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Abstract: 15 

Correctly predicting contaminant transport in enclosed environments is crucial for improving 16 

interior layouts to reduce infection risks. Using the measured airflow field as input to predict 17 

the contaminant transport may overcome the challenges of measuring complex boundary 18 

conditions and inaccurate turbulence modeling in the existing methods. Therefore, this study 19 

numerically explored the feasibility of predicting contaminant transport from the measured 20 

airflow field. A stand-alone Markov chain solver was developed so that the calculations need 21 

not rely on commercial software. Airflow information from CFD simulation results, including 22 

the three-dimensional velocity components and turbulence kinetic energy, was used as 23 

surrogate for experimental measurement based on the spatial resolution of ultrasonic 24 

anemometers. Three cases were used to assess the feasibility of the proposed method, and the 25 

calculation results were compared with the benchmark calculated by the commercial CFD 26 

software. The results show that, when the airflow was simple, such as that in an isothermal 27 

ventilated chamber, the stand-alone Markov chain solver based on the measured airflow field 28 

predicted the trend of contaminant transport and peak concentrations reasonably well. However, 29 

for complex airflow, such as that in non-isothermal chambers with heat sources or occupants, 30 

the solver can reasonably predict only the general trend of contaminant transport. 31 
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1. Introduction 36 

In recent decades, transmission of airborne infectious diseases has become a major public 37 

concern. For example, outbreaks of measles [1], severe acute respiratory syndrome (SARS) [2], 38 

influenzas [3], and coronavirus disease 2019 (COVID-19) [4] have severely threatened human 39 

life and health. All these pandemics have been found to be related to the airflow patterns in 40 

enclosed environments [5], [6], [7]. If an infected person shares a living space with other 41 

occupants, the virus-containing droplets generated through talking, breathing, coughing, and 42 

sneezing can be transported by the airflow and inhaled by other occupants, resulting in cross-43 

infection [8], [9]. In modern society, staying indoors at close proximity to other people is very 44 

common in daily life [10], and increases the chance of airborne diseases transmission. 45 

Therefore, correctly predicting contaminant transport in enclosed environments is important 46 

for improving interior layouts to reduce the risk of infection. 47 

 48 

To predict contaminant transport in an existing indoor environment, a popular approach is to 49 

first conduct on-site measurements of the boundary conditions, then employ computational 50 

fluid dynamics (CFD) to calculate the airflow distribution, and finally use a contaminant 51 

transport model to make the prediction. For example, Zhang and Chen [11] first measured the 52 

boundary conditions, such as the supply air velocity, temperature and the rate of heat generation 53 

by occupants and equipment, in a ventilated room, and then used the renormalized group (RNG) 54 

k-ε model for airflow simulation and the Eulerian model to calculate the particle transport. Pan 55 

et al. [12] first measured boundary conditions such as supply air velocity in a laboratory 56 

chamber, and then used large eddy simulation (LES) to calculate the airflow and the Lagrangian 57 

model to predict the particle transport and deposition. Zhang et al. [13] first measured the air 58 

velocity from supply air diffusers and the temperatures in the boundary areas in an aircraft 59 

cabin mockup, and then calculated the airflow field using the RNG k–ε model and the particle 60 

dispersion with the Lagrangian model. These studies have provided great insight into 61 

approaches for predicting contaminant transport in existing indoor environments. 62 

 63 

However, the accuracy of the methods above depends strongly on accurate calculation of the 64 

airflow distribution, which is challenging in practical applications. One challenge is the 65 

measurement of boundary conditions in some cases. For example, Zhang et al. [13] observed 66 

that it was not feasible to obtain detailed measurements of the three-dimensional air velocity 67 

distribution at inlets with the use of ultrasonic anemometers due to their large size. Chen et al. 68 

[14] ascribed significant discrepancies between simulation results and experimental data to 69 

inaccurate measurement of boundary conditions. Vidal et al. [15] found it difficult to determine 70 

and quantify boundary conditions in practice as it was extremely time consuming to measure 71 

all variables such as temperature, air velocity, and pressure drop. In addition, the existing 72 

turbulence models are not always accurate, especially for prediction of three-dimensional air 73 

velocity components and turbulence quantities. For example, although the RNG k-ε model was 74 

found to have the best overall performance in calculating the airflow distribution in indoor 75 

environments [16], Wang and Chen [17] found that the error in the model’s predictions could 76 

reach 30% for air velocity and turbulence kinetic energy in complex airflows such as forced or 77 



