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Abstract: Ensuring the power balance and reliability of power grids is an increasing challenge 

due to the increasing involvement of intermittent renewable power generations. The use of existing 

heating, ventilation and air-conditioning (HVAC) systems in buildings has attracted increasing 

attention to implement continuous demand response in providing frequency regulation service, 

which can enhance instantaneous power balance and reliability of power grids without extra huge 

investment. However, the energy flexibility of buildings is not consistent, and the capacity 

available for frequency regulation service changes over time due to the changes of working 

conditions. In this study, a hierarchical optimal control strategy, consisting of a regulation bidding 

controller and a power use following controller, is proposed. It optimizes the power use baseline 

and regulation capacity, and controls HVAC systems to provide qualified frequency regulation 

service, considering the tradeoff between financial reward (regulation capacity) and thermal 

comfort while satisfying the operating constraints of HVAC systems. The proposed control 

strategy is validated on a simulation test platform. Results show that the strategy can maximize the 

use of regulation capacity provided by HVAC systems while ensuring the indoor environment 

control quality under a given guarantee rate. 
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Nomenclature  

A geometric area (m2) 

ACE area control error 

ACH air changes per hour 

AGC automatic generation control 

AHU air handling unit 

C capacitance (J/K) 

Cair specific heat capacity of air (J/kg·K) 

Creg regulation capacity (W) 
Cwater specific heat capacity of water (J/kg·K) 

COP coefficient of performance 

f 

h 

conversion coefficient 

enthalpy (J/kg) 

Isolar global solar radiation (W/ m2) 

ICC International Commerce Centre 

i number of the signal point 

MAO maximum accumulated offset 

MTO maximum temperature offset (°C) 

m flow rate (kg/s) 

n1-n4, c1-c2 coefficients 

P power use (W) 

PJM 
Pennsylvania-New Jersey Maryland Interconnection, regional 

transmission organization 

PLR part load ratio 

Q cooling or heating supply/load (W) 

R resistance (K/W) 

r total number of signal points within an hour 

s(i) value of this point 

T temperature (°C) 

V volume of indoor space (m3) 

VFD variable frequency drive 

x time interval between two continuous signal points 

  
Greek letters  
  

        𝛼 air change rate 
        𝛽 relative efficiency to correct the rated COP under different PLRs 
        𝛾 guarantee rate 
        𝜏 time constant 

  
Subscripts  

b baseline 

c controller 

cf comfort 

chw 

d 

chilled water 

designed 

h high 
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i indoor 

inf infiltration 

l low 

m internal mass 

ma manager 

n nominal 

neg negative 

o outdoor 

oc occupant 

op operating 

pos positive 

Pre 

r 

predicted 

return 

s steady-state 

set 

sup 

setpoint 

supply 

w wall 

win window 

 

1. Introduction 

The instantaneous balance and reliability of power grids (reflect in power grid frequency) is 

conventionally guaranteed through frequency regulation provided at the supply side. However,  

more frequency regulation capacity will be needed due to the increasing involvement of 

intermittent renewable power generations [1]. 

Recently, more policies have been passed to encourage demand resources to provide 

frequency regulation service (through continuous demand response) with monetary incentives [1, 

2]. The process and mechanism for the demand side to provide this service is elaborated as follows. 

The authorities of power grids calculate the “area control error” (ACE), the magnitude of the power 

imbalance between the supply side and the demand side. Then, the ACE is transformed and 

normalized to automatic generation control (AGC) signal (a frequency regulation signal from -1 

to 1 for each signal point), and sent to participants involved [3]. The time interval between two 

continuous signal points is normally from 2 to 4 seconds [4, 5]. To provide this service to power 

grids, demand resources should implement continuous demand response, i.e., continuously 

manipulate their power use timely and accurately to follow the AGC signal. Note that demand 

resources can bid different regulation capacities according to their own flexibility for feasible 

financial rewards. Even small power consumers are encouraged to provide this service [6]. A large 
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number of small power consumers can provide a large regulation capacity collectively, and can 

effectively help power grids to relieve power imbalance. In this way, the frequency of power grids 

can be maintained within an acceptable range. On the other hand, the authorities of power grids 

would test whether the power of demand resources can follow the AGC signal properly. For 

example, an electric power organization, PJM (Pennsylvania-New Jersey Maryland 

Interconnection, regional transmission organization) uses performance scores to quantify the 

quality of frequency regulation service provided by the demand side participants [1]. A participant 

is only qualified when it can get a composite performance score not less than 0.75 [7]. Among 

various types of demand resources, heating, ventilation and air-conditioning (HVAC) systems in 

buildings are one of the most promising sources to provide this service [8]. It is because they 

account for a large proportion of electric energy consumption [9, 10] and have great power use 

flexibility [11, 12].  

Power grids also require the participants to bid their power use baseline (Pb) and regulation 

capacity (Creg) prior to each bidding time interval [13]. Here, Pb normally refers to the original 

power use required by demand resources for their main functions. For HVAC systems, Pb normally 

refers to the power needed for maintaining the indoor temperature. Creg is the capacity provided 

for frequency regulation service, i.e., the power use modulation magnitude around Pb. Participants 

prefer to provide regulation capacity as much as possible, which can normally bring more financial 

rewards [7]. This bidding mechanism in the frequency regulation market is very important, which 

allows demand resources to provide proper regulation capacities according to their current 

flexibility without interfering with their main functions. Fabietti et al. [14] and Lymperopoulos et 

al. [15] proposed a stochastic model-predictive control (MPC) controller to determine the Pb and 

Creg of an HVAC system, and validated the control method in the electricity market of Switzerland. 

In the Swiss electricity market, participants are required to provide a Pb schedule and to bid a 

single Creg for the following week [13]. This rule is not favorable for HVAC systems since the Creg 

is sometimes quite limited (at night or the peak hour). To provide a constant Creg, the flexibility of 

building HVAC systems at other times would be wasted. Gorecki et al. [16] proposed a multiple 

layers control strategy, to determine (one day ahead) the Pb and Creg of an electric heater. Similarly, 

a three-layer control strategy was developed by Vrettos et al. [17, 18] to bid Pb and Creg one day 

ahead for fans in HVAC systems. In the study of Cai and Braun [13], a variable-speed rooftop unit 

(belongs to chillers/heat pumps) was used for providing frequency regulation service. A control 
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strategy for Creg resetting (once an hour) was developed to maximize Creg considering the operating 

constraints of the HVAC system, while the constraints associated with thermal comfort (indoor 

temperature) were neglected. The reason is that in their previous study [19], it was found that 

providing frequency regulation service did not affect the indoor temperature significantly. Actually, 

this observation might be reasonable for buildings with small internal heat gain (e.g., residential 

buildings) as a large proportion power use can be changed with a little impact on thermal comfort 

(indoor temperature) [20]. However, for buildings with large internal heat gain (e.g., office 

buildings & commercial buildings), the same proportion power use change can significantly 

impact the thermal comfort (indoor temperature) [20]. Therefore, under this circumstance, the 

constraints associated with thermal comfort should also be considered. Especially, this constraint 

should be more seriously considered when adopting chillers/heat pumps rather than other 

components to provide this service. The reason is that compared with fans or pumps, chillers/heat 

pumps consume much more power [21], which technically can provide a larger regulation capacity 

[22] and have a larger impact on indoor temperature. However, no study can be found in the 

literature that addresses the optimal control of the Pb and Creg for chillers to provide frequency 

regulation service, considering both the operating constraints of HVAC systems and the constraints 

associated with thermal comfort. The tradeoff between financial reward (regulation capacity) and 

thermal comfort hasn’t been considered either. 

