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Abstract 

Machine learning has gained increasing popularity in building energy management due to its 

powerful capability and flexibility in model development as well as the rich data available in 

modern buildings.  While machine learning is becoming more powerful, the models developed, 

especially artificial neural networks like Recurrent Neural Networks (RNN), are becoming more 

complex, resulting in “darker models” with lower model interpretability. The sophisticated 

inference mechanism behind machine learning prevents ordinary building professionals from 

understanding the models, thereby lowering trust in the predictions made. To address this, attention 

mechanisms have been widely implemented to improve the interpretability of deep learning; these 

mechanisms enable a deep learning-based model to track how different inputs influence outputs at 

each step of inference.   
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This paper proposes a novel neural network architecture with an attention mechanism for 

developing RNN-based building energy prediction, and investigates the effectiveness of this 

attention mechanism in improving the interpretability of RNN models developed for 24-hour 

ahead building cooling load prediction. To better understand, explain and evaluate these neural 

network-based building energy prediction models, the obtained attention vectors (or metric) are 

used to visualize the influence of different parts of model inputs on the prediction result. This helps 

the users to understand why predictions are made by the model, as well as how input sequences 

proportionally influence the output sequences. Further analysis of attention vectors can provide 

interesting temporal information for understanding building thermal dynamics, like the thermal 

inertia of the building. The proposed attention-based architecture can be implemented in 

developing optimal operation control strategies and improving demand and supply management. 

The model developed based on this architecture is assessed using real building operational data, 

and shows improved accuracy and interpretability over baseline models (without adopting 

attention mechanisms). The research results help to bridge the gap between building professionals 

and advanced machine learning techniques. The insights obtained can be used as guidance for the 

development, fine-tuning, explanation and debugging of data-driven building energy prediction 

models. 

Keywords: Cooling load prediction; Attention mechanism; Recurrent neural network; 

Interpretable machine learning; Building energy management 

1. Introduction 

Building energy management plays an essential role in global sustainable development due to the 

huge energy consumption of buildings. Building construction and operations take up 36% of global 

final energy use and 39% of energy-related carbon dioxide (CO2) emissions in 2017 [1]. 



Meanwhile, buildings are becoming major users in power grids, and significantly influencing 

supply-demand balance and grid reliability. In Hong Kong, buildings are responsible for over 93% 

of total electricity use, over 30% of which is used by air conditioning [2]. Accurate building 

cooling load and energy consumption prediction is fundamental for reducing building energy 

consumption and improving the reliability of the building-grid eco-system. Building energy use 

prediction models are widely used in developing energy-efficient-optimal control and diagnosis 

methods [3], evaluating building design alternatives [4], and developing the demand and supply 

management strategies in power grids [5, 6].  

Data-driven building energy modeling has attracted increasing interest in recent years as it requires 

little a priori knowledge of buildings and building energy systems which cannot be easily obtained 

in large modern buildings. Advanced machine learning algorithms are adopted to develop accurate 

and computationally efficient data-driven models from massive data in building automation 

systems. Fan et al. [7] exploited the potential of supervised and unsupervised deep learning in 

predicting the 24-hour ahead cooling load of an educational building. Zhang et al. [8] presented a 

weighted-hybrid support vector regression model to forecast building energy consumption of an 

institutional building. Wang et al. [9] compared the building hourly electricity usage prediction 

performance of random forest, regression tree and support vector regression models on two 

educational buildings. 

While machine learning is becoming more and more powerful with the advancement of AI, the 

complexity of models developed, especially artificial neural networks like Recurrent Neural 

Networks (RNN) and Convolutional Neural Networks (CNN), is dramatically increasing. This 

results in “darker” models with lower model interpretability, which means what’s happening inside 

the model is unclear to model users and even model developers. In developing data-driven models, 



a choice usually needs to be made between complex but “darker” models such as RNN and CNN, 

and simple models easier to understand, such as linear regression and decision trees [11]. The latter 

usually cannot fully capture the coupled non-linear dynamics of building operations, thus cannot 

achieve desirable accuracy. Rahman et al. [10] adopted deep RNN for hourly electricity 

consumption prediction of commercial and residential building over a medium-to-long term time 

horizon (i.e. time horizon of ≥ 1 week). Two 6-layered RNN models were proposed to predict 

building electricity consumption. The model input was a combination of weather variables (dry-

bulb temperature and relative humidity), schedule-related variables (the hour of day, day of week, 

day in a given month and month number) and frequency-related variables. Kim and Cho [11] 

proposed a CNN-LSTM neural network to forecast residential electricity consumption. The CNN-

LSTM neural network consists of 7 layers, with more than 190,000 parameters to be optimized. 

Those models are totally incomprehensible to ordinary building professionals. While machine 

learning models play an increasingly important role in smart building management, building 

professionals need to roughly understand how the models work and perform before widely 

embracing the technology. More energy savings are achievable if decision-makers could 

understand and trust the underlying models [13]. Substantial efforts have been made to improve 

the interpretability of machine learning [14-16].  