3 

mixed convection. 78 

 79 

The above challenges could be overcome through direct measurement of the whole airflow 80 

field, followed by the use of an appropriate model to predict the contaminant transport. For 81 

airflow measurements, a possible approach is particle image velocimetry (PIV), which is 82 

widely used for 2-D airflow measurements, [18], [19], [20]. A recently proposed volumetric 83 

PIV technique is the tomographic PIV system, which employs four or more cameras to measure 84 

the 3-D air velocity distribution [21]. Although 3-D airflow field measurements for a whole 85 

space are still challenging, the rapid development of advanced sensing technologies may 86 

facilitate such measurements in the near future. Therefore, it is worthwhile to explore the 87 

feasibility of predicting contaminant transport from the measured airflow field in an enclosed 88 

environment. 89 

 90 

Furthermore, in light of the challenges in airflow field measurements, an appropriate 91 

contaminant transport model that can accommodate relatively low-resolution airflow inputs 92 

should be identified. Currently, the Eulerian and Lagrangian models are the most popular for 93 

prediction of contaminant transport. The Eulerian model solves the contaminant transport 94 

equation, while the Lagrangian model tracks each particle by solving its momentum equation 95 

[22]. Normally, these two models require the detailed airflow field as input to calculate the 96 

contaminant transport [23]. It would be challenging to use the Eulerian and Lagrangian models 97 

with relatively low-resolution or even zonal airflow input. Recently, the Markov chain model 98 

was proposed for the prediction of transient contaminant transport [24]. This model is based 99 

on the transition probabilities between zones instead of solving the contaminant transport 100 

equation. The transition probabilities are determined by the rate of airflow from the current 101 

zone to a neighboring zone. Hence, theoretically, the Markov chain model can accommodate 102 

relatively low-resolution or zonal airflow inputs [25]. Furthermore, the Markov chain model 103 

does not require iterations in each time step, and is thus more computationally efficient than 104 

the Eulerian or Lagrangian model. Therefore, this study hypothesizes that  it is feasible to 105 

predict contaminant transport using the Markov chain model based on the measured airflow 106 

field in an enclosed environment. 107 

 108 

This study first developed a stand-alone solver for the Markov chain model in MATLAB 2020a 109 

[26] that can use airflow field data as input and calculate the transient contaminant transport. 110 

An advantage of the solver is that it does not rely on any commercial software, which would 111 

facilitate future practical applications. This study applied the stand-alone Markov chain solver 112 

to three cases in which the input of the airflow field was obtained by virtual measurements 113 

based on CFD simulation. The resolution for the sampling of the virtually measured air 114 

velocities was based on the available experimental technique. The feasibility of using the 115 

Markov chain model to predict the contaminant transport from the measured airflow field was 116 

then explored by means of a case study. 117 

 118 
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2. Methods 119 

2.1 Markov chain model 120 

This study used the first-order homogenous Markov chain technique, in which the future state 121 

is determined by the current state and the probability that the state will change [27]. The whole 122 

airflow field is divided into 𝑛 െ 1 zones, and the 𝑛௧ zone is defined as the space where the 123 

contaminants exhaust. The contaminant quantity (mass or number) at a certain state (denoted 124 

𝑁) is stored in the following vector: 125 

 126 

𝑁 ൌ ൫𝑁,ଵ 𝑁,ଶ … 𝑁,൯ ሺ1ሻ 127 

 128 

where 𝑁, is the quantity of contaminant in zone 𝑖 at state 𝑘. Note that it is assumed that in 129 

one time step, the contaminant in a certain zone can only enter the neighboring zones. Therefore, 130 

after one time step, for state 𝑘  1, the contaminant number in zone 𝑖 can be calculated by: 131 

