EVs. To relieve the power 

imbalance issue, a new concept of ‘vehicle-to-grid (V2G)’ has been proposed and 

applied to achieve DSF potential, which means PHEVs/EVs with large battery 



capacities can be regarded as distributed energy resources to feed power back to the 

grid when needed [70-72]. A large and increasing amount of literature has investigated 

DSF control of a single PHEV/EV [73-75] and a group of PHEVs/EVs [72, 76-80]. 

More recent attention has focused on using V2G technology for ancillary services, 

including frequency regulation [70, 81] and spinning reserve[72, 82]. As pointed by 

White and Zhang [70], DSF management of PHEVs could obtain a significant amount 

of financial benefits when being used for both peak-load reduction and frequency 

regulation. They recommended that V2G technology could be used for daily frequency 

regulation to ensure financial benefits, and for peak power reduction when peak power 

demand occurs.  

4.2. Flexible storage 

Energy storage systems (ESSs) are capable of flexibly charging and discharging energy 

and have been therefore increasingly applied to demand side management in buildings 

in recent years. They can provide residential buildings with opportunities to shift energy 

consumption from on-peak to off-peak times, to flatten the power fluctuations caused 

by intermittent renewable generations, and to recycle waste heat. In residential 

applications, thermal energy storage system (TESS) and battery energy storage system 

(BESS) are the most commonly used energy storage technologies for residential 

demand-side management.  

4.2.1. Thermal energy storage system 

TESSs have demonstrated the capability to shift the peak power loads to low-price 

times and to relieve the grid power imbalance. A TESS is a device which can store 

thermal energy by cooling, heating, solidifying, melting, vaporizing or condensing a 

material. It can be further divided into: (1) sensitive heat storage when the material 

temperature changes, and (2) latent heat storage when the material’s phase changes. 

Many attempts have been made to exploit DR potential of HVAC systems: (1) by 

passive TESSs, including building thermal masses [17, 83-88] and passive 

wallboards/walls integrated with PCMs [18, 89]; and (2) by active TESSs, including 

water tanks [90-93] and active PCM units [94, 95].  

• Passive TESS 

A number of studies have focused on the utilization of building thermal mass to pre-

cooling [83, 84] or pre-heating [17, 85-88] residential buildings. Turner et al. [83] 



investigated the cooling load shifting potential of a building with low thermal mass by 

using mechanical pre-cooling strategies. Simulation results showed that the developed 

pre-cooling strategies can help shift more than 50% of the on-peak cooling load during 

4pm - 8pm. In [84], Li et al. developed a simplified method to quantify the thermal 

effects of the irregular internal thermal mass (i.e., furniture) on the thermal dynamics 

of a whole building during DR hours. Reynders et al. [85] used the structural thermal 

mass to enable a heat pump to provide energy flexibility in a single residential building. 

It was found that the structural storage capacity could significantly reduce the power 

consumption of the heat pump during on-peak hours. Hu et al. [86] developed an 

advanced MPC method to control a floor heating system in Denmark to provide DSF 

during peak demand hours. Dominković et al. [Error! Hyperlink reference not valid.] 

evaluated the potential of building thermal mass for energy storage in district heating 

systems. The use of building thermal mass was demonstrated to provide a significant 

amount of load flexibility, which represented 5.5%-7.7% of the total district heating 

demand. Unlike other studies, Williams et al. [88] attempted to utilize the thermal 

inertia in building stocks to provide frequency control regulation services. 

Compared with building thermal mass, fewer studies focused on the integration of 

PCMs into building structures as passive TESSs for demand-side management. Shafie-

khah et al. [18] investigated the influences of hybrid PCM mortar on the thermal 

dynamic of a residential building and on the performance of the HEMS. The 

implementation of hybrid PCM could affect the operation patterns of HEMS and help 

end-users reduce up to 48% of the electricity bills. In [89], PCM was integrated into 

gypsum wallboards to shift heating and cooling loads during peak demand hours. 

Experimental results proved that the room with PCM wallboard could reduce the total 

electricity cost and shift peak power to off-peak times. 

• Active TESS 

In commercial applications, ice/chilled water tanks are normally used as active TESS 

technologies for pre-cooling. Unlike commercial buildings, water tanks in residential 

buildings are commonly used as active TESS technologies to store heat for either the 

used of domestic hot water [90, 91] or space heating [92, 93]. Brahman et al. [90] 

coupled a hot water storage tank with a CCHP system in a residential energy hub for 

load shifting and load curtailment.  The incorporation of TESS could provide the energy 

cost reduction with the assistance of the multi-objective optimization method. Similarly, 



Comodi et al. [91] applied water thermal storage system to a residential microgrid 

consisting of six apartments for demand side management. In [92, 93], water thermal 

storage systems were integrated with heat pumps for shifting the space heating loads in 

residential buildings.  

Besides active water tanks, active PCM storage units have also been studied for the 

applications in residential DSF management. In [94], an active PCM storage unit 

consisting of PCM bricks was coupled with a photovoltaic-thermal system in a net zero-

energy retrofit house for demand-side regulation. The authors concluded that PCM 

storage units enabled the cooling system to be more energy efficient while still 

maintaining the indoor air temperature within the thermal comfort range. Bruno et al. 

[95] integrated a tube-in-tank PCM storage unit into a domestic cooling system to shift 

on-peak cooling load. In that study, it was found that by utilizing the PCM storage 

system 85% of the cooling load could be shifted to off-peak times. 

4.2.2. Battery energy storage system 

BESSs, including PHEVs/EVs, are one of the most employed energy storage systems 

on today’s market. Electrochemical batteries such as lead-acid, nickel-cadmium and 

lithium-ion batteries, are technologically mature and readily available for the 

integration in residential buildings and microgrids. Due to the higher power and energy 

density and longer cycle life, lithium-ion batteries, first developed in 1960s, have been 

widely used as battery storage systems [96, 97]. The main challenge of its large-scale 

application is the high cost ($600-2500/kWh) compared to the costs of lead-acid ($200-

400/kWh) and nickel-cadmium ($800-1500/kWh) batteries [98]. 

Many studies have been carried out to investigate the effects of BESSs on DSF. 

Oldewurtel et al. [99] integrated a battery system into a residential building to provide 

DSF. They reported that a 15% of the peak power reduction could be achieved for the 

battery with more than 1 kWh capacity. Leadbetter and Swan [96] studied the effects 

of BESSs on the potential of peak load shaving in Canadian residential houses using a 

BESS model. Simulation results revealed that the BESS size ranged from 5kWh/2.6kW 

to 22kWh/5.2kW, which depended on the electricity intensity in different homes. In 

[74], a battery bank was employed in a residential building for optimal demand 

response management with the assistance of a HEMS and on-site solar energy 

generation. Through a sensitivity analysis, it was found that the increase of the size of 



PV and battery devices could facilitate the reduction of the total daily cost. Ghasemi et 

al. [100] coupled BESSs with EVs to manage the power imbalance of a wind farm. 