In this paper, a hierarchical optimal control strategy, consisting of a regulation bidding 

controller and a power use following controller, is proposed for HVAC systems to provide 

frequency regulation service to power grids. The main innovations and original contributions of 

this work include: (1) The online optimal control issue for HVAC systems to provide frequency 

regulation service is effectively addressed. This strategy can optimize the Pb and Creg, and controls 

HVAC systems to provide qualified frequency regulation service, considering the tradeoff between 

financial reward and thermal comfort while satisfying the operating constraints of HVAC systems; 

(2) A “maximum accumulated offset” (MAO) module in the control strategy is developed by 

analyzing the relationship between frequency regulation signal and the impact of service on 

thermal comfort (indoor temperature). This module can help to solve the stochastic optimization 

problem of bidding regulation capacity in an efficient way. In addition, the positive and negative 

parts of the MAO module are separately considered, which allows it to work more effectively to 

maximize the regulation capacity while ensuring the thermal comfort; (3) To modulate the power 
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of an HVAC system to follow the AGC signal in real time, the chilled water supply temperature 

setpoint (Tchw,supply,set) and the indoor temperature setpoint (Ti,set) are modulated simultaneously, 

which can guarantee the response speed and response amount of the power use of the HVAC 

system. This can, therefore, ensure the quality of frequency regulation service. Control tests are 

conducted on a TRNSYS-MATLAB co-simulation platform to test and validate the proposed 

control strategy.  

2. A hierarchical optimal control strategy 

2.1. Outline of the control strategy 

Fig. 1 shows the outline of the hierarchical optimal control strategy for HVAC systems to 

provide the frequency regulation service. This strategy consists of a regulation bidding controller 

and a power use following controller. The function of the regulation bidding controller is to 

determine the power use baseline (Pb) and regulation capacity (Creg). The function of the power 

use following controller is to determine the reference power use according to AGC signal, as the 

power use setpoint of an HVAC system, and to control the power of the HVAC system to follow 

this reference power use. In this study, a chiller in cooling mode is used to provide frequency 

regulation service following the RegA signal (a type of AGC signal with a relatively low 

frequency). As the power use of fans are affected, it is also considered in this study. In Fig.1, QHVAC 

is the cooling supply of HVAC systems. Ti is the current indoor temperature and Ti,set,oc is the 

indoor temperature setpoint determined by occupants.  

In this study, the PJM electricity market is used as a reference, where the frequency regulation 

belongs to an hour-ahead market. This means that the Pb and Creg should and could only be reset 

once an hour. The regulation bidding controller, therefore, runs once an hour while the power use 

following controller operates continuously when controlling HVAC systems to provide frequency 

regulation service. 
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Fig. 1. Outline of the hierarchical optimal control strategy for HVAC systems to provide 

frequency regulation service. 

2.2. Power use following controller 

As mentioned in Section 2.1, the function of the power use following controller is to determine 

the reference power use (Pset) and to control the power of the HVAC system to follow this Pset. 

The mechanism of this controller is shown in Fig. 2. 

 

Fig. 2. Mechanism of the power use following controller. 

𝑃𝑠𝑒𝑡 = 𝑃𝑏 + 𝐶𝑟𝑒𝑔 × 𝐴𝐺𝐶 𝑠𝑖𝑔𝑛𝑎𝑙                                             (1)  
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Pset is calculated by Eq. (1). Here, AGC signal (i.e., frequency regulation signal) is given by 

power grids directly. As mentioned in the Introduction, the AGC signal has been normalized to a 

range from -1 to 1. Therefore, the range of Pset is from Pb - Creg to Pb+Creg. In this study, to modulate 

the power use of the chiller, the indoor temperature setpoint (Ti,set) and chilled water supply 

temperature setpoint (Tchw,supply,set) are changed simultaneously by the power use following 

controller. As shown in Eqs. (2)-(3), Ti,set,oc and Tchw,supply,set,ma are determined by occupants and the 

manager of HVAC systems respectively while ∆Ti,set,c and ∆Tchw,supply,set,c are determined by two 

proportional integral derivative (PID) sub-controllers included in the power use following 

controller. In this study, the Ziegler-Nichols (ZN) method [23] is firstly used to initially determine 

the parameters of the PID controllers. Then a subsequent tuning is conducted manually until the 

controllers can achieve a satisfied performance. Specifically, the measured power use can follow 

its setpoint properly and achieve a composite performance score not less than 0.75, as mentioned 

in the Introduction. 

𝑇𝑖,𝑠𝑒𝑡 = 𝑇𝑖,𝑠𝑒𝑡,𝑜𝑐 + ∆𝑇𝑖,𝑠𝑒𝑡,𝑐                                                   (2)  

𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦,𝑠𝑒𝑡 = 𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦,𝑠𝑒𝑡,𝑚𝑎 + ∆𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦,𝑠𝑒𝑡,𝑐                         (3)  

Modulating Tchw,supply,set can directly affect the power use of chillers, which can guarantee the 

response speed of the power use. However, it is found in our preliminary tests that some issues 

could be caused when the regulation capacity is large. For example, when the AGC signal point 

changes, the power use of HVAC systems is required to change. However, the cooling demand 

would not change if the indoor temperature setpoint is unchanged. The change of power use and 

the unchanged cooling demand conflict with each other. When a small regulation capacity is 

provided, this conflict is not that significant due to the buffer of the thermal inertia of buildings 

and HVAC systems. However, when the regulation capacity is large and a great response amount 

of the power use is required, this conflict could result in a failure that the power use cannot follow 

Pset. As a result, in this study, Ti,set and Tchw,supply,set are changed simultaneously, which can 

guarantee both the response speed and response amount of the power use of HVAC systems. 

2.3. Description of models used in the regulation bidding controller 

To establish the regulation bidding controller, two models are needed, including a building 

thermodynamic model and an HVAC system power use model. 
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2.3.1. Building thermodynamic model 

The building thermodynamic model used in the controller should consider both computational 

efficiency and accuracy. It should adequately capture the thermal behaviors of buildings to ensure 

its robustness under different conditions. To meet these requirements, a grey-box thermal model 

is finally developed. The development and validation of this model can be found in Appendix A 

and Appendix B, respectively. More details about the construction of a grey-box thermal model 

could be found in our previous work [24]. 