 132 

𝑁ାଵ, ൌ 𝑁, ∙ 𝑝,   𝑁, ∙ 𝑝,



ሺ2ሻ 133 

 134 

where the subscript 𝑛𝑏 represents the neighboring zones to zone 𝑖. Here 𝑝, and 𝑝, are 135 

the transition probabilities. In this work, 𝑝, is the probability that the contaminant stays in 136 

the current zone, and 𝑝, represents the transport probability that the contaminant will move 137 

from zone 𝑖  to zone 𝑗 . At state 𝑘 , the contaminant concentration in zone 𝑖  (𝐶, ) can be 138 

computed by: 139 

 140 

𝐶, ൌ
𝑁,

𝑉
ሺ3ሻ 141 

 142 

where 𝑉 is the volume of zone 𝑖. The 𝑝, can be computed in accordance with the mass 143 

balance equation [28]: 144 

 145 

𝑝, ൌ exp ൭െ 
𝑄,

𝑉
𝛥𝑡



൱ ሺ4ሻ 146 

 147 

where 𝑄, represents the rate of airflow from zone 𝑖 to the neighboring zone. Assuming 148 

that zone 𝑗 is one of the neighboring zones to zone 𝑖, the 𝑝, can then be calculated by [28]: 149 

 150 
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𝑝, ൌ
𝑄,

∑ 𝑄,
൫1 െ 𝑝,൯ ሺ5ሻ 151 

 152 

Note that within a time step (∆𝑡), the maximum distance (𝑠௫) by which the contaminant can 153 

move is the distance between the center of zone 𝑖  and the furthest boundary of zone 𝑗 . 154 

Assuming that the air velocity (𝑣 ) from zone 𝑖  to zone 𝑗  is 𝑣, , the maximum time step 155 

(∆𝑡௫) can then be estimated by: 156 

 157 

∆𝑡௫ ൌ
𝑠௫

𝑣,
ሺ6ሻ 158 

 159 

The time step used in this study was smaller than the ∆𝑡௫ , in order to comply with the 160 

requirements of the first-order homogenous Markov chain model. 161 

 162 

A mathematical solver was constructed in MATLAB 2020a [26] to execute the Markov chain 163 

model. Note that the solver developed in this study is stand-alone and does not rely on any 164 

commercial software, thus facilitating future practical applications. The input was the measured 165 

airflow field data, and the output was the transient contaminant concentration distributions, 166 

since the Markov chain model is based on the airflow and contaminant transport between zones. 167 

The rate of airflow from zone 𝑖 to the neighboring zone 𝑗, 𝑄,, consists of the mean airflow 168 

rate (𝑄,,) and the turbulent fluctuating airflow rate (𝑄௨௧௨௧,,): 169 

 170 

𝑄, ൌ 𝑄,,  𝑄௨௧௨௧,, ሺ7ሻ 171 

 172 

Fig. 1 depicts the relationship between the airflow measurements and the 𝑄,,  and 173 

𝑄௨௧௨௧,, in the Markov chain model. The three-dimensional air velocity components 174 

(𝑢, 𝑣, 𝑤) and the turbulence kinetic energy (𝑘) are measured at the center of each zone. The 175 

mean airflow rate from the current zone 𝑖 to the neighboring zone 𝑗, 𝑄,,, is calculated 176 

by: 177 

 178 

𝑄,, ൌ
𝑣  𝑣

2
·𝐴 ሺ8ሻ 179 

 180 

where 𝑣 and 𝑣 are the measured mean air velocity in the 𝑦 direction in zones 𝑖 and 𝑗, 181 

respectively, and 𝐴 is the area of the connecting face between zones 𝑖 and 𝑗. The turbulent 182 

fluctuating airflow rate from the current zone 𝑖 to the neighboring zone 𝑗, 𝑄௨௧௨௧,,, 183 

can be calculated from the measured turbulence kinetic energy in zone 𝑖 (𝑘): 184 
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 185 