From an economic perspective, Zheng et al. [101] attempted to answer that whether the 

dynamic electricity pricings could compensate the manufacturing and installation costs 

of the BESSs in residential sector. They reported that for a typical US household, up to 

48% of the annual electricity bills could be saved by using optimal storage capacities; 

and the optimal capacities were largely influenced by the uncertainties in daily and 

seasonal consumption. PHEVs/EVs, as a unique type of BESSs, have attracted 

increasing attention in the field of DR management. The literature review of 

applications of PHEVs/EVs as BESSs can be found in Subsection 4.1.2.  

4.3. Demand-side generations 

Demand-side generations play a significant role in DSF management in residential 

microgrids. Two types of demand-side generations are majorly used: renewable energy 

sources (RESs), and combined cooling, heating and power (CCHP) systems. 

4.3.1. Renewable energy sources 

Since 1990s, renewable electricity generation has been increasing at an average annual 

rate of 3.8% worldwide, which is higher than the growth rate of total electricity 

generation, 2.9% [102]. In 2017, RESs represented the second largest contributor to 

world electricity production, accounting for 24.5% of global electricity generation. As 

shown in Fig. 7, compared with USA and China, the European countries, UK and 

Germany, have higher growth rates of renewable electricity production since 2000. The 

shares of electricity from renewables increased from 3% in 2000 to 30% in 2017 in UK, 

from 6% in 2000 to 33% in 2017 in Germany, from 8% in 2000 to 17% in 2017 in USA, 

and from 17% in 2000 to 25% in 2017 in China [103]. 



 

Fig. 7. Shares of renewables in electricity production in some countries. 

A major challenging issue regarding RESs is that RESs cannot be employed as reliable 

dispatchable energy sources due to their inherent intermittency and unpredictability. 

Many attempts have been made in recent years to mitigate the intermittency and to 

improve the utilization of RESs in grids [104-106]. The management of DSF has proven 

to be one of the applicable and effective solutions, which has received considerable 

attention in the research field of demand side management for buildings. In [105], wind 

turbines and solar panels were used in a smart home for DSM. By using the forecasting 

of renewable sources and a demand-side management strategy, a 4.23% reduction in 

cost was achieved for two months. Heydarian-Forushani et al. [106] investigated the 

effects of cooperative scheduling of various demand-side management strategies and 

ESSs on the DSF in buildings and the utilization of wind generation. They demonstrated 

that the coordination between energy storage systems and DR programs could help 

mitigate the uncertainty of wind generation and result in financial benefits. Rajeev and 

Ashok [46] developed a load-shifting algorithm for an Indian household equipped with 

a solar PV system, which provided a 18% increase in the solar energy utilization and 

an 8% reduction in the annual electricity bill. The proposed load-shifting method could 

help reduce the peak load by 23% in a grid for 7.5 million domestic consumers. In [100], 

an optimization bidding framework was developed to address the imbalance issue of 

wind farms by using the plug-in EVs and hourly DR programs. The authors indicated 

that the determined optimal hourly electricity prices and the use of ESSs can help the 

customers reduce their electricity bills. Baghaee et al. [107] studied the optimal design 

for an isolated hybrid wind-solar generation microgrid system integrated with a 



hydrogen ESS. They indicated that operating costs of the hybrid system were affected 

by the reliabilities of the components including wind turbines, PV panels and DC/AC 

converters. Neves et al. [5] investigated the effects of the uncertainty in the predictions 

of solar and wind energy on the demand response potential of stand-alone microgrids. 

The solar forecast uncertainty was reported to have less impacts than the wind forecast 

uncertainty.  

To sum up, RESs and the management of DSF are interconnected and mutually 

influenced. RESs can provide DSF and help improve the reliability of electrical grids; 

in return, the management of DSF can facilitate the penetration of RESs with the 

assistance of ESSs and optimization-based management. 

4.3.2. Combined cooling, heating and power systems 

 

Fig. 8. Schematic diagram of a typical CCHP system connected to utility grids. 

CCHP systems have been widely utilized as distributed energy resources in recent years 

due to its advantages of high energy efficiency, high cost effectiveness, low greenhouse 

gas emissions and high reliability [108, 109]. Fig. 8 shows the schematic diagram of a 

typical CCHP system integrated with the utility grids. Combustion turbine in power 

generation unit burns fuels such as natural gas, oil or biogas to generate electric power. 

The heat recovery device is used to capture the heat in hot exhaust gases from power 

generation unit. The collected heat is then used for cooling and heating in buildings via 

the absorption chiller and heating unit, respectively. When the electricity generated by 

the CCHP system cannot meet the electricity demand from end-users, the building 

community can purchase electricity from utility grids. 



There have been several studies focusing on CCHP systems for providing DSF at the 

demand side. Gu et al. [110] developed an approach for the transaction between a 

residential CCHP system and a load aggregator based on dynamic energy pricings and 

a two-stage optimal dispatch model. Simulation results showed the relationships among 

electrical, heating and cooling loads had large influences on the operation of the CCHP 

system and on the financial benefits for the residential CCHP microgrid. Salehimaleh 

et al. [111] and Jabarullah et al. [112] proposed optimal scheduling methods for 

residential energy hubs consisting combined heating and power systems and energy 

storage units. Numerical analysis results demonstrated that the use of energy hub and 

demand response programs could help provide significant cost savings for residential 

customers and improve the reliability of electrical grids. Zhang et al. [113] proposed a 

method to optimally coordinate the operations of CCHP plants and renewable power 

generators at the supply side with the electric and thermal loads at the demand side, 

which considered various uncertainties in RESs, electric demand and weather condition. 

Simulation results indicated that high energy efficiency, operating robustness and 

economic benefits could be achieved by using the proposed two-stage coordinated 

management strategy. 

5. Architectures for implementing coordination and negotiation in residential 

microgrids 

For effective coordination and negotiation in residential microgrids, management units 

are normally needed to determine the operating schedules of the demand-side flexible 

loads. The management units can be situated in utilities/aggregators (i.e., neighborhood 

energy management systems, NEMSs) or individual residential homes (home energy 

management systems, HEMSs). Various architectures were developed for 

implementing coordination and negotiation of different parities in residential 

microgrids. In this study, the architectures are classified based on the following two 

criteria: 1) what entity determines the operating schedules of the demand-side flexible 

loads, and 2) whether and how neighboring homes share power consumption 

information, as illustrated in Fig. 9 and compared in Table 2.  

If the decisions are made by utilities/aggregators via NEMSs, it is a centralized 

architecture; if the decisions are made by individual homes via HMESs, it is a 

decentralized or distributed architecture. The power consumption information is shared 

in the distributed architecture, and not shared in the decentralized architecture. Based 



on how the power consumption information is shared, the distributed architecture can 

be further classified into hierarchical distributed type and non-hierarchical distributed 

type. If there is no direct communication of power consumptions among neighboring 

homes and all the communication is done through unities/aggregators, it is hierarchical 

distributed type; if neighboring homes can directly communicate with each other about 

their power consumptions, it is non-hierarchical distributed type. The following section 

describes and compares these four types of architectures.  