2.3.2. HVAC power use model 

The predicted power use of chillers Pchiller,pre can be determined according to the predicted 

cooling supply QHVAC,pre and COP (coefficient of performance), as shown in Eq. (4). The COP 

under different cooling supply is obtained according to the chiller model under steady state, as 

shown in Eq. (C.3) and Eq. (C.4) in Appendix C.  

𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟,𝑝𝑟𝑒 =
𝑄𝐻𝑉𝐴𝐶,𝑝𝑟𝑒

𝐶𝑂𝑃
                                                            (4) 

As mentioned above, although chillers are mainly used to provide frequency regulation service 

in this study, the power use variation of fans is also considered. The predicted power use of fans 

Pfan,pre can be determined according to Eqs. (5)-(8). Here, Eq. (5) is a designed case when the fan 

is under rated power use, with subscript of d, while Eq. (6) represents any case in operation. Where 

Q is the cooling supply. mair is the air flow rate. hr and hsup are enthalpy value of return air and 

supply air, respectively. In prediction, the enthalpy value of return air hr,pre and supply air hsup,pre 

in the following hour can be directly assumed the same as that in current hour. Final, according to 

the affinity law [25], the power use of fans can be predicted, as shown in Eq. (8). 

𝑄𝑑 = 𝑚𝑎𝑖𝑟,𝑑(ℎ𝑟,𝑑 − ℎ𝑠𝑢𝑝,𝑑)                                                        (5) 

𝑄𝐻𝑉𝐴𝐶,𝑝𝑟𝑒 = 𝑚𝑎𝑖𝑟,𝑝𝑟𝑒(ℎ𝑟,𝑝𝑟𝑒 − ℎ𝑠𝑢𝑝,𝑝𝑟𝑒)                                             (6) 

𝑚𝑎𝑖𝑟,𝑝𝑟𝑒

𝑚𝑎𝑖𝑟,𝑑
=
𝑄𝐻𝑉𝐴𝐶,𝑝𝑟𝑒

𝑄𝑑
×

ℎ𝑟,𝑑−ℎ𝑠𝑢𝑝,𝑑

ℎ𝑟,𝑝𝑟𝑒−ℎ𝑠𝑢𝑝,𝑝𝑟𝑒
                                                 (7) 

𝑃𝑓𝑎𝑛,𝑝𝑟𝑒 = 𝑃𝑓𝑎𝑛,𝑟𝑎𝑡𝑒𝑑(
𝑚𝑎𝑖𝑟,𝑝𝑟𝑒

𝑚𝑎𝑖𝑟,𝑑
)3                                                         (8) 
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2.4. Regulation bidding controller 

2.4.1. Mechanism of the regulation bidding controller 

As mentioned in Section 2.1, the function of the regulation bidding controller is to determine 

the Pb and Creg. The mechanism of this controller is shown in Fig. 3. 

 

Fig. 3. Mechanism of the regulation bidding controller. 

2.4.2. Power use baseline 

As mentioned in the Introduction, the Pb refers to the power use needed to maintain the indoor 

temperature setpoint Ti,set,oc. In this study, Pb is obtained in three steps. 

Step One – Obtain the current state of the building. In our case, the state includes four variables: 

T = (Tw,o Tw,i Ti Tm), the temperature of the out wall, interior wall, indoor air and internal mass, 

respectively (details are present in Appendix A). However, only Ti could be measured in practice. 

To address this issue, a Kalman filter is used to estimate the other immeasurable variables [26].  

Step Two - An optimizer is used to predict the cooling demand QHVAC,pre,b to maintain the 

indoor temperature setpoint Ti,set,oc according to the current state variables T of the building, the 

weather data (To: outdoor air temperature and Isolar: global solar radiation), and the internal heat 

gains (Qinter,i: internal heat gain to indoor air and Qinter,m: internal heat gain to internal thermal 

mass). These internal heat gains are obtained based on the schedules of occupants, lighting, and 
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equipment. There are many studies conducted for the prediction of weather data and the schedules 

which are not the focus of this work. Therefore, these variables in the following hour are assumed 

known in advance. The optimization problem is shown in Eqs. (9)-(10). Here, the Ti,pre is the 

predicted indoor temperature at the end of the following hour. The discretization time of the 

building thermodynamic model in Eq.(10-b) is three minutes after considering the balance between 

the operation speed and prediction accuracy. 

 |𝑇𝑖,𝑝𝑟𝑒 − 𝑇𝑖,𝑠𝑒𝑡,𝑜𝑐|𝑄𝐻𝑉𝐴𝐶,𝑝𝑟𝑒,𝑏
𝑚𝑖𝑛                                                      (9) 

Subject to 

0 ≤ 𝑄𝐻𝑉𝐴𝐶,𝑝𝑟𝑒,𝑏 ≤ 𝑄𝐻𝑉𝐴𝐶,𝑟𝑎𝑡𝑒𝑑                                        (10-a) 

𝑇𝑖,𝑝𝑟𝑒 = 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙(𝑻, 𝑇𝑜 , 𝐼𝑠𝑜𝑙𝑎𝑟 , 𝑄𝑖𝑛𝑡𝑒𝑟,𝑖, 𝑄𝑖𝑛𝑡𝑒𝑟,𝑚, 𝑄𝐻𝑉𝐴𝐶,𝑝𝑟𝑒,𝑏)          (10-b) 

The building thermodynamic model is a linear state space model and the relationship between 

QHVAC,pre,b and Ti,pre is monotonic. Therefore, this optimization problem could be effectively solved. 

Step Three - The HVAC system power use model is adopted to predict the corresponding 

power use baseline Pb. 

𝑃𝑏 = 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟,𝑝𝑟𝑒 + 𝑃𝑓𝑎𝑛,𝑝𝑟𝑒                                             (11) 

2.4.3. Regulation capacity 

Participants prefer to provide regulation capacity as much as possible, which can normally 

bring more financial rewards. However, there are two types of constraints. The first type is the 

operating constraints of HVAC systems (Pop,h and Pop,l). Here, subscript h and l represent high and 

low, respectively. Another type is the constraints associated with the thermal comfort of occupants 

(Pcf,h and Pcf,l). With these constraints and the power use baseline Pb, the regulation capacity Creg 

can be determined by the comparison module (in Fig. 3). Note that Creg cannot be negative. 

𝐶𝑟𝑒𝑔 = 𝑚𝑖𝑛(𝑃𝑜𝑝,ℎ − 𝑃𝑏 , 𝑃𝑐𝑓,ℎ − 𝑃𝑏 , 𝑃𝑏 − 𝑃𝑜𝑝,𝑙, 𝑃𝑏 − 𝑃𝑐𝑓,𝑙)                      (12) 

The following parts present the process to obtain these constraints. 