A few interpretation methods have been developed to make the process of developing black-box 

models and the models themselves understandable to humans. One typical method is to 

approximate a dark black-box model, with an interpretable model (e.g., multivariate linear 

regression and decision tree). Bastani et al. [14] propose  d to construct global explanations of 

complex black-box models using decision trees to approximate the original models. Another 

interpretation method provides summary statistics (e.g., feature importance, and pairwise feature 



interaction strengths) for each input feature to indicate the impact each feature has on the machine 

learning model’s predictions. For instance, Altmann et al. [15] proposed a permutation feature 

importance measure to evaluate the predictive value of an input feature for a black-box model, by 

evaluating how the prediction error increases when a feature is not available. The P-values 

computed with permutation importance were very helpful in deciding the significance of input 

variables, and therefore improved model interpretability. Another method is to find out what 

changes to input can cause a change in output, for example, the widely used counterfactual 

explanations [16]. To explain the prediction 𝑌𝑌 made at a data point 𝑋𝑋, this method aims to find 

another data point 𝑋𝑋′ which is in some way related (or similar) to the original instance 𝑋𝑋 but leads 

to a different prediction 𝑌𝑌′.The counterfactual explanations method requires that the data points 

themselves can be interpreted. Therefore, it works well for images and texts, but is less useful in 

the building energy prediction field with tabular data of numerous features (e.g., cooling load, 

water flow rate, and outdoor dry-bulb temperature). 

Attention mechanisms are a state-of-the-art interpretation method specifically for artificial neural 

networks, inspired by human recognition, which allow neural networks to pay attention to how 

different inputs influence outputs at each step of inference in the model development process and 

explain the influences either quantitatively or graphically. It was originally proposed by Bahdanau 

et al. [17] in the context of Neural Machine Translation as an enhancement to the RNN with the 

encoder-decoder architecture. Afterwards, several variants of attention mechanisms have been 

proposed, and they have advanced the state-of-the-art in machine translation [18], image 

captioning [19], video captioning [20], visual question answering [21] and generative modeling 

[22], etc.  For instance, Luong et al. [18] proposed two effective implementations of attention 

mechanisms in neural machine translation: a global implementation  attending to all source words 



continuously and a local one examining only  a subset of source words at a time. The results 

showed that the local implementation significantly improved performance over non-attentional 

systems. Xu et al. [19] constructed an attention-based CNN-RNN model for image capturing. The 

research showed how the model automatically learned to fix its gaze on salient objects while 

generating the corresponding words in the output sequence. Various researchers have shown the 

effectiveness of attention mechanisms in improving the interpretability of neural networks in many 

areas. However, the performance of attention mechanisms in deep learning-based building energy 

use prediction is not yet clear.  

This paper investigates the effectiveness of attention mechanisms in improving the interpretability 

of RNN models for 24-hour ahead building cooling load prediction. To the best of the authors’ 

knowledge, this is the first study adopting attention mechanism-based neural networks in building 

energy consumption prediction. Attention metrics are developed to explain and visualize why a 

certain prediction is made by the model, and how inputs contribute proportionally more to the 

output. The introduction of attention mechanisms into RNN models proposed in this study also 

provides a novel approach for understanding building thermal dynamics like the thermal response 

of the building, by further analyzing the attention vector for discovering crucial temporal 

information. This approach is a valuable supplementary to existing physics-dominated methods 

for characterizing the dynamics of large complex buildings. Furthermore, this paper proposes an 

attention based neural network architecture for building energy use prediction, which is valuable 

for building professionals to understand and adopt neural network models.  A 24-hour ahead 

building cooling load prediction model is developed based on this architecture and assessed and 

compared with baseline models using real building operational data. 



The remaining part of the paper is organized as follows. Chapter 2 presents an overview of RNN 

including typical techniques for improving it.  Chapter 3 presents the research methodology. The 

research results are presented and discussed in Chapter 4 and conclusions are drawn in Chapter 5.  

2. Overview of RNN 

2.1 Basics of recurrent neural networks 

Recurrent neural networks (RNNs) were developed for analyzing time-series data and have been 

successfully used in various fields, such as speech recognition, machine translation and image 

captioning [23, 24]. RNN deals with input sequence/time-series data by individual vectors at each 

step and preserves the information it has captured at previous time steps in a hidden state.  

Fig. 1 shows the difference between conventional artificial neural network (ANN) and RNN. Fig. 

1(a) presents an example of a conventional ANN with one input layer, one hidden layer (i.e. a 

dense layer), and one output layer. The 𝑊𝑊1, 𝑊𝑊2, 𝑏𝑏1, and 𝑏𝑏2 are weights and biases. 𝐴𝐴𝐴𝐴𝐴𝐴1(𝑧𝑧) and 

𝐴𝐴𝐴𝐴𝐴𝐴2(𝑧𝑧) are the activation functions. The processes of conventional ANN generating each output 

sample (e.g. 𝑌𝑌𝐴𝐴) using the corresponding input sample (e.g. 𝑋𝑋𝐴𝐴) are the same, and do not affect 

each other. 

Fig. 1(b) presents an example of RNN using the basic recurrent unit. The 𝑊𝑊ℎ, 𝑊𝑊𝑦𝑦, and 𝑈𝑈ℎ are 

matrices containing input weights, output weights and recurrent weights, respectively. 𝐴𝐴𝐴𝐴𝐴𝐴ℎ(𝑧𝑧) 

and 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦(𝑧𝑧) are activation functions, and 𝑏𝑏ℎ and 𝑏𝑏𝑦𝑦 are biases. A hidden state vector 𝐻𝐻𝑡𝑡, which 

has the same length as the input variables, is defined to preserve the information which has been 

observed. Its values are set to zero at the initial time step. The hidden state vector at time step 𝑇𝑇 −

1  (𝐻𝐻𝑇𝑇−1) will be used together with the input data at time step 𝑇𝑇 (𝑋𝑋𝑇𝑇) to calculate the hidden state 



at time step 𝑇𝑇 (𝐻𝐻𝑇𝑇). In principle, RNN is able to preserve information observed in previous time 

steps, and has higher potential than conventional ANN to learn temporal relationships or dynamics. 