 

Fig. 9. Coordination architectures for demand-side flexibility in a residential neighborhood: (a) 

centralized, (b) decentralized, (c) hierarchical distributed, and (d) non-hierarchical distributed. 

Table 2. Features and selected existing studies for each coordination architecture. 

Architecture type 
Decision 

maker 

Whether and how 

households share 

information? 

Function References 

Centralized NEMS 

at utility 

side 

No Coordination [77, 78, 114-118] 

Decentralized HEMS 

at home 

side 

No Merely cooperation [119-121] 

Distributed  

(Hierarchical) 

Yes 

(via utility/aggregator 

at the higher layer) 

Coordination [28, 56, 57, 122, 

123] 

Distributed  

(Non-

hierarchical) 

Yes 

 (via local HEMSs) 

Coordination or 

negotiation 
[51, 124-126] 



5.1. Centralized architecture 

As shown in Fig. 9-a, in the centralized architecture, the electric appliances (i.e., App 

1, App 2, …, App K) in all households are controlled by service providers 

(utility/aggregator). The DR participants, i.e., residential homes, send the power-related 

information of all the household electric appliances and their thermal and economic 

preferences to the service providers via smart meters. The DR service provider then 

schedules the electricity consumption patterns of major appliances in each household. 

Many studies have employed the centralized structures for coordinating the operations 

of a large number of electric appliances. Logenthiran et al. [114] proposed a load 

shifting strategy for a smart grid consisting of 2604 residential electric appliances of 

various types, including washing machine, drier, dish washer, etc., and formulated the 

scheduling as a minimization problem. A heuristic evolutionary algorithm was 

proposed to solve the problem in a centralized manner. Simulation results showed that 

the proposed load shifting method helped residential customers reduce the electricity 

cost by 5% and reduce the peak power consumption by 18.3%. In [115], three different 

centralized management strategies were proposed to control a large number of 

household refrigerators for peak power reduction, including a synchronous strategy in 

which all refrigerators received signals simultaneously, an asynchronous strategy in 

which the refrigerators were triggered at different time slots, and a strategy with 

dynamic temperature limits. Simulation results indicated that the control strategy with 

dynamic temperature limits helped reduce peak power demand and improve losses and 

voltage profiles in smart grids. Nguyen and Le [78] developed a joint optimization 

method to optimally schedule the usage patterns of EVs and HVAC systems in a 

residential community. The performance of the centralized coordination of operation 

was compared with that of individual optimization of each individual household.  

Simulation results indicated that the joint optimal scheduling method for multiple 

households enabled the residential community to achieve considerable cost savings and 

to reduce power demand during peak demand times. Similarly, a centralized scheduling 

approach was proposed in [116] to control the power consumption of household electric 

appliances and EVs in a residential microgrid integrated with wind and solar 

generations. The authors observed that the joint centralized method outperformed the 

decentralized control method in which each EV determined its own charging pattern. 

Ouammi [118] applied the centralized MPC-based controller to manage the power 



consumption of a network of smart residential buildings. The proposed centralized 

control approach enabled the interconnected residential buildings to deal with the 

uncertainties in the loads and RESs, and to maximize the use of local renewable energy 

generations in a cooperative manner. 

In summary, centralized architecture is normally used to fulfill the coordination purpose. 

In the centralized coordination architecture, since the decision makers at the higher 

level need to have the access to all electric appliances concerned, they can efficiently 

provide the global optimal solution at a system level. A drawback of the centralized 

architecture is that it is not fault-tolerant. The failure of the decision makers, such as 

NEMSs, may cause the failure of the whole system. Moreover, the computation burden 

of the central coordinator is heavy, which is an obstacle to large-scale applications for 

the centralized architecture [43]. Therefore, this type of architecture is only applicable 

to a relatively small district.  

5.2. Decentralized architecture 

Compared to the centralized architecture, the operations of electric appliances in each 

household in the decentralized architecture is determined by the local HEMS as shown 

in Fig. 9-b. The scheduled power consumption profiles of all households are sent to the 

utility/aggregator via smart meters. The utility then determines the dynamic electricity 

prices according to the received power consumption profiles and broadcasts the prices 

to DR end-users either one-day ahead (day-ahead pricing at hourly intervals) or a few 

hours ahead (real-time pricing at 5-min intervals). In the decentralized architecture, the 

households take actions to respond the dynamic prices separately and don’t have any 

information sharing and interactions among themselves. 

Typical studies on the decentralized architecture for DSF management in a residential 

community are reviewed here. Molitor et al. [119] proposed a two-step decentralized 

coordination method for household heating systems in a residential district consisting 

of 66 apartments. In the first step, a series of optimal or near-optimal schedules were 

determined for each heat system in each apartment. In the second step, one schedule 

was selected for each device by a central coordinator to facilitate the global objective 

at the high level. The proposed decentralized coordination method was demonstrated 

to significantly reduce the power fluctuations. Cole et al. [120] compared centralized 

and decentralized approaches to minimizing the peak power demand of numerous 



residential air conditioning systems in a 900-home residential community. Simulation 

results demonstrated that, compared with the decentralized control, the centralized 

control with information sharing could achieve 3.1% more peak power reduction. They 

also pointed out that a penalty-based decentralized strategy could achieve the similar 

coordination as a centralized controller by properly adjusting the penalty terms. Sarker 

et al. [121] developed a decentralized control method to manage household appliances 

and EVs in a residential community, in which the aggregator sought to maximize its 

economic profits and end-users sought to minimize their electricity bills, a typical 

conflicting problems. Electricity end-users pre-scheduled their power consumption 

profiles first based on the dynamic prices, and then re-scheduled the demand in 

response to additional money incentives sent by the aggregator. Test results showed 

that by using the decentralized approach, a large number of EVs could be reliably 

integrated into the smart grids without causing the power imbalance. 

In summary, the decentralized architecture is normally used to fulfill the cooperation 

purpose. In the decentralized architecture, the complicated global control task for the 

central controller is decomposed into sub-tasks for various sub-systems and solved at 

the local controllers. It can significantly reduce the computation load and increase the 

reliability of the system. A drawback of the decentralized architecture is that the 

operations of the sub-systems may be randomized in a selfish fashion, and there are no 

interactions and couplings among them [37]. In the field of residential DR, this random 

cooperation will result in the power rebound issue during post-DR periods [27, 50]. 

5.3. Hierarchical distributed architecture 

Like the decentralized architecture, the households also use the local HEMSs to manage 

the operation patterns of the appliances in the distributed architecture. In the 

hierarchical distributed architecture as shown in Fig. 9-c, the local HEMS in each 

household, furthermore, shares its power consumption profile with the neighboring 

households through the utility/aggregator at the higher layer. In other words, each end-

user has some information on the behavior of neighboring end-users. 