Operating constraints: Operating constraints are inherent limitations for HVAC systems to 

provide frequency regulation service. In this study, the operating constraints of the HVAC system 

Pop,h is defined as the total power of chillers and fans corresponds to QHVAC,rated, namely Pchiller,rated 
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added by Pfan,rated and Pop,l is defined as the total power of chillers and fans corresponds to 10%∙ 

Qchiller,rated. The reason is as follows. For centrifugal chillers, there are three distinct operation 

mechanisms to change power use, which are originally designed for capacity control, including 

variable frequency drive (VFD), inlet vane control, and hot gas bypass. A VFD is normally used 

to reduce the cooling supply of a chiller from its rated capacity by decreasing the compressor speed, 

typically to about 60% of the rated speed [27]. To further reduce the cooling supply, the inlet vane 

is used to decrease the refrigerant volume flow rate through the centrifugal compressor [28]. At 

the lowest capacity level, normally 10% of rated capacity [29], the hot gas bypass is used to change 

the cooling output. This is inefficient because it has a quite limited impact on power use and should 

be avoided when providing frequency regulation service [4].  

Comfort constraints: Another type of constraints is associated with the thermal comfort of 

occupants (Pcf,h and Pcf,l). According to Eq. (1) in Section 2.2, it can be found that the power use 

of HVAC systems deviates from their power use baselines when providing frequency regulation 

service. This would naturally affect the cooling/heating supply of HVAC systems, which 

eventually affect indoor temperature. Therefore, the comfort criteria (i.e., indoor temperature range) 

set by occupants can also constrain HVAC systems to provide frequency regulation service. 

Actually, since the AGC signal is unpredictable [14], the impact of providing frequency regulation 

service on indoor environment control is also unpredictable. Therefore, it is a stochastic 

optimization problem to determine the constraints. In this study, a “maximum accumulated offset” 

(MAO) module is developed, which can solve this problem in an efficient way. This module is 

developed based on two prerequisites. The prerequisites are introduced in Section 2.4.4, and the 

steps to determine comfort constraints are introduced in Section 2.4.5. 

2.4.4. Prerequisites for the method to determine the comfort constraints  

Prerequisite One - The hourly “maximum accumulated offset” (MAO) of the frequency 

regulation signal is corresponding to the “maximum temperature offset” (MTO) of the indoor 

space. 

As mentioned in Section 2.1, the demand resources should bid the Pb and Creg at the beginning 

of each hour in the PJM market. This, on the other hand, also means that buildings have the 

opportunity to adjust Pb to eliminate the indoor temperature offset caused in the previous hour. 
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Consequently, the problem of indoor temperature offset due to the manipulation of power use 

within a given hour would mainly last within this hour. 

As mentioned in the Introduction, Pb is the power use needed to maintain the indoor 

temperature setpoint. Therefore, taking cooling for example, a positive signal point mainly causes 

a negative offset of indoor temperature, while a negative signal point mainly causes a positive 

offset of indoor temperature. Consequently, the positive (negative) hourly “maximum accumulated 

offset” (MAO) of the AGC signal, in principle, would most likely result in the negative (positive) 

“maximum temperature offset” (MTO) of indoor spaces within an hour (i.e., Prerequisite One).  

The hourly MAO of the AGC signals can be calculated by Eqs. (13)-(14), where r is the total 

number of signal points within an hour (r=1800 in PJM [7]). x is the time interval between two 

continuous signal points (2 seconds in PJM [7]). i is the number of the signal point while s(i) is the 

value of this point. As each point of the AGC signal is between -1 and 1, the range of hourly MAO 

of AGC signal is between -rx and rx (i.e., -3600 to 3600). Particularly, “MAO = rx” means within 

this hour, the power use setpoint is set as Pb+Creg (according to Eq. (1)) continuously, which most 

likely causes the maximum indoor temperature decrease (under cooling mode).  

𝑚𝑎𝑥
𝑛
|∑ 𝑠(𝑖)𝑛
𝑖=1 |       {𝑛 ∈ ℤ|1 ≤ 𝑛 ≤ 𝑟}                                            (13) 

𝑀𝐴𝑂 = 𝑥 ∙ ∑ 𝑠(𝑖)𝑛
𝑖=1                                                         (14) 

Take a historical RegA signal for example, as shown in Fig. 4. According to Eq. (13), the 

maximum accumulated offset point could be found at n = 1560, corresponding to the time point at 

the 3120th second, as marked as time ‘A’ in the figure. The MAO of this signal is -1905.34, which 

is obtained using Eq. (14). This value is actually the area above zero minus the area below zero 

before time ‘A’. 

 

Fig. 4. Calculation of the MAO of a historical RegA signal. 
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To verify the relationship between the hourly MAO of the AGC signal and the MTO of indoor 

spaces within an hour, preliminary tests are conducted on a simulation test platform [30] (detailed 

described in Section 3). The chiller is first controlled to work stably under the conventional control 

strategy, and then it is controlled to follow an hourly AGC signal. The MTO of the indoor space 

within this hour and the hourly MAO of the AGC signal are recorded. Tests are conducted by 

following historical hourly RegA signals in the whole year of 2018, which means that as many as 

8,760 cases are conducted. The results are shown in Fig. 5. A small number of cases represented 

by yellow dots are not typical, which may result from the mismatch between reference power use 

(Pset) and measured power use, or the nonlinear mapping between cooling supply and power use. 

For most cases (represented by red and blue dots), a larger MAO of the signal can cause a larger 

MTO of the indoor space with opposite signs. This observation further verifies Prerequisite One. 

 

Fig. 5. The hourly maximum accumulated offset of RegA signal and hourly maximum 

temperature offset of the indoor space when providing frequency regulation service. 

Prerequisite Two - Although the AGC signal is unpredictable, the hourly MAO of the AGC 

signal conforms to a stable probability distribution. 

Fig. 6 shows the probability distributions of the hourly MAO of RegA signal in each month 

in 2018. It proves that the hourly MAO of the AGC signal conforms to a stable probability 
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distribution. The dashed lines separate the probability distributions into positive parts and negative 

parts. It can be found that the negative parts are much larger than the positive parts.  

 

Fig. 6. The probability distribution of hourly maximum accumulated offset of RegA signal in 

each month in 2018. 

2.4.5. Method and steps to determine comfort constraints 

Based on the above prerequisites, the constraints associated with thermal comfort (Pcf,h and 

Pcf,l) can be determined in two steps. 

Step One - Consider the worst case when the hourly MAO of AGC signal equals lower limit 

(-3600) and upper limit (3600) respectively to determine the nominal constraints associated with 

the thermal comfort (Pcf,n,h and Pcf,n,l). This process is similar to that of calculating the power use 

baseline Pb. Differently, the Ti,set,oc in Eq. (9) is replaced by the allowed indoor temperature limit 

Tl and Th, to obtain corresponding QHVAC,pre,h and QHVAC,pre,l  instead of QHVAC,pre,b (shown in Fig. 

3). Then, the HVAC system power use model is adopted to predict the corresponding Pcf,n,h and 

Pcf,n,l, respectively. 

