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Abstract: 17 

Smart control of window behavior is a means of effectively reducing concentrations of indoor 18 
PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) in naturally ventilated 19 
residential buildings without indoor air cleaning devices. This study aimed to develop a 20 
reinforcement learning approach to automatically control window behavior in real time for 21 
mitigation of indoor PM2.5 pollution. The proposed method trains the window controller with 22 
the use of a deep Q-network (DQN) in a specific naturally ventilated apartment in the course 23 
of a month. The trained controller can then be employed to control window behavior in order 24 
to reduce the indoor PM2.5 concentrations in that apartment. The required input data for the 25 
controller are the real-time indoor and outdoor PM2.5 concentrations with a 1-min resolution, 26 
which can easily be obtained with low-cost sensors available on the market. A series of 27 
simulations were conducted in a virtual typical apartment in Beijing and a real apartment in 28 
Tianjin. The results show that, compared with the baseline I/O ratio algorithm, the proposed 29 
reinforcement learning window-control algorithm reduced the average indoor PM2.5 30 
concentration by 12.80% in a one-year period. Furthermore, the proposed algorithm reduced 31 
the indoor PM2.5 concentrations in the real apartment by 9.11% when compared with the I/O 32 
ratio algorithm and by 7.40% when compared with real window behavior. 33 

34 

Keywords: Reinforcement Learning, Smart Control, PM2.5, Natural Ventilation, Artificial 35 
Intelligence and Internet of Things (AIoT). 36 

1. Introduction37 

Epidemiologic evidence has indicated a strong relationship between exposure to PM2.5 38 
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(particulate matter with aerodynamic diameter less than 2.5 μm) and adverse health effects, 1 
including lung cancer [1], respiratory infections [2], stroke [2], chronic obstructive pulmonary 2 
disease (COPD) [2], cardiovascular disease [3], asthma [4], thereby substantially reducing life 3 
expectancy[5]. Indoor PM2.5 originates from outdoor infiltration and indoor emission [6]. 4 
Outdoor PM2.5 can enter indoor environments through windows under natural ventilation, 5 
through fans under mechanical ventilation, or through envelope cracks under infiltration [6–6 
10]. There are also numerous indoor PM2.5 sources, such as smoking [11–13], printing [14], 7 
cooking [15–17] and other activities [18-19]. Since most people spend 85-90% of their time in 8 
indoor environments [20], it is crucial to reduce indoor PM2.5 concentrations and the associated 9 
health risks. 10 

 11 

In naturally ventilated residential buildings, window behavior significantly influences the 12 
indoor PM2.5 concentrations. Many investigations have addressed the characteristics of window 13 
behavior [e.g., 21-28]. For example, Fabi et al. [25] found that environmental factors such as 14 
temperature, humidity and noise are the most crucial driving forces for window 15 
opening/closing. Andersen et al. [26] reported that indoor CO2 concentration and outdoor 16 
temperature were the most significant factors in window behavior, based on long-term 17 
measurements in 15 Danish dwellings. Shi et al [27-28] developed stochastic models for 18 
window behavior based on outdoor temperature, relative humidity, wind speed, and outdoor 19 
PM2.5 concentration. Several studies have focused on the development of window control 20 
strategies [29-33]. For example, Stazi et al. [30] developed an adaptive window control 21 
algorithm to achieve a low indoor CO2 level and good thermal comfort in a classroom. Dussault 22 
et al. [31] compared the performance of four smart window control strategies in reducing 23 
energy consumption while maintaining thermal and visual comfort. These studies have 24 
provided great insight into the characteristics and control of window behavior. In addition to 25 
thermal comfort, ventilation (indicated by CO2), and energy consumption, the control of 26 
window behavior can also minimize indoor PM2.5 concentrations, which has not been well 27 
studied. 28 

 29 

In naturally ventilated buildings, the closing of windows tends to reduce the entry of PM2.5 of 30 
outdoor origin [34], whereas opening windows increases the ventilation rate, which is 31 
beneficial for diluting PM2.5 generated from indoor emissions [35]. However, when both 32 
indoor- and outdoor-originating PM2.5 contribute significantly to the total indoor PM2.5, it is 33 
challenging for occupants to determine whether to open or close windows. It should be noted 34 
that the optimal operation of windows would minimize indoor PM2.5 concentrations. In real 35 
applications, occupants can easily obtain the real-time indoor and outdoor PM2.5 concentrations 36 
with the use of low-cost light-scattering sensors (e.g. [36,37]). However, to the best of our 37 
knowledge, there is no existing window control approach that minimizes indoor PM2.5 38 
concentrations using only real-time indoor and outdoor PM2.5 sensors in naturally ventilated 39 
buildings. In China, most of the residential buildings are naturally ventilated. Furthermore, less 40 
than 2% of people in China have air cleaners in their homes[38]. Therefore, such a window 41 
control approach can benefit a lot of people by reducing their exposure to indoor PM2.5 and the 42 
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associated health risks.  1 

 2 

To achieve the mitigation of indoor PM2.5 by window control, the traditional closed-loop, 3 
model predictive, and rule-based control approaches may be considered. For the closed-loop 4 
control, when the indoor PM2.5 concentration is higher than the setpoint, the window actuator 5 
will act for reducing the concentration. However, since it is unknown to the controller whether 6 
the increase in indoor PM2.5 concentration is attributed to indoor emission or outdoor 7 
infiltration, the controller cannot make the decision on opening or closing the window. 8 
Therefore, the closed-loop control may not be applicable in this application. For the model 9 
predictive control, it is essential to establish a model with accurate inputs to predict the indoor 10 
PM2.5 concentration. However, it is challenging to monitor the key inputs such as indoor PM2.5 11 
emission rate and air exchange rate in real time. Therefore, the model predictive model may 12 
not be suitable for practical applications. For the rule-based control, a typical rule is based on 13 
the indoor-to-outdoor PM2.5 concentration ratio (I/O ratio), which opens the window when the 14 
I/O ratio is larger than 1, while closes the window when the I/O ratio is lower than 1. However, 15 
indoor PM2.5 emissions may still exist when the I/O ratio is smaller than 1 [8]. Therefore, it is 16 
also difficult for the rule-based window control to minimize indoor PM2.5 concentrations. Note 17 
that window control is a sequential decision-making process. Reinforcement learning (RL), 18 
which is a powerful artificial intelligence algorithm, has achieved great success on sequential 19 
decision-making problems [39–40]. Therefore, it can be a more suitable approach to control 20 
window behavior for minimizing indoor PM2.5 concentrations.  21 