 

Fig. 1. Schemata of (a) conventional ANN, (b) RNN 

However, the capability of a RNN in capturing long-term temporal relationships is usually limited 

due to the problem of vanishing or exploding gradients, i.e. that the model will become untrainable 

with an increase in recurrent operations [25]. Over the past couple of decades, several variants of 

RNN have been proposed to deal with this problem. The most effective and widely-used solutions 

are the Long Short-Term Memory (LSTM) units [25], and the Gated Recurrent Units (GRU) [26]. 

LSTM creates an additional cell state for information processing (learning what data in a sequence 

is important to keep). That is, the output at each time step is calculated based on the input data, the 

hidden state and the cell state. The LSTM enables the reinjection of past information at a later time 

by calculating by what percentage will the past information be allowed to affect the present 

information, thus helping to deal with the problem of vanishing or exploding gradients [24]. The 



GRU has been proposed as a simplified alternative to the LSTM, which uses only an update gate 

and a reset gate and therefore has higher computation efficiency at the expense of slight model 

accuracy degradation. In this study, the basic recurrent units, LSTM and GRU will be used to 

develop 24-hour ahead cooling load prediction models and their performance will be compared. 

2.2 Strategies for multi-step ahead prediction  

 

Fig. 2. Strategies for multi-step ahead predictions [27] 

Time series predictions can be classified into one-step ahead prediction and multi-step ahead 

prediction. The former usually needs one prediction model to make prediction at the next time step 

only, but the latter may use the same or different prediction models at different time steps. The 

input used for prediction at each step in multi-step ahead prediction may be the same or different.  

Therefore, the architecture of multi-step ahead prediction is an issue to be considered. There are 

three main inference strategies for multi-step ahead predictions, i.e., the recursive strategy, the 

direct strategy, and the multi-input-multi-output (MIMO) strategy as shown in Fig. 2 [27]. T1, T2 

and T3 in the figure represent predictions made at consecutive time steps. Historical time series 

data are used as the input. The recursive strategy is based on one-step ahead prediction for 

generating multi-step ahead predictions. The prediction at time step 𝑇𝑇 will be used as the model 

input for the next prediction, and the process continues recursively till the prediction is completed 

over the entire time horizon defined by the number of steps. On one hand, the recursive strategy is 



easy to implement and relies solely on a one-step ahead prediction model. On the other hand, it 

may suffer from the problem of error accumulation, as the input of predicted values into later 

prediction causes any error which occurs to accumulate along the prediction time horizon. The 

resulting prediction accuracy can be very poor, especially when the prediction time horizon is long. 

By contrast, the direct strategy develops different models for each time step in the prediction time 

horizon, or n models to predict values at times 𝑇𝑇 + 1, 𝑇𝑇 + 2, …, 𝑇𝑇 + 𝑛𝑛 , respectively. Compared 

with the recursive strategy, the direct strategy does not suffer from the problem of error 

accumulation. However, it requires more computational resources as multiple models are needed. 

In addition, since the predictions at different time steps are generated independently using different 

models, the prediction profiles may be incoherent and disconnected. 

 

Fig. 3 Diagram of a sequence to sequence architecture 

The MIMO strategy, whose inputs and outputs are time series of either a single variable or multiple 

variables, has been proposed to better capture the stochastic dependencies among future values 

(input sequence) [28]. In principle, it can avoid the problem of error accumulation associated with 

the recursive strategy and overcome the problems caused by using different prediction models at 

different steps in the direct strategy [29]. For multi-step building energy consumption prediction, 



the MIMO strategy stands out from recursive and direct strategies in terms of prediction accuracy 

and flexibility [27]. 

To implement the MIMO strategy using RNN, a sequence-to-sequence (Seq2Seq) or encoder-

decoder architecture, as shown in Fig. 3, can be adopted [30, 31]. The encoder and the decoder are 

developed based on RNN. The encoder transforms the input sequence into a context vector and 

stores its hidden states, while the decoder generates the output sequence based on the context 

vector. Such architecture can provide a great flexibility in practical applications, as it allows the 

output sequences to have a length different from that of the input sequence. The decoder can use 

either the context vector encoded as the input for decoding at every time step or the encoder’s 

hidden states as its initial state and generates successive predictions based on previous decoding 

output iteratively. In this study, the latter is used for developing a Seq2Seq model as it is easier to 

implement. 

2.3 Introduction of Attention mechanism into RNN  

An inherent problem with seq2seq models is that the context vector produced by the encoder is of 

a fixed-length. When applied to modeling over long prediction horizons, the length of the context 

vector doesn’t increase which may result in information loss. When the length of an input or output 

sequence increases, it is difficult to encode all information contained in a long sequence into a 

single context vector. Consequently the decoder cannot produce an accurate prediction based on 

that vector [33]. The accuracy of seq2seq models degrades significantly with increases in the length 

of input and output sequences, which is a persistent problem in Neural Machine Translation [34].   