𝑄௨௧௨௧,, ൌ 𝛼,ඥ2𝑘/3 ∙ 𝐴 ሺ9ሻ 186 

 187 

where the coefficient 𝛼, is used to characterize the influence of the distance between the two 188 

adjacent zones and the time step on the turbulent dispersion of contaminants, which can be 189 

calculated by [24]: 190 

 191 

𝛼, ൌ 2 ∙ ቌ1 െ 𝜙 ቆ
∆𝑠,/∆𝑡

ඥ2𝑘/3
ቇቍ ሺ10ሻ 192 

 193 

where ∆𝑠,  is the distance from the centroid of zone 𝑖  to that of zone 𝑗 ,  𝜙ሺሻ  is the 194 

cumulative distribution function of a standard normal distribution: 195 

 196 

𝜙ሺ𝑥ሻ ൌ
1
2

൬1  𝑒𝑟𝑓 ൬
𝑥

√2
൰൰ ሺ11ሻ 197 

 198 

where 𝑒𝑟𝑓ሺሻ is the error function. 199 

 200 

 201 

Fig. 1. Relationship between the airflow measurements and the airflow rates 𝑄,, and 202 

𝑄௨௧௨௧,, in the Markov chain model. 203 

 204 

2.2 Measured airflow field 205 

2.2.1 Possible measuring technique 206 
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Various techniques can be employed to measure the airflow field in an enclosed environment. 207 

For example, ultrasonic anemometers can be used for three-dimensional air velocity 208 

measurements. However, the size of an ultrasonic anemometer is around 0.15 m, and it may be 209 

too bulky to obtain the airflow distribution with a very high resolution. Nevertheless, since the 210 

Markov chain model can accommodate relatively low-resolution or zonal airflow inputs, the 211 

airflow field data with a resolution of 0.15 m obtained by ultrasonic anemometers may be 212 

sufficient as the input for the Markov chain model. Another potential issue is the time needed 213 

to conduct the measurements for the whole space. The traditional manual operation is not 214 

practical. However, with the rapid development of robotic technologies, automated 215 

measurements with ultrasonic anemometers, like using cable-driven robots with routing design 216 

[29] or robotic arms equipped with probes [30] will significantly reduce the time cost and 217 

enable whole-space measurements in the near future. 218 

 219 

A number of other techniques can be potentially used for whole-space airflow measurements 220 

in a rapid and non-invasive manner. For example, particle image velocimetry can be employed 221 

to characterize the airflow in an enclosed environment. The most frequently used PIV system 222 

can only measure the two-dimensional airflow field [20], which is insufficient as the input for 223 

the Markov chain model. To obtain the three-dimensional airflow field, volumetric PIV systems 224 

such as the tomographic PIV system can be used. However, since volumetric PIV systems 225 

require four or more cameras [21], they are expensive and complicated, and therefore may not 226 

be suitable for practical applications. Light detection and ranging (LIDAR) is another potential 227 

technique for whole-space airflow measurements in the future. LIDAR is a remote sensing 228 

technology that has been widely used in atmospheric physics to measure parameters such as 229 

temperature, pressure, humidity, and wind, and to detect substances such as trace gases, clouds, 230 

and aerosols [31]. In the future, if volumetric PIV systems have advanced to affordable and 231 

portable instruments or if the LIDAR technique is further developed for indoor applications, 232 

the proposed method for predicting contaminant transport from the measured airflow field 233 

would become easier and more practical. 234 

 235 

2.2.2 Virtually measured airflow field  236 

Currently, the feasibility of predicting contaminant transport from the measured airflow fields 237 

with relatively low resolution is unclear. To preliminarily explore this hypothesis, this study 238 

conducted computer experiments based on CFD simulations by commercial software code 239 

ANSYS Fluent [32]. Namely, the high-resolution airflow field calculated by CFD with fine 240 

grids was treated as the “true” airflow. To mimic whole-space airflow measurements using 241 

ultrasonic anemometers, the airflow data, including the three-dimensional air velocity 242 

components and turbulence kinetic energy, were sampled virtually on the basis of a 0.15-m 243 

resolution. The virtually measured airflow data were then used as input for the Markov chain 244 

model to predict contaminant transport in the space using the MATLAB stand-alone solver 245 

developed in this study. The RNG k-ε model was used to calculate the airflow and turbulence, 246 

as recommended for enclosed environments [16]. The equations for the model can be found in 247 

the ANSYS Fluent manual [33]. 248 
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 249 