Step Two - A “maximum accumulated offset” (MAO) module is developed to determine the 

constraints associated with the thermal comfort (Pcf,h and Pcf,l) considering the tradeoff between 

financial reward and thermal comfort. 
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Considering the worst case might ensure that the indoor temperature can be maintained in the 

comfort range. However, it is also feasible to enlarge the financial reward (regulation capacity) 

with a little sacrifice of the thermal comfort (i.e., maintaining the indoor temperature within the 

comfort range with a certain guarantee rate, 𝛾). Fig. 7 shows the positive part and negative part of 

the cumulative probability distribution of the hourly MAO of the RegA signal in 2018. The 

positive and negative parts are separately considered, as their distributions are obviously different. 

In this way, the MAO module can work more effectively to maximize regulation capacity and 

ensure thermal comfort. In Fig. 7, point A means that 90% (𝛾 = 0.9) of the RegA signal that has a 

positive MAO smaller than 1742 (i.e., 𝑀𝐴𝑂𝑝𝑜𝑠,0.9 = 1742). Point B means that 90% of the RegA 

signal that has a negative MAO larger than -2777 (i.e., 𝑀𝐴𝑂𝑛𝑒𝑔,0.9 = −2777).  

 

Fig. 7. Cumulative probability distribution of hourly maximum accumulated offset of the RegA 

signal in 2018 (A) positive (B) negative. 

According to the relationship between the hourly MAO of the AGC signal and the MTO of 

the indoor space shown in “Prerequisite One”, the constraints associated with thermal comfort 

(Pcf,h, and Pcf,l) under a certain guarantee rate can be obtained by Eqs. (15)-(16). In this study, the 

tradeoff between financial reward and thermal comfort is reflected in γ. A smaller guarantee rate 

means more sacrifice of thermal comfort and greater financial reward. A larger guarantee rate 

means less sacrifice of thermal comfort and less financial reward. For example, it is easy to find 

that if a smaller guarantee rate 𝛾 is selected, Pcf,h, would increase while Pcf,l would decrease. As a 

result, the regulation capacity provided would finally increase which means a larger financial 
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reward. In application, managers can determine the minimum guarantee rate to get the maximum 

financial rewards. 

𝑀𝐴𝑂𝑝𝑜𝑠,𝛾

𝑀𝐴𝑂𝑝𝑜𝑠,100%
=
𝑃𝑐𝑓,𝑛,ℎ−𝑃𝑏

𝑃𝑐𝑓,ℎ−𝑃𝑏
                                                        (15) 

𝑀𝐴𝑂𝑛𝑒𝑔,𝛾

𝑀𝐴𝑂𝑛𝑒𝑔,100%
=
𝑃𝑏−𝑃𝑐𝑓,𝑛,𝑙

𝑃𝑏−𝑃𝑐𝑓,𝑙
                                                        (16) 

After all the constraints are obtained, the regulation capacity Creg can be obtained by Eq. (12) 

mentioned above. 

3. Test platform and test arrangement 

In the study, a TRNSYS-MATLAB co-simulation test platform is built, as shown in Fig. 8. 

The regulation bidding controller is built in MATLAB 2014a (32-bit) [31], while the power use 

following controller and other models (i.e., the building model and the HVAC system models) are 

built in TRNSYS 18 (32-bit) [32]. The simulation interval in this study is one second. 

 

Fig. 8. TRNSYS-MATLAB co-simulation test platform. 

The test platform is constructed based on the International Commerce Centre (ICC) in Hong 

Kong. The building is about 490 m high with a total floor area of approximately 321,000 m2 served 

by a typical HVAC system including six identical chillers. The rated cooling capacity and power 

use of each chiller are 7230 kW and 1270 kW, respectively [33]. In this study, only one chiller, 

corresponding to hypothetical one-sixth of the total area, is used for providing frequency regulation 

service. The corresponding total rated power use of fans is 615 kW. In the test platform, only one 
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floor is built in the TRNSYS for simplification. The models of the building and the HVAC system 

are introduced as follows. 

3.1 Dynamic model of building 

In this study, model Type 56 in TRNSYS is used. It is a detailed physical model that can 

precisely describe the dynamic thermal behavior of a building. The settings in the building model 

are presented as follows. 

Envelope: External walls (10 mm gypsum plaster, 100 mm concrete 10 mm cement/sand 

render, 5 mm mosaic tiles, and light color semi-glossy paint [34]) and windows (6 mm single-

glass) [35]. 

Internal mass: 100 kg/m2 wood/plastic material (density: 800 kg/m3, thermal conductivity: 

0.2 w/m·k, specific heat capacity: 1400 J/kg·k, thickness: 0.018 m) [36]. 

Fresh air and infiltration: The building is supplied with fixed amounts of fresh air of 10 L/s 

per person. The building is relatively tight, thus the infiltration rate is set as 0.1 ACH (air changes 

per hour) [37].  

Internal heat gain: The design density of occupants is 9 m2 per person. The design lighting 

power is 30 W/m2. The design equipment power is 30 W/m2. The normal patterns of occupant, 

lighting, and equipment load are shown in Fig. 9. They are expressed in fractions of their respective 

peak values. The internal gain from occupants, lighting, and equipment can be split into convective 

and radiative components (occupants heat gains: 40% latent heat, 20% convective and 40% 

radiative; lighting heat gains: 50% convective and 50% radiative; equipment heat gains: 67% 

convective and 33% radiative) [37]. 
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Fig. 9. Normal patterns of occupant load, equipment load, and lighting load. 

3.2 Dynamic models of the HVAC system 

Different from typical conventional demand response which is used to shift peak load [38-40], 

frequency regulation service is in a very short timescale (i.e., seconds) [9]. Therefore, using steady-

state models could more or less misrepresent the dynamic process of providing frequency 

regulation service [19]. In this study, dynamic models of the HVAC systems are used.  

Chiller: The chiller model is developed by introducing a time constant to the outputs of 

steady-state models. Details can be found in Appendix C. 

Pump and fan: In this study, the power uses of pumps are neglected for simplicity. The reason 

is that compared pumps, chillers/heat pumps and fans consume much more power [21]. This is 

also a common simplification when using chillers for providing frequency regulation service [4, 5, 

8].  For fans, model Type 147 in TRNSYS is used which can describe the power use of variable 

speed fans. 

Air handling unit (AHU): The steady-state characteristics of AHUs are described by Type 

124 in TRNSYS. According to experimental studies on AHUs [41-43], the transient behaviors of 

an AHU can be described by first-order transfer functions. Therefore, similar to chillers, the 

dynamic behavior of AHUs can be obtained by introducing a time constant (set as 12 seconds in 

this study) to the outputs of its steady-state model. 

Water and air pipeline: The dynamic behaviors of air flow and water flow are mainly affected 

by the frequency change of the input power (for variable-speed pumps and fans). According to our 

previous experimental study [44], after a step change of the frequency of the pump, it only takes 2 
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seconds for the water flow to return to a new steady-state condition. Thus, a moving average 

method [45] is used to represent the dynamic behaviors of water flow and air flow. Here, it is 

assumed that the water pipeline and air pipeline have similar dynamic behaviors. The travel time 

of the water in the water loop and the travel time of air in the air loop is also considered, as they 

could have impacts on the response time of chiller power use. These times are estimated based on 

the practical information of the ICC building.  