Typical studies on the hierarchical distributed coordination for the management of DSF 

at a community level are reviewed here. Ramchurn et al. [57] developed a hierarchical 

distributed DSF management method to shift the loads of 5,000 smart homes in the UK 

based on dynamic electricity prices. An adaptive mechanism was used for each 



autonomous agent representing individual household to coordinate with other 

thousands of agents. Simulation results showed that the developed distributed control 

method could reduce the peak power demand by up to 17% and greenhouse gas 

emissions by up to 6%. Guo et al. [122] developed a hierarchical distributed approach 

to coordinating the power consumption of multiple residential households with RESs, 

energy storage systems and smart appliances. A Lyapunov-based cost minimization 

algorithm was applied to online minimize the total energy cost within the neighborhood 

at each household. The HEMSs received the updated Lagrangian multiplier from the 

neighborhood energy management system (NEMS), which was determined by the 

optimization of power generation. The authors claimed that the distributed algorithm 

could preserve the household owners’ privacy and effectively reduce the total energy 

cost in the residential neighborhood. Chavali et al. [123] adopted a hierarchical 

distributed algorithm to optimally schedule the operation profiles of household 

appliances using HEMSs. An approximate greedy iterative method was used to locally 

optimize the scheduling at each home. To coordinate the behavior of multiple end-users, 

a penalty term was imposed to the cost function in each HEMS to find a joint solution 

for the 100-user community. Numerical results validated that the proposed method 

provided cost savings for both consumers and utility companies, peak power reduction, 

and lower electricity load fluctuations. Safdarian et al. [28] developed a hierarchical 

distributed framework to coordinate the DR of residential end-users and to address the 

peak rebound issue in a 50-household smart community. The distributed approach 

consisted of two stages. In the first stage, HEMS at each household scheduled the loads 

to minimize the local electricity bill. In the second stage, the load service provider 

iteratively updated and sent the total power consumption profile to HEMSs until no 

further global improvement could be achieved; and local HEMSs adjusted their 

proposals of the power consumption profile accordingly. Simulation results indicated 

that the proposed hierarchical distributed approach provided considerable economic 

benefits to load service providers without consumers’ compromise on cost and thermal 

comfort. Roche et al. [56] proposed a MAS based distributed approach to reducing or 

shifting the on-peak loads for a 5555-home residential community. In the coordination 

process, the HEMS of each customer determined the capacity of reduction or shifting 

during the up-coming DR event. The aggregator centralized all the bids from the end-

users and randomly selected some end-users to provide their bid capacities based on 

financial incentives. Simulation results demonstrated that aggregators could 



coordinated the operation profiles of a large number of residential ACs, water heaters 

and PHEVs by using the proposed agent-based distributed DR approach. 

In summary, the hierarchical distributed architecture normally aims to fulfil the task of 

coordination, which employs a multi-layer structure. The household obtained the 

information of other households from a coordinator at the higher layer. The coordinator 

in the utility/aggregator at the higher layer is responsible for coordinating the decision 

makings from the downstream participating consumers. The coordination process can 

achieve by introducing and updating Lagrangian multipliers or penalty items in the 

optimization problems in local HEMSs. Alternating direction method of multipliers 

(ADMMs) is a common approach to solving the distributed optimization problems, 

which will be reviewed in Section 6.2. 

5.4. Non-hierarchical distributed architecture 

In the non-hierarchical distributed architecture as shown in Fig. 9-d, the local HEMSs 

optimally schedule the power consumption profiles for their own households like the 

decentralized and hierarchical distributed structures. However, different from the 

hierarchical distributed coordination, HEMSs obtain the power consumption 

information directly from the peer HEMSs rather than from the utility/aggregator at the 

upper level. 

In recent years, there has been a growing interest in the non-hierarchical distributed 

coordination for the management of demand-side flexibility. The study by Mohsenian-

Rad et al. [124] is among the earliest studies on non-hierarchical distributed demand 

side management. In their work, the daily power consumption scheduling of household 

appliances was formulated as a game using game theory. A dynamic electricity pricing 

was proposed to encourage consumers to minimize their electricity bills and to achieve 

an optimal aggregate power consumption profile at the Nash equilibrium (NE) of the 

formulated game. Simulation results indicated that the proposed distributed 

coordination method could reduce the peak-to-average ratio, the total energy cost, and 

each consumer’s daily electricity bill. Similarly, in [125, 126], non-hierarchical 

distributed coordination architecture was combined with game theory technique for 

autonomous power consumption scheduling in a residential community. By sharing 

information with neighboring residences, the participating consumers as the players in 

the game setting could achieve NE of the formulated game in both studies. To address 



the power rebound issue, Chang et al. [51] developed a non-hierarchical distributed 

coordinated home energy management (CoHEM) architecture for coordinating the 

energy scheduling of multiple households. Compared with selfish HEMS, the proposed 

CoHEM could exchange information with the neighboring HEMSs and provide the 

local optimal schedule of household appliances for each household. The authors 

demonstrated that the proposed decentralized algorithm in CoHEM could effectively 

improve the real-time power balancing.  

Unlike the other three architectures, besides cooperation problems, the non-hierarchical 

distributed architecture can also be used for the negotiation problems. Basir Khan et al. 

[32] employed the non-hierarchical distributed architecture to investigate a distributed 

energy management system for a microgrid, which consists of multiple distributed 

generations, including diesel generators, PV panels, wind turbines, and hydropower 

systems. A non-cooperative game theory was used to deal with the negotiation problem 

among multiple agents representing distributed generations. Simulation results 

demonstrated that the proposed non-hierarchical distributed control system 

outperformed the conventional centralized control system. Karavas et al. [33] also 

applied non-hierarchical distributed architecture to a MAS-based distributed energy 

management system for a microgrid with multiple generators, in which the desalination 

agent and the electrolyzer agent managed to maximize the potable water and hydrogen, 

respectively. Simulation results indicated that the application of non-hierarchical 

distributed architecture could effectively solve the negotiation problems in poly-

generation microgrids with the assistance of game theory technique. 

Overall, non-hierarchical distributed architecture can be used to fulfill the tasks of both 

coordination and negotiation. In this type of architecture, each household in the 

residential community makes the local optimal decision based on the shared 

information directly from the other households. It also can be observed that several 

techniques, including multi-agent system, consensus theory and game theory, have 

been applied to jointly consider the goals of all sub-systems in the non-hierarchical 

setting. Detailed review work on these techniques will be presented in Section 6. 



6. Techniques of coordination and negotiation 

This section focuses on the key coordination and negotiation techniques for managing 

the demand-side flexibility in a residential community. Three major techniques are 

discussed here: multi-agent system, optimization and game theory.  

6.1. Multi-agent system 

Since 1990s, agent-based modeling (ABM) and multi-agent system (MAS) based 

control/management have been widely applied in various fields such as economics, 

robotics, air traffic control, social science and computer science due to its advantages 

in dynamic, multi-entity and complex environments [127, 128]. According to the 

definition in [127], an “agent” is an intelligent computational system, which has the 

abilities of being autonomous, sociable, reactive, and pro-active.  