 

Fig. 4. Diagram of an encoder-decoder model with an attention mechanism 

Attention mechanisms, first proposed by Bahdanau et al. [17], address the aforementioned problem 

by assigning high attention weights to parts of long input sequences of high relevance to the output 

sequences, and enabling neural networks to focus more on those parts. A diagram of an encoder-

decoder model with an attention mechanism is shown in Figure 4. Such models iteratively process 

their input sequence by selecting content with high relevance to the output at every step.  



 

Fig. 5. The graphical illustration of the Attention-based model trying to generate the t-th output 

time step 𝑦𝑦𝑡𝑡 given a input sequence [𝑥𝑥1, … 𝑥𝑥𝑇𝑇]  [17] 

As shown in Fig. 5, given the input sequence [𝑥𝑥1, … , 𝑥𝑥𝑇𝑇] and output sequence [𝑦𝑦1, … ,𝑦𝑦𝑡𝑡] (T and t 

do not need to be the same), the Bahdanau attention mechanism works as follows: instead of the 

context vector being passed only once at the start of decoding, a unique context vector 𝐴𝐴𝑐𝑐𝑖𝑖 (also 

called attention vector) is calculated for each output time step 𝑦𝑦𝑖𝑖. The encoder  used here generates 

a sequence of annotations [ℎ1, … ,ℎ𝑇𝑇] for each vectors (i.e. 𝑥𝑥𝑗𝑗) in the input sequence. Using the 

softmax function, the context vector 𝐴𝐴𝑐𝑐𝑖𝑖 is then computed as a weighted sum  of these annotations 

with Eq. (1). The weight 𝛼𝛼𝑖𝑖𝑗𝑗  of each annotation ℎ𝑗𝑗  is computed using Eq. (2), where 𝑒𝑒𝑖𝑖𝑗𝑗 =

𝑎𝑎(𝑠𝑠𝑖𝑖−1,ℎ𝑗𝑗) is an alignment function which scores how well the inputs around position j match the 

output at position i. This score is based on the RNN hidden state 𝑠𝑠𝑖𝑖−1 (just before emitting 𝑦𝑦𝑖𝑖) and 

the j-th annotation ℎ𝑗𝑗  of the input sequence. At last, the decoder generates an output for the i-th 



time step by using the i-th context vector 𝐴𝐴𝑐𝑐𝑖𝑖 and the previous hidden outputs 𝑠𝑠𝑡𝑡−1. The alignment 

model can be parametrized as a feedforward neural network which is jointly trained with all the 

other components of the proposed system.  

𝐴𝐴𝑐𝑐𝑖𝑖 = �𝛼𝛼𝑖𝑖𝑗𝑗ℎ𝑗𝑗

𝑇𝑇

𝑗𝑗=1

 (1) 

𝛼𝛼𝑖𝑖𝑗𝑗 =
exp�𝑒𝑒𝑖𝑖𝑗𝑗�

∑ exp(𝑒𝑒𝑖𝑖𝑘𝑘)𝑇𝑇
𝑘𝑘=1

 (2) 

Instead of encoding all information in a long sequence into a single and identical context vector 

for all output time steps, attention mechanisms enable the model to calculate a unique context 

vector for each output time step. In other words, when generating outputs at different time steps, 

the model does not rely on all inputs equally, but focuses on the most relevant parts of the input 

sequence. In doing so, the encoding and decoding processes become more accurate, effective, and 

reliable. The attention mechanism has proved to be effective in improving the performance 

(including prediction accuracy) of neural networks [18-22]. 

Attention mechanisms can enhance model interpretability. Take university ranking as an example. 

The task is to predict ranking indicators (e.g. reputation, citations, and faculty/student ratio) based 

on all the related information of a university (e.g. location, staff list, research funds etc.).  Based 

on all the related information of a university (e.g. location, staff list, research funds etc.), a 

traditional neural network (without adopting attention mechanism) can generate the predictions of 

ranking indicators (e.g., reputation, citations, faculty/student ratio). Still, it cannot explain to you 

how different inputs influence these indicators. However, an attention-based neural network can 

not only make the same predictions, but also elucidate how different ranking indicators are 

generated. For instance, predicting the reputation indicator relies more on the survey results of 



academics and employers, while the citations of all research publications and the number of faculty 

members play a significant role in the citation indicator. 

Kelvin Xu et al. [35] utilized an attention mechanism to find out the corresponding regions (of 

each word) when generating the description (i.e. sentence) of figures. Two kinds of attention 

mechanisms are adopted, i.e., soft attention and hard attention. The aforementioned attention 

mechanism belongs to soft attention. It computes a weight 𝛼𝛼𝑖𝑖 for each 𝑥𝑥𝑖𝑖 and uses it to calculates 

a weighted average for 𝑥𝑥𝑖𝑖 as the decoder input. On account of its admissibility, soft attention can 

be directly inserted into models for training. The gradients can be back-propagated through an 

attention mechanism module to other parts of the model. In contrast to soft attention which adopts 

a deterministic method, hard attention is a rather stochastic procedure. Instead of a weighted 

average, hard attention selects only part of the hidden state of encoder based on the probability 𝑆𝑆𝑖𝑖. 

In order to calculate the gradient descent correctly in the back-propagation, the Monte Carlo 

sampling method is needed to estimate the gradient of each module. In general, hard attention 

requires less computation and memory (as the entire input is not being stored or operated over 

usually) but cannot be easily trained as the objective is non-differentiable. In this research, the soft 

attention mechanism is adopted due to its easier implementation with standard backpropagation 

methods. 