2.3 Grid strategy for Markov chain calculation 250 

The grid used for Markov chain calculation in this study was hexahedral, and it was determined 251 

from both the airflow sampling points and the geometric properties of the boundary zones. The 252 

grid was constructed with the air sampling points taken as the centroid of each cell. The airflow 253 

field inside each cell was assumed to be uniform, and the airflow properties on a cell face were 254 

determined by its two connecting cells. However, the size of the boundary zones might be 255 

smaller than that of the constructed corresponding cells. For accurate set-up of the boundary 256 

conditions, the cells required further refinement. An example of the grid refinement strategy is 257 

provided in Fig. 2. Here, Fig. 2(a) shows a cell constructed according to the airflow sampling 258 

point with a sampling resolution of 0.15 m; thus, the cell size is 0.15 m × 0.15 m × 0.15 m. The 259 

size of the contaminant source is smaller than the cell size. Fig. 2(b) shows the refined cell 260 

based on the size of the contaminant source, and the division of the original cell into 18 cells.  261 

The airflow data in the 18 cells were set the same as that of the original cell. With this effort, 262 

the grid can truly reflect the sizes of the boundaries and improve the performance of the model. 263 

 264 

(a)  265 
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(b)  266 

Fig. 2. Example of grid refinement for Markov chain calculation: (a) a cell constructed 267 

according to the airflow sampling point with a sampling resolution of 0.15 m, and (b) the 268 

refined cell based on the size of the contaminant source. 269 

 270 

3. Benchmark for contaminant transport 271 

Ideally, the benchmark for evaluating the stand-alone Markov chain solver should be obtained 272 

by means of high-quality airflow and contaminant transport measurements. For preliminary 273 

analysis, this study conducted computer experiments as a proof of concept. Calculated 274 

contaminant transport results based on CFD simulations were used as the benchmark. The CFD 275 

simulation in this study employed the Fluent-based Markov chain solver developed by Chen et 276 

al. [24] for calculating contaminant transport. To ensure that the benchmark results were 277 

reasonably accurate, the CFD program was validated by experimental data from Zhang et al. 278 

[34]. Fig. 3 shows the chamber used by Zhang et al. [34], of which the dimensions were 4 m 279 

(L) × 2.1 m (W) × 2.4 m (H). A supply air inlet was installed on one of the side walls at a 280 

distance of 0.3 m from the ceiling. The outlet was installed on the opposite side wall, at a height 281 

of 0.3 m above the floor. Both the inlet and outlet had dimensions of 0.3 m × 0.3 m. The average 282 

velocity of the supply air was 0.84 m/s; the supply air angle was 10o downward; and the 283 

turbulence intensity was 20%. Particles with diameter of 1 µm were injected into the chamber 284 

through the inlet. The transient particle concentrations were measured by Zhang et al. [34] at 285 

two positions as shown in Fig. 3, and were used for model validation. 286 

 287 
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 288 

Fig. 3. Schematic of the chamber for the particle transport experiment by Zhang et al. [34]. 289 

 290 

The airflow field was obtained with the use of the RNG k-ε model. A grid independence test 291 

was conducted, and the grid resolution of 32,480 was found to be sufficiently fine. The time 292 

step size for calculating the transient transport was set at 0.01 s. Fig. 4 compares the transient 293 

particle concentrations obtained by the CFD simulations and the experimental data. In general, 294 

the calculated results from the CFD simulations captured the peaks of the contaminant transport. 295 

Although there were some discrepancies between the calculated results and the experimental 296 

data, the calculated results from the CFD simulations in this study were close to those 297 

calculated by Zhang et al. [34]. Note that in Fig. 4 (b), the results simulated by Zhang et al. [34] 298 

was smoother than the calculated results in this study. The reason is the time step was set at 299 