Agent differs significantly from object/component. As highlighted in [129], agent-

oriented approaches differ from object-oriented approaches over the following points: 

ⅰ) objects are intrinsically passive; ⅱ) objects don’t encapsulate action choices; ⅲ) 

object-oriented approach fails to mimic the behaviors in complex systems; and ⅳ) 

object-oriented approach is not suited to characterize and manage organizational 

relationships. Due to those characteristics, ABM and MAS based control techniques 

have been majorly used to solve the problems in the distributed, complex and 

heterogeneous situations [130].  

As shown in Fig. 10, over the last decade, agent-based modeling and MAS-based 

control techniques have been proven as effective solutions for energy assessment and 

management in both commercial buildings and residential buildings. Several studies 

[131-133], including a review work [134], focused on MAS-based energy management 

in commercial buildings. Our present review work will focus on the use of MASs for 

DSF management in residential neighborhoods integrated with multiple flexible 

resources as summarized in Section 4. Various types of agents have been used for 

residential microgrids, including load agents for various household appliances, 

PHEV/EV agent, energy storage agent, distributed generation agent, HEMS agent, and 

central coordinator agent. By communicating and interacting with each other, these 

agents in residential microgrids majorly fulfill two types of social behaviors: 1) 

coordination behavior and 2) negotiation behavior. 



 

Fig. 10. Classifications of the applications of agent-based techniques to building energy assessment and 

management. 

Table 3. Applications of MAS technique for various interactions in residential microgrids and selected 

references for each type of interaction. 

Type of interaction References 

MAS-based Coordination 

 

Device-to-device [46-49] 

Home-to-home [52, 53] 

Utility-home-generator [54-57] 

MAS-based Negotiation 

 

Utility-to-home [31] 

Generator-to-generator [32, 33] 

Utility-to-utility [58] 

6.1.1. MAS-based coordination 

As shown in Fig. 10, the MAS-based coordination can be further divided into three 

types of coordination: device-to-device coordination, home-to-home coordination, and 

utility-home-generator coordination.  

• Device-to-device coordination 

Device-to-device coordination is implemented inside an individual home in a 

centralized manner; and its essence is the optimal scheduling of various devices, 

including the flexible loads, distributed generations, and energy storage by using local 

coordinators in smart homes. Rajeev and Ashok [46] developed a MAS-based demand 

response program for a household and integrated the program in a cloud computing 



framework. An optimization algorithm was used in the MAS to coordinate the dynamic 

solar energy generation and energy demand. Simulation results showed that the MAS-

based load-shifting approach provided an 8% reduction in the annual cost and a 18% 

increase in the utilization of RESs. Wang et al. [47] combined a MAS with the particle 

swarm optimization for smart buildings to minimize the energy consumption and to 

maximize the thermal comfort level. It was found that the proposed multi-agent control 

system helped increase the thermal comfort by 3% and reduce the energy consumption 

by around 9%. In [48], an agent-based decentralized method was developed to 

automatically manage the operation patterns of the household appliances in a smart 

home during a DR event. The proposed method was implemented in a HEMS, and the 

HEMS was connected to a MAS-based smart grid simulation platform. Simulation 

results indicated that efficient load management was obtained by using MAS-based 

dynamic load priority method. Bünning et al. [49] developed a Modelica library for 

agent-oriented control for building energy system, which consisted of various types of 

agents, and a number of cost functions to fulfill different optimization tasks. A case 

study of a residential heating system was carried out to demonstrate the functionality 

of the agent-based mechanism. 

• Home-to-home coordination 

Home-to-home coordination normally focuses on the communication and 

collaborations among neighboring residences in a non-hierarchical distributed setting. 

Specifically, the HEMS agent in a smart home exchanges information with the other 

HEMS agents in the same residential community. Rahman et al. [52, 53] developed a 

distributed MAS control framework to coordinate the power consumption in a 

microgrid with solar energy and inverter-interfaced EVs. In the proposed MAS 

framework, the control agents communicate with each other and utilize both local and 

neighboring information. Simulation results indicated that the MAS-based coordination 

facilitated the sharing of real and reactive powers among EVs and improved the stability 

of the voltage and frequency of the microgrid. 

• Utility-home-generator coordination 

Unlike device-to-device coordination inside a building, utility-home-generator 

coordination is implemented in an either centralized or hierarchical distributed 

environment at the microgrid level. This coordination aims at the optimal scheduling 



of the loads, distributed generations, and energy storage by using the global coordinator 

at the higher layer. Anvari-Moghaddam et al. [54] proposed a MAS-based energy 

management system in a microgrid to optimally coordinate the RESs and controllable 

loads. A number of cooperative agents were developed and trained, including 

coordinator agent, HEMS agent, RES agent, battery agent, etc.  Simulation results 

showed that the proposed MAS architecture helped minimize the total energy cost of 

the residential neighborhood while still satisfying the homeowners’ comfort levels. Ju 

et al. [55] developed a 3-layer MAS-based control strategy for a microgrid to coordinate 

the operations of the wind and solar generations, gas turbines, ESSs and controllable 

loads. It was observed that the proposed MAS-based approach could flatten the power 

demand curve and facilitate the utilization of RESs in both grid-connected and island 

modes. In [57], an agent-based distributed DR method was proposed to shift the loads 

of 5,000 smart homes in the UK in the dynamic electricity pricing environment. An 

adaptive mechanism was used for each autonomous household agent to coordinate with 

the other agents. The developed agent-based control method could reduce the peak 

power demand by up to 17% and greenhouse gas emissions by up to 6%. In [56], a 

MAS-based distributed approach was proposed to coordinate the peak power reduction 

for a 5555-home residential community. In the coordination process, the aggregator 

centralized all the bids from the end-users and randomly selected some end-users to 

provide their bid capacities based on financial incentives. Simulation results 

demonstrated that aggregators could coordinated the operation profiles of a group of 

residential ACs, water heaters and PHEVs by using the proposed MAS-based 

distributed DR approach. 

6.1.2. MAS-based negotiation 

Besides coordination problems, MAS technique has also been used to solve negotiation 

problems in residential microgrids. Negotiation is normally needed to solve in a 

distributed non-cooperative setting, where the entities have conflicting goals. As shown 

in Fig. 10, MAS-based negotiation can be further divided into: utility-to-home 

negotiation, generator-to-generator negotiation and utility-to-utility negotiation. 

• Utility-to-home negotiation 

Utility-to-home negotiation is used to solve the conflicts of maximizing the payoffs for 

both utility side and end-use consumer side. In [31], an adaptive attitude bidding 



strategy was developed and implemented in a negotiation agent to facilitate the bi-

directional electricity trading between the utility and buildings. The proposed agent-

based approach could effectively make feasible negotiation decisions to improve the 

consumers’ economic benefits with the assistance of particle swarm optimization 

method.  