 22 

Multiple studies have applied reinforcement learning methods in the field of smart buildings 23 
[29, 32, 41–46]. For example, Han et al. [29] reported a reinforcement learning method that 24 
used Sarsa and Q-learning to improve the comfort of occupants in an office through control of 25 
window behavior. Dalamagkidis et al. [44] developed a reinforcement learning controller to 26 
improve overall building performance in terms of thermal comfort, indoor CO2 concentration, 27 
and energy consumption. Heo et al. [45] proposed a deep Q-network-based approach to control 28 
the mechanical ventilation system of a subway station in real time in order to reduce the energy 29 
consumption while maintaining the PM10 level. However, in naturally ventilated buildings, few 30 
studies, if any, have used the reinforcement learning approach to control window behavior in 31 
real time to minimize the indoor PM2.5 concentrations.  32 

 33 

Therefore, this study aimed to develop a reinforcement learning approach to automatically 34 
control window behavior in real time in order to effectively reduce the indoor PM2.5 35 
concentrations in naturally ventilated buildings. The proposed method trains the window 36 
controller with a deep Q-network (DQN) in a specific naturally ventilated apartment for a one-37 
month period. The trained controller can then be used to control the window behavior to reduce 38 
the indoor PM2.5 concentrations in that apartment. The required input data for the controller are 39 
the real-time indoor and outdoor PM2.5 concentrations with a 1-min resolution, which can be 40 
easily obtained with the use of low-cost sensors available on the market. This study first 41 
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demonstrated the proposed reinforcement learning method in a virtual typical apartment with 1 
natural ventilation in Beijing. This investigation then applied the proposed approach in a real 2 
apartment in Tianjin to demonstrate its feasibility. The proposed reinforcement learning method 3 
can facilitate the development of smart window controllers for reducing indoor PM2.5 4 
concentrations, which will further support the rapid development of artificial intelligence with 5 
internet of things (AIoT) for smart and healthy buildings.  6 

 7 

2. Methods 8 

2.1 Control objective and inputs 9 

This study focused on the mitigation of indoor PM2.5 pollution in naturally ventilated buildings 10 
without indoor PM2.5 filtration units. Outdoor PM2.5 can enter a building via natural ventilation 11 
or infiltration, while indoor sources can also contribute to indoor PM2.5. The objective of 12 
window behavior control is to minimize the total indoor PM2.5 concentration. In practical 13 
applications, only the real-time indoor and outdoor PM2.5 concentrations, 𝐶ሺ𝑡ሻ and 𝐶௨௧ሺ𝑡ሻ, 14 
can be easily obtained from low-cost light-scattering sensors with careful calibration (e.g.[36]). 15 
Therefore, the control inputs in this study were the real-time indoor and outdoor PM2.5 16 
concentrations with a 1-min time resolution. The actuator was the window, and this study 17 
assumed that there were only two window-related actions, i.e., the window was fully closed or 18 
fully opened. With the sensors, cloud server, and window actuator, an AIoT system can be 19 
established. The indoor and outdoor PM2.5 concentration data recorded by the light-scattering 20 
sensors will be sent to the cloud through Wi-Fi. With the input data, the control algorithm 21 
operated in the cloud will generate action signals, i.e. the window should be opened or closed. 22 
The action signals will then be sent from the cloud to the window actuator through Wi-Fi to 23 
open or close the window. The control algorithm was trained based on reinforcement learning, 24 
which will be introduced in the following section. 25 

 26 

2.2 Control algorithm 27 

2.2.1 Reinforcement learning framework 28 

The basic framework of reinforcement learning consists of an agent and the environment. The 29 
agent is trained to act properly through interaction with the environment. After proper training, 30 
the agent serves as the control strategy to achieve the control objectives. Three crucial elements 31 
of reinforcement learning are the state 𝑠, the action 𝑎, and the reward function 𝑟, and they 32 
should be carefully designed. The state is the agent’s observation of the environment. The 33 
action is the behavior of the agent in each time step. The reward function allows the agent to 34 
evaluate the effectiveness of its action. At a given time point 𝑡, the agent takes action 𝑎௧ in 35 
accordance with the current observed state 𝑠௧ and the policy 𝜋ሺ𝑎௧|𝑠௧ሻ. As the state changes 36 
from 𝑠௧  to 𝑠௧1 , the agent receives the reward 𝑟௧  and updates the policy with the aim of 37 
maximizing the summation of discounted future rewards, 𝐺௧, which can be expressed by: 38 

 39 

𝐺௧ ൌ 𝑟௧ାଵ  𝛾𝑟௧ାଶ. . . 𝛾்ି௧ିଵ𝑟         ሺ1ሻ 40 
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 1 

where 𝛾 is the discount factor which balances the immediate and delayed rewards, and 𝑇 is 2 
the final time of the whole process. Meanwhile, the value function, 𝑄గሺ𝑠, 𝑎ሻ , is used to 3 
estimate how beneficial it would be to choose a given action 𝑎 in a given state 𝑠.  Here, the 4 
benefit is defined in terms of the future reward that can be expected [39]: 5 

 6 

𝑄గሺ𝑠, 𝑎ሻ ൌ 𝛦గሾ 𝛾𝑟௧ାାଵ

∞

ୀ

|𝑠௧ ൌ 𝑠, 𝑎௧ ൌ 𝑎ሿ         ሺ2ሻ 7 

 8 

where 𝛦గሺ∙ሻ represents the expectation value of the expression inside the brackets under a 9 
given policy 𝜋ሺ𝑎|𝑠ሻ. The state, action, reward function, environment, and discount factors are 10 
modeled as a Markov decision process. To obtain the optimal policy for the process, this study 11 
utilized a deep Q-network (DQN) [47], which combines deep learning with reinforcement 12 
learning to train the agent through multiple iterations. This technique allows the agent to deal 13 
with the continuous state space and learn from the past mistakes. 14 

