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Sustainability Risk in Supply Bases: The Role of Complexity and Coupling 

 

Abstract 

Health, safety, and environmental (HSE) issues are an emerging concern in sustainable supply 

chain management. Global brands sourcing from high-risk suppliers in emerging markets affect 

not only brand reputation but also production schedules and product quality. Based on 198 

safety and 458 environmental incidents among 318 manufacturing firms in China, we found 

that incident firms have higher abnormal unsystematic and systematic risk than matched 

sustainable suppliers without HSE incidents. Reducing operational complexity and coupling 

can mitigate both likelihood and abnormal risks. The findings have implications for global 

supply chain managers assessing supplier risk from an HSE perspective. 

Keywords: health and safety, operational disruption, risk, sustainable supply chain 
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1. Introduction 

Sourcing from emerging markets is a common practice for global brands to save on labor costs. 

Recently, supply chain management scholars have begun to understand decisive factors in 

sourcing locations, besides cost, such as innovation and market (Ketokivi, 2017). When a 

global supply chain becomes increasingly dynamic and complex, cost-saving might not 

outweigh risk associated with suppliers that cause supply chain disruptions. Hendricks and 

Singhal (2008) found that disruption from a supplier can reduce a firm’s stock price by around 

11% on the day that the disruption is made public. The stock price of that firm can then fall by 

up to 40% over the subsequent three years. The impacts are more significant for smaller firms 

(Baghersad & Zobel, 2020). Firms with insufficient or no risk management strategies to cope 

with these disruptions exhibit relatively poor supply chain performance (Thun & Hoenig, 2011). 

These studies demonstrated that risk events could be spillover in supply chains. Thus, 

operations management (OM) scholars have increasingly focused on supply chain risk 

management in the last decade (e.g., Choi et al., 2019; Tang 2006; Tang & Musa, 2011). 

The focus of firm performance has expanded from profit to include planet and people (known 

as the triple bottom line, or the goals of sustainable operations) (Kleindorfer et al., 2005). The 

concept of sustainable operations is increasingly understood by consumers, managers, and 

scholars; hence the risk associated with sustainability warrant more attention. Firms that 

engage in unsustainable practices are at risk of being held liable for jeopardizing workers’ 

health and safety, and damaging the environment (Kleindorfer et al., 2005; Wolf, 2001). For 

example, workplace accidents can significantly reduce the available manufacturing workforce 

(Pagell et al., 2019). Environmental incidents (e.g., release of pollutants) may cause 

government agencies to close factories pending rectification (Lo et al., 2018). These adverse 

health, safety, and environmental (HSE) events can disrupt manufacturing operations, lead to 

costly legal action (Carter & Jennings, 2004), and reduce firm value (Klassen & McLaughlin, 

1996; Lo et al., 2018), operating performance, and profitability (Pagell et al., 2019). These 

negative impacts may also spill over to the supply chain (Hendricks & Singhal, 2005; Lo et al., 

2018). 

Sustainability issues have become a source of supply chain risk that requires attention from 

both supply chain scholars and managers (Shrivastava, 1995). However, investment is required 

to cope with these adverse HSE events, which might increase operational costs for 

manufacturers (Esfahbodi et al., 2016). Such costs may be reflected in product prices. Thus, 
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when making purchasing decisions, buyers face the dilemma of “is the risk of adverse HSE 

events significant enough when evaluating a manufacturer?” (Roehrich et al., 2014). 

Recently, scholars have begun to investigate the topic of sustainable supply chains to 

understand the impact of adverse risk events in the global supply chain (Gouda & Saranga, 

2018). However, the extent to which adverse HSE events increase risk in the supply base is not 

quantified in the literature. Thus literature is providing little help for buyers making sourcing 

decisions, including manufacturers evaluating the sourcing cost–sustainability risk trade-off. If 

evidence were available to demonstrate that adverse HSE events can severely increase risk in 

a supply base, buyers might be encouraged to rethink the potential long-term risk of sourcing 

from manufacturers that operate unsustainably. Thus, operations managers must minimize the 

risk of HSE incidents in their supply chain (Kleindorfer et al., 2005). The literature gap 

identified above motivated us to investigate manufacturers’ adverse HSE events from a risk 

perspective by addressing the following research questions: (1) Do adverse HSE events 

increase risk in the supply bases? and (2) What kinds of manufacturer have a lower likelihood 

of adverse HSE events and the capability to reduce their impact? 