• Generator-to-generator negotiation 

Generator-to-generator negotiation is normally applied to deal with the conflict among 

generators, i.e., maximizing their own generations. Basir Khan et al. [32] developed a 

MAS-based distributed HEMS for a microgrid, which consists of  a group of household 

loads and multiple distributed generations, including diesel generators, PV panels, wind 

farms, hydropower systems. A prisoner’s dilemma theory was used to solve the 

competitive situations among multiple agents representing distributed generations. The 

proposed MAS-based distributed control system could provide higher performance 

than conventional centralized control system. Similarly, Karavas et al. [33] developed 

a MAS-based distributed HEMS for an autonomous poly-generation microgrid. A non-

cooperative game theory was applied to handle the negotiation between the desalination 

agent and the electrolyzer agent, which attempted to maximize the potable water and 

hydrogen, respectively. Simulation results indicated that the application of MAS-based 

strategy could provide operational and economic benefits in poly-generation microgrids 

with the assistance of game theory technique. 

• Utility-to-utility negotiation 

Utility-to-utility negotiation is used to solve the non-cooperative problems when there 

are multiple utility companies connected to a residential microgrid. These utility 

companies all aim to maximize their payoffs and compete with each other. Only one 

study, i.e., [58], was found in the literature which focused on the interactions between 

utilities. They developed a Stackelberg game between multiple utilities and multiple 

consumers to maximize the payoff of each utility agent and each consumer agent. 

Simulation results showed that by using the non-cooperative game theory and 

distributed algorithms, the utilities and consumers could effectively negotiate, and their 

decisions could converge to the Stackelberg equilibrium to achieve the optimal demand 

side management. 



To sum up, it can be found that MAS-based negotiation problems among utility, homes 

and generations were normally formulated as non-cooperative games and solved using 

game theory technique. More details about game theory technique will be introduced 

in Subsection 6.3. 

6.2. Optimization 

The main goal of optimization is to find an optimal decision subject to a number of 

constraints, which has been proved to be highly effective to improve the performance 

of individuals and large systems in the field of coordination and negation in residential 

microgrids. In the present study, the optimization techniques adopted in residential 

microgrids are reviewed from the following perspectives: 1) optimization architectures; 

2) optimization objectives; and 3) optimization algorithms. 

6.2.1. Optimization architectures 

Like the coordination architectures in Section 5, the optimization architectures for the 

coordination problems in residential microgrids can also be divided into three 

categories: centralized optimization, decentralized optimization, and distributed 

optimization. Table. 4 shows the comparisons between different optimization 

architectures. The centralized optimization is normally implemented in the 

utility/aggregator at the higher layer. The output of the centralized optimization is the 

optimal power consumption schedule, {𝑥𝑛,𝑎
1 , … , 𝑥𝑛,𝑎

𝑇 }, of all appliances 𝑎 ∈ [1, … , 𝐴] in all 

households 𝑛 ∈ [1, … , 𝑁]. The computation load will largely increase when there are 

thousands of residences to be considered in the centralized optimization problem. 

Unlike the centralized optimization, the decentralized and distributed optimizations are 

carried out in local HEMSs. For household n, the local HEMS only outputs the optimal 

power consumptions of appliances. The major difference between them is that in the 

distributed optimization, the power consumption profiles of neighboring households,  

∑ 𝑙𝑚
𝑡𝑁

𝑚∈[1,…,𝑁]\𝑛 , are also considered in the optimization in household n. For the customers’ 

privacy concern, the total load of a household, 𝑙𝑚
𝑡 , is collected and broadcasted to the 

neighbors instead of the detailed appliance-wise power consumption profiles. 

Table. 4. Comparisons between centralized, decentralized, and distributed optimization architectures.  

Optimization 

architecture 

Objective functions  Optimizer location  



Centralized 

optimization 𝒎𝒊𝒏
{𝑥𝑛,𝑎

1 ,…,𝑥𝑛,𝑎
𝑇 }

𝑎∈[1,…,𝐴]
𝑛∈[1,…,𝑁]

∑ 𝑝𝑟𝑖𝑐𝑒𝑡(∑ ∑ 𝑥𝑛,𝑎
𝑡

𝐴

𝑎=1

𝑁

𝑛=1

)

𝑇

𝑡=1

 

Utility 

Decentralized 

optimization 𝒎𝒊𝒏
{𝑥𝑛,𝑎

1 ,…,𝑥𝑛,𝑎
𝑇 };

𝑎∈[1,…,𝐴] 

∑ 𝑝𝑟𝑖𝑐𝑒𝑡 ∑ 𝑥𝑛,𝑎
𝑡

𝐴

𝑎=1

𝑇

𝑡=1

 

HEMS in the 

household n 

Distributed 

optimization 𝒎𝒊𝒏
{𝑥𝑛,𝑎

1 ,…,𝑥𝑛,𝑎
𝑇 }

𝑎∈[1,…,𝐴]

∑ 𝑝𝑟𝑖𝑐𝑒𝑡(∑ 𝑥𝑛,𝑎
𝑡

𝐴

𝑎=1

+ ∑ 𝑙𝑚
𝑡

𝑁

𝑚∈[1,…,𝑁]\𝑛

)

𝑇

𝑡=1

 

HEMS in the 

household n 

Note: 𝑥𝑛,𝑎
𝑡  denotes the power consumption of electricity appliance a in the household n at time t, where 

𝑎 ∈ [1, … , 𝐴], 𝑛 ∈ [1, … , 𝑁], and t∈ [1, … , 𝑇]; 𝑝𝑟𝑖𝑐𝑒𝑡 denotes the electricity price at time t; 𝑙𝑚
𝑡  denotes 

the total load of the household m at time t, where  𝑚 ∈ [1, … , 𝑁]\𝑛. 

6.2.2. Optimization objectives 

In residential microgrid, the objectives for optimal power consumption scheduling in 

customers and utilities vary to meet different demands. The major objectives include: 

• To minimize the electricity cost of an individual consumer [28, 51, 57, 121, 135];  

• To minimize the total electricity cost of all consumers [57, 77, 114, 116, 122-125, 

136, 137]; 

• To maximize utility’s economic profits [50, 117, 135, 138]; 

• To minimize peak-to-average ratio (PAR) of the load [124, 126, 139]; 

• To maximize the utilization of RESs [140-142]; 

• To minimize active power losses [143]. 

Overall, most optimization problems focused on the economic benefits, and few 

focused on the environmental effects. 

6.2.3. Optimization algorithms 

According to different criteria, optimization problems can be classified into: linear 

optimization vs. nonlinear optimization; constrained optimization vs. unconstrained 

optimization; single-objective optimization vs. multi-objective optimization; and 

deterministic optimization vs. stochastic optimization [144]. In this study, the 

optimization algorithms used for energy management in residential microgrids are 

categorized into: 

• Classic mathematical algorithms:  

- Linear programming (LP) [50]; 

- Mixed integer linear programming (MILP) [28, 54, 77, 116, 119, 121]; 

- Mixed integer quadratic programming (MIQP) [57, 75]; 



- Mixed integer nonlinear programming (MINLP) [136]; 

- Alternating direction method of multipliers (ADMMs) [145-148]. 