0.01 s in this study, while that used by Zhang et al. [34] was 1 s. Therefore, the CFD models in 300 

this study predicted the trend of transient contaminant transport reasonably well, and could be 301 

used as the benchmark for comparison. 302 

 303 
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(a)  304 

(b)  305 

Fig. 4. Comparison of transient particle concentrations calculated by the CFD-Markov chain 306 

model based on commercial CFD software and the experimental data at the two measuring 307 

locations: (a) height = 1.8 m and (b) height = 0.9 m. 308 

 309 

4. Case study 310 

In this study, three cases were used to explore the feasibility of predicting contaminant transport 311 

from the measured airflow field. The three cases focused on the transient contaminant transport 312 

in ventilated chambers under isothermal conditions, with one heat source, and with two 313 

occupants seated face to face, respectively. For all the cases, the benchmark results were the 314 

transient contaminant transport calculated by the validated Fluent-based Markov chain solver 315 

with a high-resolution grid. Based on the “true” airflow field calculated by CFD, the three-316 

dimensional air velocity components and turbulence kinetic energy with a 0.15-m resolution 317 

(the highest resolution that can be achieved when using ultrasonic anemometers) were virtually 318 

sampled. With the virtually measured airflow data as input, the MATLAB stand-alone Markov 319 
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chain solver developed in this study was used to calculate the contaminant transport. The results 320 

were normalized by the maximum concentrations at the initial state: 321 

 322 

𝐶
∗ ൌ

𝐶

𝐶ሺ௫ሻ
ሺ12ሻ 323 

 324 

where 𝐶 and 𝐶
∗ respectively represent the calculated and normalized concentrations at state 325 

𝑘, and 𝐶ሺ௫ሻ is the maximum concentration at the initial state. The normalized results were 326 

then compared with the benchmark to assess the feasibility of predicting contaminant transport 327 

from the measured airflow field. 328 

 329 

4.1 Case 1: Contaminant transport in an isothermal ventilated chamber 330 

The configuration of the chamber in Case 1 is shown in Fig. 3. The thermo-fluid boundary 331 

conditions were the same as those in the validation case. The benchmark CFD calculation was 332 

based on a total grid number of 32,480. Fig. 5 shows the distribution of the airflow sampling 333 

points based on a 0.15 m resolution. Note that due to geometric constraints, some of the 334 

sampling points close to the walls may not be exactly at the interval of 0.15 m. In total, the 335 

airflow measurements were conducted at 5,265 points. The Markov chain grid was constructed 336 

on the basis of the airflow sampling points and the geometric characteristics of boundary zones, 337 

as described in Section 2.2.3. The final Markov chain grid number was 7,695. The 338 

contaminants were injected into the chamber through the supply air inlet for 0.1 s. The time 339 

step size was set at 0.1 s. 340 

 341 
Fig. 5. Distribution of the airflow sampling points with a resolution of 0.15 m for Case 1. 342 

 343 

Fig. 6 depicts the transient contaminant transport in the first 10 s at the cross-section of the 344 

central z-plane. The general trend of the contaminant transport calculated using the stand-alone 345 

Markov chain solver based on the measured airflow field was in good agreement with the 346 

benchmark. Furthermore, the location and time at which the maximum contaminant 347 

concentration occurred were also correctly predicted. Therefore, the computer experiment for 348 
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Case 1 partially demonstrated the feasibility of using the stand-alone Markov chain solver to 349 

predict contaminant transport from the three-dimensional air velocity components and 350 

turbulence kinetic energy in the whole chamber measured by ultrasonic anemometers. 351 

 352 

353 

Fig. 6. Comparison of the contaminant transport between the benchmark and the results 354 

calculated from the measured airflow field at a 0.15-m resolution using the stand-alone Markov 355 

chain solver for Case 1. 356 

 357 

4.2 Case 2: Contaminant transport in a ventilated chamber with a heat source 358 

A schematic of the ventilated chamber for Case 2 [35] is shown in Fig. 7. The dimensions of 359 

the chamber were 2.6 m, 1.3 m and 1.8 m in length, width and height, respectively. Four 2.5-360 

cm wide slots were installed at the edges of the floor to supply cool air at 20 ℃ with a velocity 361 

of 0.08 m/s and turbulence intensity of 10%. Two outlets with dimensions of 0.2 m × 0.2 m 362 

were located on the ceiling. Meanwhile, a 0.2 m (L) × 0.2 m (W) × 0.22 m (H) heat source at 363 

the center of the floor had a heat generation rate of 65 W. The contaminant source was located 364 

above the heat source, and it was set as a pulse source within the duration of 0.2 s. A grid 365 
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resolution of 53,740 was used for the airflow calculation in accordance with a grid 366 

independence test. Fig. 8 shows the distribution of the airflow measuring points based on a 367 

resolution of 0.15 m. There was a total of 1,155 points for the airflow measurements. The 368 