To develop a sustainable supply chain, both buyer and supplier firms are necessary to 

understand the consequences of adverse risk events that harm sustainability. Answering our 

research questions will enable a link to be constructed between risk management and 

sustainable operations (Carter & Rogers, 2008). Specifically, this study aims to advance the 

literature by exploring the impact of HSE impacts and disruptions on firm risk (both 

unsystematic and systematic), and how operational factors moderate this relationship. We also 

identify implications of our findings that will help manufacturers and buyers to understand (1) 

how to reduce the probability of HSE incidents when sourcing products from emerging markets 

and (2) how to mitigate the negative effects of such incidents when they occur. The basic theory 

premise of normal accident theory (NAT) is that accidents more likely happen when the 

operational system is more complex and tightly coupled (Perrow, 2011). We draw on this theory 

premise to explore the role of production complexity and coupling in HSE incidents. 

The remainder of this article is organized as follows. Section 2 reviews sustainable operations 

issues in emerging markets and introduces our research context. Section 3 discusses the 

theoretical framework and develops the study hypotheses. Section 4 describes the propensity 

score matching research design and data analysis used to examine the hypotheses. Section 5 

discusses the contributions and implications of our research. 
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2. Sustainable Operations in Emerging Markets 

HSE incidents are conceptualized as supply chain risk in the OM literature (Kleindorfer et al., 

2005). OM scholars have thoroughly investigated environmental management topics 

considering a firm’s operations, such as carbon-efficient scheduling (Ding et al., 2016), 

capacity planning (Song et al., 2017), product configuration (Li et al., 2018), supply chain 

design (Daryanto et al., 2019; Park et al., 2015), technology choice (Drake, 2018), corporate 

social responsibility (CSR) investment (Modak & Kelle, 2019), and other operational decisions 

(see review in Zhou & Wen, 2020). However, social impacts, as another dimension of the 

concept of sustainable operations, receive relatively less attention in the OM literature, 

especially in the context of emerging markets (Fan et al., 2014). Unlike environmental 

incidents, socially related incidents such as workplace safety incidents often directly affect 

operational workers, which can severely disrupt a firm’s operations, leading to lower product 

quality, slower delivery speeds, and damage to the firm’s reputation (Fernández-Muñiz et al., 

2009). Thus, this research includes both environmental and safety incidents and offers a more 

holistic perspective to understand the antecedents and consequences of these incidents. 

The context of emerging markets represents fertile ground for OM scholars to investigate 

sustainable operations issues because their institutional environment (Lo et al., 2018), capital 

market (Oztekin et al., 2016), interest rate pattern (Ahi et al., 2018), and tax policies (Choi & 

Luo, 2019; Niu et al., 2019) differ from those in Western countries. Understanding of these 

differences is vital for overseas buyers to formulate better strategies for offshore outsourcing, 

beyond simple product-related issues such as design and development (Jonnalagedda & 

Saranga, 2019; Wang et al., 2016), and quality (Steven & Britto, 2016). Nowadays, these 

concerns go beyond workplace safety (Pagell et al., 2019) and environmental incident risk (Lo 

et al., 2018): when a consumer brand or its sourcing offices source suppliers from emerging 

markets, such as China, Southeast Asian and Eastern European countries, the brand must be 

careful to minimize the risk of HSE incidents, which can delay shipments and damage the 

brand’s reputation among its clients (Lo et al., 2018). Understanding the antecedents of HSE 

incidents and their association with firm risk might enable sourcing agents to source from less 

risky suppliers in emerging markets and implement strategic plans for supplier development to 

prevent further unexpected adverse risk disruptions. 
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2.1. Research context: Chinese manufacturing sectors 

The Chinese manufacturing sector is the most critical supply base in the global supply chain. 

It exports 2.4 trillion goods annually, ranking it first in the world (World Bank, 2020). Although 

Chinese manufacturers export goods worldwide for many brands, they are often criticized for 

engaging in unethical production practices, such as forcing employees to work overtime, 

employing underage laborers, and polluting the environment. In the past, China has been 

labeled the country with the largest number of sweatshops worldwide (Greider, 2001; Sung, 

2007) and the world’s primary pollution center (Kahn & Yardley, 2007). End consumers who 

care about the sustainability of upstream supply chains were increasingly wary of “Made in 

China” labels on products because of their connection to sweatshops and environmental 

problems. Annually, 0.0055% of China’s workforce die in production-related accidents 

(China’s State Administration of Work Safety, 2017). The figure is considerably higher than 

corresponding figures in developed countries; for example, 0.0034% in the United States (US 