 15 

As shown in Figure 1, the architecture of the DQN includes two neural networks and a memory 16 
in order to reduce the correlation of network input data and thus avoid overfitting. The behavior 17 
network with parameters 𝑤 makes the decisions, while the target network with parameters 18 
𝑤௧ is used to optimize the behavior network. In each step of the training process, the state 19 
𝑠௧ serves as the input to the behavior network, and it chooses an action 𝑎௧ based on the output 20 
𝑄ሺ𝑠௧, 𝑎௧

∗ሻ  with the ε-greedy strategy. Here, 𝑎௧
∗ represents all the actions that could be chosen. 21 

Under the ε-greedy strategy, the probability that an action is taken randomly is 1 െ ε, while 22 
the probability that an action is taken with the maximum 𝑄ሺ𝑠௧, 𝑎௧

∗ሻ  is ε. With the action 𝑎௧, 23 
the state of the environment changes from 𝑠௧ to 𝑠௧ାଵ, and it is returned to the agent together 24 
with the reward 𝑟௧. The 𝑠௧ାଵ will then be the input to the behavior network in the next time 25 
step. In each step, the ሺ𝑠௧, 𝑎௧, 𝑟௧, 𝑠௧ାଵሻ is stored in the memory, with a total capacity of 𝑁. 26 
Every 𝑛 time steps, a certain number of ሺ𝑠, 𝑎, 𝑟, 𝑠ାଵሻ ሺ𝑚𝑎𝑥ሼ𝑡 െ 𝑁  1,0ሽ  𝑘  𝑡ሻ are 27 
sampled for training of the agent. For each sampled ሺ𝑠, 𝑎, 𝑟, 𝑠ାଵሻ, the 𝑠 and 𝑠ାଵ serve 28 
as the inputs to the behavior and target networks, respectively, and the outputs are the 29 
𝑄ሺ𝑠, 𝑎ሻ  and the maximum of 𝑄௧ሺ𝑠ାଵ, 𝑎ାଵ

∗ ሻ , respectively. Both of these outputs are 30 
utilized to calculate the loss function 𝐿 with the reward 𝑟: 31 

 32 

𝐿 ൌ ሺ𝑟  𝛾𝑚𝑎𝑥𝑄௧ሺ𝑠ାଵ, 𝑎ାଵ
∗ ሻ െ 𝑄ሺ𝑠, 𝑎ሻሻଶ        ሺ3ሻ   33 

 34 

The mini-batch stochastic gradient descent method is used for the loss function summation of 35 
the sampled ሺ𝑠, 𝑎, 𝑟, 𝑠ାଵሻ   to update the parameters 𝑤  in the behavior network. It 36 
should be noted that, every 𝑚  time steps, the parameters of the behavior network 𝑤  are 37 
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duplicated to the target network for updating of the parameters 𝑤௧. The reinforcement learning 1 
framework introduced above was used in the development of the control algorithm in this study. 2 
The following section details the window control algorithm that was based on the 3 
reinforcement learning framework. 4 

 5 
Figure 1. The deep Q-network architecture used in this study. 6 

 7 

2.2.2 Reinforcement learning approach for window control 8 

The reinforcement learning framework introduced above was applied to the control of window 9 
behavior in naturally ventilated buildings for reducing indoor PM2.5 concentrations. In each 10 
time step, the state 𝑠௧ consists of the indoor and outdoor PM2.5 concentrations, which can be 11 
easily obtained by low-cost sensors with a time resolution of 1 min:  12 

 13 

𝑠௧ ൌ ሾ𝐶ሺ𝑡ሻ, 𝐶௨௧ሺ𝑡ሻሿ        ሺ4ሻ 14 

 15 

For the action 𝑎௧,  the window behavior controller is the agent, and thus the decision of 16 
window state is:  17 

 18 

𝑎௧ ൌ 0 or 1       ሺ5ሻ 19 

 20 

where 1 represents the fully open window state, and 0 represents the fully closed window state. 21 
When the 𝑎௧ changes from 0 to 1, the agent opens the window; when the 𝑎௧ changes from 1 22 
to 0, the agent closes the window. The reward function was designed to effectively reduce the 23 
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indoor PM2.5 concentration in the next time step, which is defined as: 1 

 2 

𝑟௧ ൌ െ𝐶൫𝑡Δt൯       ሺ6ሻ 3 

 4 

where Δt represents the time step and is equal to 1 min in this study.  5 

 6 

The DQN network is a fully connected 2×8×2 network with an input layer, a hidden layer, 7 

and an output layer. For the input layer, since the state space is two-dimensional, the number 8 
of nodes was set as 2. For the output layer, since the number of elements in the one-dimensional 9 
action space is 2, the number of nodes was set as 2. For the hidden layer, with fewer nodes, the 10 
agent would learn less information of the environment. On the other hand, more hidden layers 11 
or nodes would result in a time-consuming training process and a higher risk of overfitting. 12 
This study tested several combinations and found that one hidden layer with 8 nodes achieved 13 
the best performance. The training of the DQN was performed in the given naturally ventilated 14 
apartment for a one-month period, which was found to be sufficiently long for obtaining 15 
satisfactory results. The well-trained DQN could then be used to control the window behavior 16 
in that apartment in order to reduce the indoor PM2.5 concentrations.  17 

 18 

3. Demonstration in a virtual typical apartment  19 

3.1 Case setup 20 

As a preliminary proof of concept, this study first applied the proposed reinforcement learning 21 
method to the living room of a virtual typical apartment in Beijing from January 1 to December 22 
31, 2019. The inputs from the sensors were the time-resolved outdoor and indoor PM2.5 23 
concentrations. The hourly outdoor PM2.5 concentrations recorded at the 35 weather stations in 24 
Beijing in 2019 were retrieved from the official air pollution monitoring website. The retrieved 25 
outdoor PM2.5 concentrations were averaged and then interpolated into data with an interval of 26 
1 min, serving as the input data from the virtual outdoor PM2.5 sensor. For a given apartment, 27 
the indoor PM2.5 concentrations would be influenced by the window behavior and also by the 28 
control algorithm. In real applications, such an influence would be directly reflected in the data 29 
measured by the actual indoor PM2.5 sensor. However, in the virtual environment tested in this 30 
study, the indoor PM2.5 concentrations were generated by the particle mass balance model [8]: 31 