Markov chain grid was then constructed on the basis of the airflow sampling points and the 369 

sizes of boundary zones, and the total grid number was 1,683. The time step size for 370 

contaminant transport calculation was set at 0.2 s for Case 2. 371 

 372 

 373 

Fig. 7. Schematic of the chamber for Case 2 studied by Bolster and Linden [35]. 374 

 375 

 376 

Fig. 8. Distribution of the airflow sampling points with a resolution of 0.15 m for Case 2. 377 

 378 

Fig. 9 compares the contaminant transport in the first 5 s at the cross section of the central x-379 

plane from the benchmark and the stand-alone Markov chain solver. The comparison shows 380 

that the stand-alone Markov chain solver based on the measured airflow field provided a 381 

reasonably good prediction of the upward transport of the contaminants, which was mainly 382 
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driven by the thermal plume generated by the heat source. However, in the first 3 s, the 383 

maximum contaminant concentration calculated from the stand-alone Markov chain solver was 384 

lower than that of the benchmark. From the benchmark, the contaminant concentration 385 

gradients in the z direction were obvious in the first 3 s. However, the gradients were not 386 

reflected due to the relatively large airflow sampling cell with a 0.15 m resolution. Therefore, 387 

if the objective is to obtain the general trend of contaminant transport, the stand-alone Markov 388 

chain solver based on the measured airflow field can be used. However, if the detailed 389 

concentration gradients need to be captured, the proposed method may not be appropriate. 390 

 391 
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 392 

Fig. 9. Comparison of the contaminant transport between the benchmark and the results 393 

calculated from the measured airflow field at a 0.15-m resolution using the stand-alone Markov 394 

chain solver for Case 2. 395 

 396 
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4.3 Case 3: Person-to-person contaminant transport in a ventilated chamber  397 

The configuration of the ventilated chamber with two occupants seated face to face [36] is 398 

shown in Fig. 10. The dimensions of the chamber were 3 m (L) × 3 m (W) × 2.3 m (H). The 399 

distance between the occupants was approximately 1 m. The contaminants were released in the 400 

breathing zone of one occupant, which was assumed to be a single pulse source within the 401 

duration of 0.2 s. It was assumed that the mouth and nose of the occupant were covered with a 402 

tissue, and the initial momentum of the exhaled contaminant was neglected [36]. The supply 403 

air inlet was installed on the side wall near the ceiling, and the outlet was installed on the same 404 

wall but near the floor. The air exchange rate was 3 ACH, and the supply air temperature was 405 

21 ℃. The surface temperature of the human bodies was 32 ℃. The airflow was calculated by 406 

CFD with a grid resolution of 1,415,560, which passed the grid independence test. The 407 

distribution of the airflow measuring points based on a resolution of 0.15 m is shown in Fig. 408 

11. Note that at the locations near boundaries such as walls and occupants, the airflow sampling 409 

cells were larger due to the limitation of geometric structure. In total, there were 3,952 airflow 410 

sampling points. The Markov chain grid was then constructed with a grid number of 5,712 411 

based on the airflow sampling points and sizes of boundary zones. The calculated contaminant 412 

concentrations were normalized by the maximum concentration at the source. The time step 413 

size was set at 0.2 s for Case 3. 414 

 415 

 416 

Fig. 10. Configuration of the chamber with two occupants for Case 3 studied by Chen et al. 417 

[36]. 418 

 419 
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 420 
Fig. 11. Distribution of the airflow sampling points with a 0.15 m resolution for Case 3. 421 

 422 

The results for transient contaminant transport in the first 10 s at the cross-section of plane x = 423 