Department of Labor, 2017) and 0.0005% in the United Kingdom (Health & Safety Executive, 

2017). In addition, there have been numerous cases of illegal chemical discharge by 

manufacturing firms listed on the Shenzhen and Shanghai stock exchanges (Institute of Public 

and Environmental Affairs, 2018). Chinese government has realized the significance of HSE 

issues and highlighted “sustainable development” in the national policy of “Made in China 

2025”. Chinese manufacturers are therefore under both domestic and overseas pressure to clean 

up their “sweatshop” image to meet global demand for more sustainable supply chains, making 

the sector an ideal context in which to answer the research questions posed in this study. 

It is worth noting that our research implications are not limited to the Chinese context because 

sustainability is not a problem affecting only Chinese manufacturers. Most developing 

countries that leverage cheap labor and only loosely enforce environmental and workplace 

safety laws neglect their employees and the environment in favor of marginal price skimming 

for economic benefit (Huq et al., 2016). For example, the Rana Plaza incident in Bangladesh 

revealed that the government of that country had been working with multinational enterprises 

and nongovernmental organizations to minimize their degree of liability for victims of the 

incident (Chowdhury, 2017). Such behavior results in the relatively high frequency of HSE 

incidents in China and other emerging markets. 
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3. Hypothesis Development 

OM studies have explored how a firm’s financial status affects its safety and environmental 

performance (Flammer, 2015; Luo et al., 2015). Researchers have found that the availability 

of slack resources significantly affects the likelihood of firm misconduct and improves overall 

safety and environmental performance (Gualandris et al., 2015). Adding to this line of thought 

with empirical evidence, Lo et al. (2014) drew on NAT and high-reliability organization theory 

(HRT) to propose that the characteristics of production processes (i.e., production complexity 

and production coupling) directly influence the effectiveness of OHSAS (Occupational Health 

and Safety Assessment Series) 18001, the most prevalent occupational health and safety 

management system. We believe that these production characteristics may also influence the 

likelihood of HSE incidents and moderate long-term risk in firms. 

HSE incidents are often attributed to human error or system failures (Reason, 2000; Shrivastava 

et al., 2009). Modern supply chain and logistics management (e.g., zero inventory) emphasizes 

removing unnecessary slack (e.g., inventory) that puts operations managers under high pressure 

to not prioritize prevention of HSE problems in production. A synthesized view between NAT 

and HRT suggests that operational incidents are controllable if the employee is mindful of all 

safety rules and practices (LaPorte & Consolini, 1991; Weick & Roberts, 1993; Weick et al., 

2008). According to Weick et al. (2008), a mindful employee exhibits the characteristics of 

preoccupation with failure, sensitivity to operations, deference to experience, reluctance to 

simplify interpretation, and commitment to resilience. When all employees maintain such 

mindfulness (known as collective mindfulness), a firm’s operations are highly capable of 

detecting potential hazards and managing unexpected HSE incidents, leading to less risky 

operations in the future (Weick et al., 2008). A high level of mindfulness among employees 

regarding HSE problems can prevent operational accidents (Rijpma, 1997). 

Lo et al. (2014) found that in complex and tightly coupled production processes, worker 

mindfulness can drift away more frequently, and this can lead to occasional unexpected 

incidents caused by workers not reacting quickly. Maintaining high reliability is extremely 

difficult because drift is virtually unavoidable. In particular, when a firm’s production capacity 

approaches its limits, managers and workers focus on production efficiency, rather than 

appropriate control of HSE problems. Workers under pressure from productivity demands may 
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become less mindful and take shortcuts to meet production quotas (Brown et al., 2000; de 

Koster et al., 2011). In many adverse risk incidents, worker safety and environmental pollution 

occur together because of mindfulness drift, especially in highly polluting firms such as 

chemical and petroleum refineries (Wolf, 2001). An accident leading to chemical leakage or 

illegal discharge of polluted air/water to the neighborhood would harm both workers and the 

environment. Thus, it is essential to explore how to minimize the risk of both environmental 

and workplace safety incidents, together with a better management system (Marais et al., 2004). 

Shrivastava et al. (2009) argued that the potential for drift increases in operations with high 

complexity and tight coupling, which increases the likelihood of HSE incidents, and thus also 

increases the necessity for control. Through the lens of NAT and HRT, we investigated both 

types of incidents under the same research model. Thus, the present paper proposes two key 

constructs that may lead to a higher likelihood of HSE incidents: production complexity and 

coupling. 