3. Research Methodology 

3.1. Research outline  

 

Fig. 6. Research outline 

Fig. 6 presents the general research outline of this study. Data preprocessing is first carried out to 

enhance the data quality by filling in missing values, removing outliers, and providing required 

data attributes for further analysis. Feature engineering preliminarily selects the most influential 

variables as inputs of the prediction model. Afterwards, two seq2seq attention-based RNN models 

are developed for 24-hour ahead cooling load prediction based on previous 24-hour data in a one-

hour time interval. Case Ⅰ uses a univariate input sequence, while Case Ⅱ adopts a multivariate 

input sequence. The output is the sequence of the next 24 hours’ cooling load.  The prediction 

accuracies are compared with baseline RNN models without adopting an attention mechanism. 

The obtained attention vectors (𝐴𝐴𝑐𝑐𝑖𝑖  in Eq. 1) can visualize why a particular prediction is made by 

the model, and which part of the input sequence contributed more to the prediction. A novel 



approach based on further analysis of the attention vectors is proposed to understand the building 

thermal dynamics. 

3.2. Attention-based Seq2Seq architecture 

Fig. 7 presents the proposed attention-based Seq2Seq architecture for 24-hour ahead building 

cooling load prediction with a one-hour time interval. The architectures of Case Ⅰ and Case Ⅱ 

are nearly identical, with the only differences lying in the model input and input layer. As 

mentioned in Section 2.2, the input and output are both time sequences in the Seq2Seq architecture. 

The inputs for Case Ⅰ and Case Ⅱ are shown in Figure 8. The input sequence lengths in Case Ⅰ and 

Case Ⅱ are both 24, allowing the direct use of previous 24-hour data to make predictions. Case Ⅰ 

adopts previous 24-h building cooling load data with a one-hour time interval as its model input 

sequence. Case Ⅱ adopts a multi-variable input sequence, as shown in Fig. 8, including cooling 

loads, time-related variables, and outdoor climate variables. Outdoor variables consist of solar 

radiation, relative humidity (RH), and outdoor dry-bulb temperature (dry-bulb T). Time-related 

variables describe the day type (i.e. weekday=0 or weekend=1) and 24-h time (Time, which is 

transformed to a binary value through one-hot encoding in the data preprocessing procedure). 

 



Fig. 7. Proposed attention-based Seq2Seq architecture 

 

Fig. 8. Input for Case Ⅰ and Case Ⅱ 

The bidirectional structure is adopted in both the encoder and decoder to obtain forward and 

backward relationships in the input sequence. The Seq2Seq structure with an attention mechanism 

is implemented in this research to address the gradient exploding and vanishing problems, as well 

as to improve model accuracy and interpretability. 24 attention vectors are generated 

corresponding to the 24 steps of the output sequence, which are the predicted cooling loads for the 

future 24 hours. The length of each attention vector is 24, corresponding to the input sequence 

length. Together, these vectors form a 24 × 24 attention matrix. The encoder first encodes the 

information contained in the input sequence into each attention vector. The decoder generates the 

predicted values in the output sequence one-by-one by decoding the corresponding attention vector. 



Two baseline Seq2Seq RNN models without attention mechanisms are also constructed for 

performance comparison.  

In this research, all the models were constructed and tested using the Python programming 

language and the Keras package [36].   

3.3. Techniques adopted to improve RNN for building cooling load prediction 

RNN provides an elegant way of dealing with sequential/time-series data that embodies 

correlations between data points that are close in the sequence [37].  Building operations are highly 

dynamic and involve complex interactions between building envelope, indoor and outdoor 

environment, building energy systems, occupants and various automatic controllers and the power 

grid. As a result, the building cooling load and energy use is highly dynamic and non-linear. This 

makes RNN a promising modeling method for the dynamics of these variables and general 

prediction-makings [27, 39]. The cooling load at time step T may be affected by cooling loads at 

previous time steps, owing to building thermal mass and periodicity in indoor and outdoor 

conditions and working schedules. Standard unidirectional RNNs are trained according to the 

normal time order of past information. However, this kind of method cannot fully use all available 

input information. It is possible to use two separate networks (one for positive time direction, the 

other for negative time direction) and then merge the results. Based on this idea, Schuster and 

Paliwal [37] proposed a bidirectional recurrent neural network (BRNN), which can be trained 

using all available information in the past and future of a specific time frame. Two recurrent blocks 

are connected with the same output, one moving forward and the other moving backward through 

the timeline. As a result, the model outputs obtained at time 𝑇𝑇 are representations of both past and 

future information. Bidirectional operations have had great success in analyzing various types of 



sequential data, especially in machine translation. Considering that building operation is 

intrinsically periodic, BRNN potentially has use in building energy prediction [26]. 

Recurrent models are typically of high complexity and are therefore vulnerable to the problem of 

overfitting [33]. Dropout is a popular technique in the field of deep learning to fight against over-

fitting. It refers to the process of randomly setting parts of the neural network to zero during model 

training, with the remaining weights trained by backpropagation [40]. The dropout technique 

prevents overfitting by forcing neurons to be robust and rely on population behavior, rather than 

on the activity of specific units.  