• Metaheuristic algorithms:  

- Population-based genetic algorithm (GA) [114, 117, 149, 150]; 

- Swarm-based particle swarm optimization (PSO) [31, 47, 149]; 

- Trajectory-based simulated annealing (SA) [135, 151]; 

- Greedy algorithm [123]. 

It is worth mentioning that the method of ADMMs is an effective tool to solve the 

distributed optimization problems in microgrids. Wang and Wu [145] applied a 

consensus-based ADMM method to the dynamic distributed optimal power flow 

problem with DR. Numerical studies showed that the accelerated ADMM method with 

data exchanged via a central controller had better convergence performance than the 

other two decentralized methods. Ma and Wang [146] combined ADMM method with 

regret minimization framework to carry out online energy management in microgrids. 

Simulation results showed that the proposed online algorithm could effectively reduce 

conservative schedules compared to robust optimization algorithms. In [147], a 

sequential distributed consensus-based ADMM method was applied to coordinate the 

generation units and DR consumers to achieve the optimal real-time electricity prices 

and to maximize their profits. Simulation results demonstrated that the proposed 

approach could converge to the optimal global solution in a quick and distributed 

manner due to the application of MAS-based consensus theory. Khaki and Chu [148] 

employed the ADMM method to optimally schedule the EV charging in a hierarchical 

distributed fashion. Numerical results showed that the proposed method could reduce 

the number of iterations by 60% compared with the conventional charging methods.  

In summary, optimization is a rather classical approach to improve the energy 

performance of building energy systems. In order to solve the coordination and 

negotiation problems, optimization is sometimes implemented in the framework of 

MAS due to the needs of information exchange [31, 46, 47, 49]. In some studies [51, 

122, 138, 142, 152], stochasticity was also considered to incorporate the uncertainties 

in loads, and renewable generations into optimal power consumption scheduling. 



6.3. Game theory  

Compared with optimization, game theory is a relatively new tool in the field of DSF 

management. It is a study of analyzing strategic interactions among rational and self-

interested players in given environments, i.e., games. In a game, multiple players 

interact with each other and choose the best strategy as an action in an attempt to 

achieve the best return. Game theory was originally developed by Von Neumann and 

Morgenstern in 1940s for economics and social science [153]. In the last few decades, 

it has been increasingly used as a promising tool for analyzing the negotiation and 

coordination problems in the framework of multi-agent systems [154]. MAS-based 

game theoretical techniques have been used in various research fields, such as traffic 

management [155], maintenance and repair chain [156], and electrical engineering [44]. 

In the present study, the game theoretical techniques applied to energy management in 

residential microgrids are reviewed.  

A game G normally includes three components: player set N, strategy space S, and 

payoff set U, which can be noted as 𝐺 = {𝑁, {𝑆}, {𝑈}}.  Each player n (𝑛 ∈ 𝑁) selects 

their strategy 𝑆𝑛  (𝑆𝑛 ∈ {𝑆}) to maximize their utility 𝑈𝑛  (𝑈𝑛 ∈ {𝑈}) according to their 

payoff function. The solution of the game is the Nash equilibrium (NE), which 

represents a balanced point where players can no longer improve their payoff by 

adjusting their strategy when considering others’ strategies as fixed. A NE consists of 

a set of strategies {𝑆1
∗, … , S𝑁

∗ }, and for each player n, the strategy 𝑆𝑛
∗  mathematically 

satisfies the following requirement: 

𝑈𝑛(𝑆𝑛
∗ , 𝑆−𝑛

∗ ) ≥ 𝑈𝑛(𝑆𝑛, 𝑆−𝑛
∗ )          ∀𝑛 ∈ 𝑁; ∀𝑆𝑛 ∈ {𝑆}                       (1) 

where 𝑆𝑛
∗ denotes the strategy of player n at the NE; 𝑆−𝑛

∗  represents the strategies of 

other players at the NE. In the field of energy management in residential microgrids, 

the strategy of household  𝑆𝑛 is the power consumption profile during the scheduling 

window T, i.e., 𝑆𝑛 = {𝑠𝑛,1, … 𝑠𝑛,𝑡, … , 𝑠𝑛,𝑇}. 



 

Fig. 11. Classifications of game theoretic techniques for energy management in microgrids 

 

Table 5. Selected references for each type of game theoretic technique for energy management in 

residential microgrids. 

Game type References 

Non-cooperative game Stackelberg game [58, 157-162] 

Evolutionary game [163-165] 

Bayesian game [166] 

Prison’s dilemma game [32] 

Tit for tat game [167] 

Other unnamed games [124-126, 168-171] 

Cooperative game [149, 172] 

As shown in Fig. 11, game theoretic techniques for energy management in residential 

microgrids are categorized into two branches:  

• Cooperative game is a game with cooperation between players, which is also called 

the team game. Cooperative game theory focuses on analyzing the joint actions and 

collective payoffs of all participating players. 

• Non-cooperative game is a game where individual players interact and compete 

with each other.  Non-cooperative game theory attempts to predict players' 

individual strategies and payoffs and to reach a desirable operating point, i.e., Nash 

equilibrium.  

Table 5. lists some references for each type of game theoretic technique for energy 

management in residential microgrids. It can be found that in the domain of DSF 

management in residential microgrids, most studies employ non-cooperative games for 



negotiation problems; a few games focus on cooperative games for coalition and 

coordination problems. Moreover, among all non-cooperative games, 1-leader, N-

follower Stackelberg game is the most used game type, where the utility and consumers 

are seen as the leader and followers, respectively [160, 173]. 

In summary, besides MAS, optimization, and game theory, some other techniques have 

also been used for coordination and negotiation problems in residential microgrids, 

such as topology/graph theory [52, 118, 125] and consensus theory [174-176]. Model 

predictive control is also used in some related studies [177, 178], but it is majorly used 

for predictive optimal scheduling, not for solving coordination and negotiation 

problems. 

7. Critical discussions 

Neighborhood-level coordination and negotiation play a key role in the management of 

demand-side flexibility. Coordination and negotiation techniques can help effectively 

alleviate the peak rebound issue, improve the reliability of microgrids, and improve the 

economic benefits for both utilities and customers. This study summarizes recent 

research and development in technologies (i.e., demand-side flexible resources), 

architectures, and techniques of demand-side coordination and negotiation in 

residential microgrids. Some critical observations and discussions are made in this 

section. 

7.1. Coordination and negotiation architectures 

Coordination and negotiation among devices, households, utilities in a residential 

microgrid can be implemented using different architectures. By answering the 

following two questions: 1) where the decision makings are made; and 2) whether and 

how the interconnected households share information, the coordination and negotiation 

architectures are divided into four types: centralized, decentralized, hierarchical 

distributed and non-hierarchical distributed (see Fig. 9 and Table 2). 

• Centralized architecture: Centralized coordination is capable of efficiently 

providing the global optimal solution at a system level, because the central 

coordinator at the higher layer has access to information of all participating 

households. However, this structure has two drawbacks. First, it is not fault-tolerant, 

which means the failure of the central control system may cause the failure of the 



whole complex system. Second, due to the heavy computation burden in the central 

coordinator, this architecture is not feasible for large-scale applications. 