3.3 Test arrangement  

One day is selected to test and validate the control strategy, while only the period from 7:00 

to 23:00 is presented in Figs. 10-17. The indoor temperature setpoint determined by occupants 

(Ti,set,oc) is 24 °C throughout the day. The comfort range of indoor temperature is from 22°C (Tl) 

to 26°C (Th). The guarantee rate for maintaining the indoor temperature within the comfort range 

is 0.9 (𝛾). Four cases are conducted and compared in order to test the control performance of the 

proposed control strategy.  

Case 1: The system is operated under conventional control.  

Case 2: The system is operated under the proposed control strategy following a hypothetical 

frequency regulation signal which is constant zero. The aim of this case is to generate a 

fundamental scenario for comparison. 

Case 3: The system is operated under the proposed control strategy following a RegA signal 

with relatively small hourly maximum accumulated offsets (MAOs). 

Case 4: The system is operated under the proposed control strategy following a RegA signal 

with relatively large hourly MAOs. 

Note that for Case 2, Case 3 and Case 4, the system is only under the proposed control strategy 

from 8:00 to 22:00, while at other times, the system is under conventional control. The indoor 

temperature setpoint shown in Figs. 10,11,13,16 is the setpoint determined by occupants (Ti,set,oc) 

rather than Ti,set calculated in Eq. (2). 
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4. Results and analysis 

4.1 Test Case 1: Under conventional control strategy 

Fig. 10 shows the measured power use of HVAC systems (i.e., a chiller and fans), indoor 

temperature (Ti) and its setpoint (Ti,set,oc) under conventional control strategy. It can be observed 

that the conventional strategy can effectively control the indoor temperature within the comfort 

range. The conventional strategy belongs to typical feedback control. Therefore, there is some 

delay for the HVAC system to change the cooling supply. For example, at 8:00 and 9:00 when 

there was a rapid increase in cooling load, the room temperature deviated slightly from its setpoint. 

 

Fig. 10. (A) Power use of the chiller (B) indoor temperature and its setpoint - Test Case 1. 

4.2 Test Case 2: Under the proposed control strategy following a constant-zero signal  

In this case, a hypothetical constant zero frequency regulation signal is followed. According 

to Eq. (1) in Section 2.2, it means that the power use baseline (Pb) is directly used as reference 

power use (Pset). The power use of the chiller obtained in this case would be used for comparison 

with that in Case 3. As observed in Fig. 11, the measured power use can follow the power use 

baseline properly. As the building thermodynamic model in the controller could precisely predict 

the cooling demand, the indoor temperature is controlled properly near its setpoint. 
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Fig. 11. (A) Power use of the chiller (B) indoor temperature and its setpoint - Test Case 2. 

4.3 Test Case 3: Under the proposed control strategy following signal with relatively small 

hourly maximum accumulated offsets 

In Case 3, the system is operated under the proposed control strategy from 8:00 to 22:00 following 

a historical RegA signal (359th day in 2018) with relatively small absolute hourly MAOs. Fig. 12 

shows the Pb and the constraints (Pcf,h, Pcf,l, Pop,h, and Pop,l) of regulation capacity in each hour. In 

addition, the Pb in Case 2 is also presented for comparison. Fig. 13 presents the indoor temperature 

and its setpoint.  
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Fig. 12. The power use baseline in Case 2 and the power use baseline and constraints of 

regulation capacity in Case 3. 

 

Fig. 13. (A) Indoor temperature and its setpoint (B) chilled water supply temperature - Test Case 

3. 

It can be found in Fig. 12 that the power use baselines in Case 2 and Case 3 are obviously 

different. This is because that the proposed control strategy can optimize the power use baseline 

to maintain the indoor temperature considering both the current state of the building HVAC system 

and the predicted cooling demand in the following hour. For example, at 14:00, the indoor 

temperature rose to a value relatively far from its setpoint (point A shown in Fig. 13). Therefore, 
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the regulation bidding controller bid a higher power use baseline in the following hour. As 

observed in Fig. 12, the power use baseline in Case 3 is significantly larger than that in Case 2 

from 14:00 to 15:00. 

From Fig. 12, it can also be observed that the difference between Pcf,h and the power use 

baseline Pb is much larger than the difference between the Pcf,l and the power use baseline Pb. It is 

caused by the probability distribution of the hourly MAO of the RegA signal (Fig. 6). As 

mentioned in Section 2.4.4, the positive part of this probability distribution is much smaller than 

the negative part. Therefore, the ratio of 𝑀𝐴𝑂𝑝𝑜𝑠,0.9 to 𝑀𝐴𝑂𝑝𝑜𝑠,100% (0.48) is smaller than the ratio 

of 𝑀𝐴𝑂𝑛𝑒𝑔,0.9  to 𝑀𝐴𝑂𝑛𝑒𝑔,100%  (0.77). Technically, according to Eqs. (15)-(16), a larger 

regulation capacity normally could be bid for down-reserve (an increase of power use [17]) than 

that for up-reserve (a decrease of power use [17]). It is allowable in some power grid organizations 

to bid different capacities for down-reserve and up-reserve [46], while in PJM, the capacities for 

down-reserve and up-reserve are normally required to be the same. The green area in Fig.12 

indicates the final power use range (Pb - Creg to Pb+Creg) when providing frequency regulation 

service. As observed in Fig. 13, the proposed control strategy can work effectively to maintain the 

indoor temperature within the comfort range (22°C to 26°C) while bidding a regulation capacity 

as much as possible, even though the AGC signal is unknown at the time of bidding. As mentioned 

in Section 2.2, the chilled water supply temperature is controlled to adjust the power use of the 

system. It can be observed from Fig.13 that the chilled water supply temperature shows a similar 

trend to the indoor temperature. Differently, it fluctuates more significantly than the indoor 

temperature, for example, at 9:00 am. It is reasonable as the fluctuation of chilled water supply 

temperature is compensated by the thermal inertia of indoor air and internal mass.  

Fig. 14 presents the power use baseline, reference power use Pset, and measured power use in 

Case 3. Similar to this case, the AGC signal through the year of 2018 (i.e., 365 days) is used, and 

the quality of the frequency regulation service over the year is assessed using performance scores 

[7]. The average composite score obtained was 0.792 (correlation score: 0.853, delay score: 0.832, 

precision score: 0.691). This composite score is higher than 0.75, indicating that the chiller can 

fulfill the requirements of PJM to provide this service. More investigation on the performance of 

chillers for providing frequency regulation service can be found in these studies [4, 5, 19]. 
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As mentioned above, at 14:00, the indoor temperature rose relatively far from its setpoint 

(shown in Fig. 13). The reason can be found in Fig.14. From 13:00 to 14:00, the measured power 

was significantly lower than the power use baseline, which resulted in a significant increase in the 

indoor temperature. 

 

Fig. 14. Power use baseline, reference power use, and measured power use - Test Case 3. 