Previous studies have shown that conventional dropout operations are of little use to RNN models, 

as the random noise introduced may be amplified during recurrent operations. Gal and Ghahramani 

proposed a proper method to perform regularizations for recurrent models: rather than using 

different dropout masks at different time steps, the same dropout mask is used for both the input, 

output and recurrent layers [35]. The resulting dropout operations are controlled by two parameters, 

dropout and recurrent dropout, both ranging from zero to one.  In this study, the dropout technique 

is implemented in the training process of the proposed attention-based RNN to prevent overfitting, 

and the influence of different dropout parameters will be studied (in model optimization). 

An early-stopping training scheme is also adopted in this research to prevent overfitting, i.e., 

terminating the training process when the resulting accuracy of validation data stops increasing 

after a certain number of iterations, as shown in Fig. 9. The early-stopping scheme can also 

accelerate the training process and improve the efficiency of parameter adjustment. 𝑃𝑃𝑎𝑎𝐴𝐴𝑃𝑃𝑒𝑒𝑛𝑛𝐴𝐴𝑒𝑒 is 

the tolerated maximum epoch number within which there is no improvement of model 

performance. Setting 𝑝𝑝𝑎𝑎𝐴𝐴𝑃𝑃𝑒𝑒𝑛𝑛𝐴𝐴𝑒𝑒  to zero means that the training is terminated as soon as the 

performance measure begins to worsen. The setting of 𝑝𝑝𝑎𝑎𝐴𝐴𝑃𝑃𝑒𝑒𝑛𝑛𝐴𝐴𝑒𝑒  is actually a tradeoff. If  



𝑝𝑝𝑎𝑎𝐴𝐴𝑃𝑃𝑒𝑒𝑛𝑛𝐴𝐴𝑒𝑒 is set too high, then the final accuracy rate may be slightly lower than optimal. If the 

𝑝𝑝𝑎𝑎𝐴𝐴𝑃𝑃𝑒𝑒𝑛𝑛𝐴𝐴𝑒𝑒 is set too low, the model is likely to fluctuate in its early stages and stop at the stage of 

global search, and will have a generally poor accuracy rate. In this research, 𝑝𝑝𝑎𝑎𝐴𝐴𝑃𝑃𝑒𝑒𝑛𝑛𝐴𝐴𝑒𝑒 is set to 3 

based on preliminary training results shown in the Appendix.  

 

Fig. 9. Early stopping scheme to prevent overfitting 

3.4. Performance indexes for model evaluation 

The performance indexes used in this research include the root mean square error (RMSE), the 

mean absolute error (MAE) and the coefficient of variation of the root mean square error (CV-

RMSE). They are calculated based on Equations. (3) – (5), respectively.  

RMSE = �∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
(3) 

MAE =
|𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖|

𝑛𝑛
(4) 



CV − RMSE =
�∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

(5) 

Where 𝑦𝑦𝑖𝑖 is the actual energy consumption, 𝑦𝑦𝚤𝚤�  is the predicted energy consumption, and N is the 

number of observations. Among these three indicators, RMSE and MAE are scale-dependent, 

while CV-RMSE is scale-independent which allows us to express the error of the model in a 

percentage. 

In addition, the training time per epoch is recorded to reflect the computation efficiency of each 

model. One epoch is defined as a full pass through the training set. The training time per epoch is 

a neutral index to evaluate the computation time of machine learning algorithms, as different 

researchers may adopt different stopping criteria in model development.  It should be noted that 

once a model is trained, the computing time for generating predictions is negligible using modern 

computing devices [27]. 

4. Results and Discussions 

4.1. Description of the raw BAS data 

The data used in case studies in this research were retrieved from the building automation system 

(BAS) of the tallest building in Hong Kong, the International Commerce Centre (ICC). This 

building is about 490 m high with a total floor area of approximately 321,000 m2, consisting of a 

basement of four floors, a block building of six floors and a tower building of 98 floors. The 

building is served by a central chilling system consisting of six identical high-voltage centrifugal 

chillers which provide chilled water for air handling units. The rated cooling capacity and power 

consumption of each chiller are 7230 kW and 1270 kW, respectively. A total of 463 days (from 

January 2017 to August 2018) of building operational data were retrieved for analysis. The daily 



cooling load profile of the ICC during this period can be seen in Figure 10. The time interval of 

data collection is 10 minutes. The climate data in the same period, including outdoor dry-bulb 

temperature, relative humidity, and solar radiation, were obtained from the Hong Kong 

Observatory.   

 

Fig. 10. Daily cooling load profile of ICC 

As the data quality of BAS data is usually low due to measurement noise, sensor faults, 

transmission problems, and other factors. A data preprocessing procedure is used in this research 

to enhance data quality. The missing values are filled in using moving average method, while the 

outliers are identified with domain expertise. Afterwards, min-max normalization is adopted to 

transform the data into a suitable scale for further analysis. As artificial neural networks cannot 

directly operate on categorical data, they require all input and output variables to be numeric. One-

hot encoding is adopted in this research to transform some categorical variables (e.g., the day of 

the week and hour of the day) into a numerical form. The training and testing dataset take up 70% 

and 30% of the whole dataset, respectively. During the model development process, 10% of the 

training data are randomly selected as validation data. 



4.2. Performance evaluation 

Two prediction models are developed based on the proposed attention mechanism based Seq2Seq 

architecture, both to fulfill the 24-h ahead building cooling load prediction task. Case Ⅰ selects the 

previous 24-h energy consumption data as inputs to predict the 24-h ahead building energy 

consumption, while the input variables for Case Ⅱ include energy variables, time variables and 

outdoor variables. For further elaboration, the index of inputs and outputs is set to 1-24 and 25-48, 

respectively. 