• Decentralized architecture: The basic idea of decentralized architecture is 

decomposing the complicated global control task into sub-tasks for various sub-

systems. However, since there are no interactions and couplings among multiple 

entities, the sub-systems operate in a randomized and selfish manner. In the field of 

residential microgrids, this unorganized cooperation among DR customers may 

result in the power rebound issue during post-DR periods. 

• Hierarchical and non-hierarchical distributed architectures: Like the 

decentralized architecture, the households also use the local HEMSs to manage the 

operation patterns of the appliances in the distributed architecture. The difference 

between them is that in the distributed architecture, the HEMS in each household 

receives the power consumption profiles of other households and takes account of 

the shared information in decision making. The social interaction moves from 

merely cooperation in decentralized architecture to harmony coordination in 

distributed architecture.  

Depending on where the individual household obtains the information of other 

households, the distributed architecture can be further divided into hierarchical and 

non-hierarchical distributed architectures. In the hierarchical distributed 

architecture, a multi-layer structure is employed. The household obtained the 

information of other neighboring households from a coordinator at the higher layer. 

The high-level coordinator in the utility/aggregator is responsible for coordinating 

the decision makings from the downstream participating consumers. The 

coordination process is normally achieved by introducing and updating Lagrangian 

multipliers or penalty items in the optimization problems in local HEMSs.  In the 

non-hierarchical architecture, each household in the residential community makes 

the local optimal decision based on the shared information directly from the other 

households. Techniques, including MAS and game theory, have been applied to 

jointly consider the goals of all sub-systems in the non-hierarchical setting.  

7.2. Coordination and negotiation techniques 

Three key coordination and negotiation techniques for neighborhood-level DSF 

management are surveyed in this study: multi-agent system, optimization and game 

theory. The challenges and opportunities for each technique are discussed in this section. 



• Multi-agent system: MAS technique is the cornerstone for the neighborhood-level 

coordination and negotiation in residential microgrids. Residential microgrid is a 

dynamic, multi-entity and complex system, which consists of household appliances, 

PHEV, energy storage systems, distributed generations, etc. Multi-agent system is 

technically feasible to deal with the multi-entity interactions in residential 

microgrids, since “agent” has the advantages of being autonomous, sociable, 

reactive, and pro-active. In the literature, agents in residential microgrids majorly 

fulfill two types of social behaviors: coordination behavior and negotiation behavior 

(see Fig. 10 and Table 3). 

MAS, however, is not a panacea. The major challenge lies in the accurate modeling 

of agents’ behaviors considering the uncertainties in occupants’ behavior, building 

thermal characteristics, performance of electric appliances, energy storage systems, 

and distributed generations. It is also difficult to precisely forecast the exogenous 

variables, such as outdoor environmental conditions and dynamic electricity prices. 

Another challenge is the robust and efficient exchange of information among agents. 

To achieve this goal, an open information exchange platform and efficient 

communication protocols are normally required, especially for the MAS-based 

coordination among a large number of households. 

• Optimization: Optimization is commonly used to determine optimal operating 

patterns for an individual household or for all households in the neighborhood. In 

some coordination and negotiation problems, optimization technique is combined 

with MAS for efficient information exchange among entities. For different 

coordination architectures (centralized/decentralized/distributed), the formulations 

of optimization objective functions are different as shown in Table 4. To fulfill 

different tasks, various objectives (e.g., minimization of costs/PAR ratio/losses and 

maximization of utility’s profits/RESs) are used with multiple constraints. In the 

existing studies, however, most studies focused on deterministic optimization 

problems; and few attempts were made on stochastic optimizations considering the 

uncertainties in loads, generations, storage and occupants’ energy-related behaviors. 

Besides, most optimization problems focused on economic benefits, and few 

focused on environmental effects. 

• Game theory: Game theory technique is an emerging tool to address the 

coordination and negotiation problems in residential microgrids. Game theoretic 



techniques are normally implemented in the framework of MAS due to the needs 

of information exchange. Multiple game theoretic techniques have been applied for 

energy management in residential microgrids (see Fig. 11 and Table 5). Most 

studies employ non-cooperative games for negotiation problems; a few games focus 

on cooperative games for coalition and coordination problems. Moreover, among 

all non-cooperative games, 1-leader, N-follower Stackelberg game is the most used 

game type, where the utility and consumers are regarded as the leader and followers, 

respectively. The major challenge of game theory is to find the equilibrium state 

while involving a large number of players. 

For all techniques (i.e., MAS, optimization and game theory), in addition to the 

technical challenges, some other issues also need to be addressed for real practice, such 

as standardization for scalability, costs and privacy concern. 

8. Conclusions 

Driven by sustainability initiatives and advances in ICT infrastructure (i.e., smart 

sensors, smart meter, NEMS, HEMS, HAN, NAN, and WAN), the management of 

demand-side flexibility has been increasingly employed in cyber-physical microgrids 

to facilitate the penetration of intermittent RESs. In order to improve the reliability of 

microgrids and to maximize the overall financial benefits for utilities and customers, 

neighborhood-level coordination and negotiation techniques are needed to harmonize 

the behaviors of multiple entities in microgrids in cooperative/non-cooperative 

environments. This study aims to review the state-of-the-art research and development 

in neighborhood-level coordination and negotiation in residential microgrids from four 

main perspectives: classification, technologies (i.e., demand-side flexible resources 

involved in coordination and negotiation), architectures, and techniques. 

Multiple types of modern technologies have been applied to provide demand-side 

flexibility, including PHEV/EV, thermal/battery energy storage system, renewable 

energy generation and CCHP system. To become fault-tolerant and computationally 

efficient, decentralized and distributed architectures have been increasingly used to deal 

with coordination and negotiation problems instead of centralized architecture. 

Compared with decentralized structure, in the hierarchical/non-hierarchical distributed 

structure, data is not only collected, stored, analyzed in local household, but also shared 

with neighboring households. This helps move the social interaction from randomized 



and selfish cooperation in decentralized architecture to organized and harmony 

coordination in distributed architecture. 

The challenges and opportunities for all three techniques (i.e., MAS, optimization, and 

game theory) are also identified. MAS technique is the cornerstone for the 

neighborhood-level coordination and negotiation in multi-entity and complex 

microgrids due to agent’s capabilities of autonomy, social ability, reactivity, and pro-

activeness. However, MAS is not a panacea. The major challenges lie in the accurate 

modeling of agents’ behaviors and the efficient exchange of information among agents. 

Optimization and game theory are two major approaches to making decisions in 

coordination and negotiation problems. In the existing literature, few studies focused 

on stochastic optimizations considering uncertainties in loads, generations, storage and 

occupants’ behaviors. Besides, most optimization objective functions were cost-

oriented, and few focused on environmental effects, such as the minimization of 

greenhouse gas emissions. Multiple game theoretic techniques have been applied for 

DSF management in residential microgrids. The major challenge of game theory is to 

find the equilibrium state, especially when numerous players are involved in the game.  
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