3.1. Antecedents of HSE incidents 

Based on NAT, we developed the hypotheses of the antecedents of HSE incidents. Labor 

intensity can proxy for production complexity (Swink & Jacobs, 2012, Lo et al., 2014, Fan & 

Zhou, 2018) because production processes in labor-intensive firms are complex and automating 

them is a difficult task. In addition, managers in such firms have substantial difficulty 

identifying all potential hazards associated with production processes and developing 

contingency plans for adverse events. Moreover, in such complex working environments, 

workers face relatively great difficulty performing immediate corrective actions for near misses 

that could lead to actual damage, such as pollution or worker injury (Perrow, 2011). Therefore, 

labor-intensive operations have a high likelihood of human errors. The human error is a typical 

manifestation of both workplace accidents (Lo et al., 2014) and environmental pollutions (Miao 

et al., 2015; Duffy and Duffy, 2020). These HSE incidents are manifestations of operational 

system failures. Thus, this study developed the following hypothesis: 

H1: A firm’s level of production complexity is positively associated with its likelihood of HSE 

incidents. 

Production coupling refers to the connections between each stage in an operational process. A 

more tightly coupled operation usually involves less idle time for workers to rest and prepare 

for the next production goal. Inventory buffering is a primary decoupling technique in a 
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manufacturing setting because inventory can buffer unexpected demand (Minner, 2001). Thus, 

inventory level is widely used as an indicator of coupling (Fan & Zhou, 2018; Wiengarten et 

al., 2017; 2019); that is, low inventory levels are associated with high coupling levels 

(Wiengarten et al., 2017;2019). A higher inventory level gives workers more time to react to a 

productivity goal brought on by a sudden demand change or supply glitch; this, in turn, enables 

employees to follow standard operating procedures, thereby reducing the likelihood of drift. 

Thus, with a reasonable level of additional inventory buffering for uncertainty, workers can 

remain focused, thereby minimizing the risk of HSE incidents. This led to the second 

hypothesis: 

H2: A firm’s level of production coupling is positively associated with its likelihood of HSE 

incidents. 

3.2. Consequence of HSE incidents for manufacturers’ risk 

We next developed theoretical linkages between HSE incidents and risk in the supply base in 

China. A prevailing definition of organizational risk is income stream uncertainty for firms 

(Palmer & Wiseman, 1999). OM scholars have used equity risk to measure overall firm risk 

(e.g., Hendricks & Singhal, 2005; 2014). The total equity risk can be further divided into a 

firm’s unsystematic (idiosyncratic) risk and systematic risk (Hendricks & Singhal, 2014). 

Based on this risk taxonomy framework, we discuss how HSE incidents could increase both 

unsystematic and systematic risk. 

Unsystematic risk stems from firm-specific factors. HSE incidents usually happen at the 

operational level (Lo et al., 2014). These incidents are signals of flaws in a firm’s operational 

system. Such flaws reflect managerial myopia in terms of prioritizing short-term profit and 

putting operational reliability at risk (Pagell et al., 2019). Operational (un)reliability is tightly 

related to production productivity (Lo et al., 2014). For example, incidents can cause labor 

injuries and illnesses, and lead to increased absenteeism (Greiner et al., 1998). In addition, a 

firm may be required to shut down for a period to allow investigation and corrective actions 

after environmental or safety incidents (Lo et al., 2018). The consequent loss of productivity 

can directly affect the profitability of the firm and increase firm risk (Lo et al., 2014). 

Second, HSE incidents can damage investors’ trust in the long term (Brown & Dacin, 1997; 

Kramer & Porter, 2006). Managers of widespread institutional investments, such as 

government pension funds in many countries, prefer to incorporate firms with fewer HSE 
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issues into their portfolios. For example, the Japan Government Pension Investment Fund (the 

largest pension fund in the world) has invested JP¥1 trillion (~US$9.04 billion) in firms that 

meet certain social, environmental, and corporate governance criteria; the percentage of this 

investment will continue to grow to 10% of the portfolio (Fujita & Umekawa, 2017; Kyodo, 

2017). When investors are more alert and reactive to a firm’s future HSE incidents, the 

volatility of future cash flow may increase, which affects firm resources that can be deployed 

for production. 