Table 1. The prediction accuracies using different prediction approaches (Case Ⅰ) 

Attention mechanism  RNN units RMSE MAE CV-RMSE Training time 
per epoch 

With attention 

mechanism 

LSTM 914 661 0.328 5.5s 

GRU 885 644 0.315 5.2S 

Without attention 

mechanism  

LSTM 933 671 0.352 2.9s 

GRU 1086 781 0.39 2.6s 

Table. 1 presents the prediction accuracies of the models using different prediction approaches for 

Case Ⅰ. The accuracies reported were calculated for the 24-step ahead predictions in the testing 

data set. It can be seen that the attention mechanism leads to a clear improvement in accuracy for 

both kinds of RNN units. The best model performance is obtained by the attention-based RNN 

with GRU architecture, with a CV-RMSE of 0.315. Several researchers have reported that the 

prediction model with a CV-RMSE around 30% or less is acceptable for engineering purposes 

when using hourly data [39]. In terms of the recurrent unit types, as expected GRU uses the least 



computation time both with and without using an attention mechanism. However, LSTM seems to 

show better collaboration with the attention mechanism compared with GRU. 

 

Fig. 11. (a) Color-map of Attention matrix (white: high weight; black: low weight), (b) The 

autocorrelation of cooling load time series 

 

Fig. 12. Attention vector (output: cooling load at 25th hour) 

To better present the intrinsic characteristics in the attention-based RNN model, the color-map of 

the attention matrix (the concatenation of all context vectors) is shown in Fig. 11(a), where the 



color represents the value of weights (the darker the lower). The attention weight of a co-ordinate 

(𝑋𝑋,𝑌𝑌) indicates the influence of 𝑋𝑋 on 𝑌𝑌. For example, the value of the top right corner (24, 25) 

displays the influence of cooling load at the 24th hour on that at the 25th hour during the model’s 

prediction-making process. And Fig. 12 shows the attention vector corresponding to energy 

predictions for the 25th hour (i.e., the first element of the output sequence). For the upper right 

corner area ‘1’, the attention weights are high, showing that the energy consumption in the past 

several hours has the most significant influence on the energy prediction of the following several 

hours. This phenomenon can be explained by the building thermal resistance. For the middle area 

‘2’ and lower right area ‘3’, the attention weights show that when the model predicts energy 

consumption at the 32-48th hours, the energy consumption 24 hours in the past makes the greatest 

contribution. This is because building energy consumption is highly influenced by occupancy 

behavior and outdoor climate, which shows clear periodicity. The autocorrelation analysis on the 

time series of the cooling load was adopted to verify the attention matrix obtained. The result of 

autocorrelation function of cooling load time series, as shown in Fig 11 (b), indicates similar 

characteristics:  Area A in Fig. 11(b) corresponds to Area 1 in Fig. 11(a), and Area B corresponds 

to Area 2. This can serve as a proof that the attention-based model indeed learned some useful and 

reasonable information which can be explained by the domain knowledge [19]. 



 

Fig. 13. Attention vector (a) ICC data; (b) another smaller residential building B 

For further analysis, operational data from another residential building B is used to train the same 

attention-based RNN model. The attention vector for the energy prediction at the 25th hour is 

presented in Fig. 13 for comparison. As can be seen from the figure, the region with high attention 

weights is selected. For the ICC, a high-rise commercial building, the energy consumptions of the 

previous 6 hours have a great influence on 1-hour ahead energy prediction. For Building B, only 

the previous three hours’ energy consumption shows a significant impact. This result accords with 

the different thermal inertia and capacity of these two buildings. Such visualization of the attention 

matrices confirms that the attention-based RNN model has actually thoroughly learnt internal 

building operation patterns, and is making reasonable predictions which can be explained with 

domain knowledge. 

In Case Ⅱ, instead of using only previous energy consumption data as input, several more relevant 

variables are added to the input as shown in Fig. 8, including (1) time variables which describe the 

date and daily time; (2) outdoor variables which describe the outdoor environment (e.g., outdoor 

dry-bulb temperature, relative humidity and solar radiation). The dimension of input is increased 



from 1 to 30. And the sequence length of input and output is still set as 24. The time interval is one 

hour. Table 2 shows the prediction accuracies using different prediction approaches. It can be seen 

that the prediction accuracies are all acceptable under the four test conditions. It can be surmised 

from the comparison of Table 1 and Table 2 that, as expected, using more relevant input variables 

achieves higher accuracy. 

Table 2. The prediction accuracies using different prediction approaches (Case Ⅱ) 

Prediction strategy RNN units RMSE MAE CV-RMSE 
Training time 

per epoch 

Attention mechanism 

LSTM 524 377 0.162 8.8s 

GRU 565 412 0.177 7.6s 

No attention 

LSTM 576 419 0.178 6.6s 

GRU 641 459 0.198 5.3s 

However, the attention mechanism can still bring improvement to the model accuracy, but to a 

smaller extent than in Case Ⅰ. After checking and visualizing the attention vectors and attention 

matrix, the phenomena and patterns in Case 1 do not show again in Case Ⅱ. The attention matrix 

appears unordered, which means that no clear knowledge or explanation can be obtained. Possible 

reasons include but are not limited to: (1) the training dataset is not enough for the model to learn 

the intrinsic relationships between different parts of input sequences and output sequences; (2) the 

relationship between different parts of input sequences and output sequences vary, and treating 

them together using one recurrent layer will not lead to reasonable results.  