 32 

𝑑𝐶ሺ𝑡ሻ
𝑑𝑡

ൌ 𝛼𝑃𝐶௨௧ሺ𝑡ሻ െ 𝛼𝐶ሺ𝑡ሻ െ
𝐴
𝑉

𝑣ௗ𝐶ሺ𝑡ሻ 
𝑆ሶሺ𝑡ሻ

𝑉
      ሺ7ሻ 33 

 34 

where 𝑡  is the time, 𝛼  is the air exchange rate, 𝑃  is the penetration factor, 𝐴  is the room 35 

surface area, 𝑉 is the volume of the room, 𝑣ௗ is the particle deposition velocity, and 𝑆ሶ is the 36 
indoor particle emission rate. Particle resuspension was neglected in this study. It should be 37 
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noted that Eq. (7) was used only for mimicking the environment. More importantly, the indoor 1 
PM2.5 concentrations in the next time step, which would be influenced by the control algorithm, 2 
were calculated from Eq. (7). And these concentrations served as the input data “measured” by 3 
the virtual indoor PM2.5 sensor. 4 

 5 

Shi et al. [48-49] summarized the typical values of the building parameters in the model, 𝛼, 6 
𝑃, 𝐴/𝑉, and 𝑉, for naturally ventilated apartments in Beijing. According to the summarized 7 
data, the 𝛼 when the windows were open and closed was set at 4.38 and 0.21 h-1, respectively; 8 
the 𝑃 when the windows were open and closed was set at 1 and 0.8, respectively; and the 9 
𝐴/𝑉 and 𝑉 were set at 1.63 m-1 and 60.34 m3, respectively. The 𝑣ௗ was calculated according 10 

to the empirical equation proposed by Liu et al. [50]. The 𝑆ሶ was set separately in the training 11 
and testing, so that the robustness of the algorithm could be examined. Note that the 𝑃, 𝛼, and 12 
𝑣ௗ can vary with indoor/outdoor temperature differential, wind speed, and wind direction. As 13 
a preliminary proof of concept, in this virtual environment case, the variations in these 14 
parameters were neglected for the sake of simplicity. As a further proof of concept, the real 15 
apartment case in Section 4 will further consider the variations in 𝑃, 𝛼, and 𝑣ௗ according to 16 
the real data. Furthermore, the room air was assumed to be well-mixed in this virtual apartment 17 
case so that the virtual indoor PM2.5 sensor modeled by Eq. (7) could be valid. However, in real 18 
applications, the real indoor PM2.5 sensor can be installed at any location of interest, which is 19 
not constrained to the well-mixed assumption. 20 

 21 

3.2 Training 22 

The DQN agent was trained from January 1 to January 29 of 2019. As shown in Table 1, the 23 
learning rate, 𝛼 , was set at 0.02 to allow the agent to learn at a moderate speed. The 24 
discounted rate, 𝛾, was set at 0.9 to take future rewards into consideration. The ε-greedy rate, 25 
ε, was set at 0.999 to avoid taking actions randomly most of the time. The replay memory size 26 
and batch size were set at 20,000 and 64, respectively, to allow the agent to remember past 27 
mistakes while keeping the training time within a month. The agent learned every 10 time steps, 28 
in order to reduce the learning time. The target network parameters were updated every 500 29 
time steps. 30 

 31 

Table 1. Hyperparameters for DQN agent training in the virtual typical apartment 32 

Hyperparameters Value 

Network structure 2×8×2 

Learning rate (𝛼)  0.02 

Discounted rate (𝛾) 0.9 

ε-greedy rate (𝜀) 0.999 

Replay memory size (𝑁) 20000 
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Batch size 64 

Learning interval (𝑛) 10 time steps 

Target network update interval (𝑚) 500 time steps 

 1 

To mimic indoor PM2.5 emissions in the virtual apartment, this study set the indoor activities 2 
and PM2.5 emissions in January for the training of the DQN as listed in Table 2. It was assumed 3 
that the occupants cooked breakfast, lunch, dinner, and a midnight snack, smoked a cigarette, 4 
and used the printer twice each day. The PM2.5 emission rates from smoking and printing were 5 
set according to data measured by Chen et al.[13] and Eggert et al. [51], respectively. The 6 
cooking activities were assumed to occur in the kitchen with a range hood. Since the range 7 
hood could not completely remove the PM2.5 generated from cooking, some PM2.5 would enter 8 
to the living room from the kitchen, especially when the kitchen door is open [52-53]. This was 9 
considered as an equivalent PM2.5 emission in the living room due to cooking. The equivalent 10 

PM2.5 emission rates in the living room due to cooking, 𝑆ሶ,௩௧ , can be roughly 11 

estimated by:  12 

 13 

𝑆ሶ,௩௧ ൌ 𝛽ሺ1 െ 𝜂ሻ𝑆ሶ      ሺ8ሻ 14 

 15 

where 𝜂 is the range hood efficiency, which was set at 58% [16], 𝑆ሶ is the original PM2.5 16 

emission rate measured by Chen et al.[16], and 𝛽 is a coefficient which was roughly set at 0.6, 17 
as the field measurements by [53] found that the living room-to-kitchen PM2.5 ratio ranged 18 
from 0.45 to 0.8 during cooking. Furthermore, for each PM2.5 emission, the emission rate was 19 
randomly generated within the uncertainty range shown in Table 2. 20 

 21 

Table 2. Indoor activities and PM2.5 emissions in January 2019 that were set for the training of 22 
the DQN agent controller. 23 

Time Period Occupant behavior PM2.5 emission rate (μg/min) 

0:30 – 0:50 Boiling 34.8 ± 29.9 [16] 

8:00 – 8:20 Steaming 21.8 ± 15.0  [16] 

11:30 – 11:50 Boiling 34.8 ± 29.9 [16] 

14:00 – 14:07 Smoking 2250 ± 390 [13] 

16:00 – 16:05 Printing 61 [51] 

18:00 – 18:10 Deep frying 197.4 ± 64.3 [16] 

20:00 – 20:05 Printing 61 [51] 

 24 

The training lasted for the first 29 days of the year and included 41,760 time steps. In total, the 25 
DQN agent learned 4,176 times. The trained DQN was then used to control the window 26 
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behavior to reduce indoor PM2.5 concentrations for the rest of the year, i.e., from February to 1 
December. 2 