4.4 Test Case 4: Under the proposed control strategy following signal with relatively large hourly 

maximum accumulated offsets 

In Case 4, a signal with large absolute hourly MAOs is selected (237th day in 2018) and 

followed by the HVAC system. Fig. 15 shows the Pb and four constraints (Pcf,h, Pcf,l, Pop,h, and Pop,l) 

of regulation capacity in each hour. In addition, the power use baseline in Case 3 is also presented 

for comparison. It can be found that the power use baselines in Case 3 and Case 4 are also different. 

The reason is the same as that mentioned in Section 4.3.  
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Fig. 15. The power use baseline in Case 3 and the power use baseline and constraints of 

regulation capacity in Case 4. 

Fig. 16 presents the indoor temperature and its setpoint as well as the chilled water supply 

temperature. Fig. 17 presents the power use baseline, reference power use Pset, and measured 

power use in Case 4. As mentioned in Section 3.3, the guarantee rate (𝛾) for maintaining the indoor 

temperature within the comfort range is 0.9. It means under critical conditions when the AGC 

signal has a large absolute MAO, the indoor temperature may exceed the comfort range. For 

example, since the measured power use is significantly lower than the power use baseline from 

17:00 to 18:00 (shown in Fig. 17), the indoor temperature sometimes exceeded the comfort range 

during this period (shown in Fig. 16). However, the maximum temperature only exceeded the 

upper limit of the comfort range slightly in a short time, which could be acceptable in practice. 

Building managers can also change the guarantee rate after considering the tradeoff between 

financial reward and thermal comfort. It is worth noticing that around 20:00, the reference power 

use increased rapidly from its lower limit to its upper limit which was quite challenging for indoor 

environment control. However, the control strategy still maintained the indoor temperature within 

the comfort range under such a condition, which further verified the effectiveness of the proposed 

control strategy. 
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Fig. 16. (A) Indoor temperature and its setpoint (B) chilled water supply temperature - Test Case 

4. 

 

Fig. 17. Power use baseline, reference power use, and measured power - Test Case 4. 

5. Discussion and conclusion  

In real applications, the systems encountered can be more complicated. For example, many 

systems have multiple chillers rather than only one chiller, while the control strategy proposed in 
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this study is also applicable. Of course, more specific new problems can be encountered due to the 

interactions among different components. These problems will be addressed in our further work.  

In a real building, the meter used for measuring the power use of HVAC systems may also be 

responsible for other consumptions. These consumptions may change all the time although they 

are non-controllable. When providing frequency regulation service, their measurement should be 

separated from the HVAC systems. There are two methods, a prediction of these non-controllable 

consumptions should be firstly considered, which does not need further investment. For another 

method, a new dedicated meter can be used for the HVAC systems. Of course, this solution needs 

more investment.  

Another problem that needs to be noticed is the control method used by the power use 

following controller. In this study, it has been emphasized the necessity of simultaneously 

adjusting the indoor temperature setpoint and chilled water supply temperature setpoint to change 

the power use of chillers. This paper just uses two PID controllers which may not be the best way. 

A better control method is worth exploring in the future. 

In summary, in this study, a hierarchical optimal control strategy for HVAC systems is 

proposed to provide frequency regulation service to power grids. This strategy consists of a 

regulation bidding controller and a power use following controller. Control tests are conducted on 

a TRNSYS-MATLAB co-simulation platform to test and validate the proposed control strategy. 

The main conclusions are as follows: 

• The hourly “maximum accumulated offset” (MAO) of the frequency regulation signal 

corresponds to the “maximum temperature offset” (MTO) of the indoor space. 

• Although the AGC signal is unpredictable, the hourly MAO of the AGC signal conforms 

to a stable probability distribution. 

• The regulation bidding controller can optimize the power use baseline and regulation 

capacity, considering the tradeoff between financial reward and thermal comfort while 

satisfying the operating constraints of HVAC systems. 

• The power use following controller can guarantee the response speed and response 

amount of power use of the HVAC system by modulating the chilled water supply 

temperature setpoint and the indoor temperature setpoint simultaneously, which can 

ensure the quality of frequency regulation service. 
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This study effectively addresses the control of HVAC systems for providing frequency 

regulation service to power grids. In real applications, the bidding result (i.e., power use baseline 

and regulation capacity) should be sent to power grids in time. The proposed control strategy does 

not involve complex optimization technologies, which is very convenient and valuable in actual 

use. On the other hand, the proposed control strategy also has some limitations. The first one is the 

simplified building model. This model considers the indoor temperature as a whole, therefore it 

cannot reflect the temperatures of individual rooms. Another limitation is that the performance of 

the proposed control strategy depends on the accuracy of the model. Therefore, its performance 

can be affected if a model with low prediction accuracy is used. 
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Appendix A. Development of the building thermodynamic model 

As shown in Fig. A.1, this model consists of an outdoor side, an envelope, and an indoor side 

with internal mass. The energy balance is expressed by Eqs. (A.1)-(A.7). 
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Fig. A.1. Schematic of the building thermodynamic model. 

𝐶𝑤
𝑑𝑇𝑤,𝑜

𝑑𝑡
=
𝑇0−𝑇𝑤,𝑜

𝑅𝑤,𝑜
+
𝑇𝑤,𝑖−𝑇𝑤,𝑜

𝑅𝑤
+ 𝑄𝑠𝑜𝑙𝑎𝑟,𝑤                                      (A.1) 

𝐶𝑤
𝑑𝑇𝑤,𝑖

𝑑𝑡
=
𝑇𝑤,𝑜−𝑇𝑤,𝑖

𝑅𝑤
+
𝑇𝑖−𝑇𝑤,𝑖

𝑅𝑤,𝑖
                                                 (A.2) 

𝐶𝑖
𝑑𝑇𝑖

𝑑𝑡
=
𝑇𝑤,𝑖−𝑇𝑖

𝑅𝑤,𝑖
+
𝑇𝑚−𝑇𝑖

𝑅𝑖
+
𝑇𝑜−𝑇𝑖

𝑅𝑤𝑖𝑛
+ 𝑄𝑖𝑛𝑡𝑒𝑟,𝑖 + 𝑄𝐻𝑉𝐴𝐶 + 𝑄𝑖𝑛𝑓                      (A.3) 

𝐶𝑚
𝑑𝑇𝑚

𝑑𝑡
=
𝑇𝑖−𝑇𝑚

𝑅𝑖
+ 𝑄𝑠𝑜𝑙𝑎𝑟,𝑚 + 𝑄𝑖𝑛𝑡𝑒𝑟,𝑚                                      (A.4) 

𝑄𝑠𝑜𝑙𝑎𝑟,𝑤 = 𝑓𝑠𝑜𝑙𝑎𝑟,𝑤𝐴𝑤𝐼𝑠𝑜𝑙𝑎𝑟                                               (A.5) 

𝑄𝑠𝑜𝑙𝑎𝑟,𝑚 = 𝑓𝑠𝑜𝑙𝑎𝑟,𝑚𝐴𝑤𝑖𝑛𝐼𝑠𝑜𝑙𝑎𝑟                                             (A.6) 

𝑄𝑖𝑛𝑓 =
𝛼∙(𝑇𝑜−𝑇𝑖)∙𝑉∙𝐶𝑎𝑖𝑟

3600
                                                   (A.7) 

R and C represent the overall heat resistance and capacitance; T denotes temperature; Q 

represents load. Qsolar denotes the heat gains from solar radiation, which include the effect on 

external wall surface (Qsolar,w) and internal thermal mass (Qsolar,m). Qinter denotes internal heat gains, 

which consist of the heat to indoor air (Qinter,i), and the heat to internal thermal mass (Qinter,m); f 

denotes the conversion coefficient for heat gains; A denotes geometric area; Isolar is global solar 

radiation; 𝛼 is air change rate (time per hour). V is the volume of indoor space and Cair is the 

specific heat capacity of air.  