 

Fig. 14. Model performance with different dropout rate 

This study also investigates the influence of different dropout rates on model performance. Fig. 1 

presents the results with an attention-based RNN model using the LSTM architecture. It can be 

seen from the figure that when the dropout rate increases, the model accuracy decreases slightly, 

and then increases to the maximum (dropout rate = 0.04). But, as the dropout rate continues to 

increase, the model performance falls significantly. Although this dropout technique, which is 

supposed to prevent overfitting, behaves well in some reported studies of neural networks. In this 

study, the dropout technique is not recommended. Its stochastic characteristics may lead to clashes 

with the attention mechanism, which needs the model to focus on different parts of input sequences. 

4.3. Discussions 

The research results show that attention mechanisms can enhance recurrent neural networks for 

multi-step building energy prediction with both LSTM or GRU units. When the energy 

consumption of the previous 24 hours is inputted, the enhancement brought by the attention 

mechanism to the models is significant. The results show that LSTM achieves a slightly better 

result, but with a higher computation load, while GRU architecture achieves similar accuracy with 

less computation time. 
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Digging into the model, the visualization of attention vectors and matrices show intrinsic 

periodicities in building energy data: (1) when predicting building energy consumption of several 

hours ahead, the energy consumption of the previous several hours has the greatest influence, due 

to building thermal inertia; (2) When predicting energy consumption 32-48 hours into the future, 

the influence of energy consumption 24 hours ago is most significant. The results accord with the 

daily periodicities of building operation. The visualization of attention vectors also shows the 

crucial thermal characteristics of the building, which are hard to obtain using traditional methods. 

Trained by operational data from two buildings differing in scale and type, the attention vectors 

for the first output time step (𝐴𝐴𝑐𝑐1) show similar trend (i.e. the energy consumption of the most 

recent several hours impact energy consumption predictions more), the window size labeled in Fig. 

13 varies: the energy consumption patterns of the larger building shows longer continuity. The 

attention vectors obtained can be utilized to explain and debug the model, and even guide input 

selection for building energy modeling and prediction. 

In Case Ⅱ, the input variables include not only the energy consumption of previous time steps, but 

also outdoor environment data and time-related indicators which are transformed by one-hot 

encoding. The increase of input variables improves model accuracy. However, the attention-based 

RNN cannot well learn the relationships between inputs and outputs. Some more complex 

attention-based Seq2Seq architecture, for example, treating the different parts of input sequences 

separately, have been tested. However, the results are not encouraging. The model design may 

have been too ideal, and the amount and quality of training data are insufficient to support the 

convergence of such a deep model. 

In terms of the calculation region of the context vector, the attention mechanism can be classified 

into three categories: soft attention, hard attention and local attention. This research adopts the soft 



attention for its parameterization and easier implementation. The implementation of hard attention 

requires a rather precise positioning of the calculation region. However, hard attention calculates 

the context vector based on the whole input sequence which may lead to high computation load 

and convergence difficulty. For future research, it would be valuable to investigate the 

implementation of hard attention and local attention.  

5. Conclusions 

Machine learning techniques have gained increasing popularity in building energy management 

due to their flexibility in model development and the rich data available in modern buildings. 

Machine decision-making is increasingly vital in smart building energy management. Although 

machine learning has become more and more powerful, the complexity of models developed in 

recent years, especially artificial neural networks, has increased dramatically, which results in 

lower model interpretability. 

The study investigates the impact of attention mechanisms when developing RNN models with 

different architectures for multi-step building energy prediction. The model developed based on 

this architecture is assessed using real building operational data, and shows improved accuracy 

and interpretability compared with recurrent neural networks without attention mechanisms and 

other baseline models using a recursive approach. The visualization of obtained attention vectors 

shows why predictions are made by the model, as well as the proportional influence of inputs on 

the output. Further analysis of attention-based recurrent models trained with operational data from 

different buildings, provides crucial temporal information for understanding the building dynamics, 

like the thermal response of the building. This research also investigates the implementation of 

different recurrent units (LSTM and GRU), an early-stopping training scheme, and the dropout 

technique.  



The research results help to bridge the gap between building professionals and advanced machine 

learning techniques. The insights obtained can be used as guidance and reference for the 

development, fine-tuning, explanation and debugging of data-driven building energy prediction 

models. 
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Appendix 

 

Fig. 15. The prediction accuracy of attention mechanism-based recurrent model under training 

dataset and validation dataset 

As shown in Fig. 15, the prediction accuracy of the attention mechanism-based recurrent model 

shows similar trends under the training and validation datasets as the epoch number increases. 

For the validation dataset, the accuracy fluctuates slightly as the epoch number increases from 7 
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to 19. If the patience is set to less than 3, the early-stopping scheme will stop the training process 

in this period, and the accuracy of the obtained model will be much lower than optimal. As the 

epoch number increases from 22 to 27, the model accuracy under the validation dataset declines 

slightly, which is a signal of overfitting. Based on these preliminary results, 𝑝𝑝𝑎𝑎𝐴𝐴𝑃𝑃𝑒𝑒𝑛𝑛𝐴𝐴𝑒𝑒 in this 

research is set to 3. 
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