 3 

3.3 Testing of the proposed control algorithm 4 

The trained DQN agent was used to control the window behavior from February 1 to December 5 
31 of 2019, in order to reduce the indoor PM2.5 concentrations. This study assumed that the 6 
occupants stayed in the living room only in the daytime. Therefore, the testing of the proposed 7 
control algorithm was conducted for the time period between 6:00 and 24:00 each day. To 8 
mimic the environment and test the robustness of the proposal control algorithm, the indoor 9 
activities and PM2.5 emissions from February to December, as listed in Table 3, were set 10 
differently from those in January. For each PM2.5 emission, the emission rate was also randomly 11 
generated within the uncertainty range shown in Table 3. It should be noted that the DQN agent 12 
did not have information about the indoor PM2.5 emissions. The only inputs to the control 13 
algorithm were the real outdoor PM2.5 concentrations and the indoor PM2.5 concentrations 14 
“measured” by the virtual sensors.  15 

 16 

Table 3. Indoor activities and PM2.5 emissions from February to December of 2019 that were 17 
set for the testing of the DQN agent controller. 18 

Time period Source type PM2.5 emission rate (μg/min) 

7:30 – 7:50 Steaming 21.8 ± 15.0 [16] 

11:30 – 11:40 Deep frying 197.4 ± 64.3 [16] 

14:00 – 14:07 Smoking 2250 ± 390 [13] 

16:00 – 16:05 Printing 61 [51] 

18:00 – 18:20 Boiling 34.8 ± 29.9 [16] 

22:00 – 22:04 Printing 61 [51] 

 19 

For the sake of comparison, this study set a simple baseline control algorithm that was based 20 
on the I/O ratio. The algorithm opened the windows when the I/O ratio was greater than 1, 21 
while it closed the windows when the I/O ratio was less than 1. The rationale of this control 22 
strategy was that, when the I/O ratio is greater than 1, there must be indoor PM2.5 emissions 23 
that will be diluted by opening the windows. Furthermore, controlling the window behavior 24 
according to the I/O ratio cutoff of 1 was straightforward and served as a baseline for 25 
comparison. 26 

 27 

Figure 2 shows the indoor PM2.5 concentrations from 6:00 to 24:00 on March 8 based on the 28 
proposed reinforcement learning algorithm and the baseline control algorithm. The outdoor 29 
PM2.5 concentrations and the window behavior from both control algorithms are also shown in 30 
the figure. Noted that the PM2.5 emission rates were the same for both algorithms to ensure a 31 
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fair comparison. In general, the indoor PM2.5 concentration from the proposed reinforcement 1 
learning algorithm was lower than that from the baseline control algorithm. 2 

 3 
Figure 2. (a) Comparison of indoor PM2.5 concentrations controlled by the proposed 4 
reinforcement learning and baseline I/O ratio algorithms, and (b) window behavior from both 5 
control algorithms in a virtual typical apartment in Beijing on March 8. 6 

 7 

To facilitate the detailed analysis, the time period was divided into four periods. For period ③ 8 
from 14:00 to 18:00, the indoor PM2.5 emission (smoking) started at 14:00. The reinforcement 9 
learning algorithm kept the windows open from 14:01 to 14:32, while the I/O ratio algorithm 10 
opened the windows only from 14:01 to 14:20. Although the I/O ratio was lower than 1 during 11 
the decay process, the smoking emission still contributed to the indoor PM2.5 concentration 12 
through the process. The additional 12 min of open-window time from the reinforcement 13 
learning algorithm effectively reduced the indoor PM2.5 concentrations in this time period. A 14 
similar phenomenon occurred in period ②.  15 

 16 

For periods ① and ④, the reinforcement learning algorithm resulted in lower indoor PM2.5 17 
concentrations than the baseline algorithm, through a longer open-window time. However, in 18 
period ① between 9:40 and 10:00, although the reinforcement learning algorithm still led to 19 
lower indoor PM2.5 concentrations than the baseline I/O ratio algorithm, the windows were 20 
opened and closed very frequently, mainly because of the rapid drop in outdoor PM2.5 21 
concentration. These frequent actions rendered the algorithms impractical for real applications, 22 
as will be discussed further in the next section. 23 

 24 
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Quantitatively, on March 8, 2019, when the reinforcement learning window control algorithm 1 
was used, the average indoor PM2.5 concentration was 63.13 μg/m3, while the concentration 2 
with the I/O ratio algorithm was 74.10 μg/m3. Namely, the reinforcement learning algorithm 3 
reduced the concentration by 14.80% compared with the I/O ratio algorithm on that day. 4 
Moreover, for 99.9 % of the time on that day, the proposed reinforcement learning algorithm 5 
outperformed the baseline I/O ratio algorithm in reducing indoor PM2.5 concentrations. 6 

 7 

Figure 3 shows the average indoor PM2.5 concentration from February to December when the 8 
reinforcement learning and baseline I/O ratio window control algorithms were used. The 9 
fraction of time that the reinforcement learning algorithm outperformed the I/O ratio algorithm 10 
is also shown as the rectangles. The results show that the reinforcement learning algorithm 11 
effectively lowered the indoor PM2.5 concentrations compared with the baseline throughout the 12 
year. From February to December, the average indoor PM2.5 concentration controlled by the 13 
reinforcement learning algorithm was 25.85 μg/m3, which was 12.80% lower than that 14 
controlled by the I/O ratio algorithm (29.64 μg/m3). Furthermore, in all the months, the indoor 15 
PM2.5 concentrations with the reinforcement learning algorithm were lower than those with the 16 
I/O ratio algorithm for over 98% of the time. Therefore, this virtual typical naturally ventilated 17 
apartment case demonstrated the effectiveness of the developed reinforcement learning 18 
window behaviour algorithm in reducing indoor PM2.5 concentrations. To further demonstrate 19 
the feasibility of the proposed reinforcement learning window control approach, this study 20 
tested the algorithm in an actual apartment. 21 