1.55 m are shown in Fig. 12. The stand-alone Markov chain solver based on the measured 424 

airflow field predicted the general trend of contaminant transport reasonably well when 425 

compared with the benchmark. However, the solver calculated more disperse concentration 426 

patterns than did the benchmark. This was because the use of coarse airflow sampling grids led 427 

to failure in predicting the high-gradient concentration regions. Therefore, as in Case 2, if the 428 

aim is to obtain the general contaminant transport trend, the stand-alone Markov chain solver 429 

based on measured airflow field can be used effectively. However, if capturing the detailed 430 

concentration gradients is crucial, the proposed method will not be feasible. 431 

 432 
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 433 

Fig. 12. Comparison of the contaminant transport between the benchmark and the results 434 

calculated from the measured airflow field at a 0.15-m resolution using the stand-alone Markov 435 

chain solver for Case 3. 436 

 437 

5. Discussion 438 

In practical applications, such as hospital wards [6], aircraft cabins [37], and restaurants [38], 439 

where many cross-infections have occurred, it may be challenging to measure the complex 440 

thermo-fluid boundary conditions. Furthermore, the existing turbulence model may be yield 441 

accurate airflow distribution in those complex environments. Consequently, the existing 442 

approach of using commercial CFD software to predict contaminant transport may not be 443 
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effective. Therefore, this study aimed to preliminarily explore the feasibility of predicting the 444 

contaminant transport using a stand-alone Markov chain solver based on the measured airflow 445 

field in an enclosed environment. Note that the source location and strength need to be provided 446 

in the calculations. According to the computer experiments presented in this study, if the 447 

airflow is simple, such as in the isothermal Case 1, the stand-alone Markov chain solver based 448 

on the measured airflow field can predict the trend of contaminant transport and peak 449 

concentrations reasonably well. However, if the airflow is complex, such as in the non-450 

isothermal Cases 2 and 3, the stand-alone Markov chain solver based on the measured airflow 451 

field can reasonably predict only the general trend of contaminant transport. Besides, the 452 

developed Markov chain solver in this study aims for the contaminant transport in a steady 453 

airflow field. For transient airflow fields, for example, considering natural ventilation, moving 454 

occupants, and door and window behaviors, the solver cannot be directly implemented. It 455 

should be noted that the capability of the proposed method depends strongly on the resolution 456 

of the airflow measurements. This study used a resolution of 0.15 m that was based on the size 457 

of the ultrasonic anemometer. In the future, if non-invasive airflow measuring techniques such 458 

as volumetric PIV [21] and LIDAR [31] systems have advanced to an affordable and portable 459 

level, the applicability of the stand-alone Markov chain solver based on the measured airflow 460 

field will be extended. Furthermore, it would be worthwhile to conduct field measurements of 461 

whole-space airflow to further demonstrate the feasibility of the proposed approach. Currently, 462 

the challenges are the time and effort needed for manual operation of the measurements if 463 

ultrasonic anemometers are used. A cable robot-based automated measuring system is under 464 

development, which would facilitate on-site measurements in the future. 465 

 466 

6. Conclusions 467 

This study explored the feasibility of using a Markov chain model to predict contaminant 468 

transport from the measured airflow field in an indoor environment. A stand-alone Markov 469 

chain solver was developed so that the calculations need not rely on commercial software. The 470 

required airflow information, including the three-dimensional velocity components and 471 

turbulence kinetic energy, was obtained on the basis of the resolution of ultrasonic 472 

anemometers (0.15 m), via virtual airflow measurements simulated by CFD. Three cases were 473 

used to investigate the feasibility of the proposed method, and the calculation results were 474 

compared with the benchmark calculated by the commercial CFD software. The following 475 

conclusions can be drawn: 476 

(1) When the airflow is simple, such as in the isothermal Case 1, the stand-alone Markov 477 

chain solver based on the measured airflow field can predict the trend of contaminant 478 

transport and peak concentrations reasonably well. 479 

(2) When the airflow is complex, such as in the non-isothermal Cases 2 and 3, the stand-480 

alone Markov chain solver based on the measured airflow field can reasonably predict 481 

only the general trend of contaminant transport. 482 

 483 

 484 
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