The building thermodynamic model described by the ordinary differential Eqs. (A.1)-(A.7) is 

actually a multiple-input and multiple-output (MIMO) system. This type of system is normally 

described in the form of state space models due to their advantage in explicitly expressing the 

relationship between the system outputs and inputs. In addition, state space models can be used to 

formulate convex optimization problems which in general can be conveniently solved by 

optimization techniques. Therefore, the building thermodynamic model is switched in the form of 

a state space model and set up in the MATLAB, as shown in Eq. (A.8). 

𝑑𝑥 𝑑𝑡⁄ = 𝑎𝑥 + 𝑏𝑢 + 𝑒𝑑                                                   (A.8) 
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where the system matrix 𝑎 =
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, the state vector 𝑥 =

(𝑇𝑤,𝑜 𝑇𝑤,𝑖 𝑇𝑖 𝑇𝑚)𝑇. Input matrix 𝑏 = (0 0 1 𝐶𝑖⁄ 0)𝑇. The control input vector matrix 
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𝑓𝑠𝑜𝑙𝑎𝑟,𝑤𝐴𝑤

𝐶𝑤
0 0

0 0 0 0
1

𝐶𝑖𝑅𝑤𝑖𝑛
−
𝛼𝑉𝐶𝑎𝑖𝑟

3600𝐶𝑖
0

1

𝐶𝑖
0

0
𝑓𝑠𝑜𝑙𝑎𝑟,𝑚𝐴𝑤𝑖𝑛

𝐶𝑚
0

1

𝐶𝑚)

 
 
 

. 

Appendix B. Validation of the building thermodynamic model 

The parameters of the building thermodynamic model are identified by the genetic algorithm 

optimization technique [37]. The objective of the optimization is to minimize the integrated root 

mean square error between predicted cooling load and measured cooling load. A five-day (20–25 

May) period in a typical year is used for model training. Then, another five-day (26–30 May) 

period is used for validation. The time step of the prediction is 3 minutes. The comparison between 

the predicted cooling load and measured cooling load is shown in Fig. B.1.  

 

Fig. B.1. Predicted and measured cooling load of the building. 
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The identification results of the parameters in the building thermodynamic model are listed in 

Table B1. In order to quantify the prediction performance of the model, three indices are used 

including the mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean 

square error (RMSE). The results are listed in Table B2. It can be observed that the building 

thermodynamic model has a good prediction performance. 

Table B.1. Parameters of the building thermodynamic model. 

Cm (J/k) Ci (J/k) Cw (J/k) Ri (K/W) 

2.70E+08 7.26E+06 2.50E+07 2.50E-05 

Rw,i (K/W) Rw,o (K/W) Rw (K/W) Rwin (K/W) 

2.85E-03 9.98E-04 8.97E-03 7.16E-03 

Table B.2. Performance indices of the building thermodynamic model. 

 

 

Appendix C. Dynamic model of the chiller 

The power use of a chiller under steady state conditions can be calculated by Eqs. (C.1)-(C.5). 

Qload is the cooling load of the chiller. mchw represents the flow rate of chilled water. Cwater is the 

specific heat capacity of water. Tchw,supply and Tchw,return are the supply and return chilled water 

temperature respectively. The part load ratio (PLR) is the ratio of the Qload to the chiller rated 

capacity (QHVAC,rated). The coefficient of performance (COP) can be obtained from Eqs. (C.3)-(C.4). 

COPrated is the rated COP and 𝛽 is relative efficiency to correct the rated COP under different 

PLRs, which can be obtained from manufacturers [47, 48]. Accordingly, the power use of the 

chiller at steady state (Ps) can be finally obtained from Eq. (C.5). The transient characteristics of a 

chiller are extracted from the coupled nonlinear differential equations proposed by He [49], which 

are based on the mass, momentum, and energy balances of the refrigerant flowing through a heat 

exchanger tube [50]. According to the experimental study conducted by He [49], in the frequency 

domain, the change of power use (P) (corresponding to the compressor speed [4]) and Tchw,supply 

can be approximated by the first-order transfer function of the change of the chilled water supply 

temperature setpoint ΔTchw,supply,set(s). The transient behavior of the chiller can be then represented 

by Eqs. (C.6)-(C.7). The power use and Tchw,supply in real-time are described by Eqs. (C.8)-(C.9) 

eventually. The time constant is set as 1 minute. Other coefficients, such as c1 and c2, can be 

obtained according to the steady-state performance of the chiller.  

 MAE (W) MAPE (%) RMSE (W) 

Cooling load 3397.08 7.46 4635.64 
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𝑄𝑙𝑜𝑎𝑑 = 𝑚𝑐ℎ𝑤 ∙ 𝐶𝑤𝑎𝑡𝑒𝑟 ∙ (𝑇𝑐ℎ𝑤,𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦)                              (C.1) 

𝑃𝐿𝑅 =
𝑄𝑙𝑜𝑎𝑑

𝑄𝐻𝑉𝐴𝐶,𝑟𝑎𝑡𝑒𝑑
                                                              (C.2) 

𝛽 = 𝑛1 ∙ 𝑃𝐿𝑅
3 + 𝑛2 ∙ 𝑃𝐿𝑅

2 + 𝑛3 ∙ 𝑃𝐿𝑅 + 𝑛4                                      (C.3) 

𝐶𝑂𝑃 = 𝐶𝑂𝑃𝑟𝑎𝑡𝑒𝑑 ∙ 𝛽                                                           (C.4) 

𝑃𝑠 =
𝑄𝑙𝑜𝑎𝑑

𝐶𝑂𝑃
                                                                    (C.5) 

∆𝑃(𝑠) =
𝑐1

𝑠+𝑇
∙ ∆𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦,𝑠𝑒𝑡(𝑠)                                            (C.6) 

∆𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦(𝑠) =
𝑐2

𝑠+𝑇
∙ ∆𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦,𝑠𝑒𝑡(𝑠)                                     (C.7) 

𝑃(𝑡) = 𝑃𝑠 + ∆𝑃(𝑡)                                                            (C.8) 

𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦(𝑡) = 𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦 + ∆𝑇𝑐ℎ𝑤,𝑠𝑢𝑝𝑝𝑙𝑦(𝑡)                               (C.9) 
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