 22 
Figure 3. Comparison of the monthly average indoor PM2.5 concentration controlled by the 23 
reinforcement learning and baseline I/O ratio algorithms (left vertical axis); and the time 24 
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fraction that the reinforcement learning algorithm outperformed the baseline I/O ratio 1 
algorithm in reducing indoor PM2.5 concentration (right vertical axis) in the virtual apartment 2 
from February to December of 2019.  3 

 4 

4. Demonstration in a real apartment  5 

4.1 Case setup 6 

This study further demonstrated the proposed approach with the use of data measured in the 7 
living room of a real apartment in Tianjin from February 1 to March 31 of 2017. The volume 8 
of the apartment, 𝑉, was 61.22 m3, and the surface area to volume ratio, 𝐴/𝑉, was 1.59 m-1. 9 
The inputs to the algorithm were again the time-resolved outdoor and indoor PM2.5 10 
concentrations. The outdoor PM2.5 concentrations were measured using a light-scattering 11 
sensor with a time resolution of 1 min, which had been calibrated by a gravimetric PM2.5 12 
instrument [36]. It should be noted that, if the proposed algorithm had been used to control the 13 
window behavior during that time period, the indoor PM2.5 concentrations would have been 14 
altered by the behavior. Therefore, this study used the particle mass balance model introduced 15 
in Section 3.1 as a virtual sensor to “measure” the indoor PM2.5 concentrations. The main 16 
difference from the virtual apartment case was that the mass balance model with the specific 17 
parameters of this case mimicked the dynamics of the actual environment.  18 

 19 

Based on our previous work [6], the time periods without indoor PM2.5 emissions in this 20 
apartment were identified. The parameters 𝛼, 𝑃, and 𝑣ௗ were then estimated by a grid search 21 
method, which minimized the root-mean-square error (RMSE) when comparing the model-22 
generated and measured indoor PM2.5 concentrations. According to the results, in February and 23 
March, the 𝛼 when the windows were open and closed was 0.96 ± 0.08 and 0.22 ± 0.06 h-1, 24 
respectively; the 𝑃 when the windows were open and closed was 0.88 ± 0.07 and 0.72 ± 0.06, 25 
respectively; and the 𝑣ௗ when the windows were open and closed was 0.47 ± 0.11 and 0.19 ± 26 
0.07 m∙h-1, respectively. When this method is used, the specific parameters, 𝛼, 𝑃, and 𝑣ௗ, 27 
reflect the dynamics of the actual environment. The real time-resolved indoor PM2.5 emission 28 

rates, 𝑆ሶ , were then calculated by the particle mass balance equation with the building 29 
parameters (𝛼, 𝑃, 𝑣ௗ, 𝐴/𝑉, and 𝑉). Figure 4 compares the indoor PM2.5 concentrations on 30 
March 14 from the actual measurements and the virtual indoor PM2.5 sensor (i.e., the particle 31 
mass balance model with the apartment-specific parameters obtained above). The RMSE and 32 
the relative error between the actual measurements and the virtual indoor PM2.5 sensor for the 33 
two months was 12.17 μg/m3 and 6.2%, respectively. Therefore, the virtual indoor PM2.5 sensor 34 
provided data that was reasonably close to the actual measurements. Since the virtual indoor 35 
PM2.5 sensor can effectively “measure” the indoor PM2.5 concentrations, it was used in both 36 

training and testing. Note that the fitted parameters of 𝛼, 𝑃, 𝑣ௗ, and 𝑆ሶ were only used in the 37 
virtual indoor PM2.5 sensor. The reinforcement learning algorithm does not train or use these 38 
parameters. 39 
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 1 
Figure 4. Comparison of indoor PM2.5 concentrations from the actual measurements and the 2 
virtual indoor PM2.5 sensor (i.e., the particle mass balance model with the apartment-specific 3 
parameters obtained above) in the real apartment in Tianjin on March 14. 4 

 5 

This case study can be regarded as computer experiments. To demonstrate its superiority, the 6 
proposed reinforcement learning algorithm should be compared with the I/O ratio algorithm 7 
and the real window behavior. The computer experiments can ensure that the environment, 8 
which is represented by the particle mass balance model with the fitted parameters obtained 9 
above, was exactly the same for the window control algorithms to be compared. However, in 10 
real experiments, it would be challenging to have identical apartments for comparing different 11 
algorithms. Furthermore, even with the same brand and careful calibration, there would be 12 
deviations among the real PM2.5 sensors. Therefore, compared with real experiments, the 13 
computer experiments can avoid the influence of inconsistency in the apartments and sensor 14 
uncertainties, which is beneficial for the proof of concept. 15 

 16 

4.2 Training  17 

The DQN agent was trained from February 1 to February 23 of 2017. The hyperparameters 18 
were the same as those in Table 1, except for the learning rate 𝛼, which was set at 0.001. 19 
This value was smaller than that in the virtual case because the real apartment case was much 20 
more complex than the virtual case and required a slower learning rate to ensure that the main 21 
features could be fully learned. The training lasted for 23 days, including 33,120 time steps, 22 
and the DQN learned 3,312 times in total. The trained DQN agent was then used to control the 23 
window behavior for reducing indoor PM2.5 concentrations from March 7 to March 31 of 2017. 24 

 25 
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4.3 Testing of the proposed control algorithm 1 

To test the proposed control algorithm, this study used the trained DQN agent to control the 2 
window behavior from March 7 to March 31 of 2017 in order to lower the indoor PM2.5 3 
concentrations. Due to bad weather and unstable power supply, the outdoor PM2.5 concentration 4 
data were missing in several days during the monitoring. There were in total 20 days with 5 
complete input data for the testing. Again, the only inputs to the control algorithm were the 6 
outdoor PM2.5 concentrations from the outdoor PM2.5 sensor and the indoor PM2.5 7 
concentrations “measured” by the virtual indoor PM2.5 sensor. For the sake of comparison, this 8 
study again selected the I/O ratio algorithm as the baseline. Figure 5 shows the indoor PM2.5 9 
concentrations from 6:00 to 24:00 on March 14 based on the reinforcement learning window-10 
control algorithm, the baseline I/O ratio window-control algorithm, and the real window 11 
behaviors. Note that all the results in Figure 5 were all based on the virtual indoor PM2.5 sensor, 12 
i.e. the mass balance model with the same fitted parameters. Therefore, the comparison of the 13 
reinforcement learning algorithm, I/O ratio algorithm, and real window behavior was based on 14 
exactly the same conditions, i.e. the same PM2.5 emission, air exchange rate, penetration factor, 15 
and deposition velocity at any time point. This comparison method can exclude the influence 16 
of the uncertainty of model prediction. The outdoor PM2.5 concentrations and window 17 
behaviors for all three methods are displayed in Figure 5. In general, the indoor PM2.5 18 
concentrations controlled by the proposed reinforcement learning algorithm were lower than 19 
those controlled by the baseline I/O ratio algorithm and the real window behaviors. This 20 
difference can be attributed to the longer open-window time when there were indoor emissions, 21 
or the influence of the emissions on indoor PM2.5 concentration may have remained strong. 22 
Essentially, the reinforcement learning algorithm better captured the characteristics of the 23 
influence of indoor PM2.5 emissions and outdoor PM2.5 concentration variations on the indoor 24 
PM2.5 level. However, it should be noted that frequent window opening and closing actions 25 
occurred in some time periods even with the reinforcement learning algorithm, which would 26 
limit its practical applications. 27 
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 1 
Figure 5. (a) Comparison of indoor PM2.5 concentrations controlled by the proposed reinforcement learning algorithm, the baseline I/O ratio 2 
algorithm, and real window behavior, and (b) window behavior from the three methods in the real apartment on March 14. 3 
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Quantitatively, on March 14, 2017, the average indoor PM2.5 concentration with the 1 
reinforcement learning window control algorithm was 34.94 μg/m3, while that with the I/O 2 
ratio algorithm was 38.97 μg /m3, and that with the real window behavior was 39.03 μg/m3. 3 
Namely, the reinforcement learning algorithm reduced the indoor PM2.5 concentration by 10.80% 4 
compared with the I/O ratio algorithm, and by 10.64% compared with the real window behavior. 5 
In addition, the reinforcement learning algorithm outperformed the I/O ratio algorithm for 6 
96.11% of the time, and the real window behavior for 89.82% of the time, in reducing the 7 
indoor PM2.5 concentrations. 8 

 9 

Figure 6 compares the daily average indoor PM2.5 concentrations in March 2017 under the 10 
reinforcement learning window control algorithm, baseline I/O ratio window control algorithm, 11 
and real window behavior. The results demonstrated that the reinforcement learning algorithm 12 
mitigated the indoor PM2.5 pollution more effectively than the I/O ratio algorithm and real 13 
window behavior throughout the month. When the reinforcement learning window control 14 
algorithm was used, the total average indoor PM2.5 concentration was 47.77 μg/m3, which was 15 
9.11% lower than that with the I/O ratio algorithm (52.56 μg/m3), and 7.40% lower than that 16 
with the real window behavior (51.59 μg/m3). Furthermore, in the month as a whole, the 17 
reinforcement learning algorithm exhibited better performance more than 85% of the time in 18 
reducing the indoor PM2.5 concentration, compared with the I/O ratio algorithm and real 19 
window behavior. According to the global concentration-mortality relationships for ambient 20 
PM2.5 based on the Global Burden of Disease studies, the theoretical minimum-risk 21 
concentration ranges from 5.8 to 8.0 μg/m3 [2,54]. In this case, the indoor PM2.5 concentration 22 
was higher than the theoretical minimum-risk concentration for 93% of the time. Therefore, 23 
almost all the reduction in indoor PM2.5 from using the proposed window control algorithm can 24 
reduce the associated health risks. As a rough estimation, the decrease of indoor PM2.5 25 
concentration from 52.56 μg/m3 to 47.77 μg/m3 can lower the population total attributable 26 
mortality from 97.1 in 100,000 per year to 91.8 in 100,000 per year [54-55] and increase the 27 
life expectancy by about 0.27 years [56]. Considering that the proposed window control did 28 
not require additional energy or consumables such as filters, the improvement in the indoor 29 
PM2.5 control was satisfactory. In general, the real naturally ventilated apartment case 30 
demonstrated the effectiveness and feasibility of the proposed reinforcement learning window 31 
control algorithm in reducing indoor PM2.5 concentration. 32 
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 1 
Figure 6. Comparison of the daily average indoor PM2.5 concentration under the reinforcement 2 
learning window control algorithm, the baseline I/O ratio window control algorithm, and the 3 
real window behavior (left vertical axis); and the time fraction that the reinforcement learning 4 
algorithm outperformed the baseline I/O ratio algorithm and real window behaviors in reducing 5 
indoor PM2.5 concentration (right vertical axis) in the real apartment in March 2017.   6 

 7 

4.4 Control of window behavior frequency 8 

In both cases, the trained reinforcement learning controller took action frequently in some time 9 
periods. Such frequent window opening and closing would be impractical and challenging 10 
because it affects the experience of the residents with frequent operation noise and reduces the 11 
lifetime of the window actuators. Also, the time for a single window opening/closing action for 12 
the actuators available on the market is normally more than 15 seconds, based on the product 13 
specifications provided on the largest e-commerce platforms in China. Using an action interval 14 
of 1 min would be risky, and the window actions would be too frequent. To make the proposed 15 
reinforcement learning algorithm more practical, the minimum window action interval was set 16 
at 5 min for the real apartment case. 17 

 18 

Figure 7 shows the indoor PM2.5 concentrations from 6:00 to 24:00 on March 14 based on the 19 
reinforcement learning window-control algorithm with 1-min and 5-min minimum action 20 
interval, and I/O ratio algorithm. By setting the minimum action interval at 5 min, the frequent 21 
window actions at around 10:40, 11:20, 15:40, 19:00 and 22:00 were successfully avoided 22 
without increasing the indoor PM2.5 concentrations when compared with the algorithm with 1-23 
min minimum action interval. 24 
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 1 
Figure 7. (a) Comparison of indoor PM2.5 concentrations controlled by the proposed reinforcement learning algorithm with 1-min and 5-min 2 
minimum action interval, and the I/O ratio algorithm, and (b) window behavior from the three methods in the real apartment on March 14.  3 
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 1 

Figure 8 compares the daily average indoor PM2.5 concentration in March 2017 under the 2 
reinforcement learning window control algorithm with a 5-min minimum action interval, and 3 
the concentration under the original algorithm. The average indoor PM2.5 concentration when 4 
using the original reinforcement learning algorithm was 47.77 μg/m3, while that with the 5-min 5 
minimum action interval was 47.81 μg/m3. In general, the additional constraint of a 5-min 6 
minimum action interval did not compromise the performance of the reinforcement learning 7 
window control algorithm in reducing indoor PM2.5 concentrations. Therefore, the improved 8 
reinforcement learning window control algorithm can be used in practical applications. 9 

  10 
Figure 8. Comparison of the daily average indoor PM2.5 concentration under the reinforcement 11 
learning window control algorithm with 1-min and 5-min minimum action interval in the real 12 
apartment in March 2017.   13 

 14 

Another concern would be whether the window control with 5-min minimum action interval 15 
can effectively responds to a short but strong indoor PM2.5 emission. For example, assume that 16 
a window closing action occurs at a certain time point for whatever reason. If the occupant 17 
smokes a cigarette 2 min later, although the algorithm would detect the need of opening the 18 
window, the window will not be opened immediately due to the 5-min minimum action interval 19 
constraint. Therefore, there will be a 3-min gap between the smoking and window opening 20 
action, which may influence the effectiveness of the control algorithm. Based on the data in 21 
this real apartment, such scenarios did not occur. However, it is still worthwhile to explore such 22 
extreme cases to further test the robustness of the algorithm. This study assumed that a 7-min 23 
smoking with the PM2.5 emission rate of 2250 μg/(m3·min) [13] occurred at 21:55 on March 24 
14, 2 min after the previous action of closing the window, which corresponded to the extreme 25 
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scenario mentioned above. Figure 9 shows the indoor PM2.5 concentrations from 21:50 to 22:10 1 
on March 14 when using reinforcement learning algorithm with 1-min and 5-min minimum 2 
action interval and the I/O ratio algorithm. The reinforcement learning algorithm with 5-min 3 
minimum action interval opened the window at 21:58, 2 min later than the other two methods. 4 
With this 5-min constraint, the peak indoor PM2.5 concentration was slightly higher than that 5 
with 1-min minimum action interval, and the difference was only 2.0 μg/m3. For the whole 6 
period from 21:50 to 22:10, the average indoor PM2.5 concentrations when using the 7 
reinforcement learning algorithm with 5-min minimum action interval was 145.76 μg/m3, 8 
which was close to that without the constraint (144.56 μg/m3). 9 

  10 
Figure 9. (a) Comparison of indoor PM2.5 concentrations controlled by the proposed 11 
reinforcement learning algorithm with 1-min and 5-min minimum action interval and the I/O 12 
ratio algorithm, and (b) window behavior from the three methods in the real apartment from 13 
21:50 to 22:10 on March 14 (a 7-min smoking occurred at 21:55, 2 min after the previous 14 
action of closing the window). 15 

 16 

5. Limitations and prospects 17 

There are several limitations to the proposed reinforcement learning window control algorithm, 18 
which merits further investigation. First, the proposed algorithm should be implemented more 19 
extensively in real apartments and tested with real online control for identification of potential 20 
issues in practical applications. Second, in real applications, the window behavior is not limited 21 
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to fully open or fully closed. Window opening with different opening angles or opening areas 1 
may result in different air exchange rates for removing indoor PM2.5 from indoor emissions. To 2 
take this factor into account, methods such as the deep deterministic policy gradient (DDPG) 3 
algorithm could be used. Finally, filtration devices such as air cleaners are widely used to 4 
mitigate indoor PM2.5 pollution. The reinforcement learning control algorithm should be further 5 
developed to include the control of these devices, in order to minimize indoor PM2.5 pollution, 6 
also minimize the energy consumption of the filtration devices, and extend the lifetime of the 7 
devices.  8 

 9 

In general, people’s perception is more sensitive to temperature and ventilation than PM2.5. 10 
Therefore, even with a high indoor PM2.5 concentration, the occupants might not response to it 11 
by opening/closing the window, although the exposure may lead to significant health risks. 12 
That is one of the major reasons why an automated control for window is needed to protect 13 
people from what they do not perceive but harmful. There are two possible ways to further 14 
consider the human-window interaction in the system. A simple way is to design the system 15 
with both manual and automated modes. If the occupant wants to take over the control based 16 
on his/her perception, the manual mode can be switched on. A better way is to further train the 17 
control agent to learn the probability that the occupant will open or close the windows based 18 
on temperature, relative humidity, wind speed, etc. If the probability is high, say over 90%, the 19 
human perception-based window action will overwrite the action for indoor PM2.5 control. 20 
Such further development for the window control algorithm would facilitate practical 21 
applications. 22 

 23 

6. Conclusions 24 

This study proposed a reinforcement learning approach to effectively reduce indoor PM2.5 25 
concentrations in any naturally ventilated residential building through automatic control of 26 
window behavior. The proposed window control approach can benefit the occupants living in 27 
naturally ventilated buildings without air cleaners by reducing their exposure to indoor PM2.5 28 
and the associated health risks. The proposed algorithm trained the window controller with a 29 
DQN in a specific naturally ventilated apartment in a one-month period. The trained controller 30 
can now be used to control window behavior to reduce indoor PM2.5 concentrations. The 31 
required input data for the controller are the real-time indoor and outdoor PM2.5 concentrations 32 
with a 1-min resolution, which can easily be obtained with low-cost sensors available on the 33 
market. A series of simulations were conducted in a virtual typical apartment in Beijing and a 34 
real apartment in Tianjin. Within the scope of this research, the following conclusions can be 35 
drawn. 36 

1. The proposed reinforcement learning window control algorithm effectively reduced the 37 
indoor PM2.5 concentrations in the virtual typical apartment. Compared with the 38 
baseline I/O ratio algorithm, the proposed algorithm reduced the average indoor PM2.5 39 
concentration by 12.80% in the course of a year. 40 

2. The proposed reinforcement learning window control algorithm reduced the indoor 41 
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PM2.5 concentrations in the real apartment by 9.11% when compared with the I/O ratio 1 
algorithm, and by 7.40% when compared with real window behavior.  2 

3. Adding a 5-min minimum action interval constraint did not compromise the 3 
performance of the reinforcement learning window control algorithm in reducing 4 
indoor PM2.5 concentrations. 5 
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