Last, HSE incidents are highly socially undesirable; they can damage a manufacturing firm’s 

reputation and legitimacy because stakeholders may consider that the firm has failed to take 

proper CSR (Beddewela & Fairbrass, 2016). CSR can be viewed as a product feature that 

provides value to customers (Peloza & Shang, 2011). Socially responsible manufacturers can 

help buyers to reduce the overall environmental and social impact of products throughout their 

lifecycle. Therefore, HSE incidents undermine the capability of manufacturers to add value to 

the supply chain via CSR features (McWilliams & Siegel, 2000). 

In summary, we argue that loss of productivity, investor trust and firm reputation can induce 

uncertainty in a manufacturer’s future income stream. Thus, we hypothesize: 

H3a: Firms with HSE incidents have higher abnormal systematic risk than firms without HSE 

incidents. 

Unsystematic risk can be diversified as it is firm-specific, while systematic risk is not 

diversifiable. Systematic risk stems from the sensitivity that a firm’s income was affected by 

the exogenous shocks (e.g., macro-economic factors). We argue that HSE incidents are signals 

of flaws in a firm’s operational system; such flaws increase the ability of the firm to respond 

to adverse exogenous market environment changes. 

First, HSE incidents can undermine firm productivity, reducing production capacity. The loss 

of production capacity reduces the capacity to meet a spike in demand (Fan et al., 2020). In 

addition, employees and insurance companies may ask for higher premiums to cover unsafe 

and polluted workplaces (Hendricks & Singhal, 2014). Compensations and penalties arising 

from HSE incidents also undermine a firm’s financial health, which can be used to buffer 

against future economic downturns (Lo et al., 2014). These vulnerabilities, therefore, lead to 

income stream uncertainty for manufacturers. 
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In addition, HSE incidents undermine the capability of a manufacturer to utilize external 

resources to survive a recession. In economic downturns, firms may need to supplement 

working capital from outside sources such as investors and creditors. However, as discussed 

above, HSE incidents may undermine investor trust (Toms, 2002), making it difficult for 

manufacturers to access finance in stock markets. Regarding creditors, the banking industry 

has increasingly adopted socially responsible lending (Gutiérrez-Nieto et al., 2016). CSR 

performance has become a vital criterion for banks to consider when evaluating loan 

applications (Renneboog et al., 2008). Thus, HSE incidents may increase the difficulty for a 

firm to secure a bridging loan with ideal terms (e.g., interest rate). 

In summary, we argue that HSE incidents limit a manufacturer’s resources internally and 

externally, which makes the firm vulnerable in the face of macro-economic downturns. That is, 

the firm’s income will be highly sensitive to decreased demand, which may be reflected in the 

firm’s increased systematic risk. Thus we hypothesize that: 

H3b: Firms with HSE incidents have higher abnormal unsystematic risk than firms without 

HSE incidents. 

3.3. Moderating the (HSE) incident–risk relationship 

The final objective of this study was to explore the factors that compel firms to minimize the 

negative effects of HSE incidents. As posited in H3a and H3b, investors are concerned with 

HSE incidents that lower the production capability and increase the chance of production 

disruptions. We argue that the effects of such disruptions are reduced in less complex and more 

loosely coupled operations (Lo et al., 2014; Wiengarten et al., 2017). 

First, in a complex operation with high labor intensity, firms have relatively great difficulty 

identifying the root causes of HSE incidents (Fan & Zhou, 2018; Lo et al., 2014). Managers 

must consider not only technological factors but also complicated human factors associated 

with HSE incidents. Any corrective actions in response to an HSE incident are likely to be 

superficial; thus, the underlying hazards entrenched in operation may not be detected or 

removed, and the firm in question maintains the same or an even higher likelihood of 

experiencing similar incidents in future. Thus, linearizing complex production processes 

(reducing complexity) facilitates identification of potential hazards and mitigates firm-specific 

risk. In addition,  linearizing complex production can mitigate the vulnerability of firms when 

encountering negative exogenous conditions. For example, HSE incidents may cause employee 
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absence, but automated firms can cope with demand spikes during such absences more easily 

than can firms that rely heavily on manual works. 

Second, tightly coupled operations usually involve little operational slack, and this is useful for 

firms in buffering against operation glitches (Wiengarten et al., 2017). An operation disrupted 

by an HSE incident has low capability to meet customer demand. However, a firm with 

additional safety inventory is more capable of buffering against demand spikes during 

disruptions, which helps prevent the losses in customer satisfaction, market share, and 

compensation that would arise from delivery schedules not being followed. Thus, future 

concerns over cash flow volatility would be lower. 

Based on this discussion, we anticipated that production complexity and coupling would not 

only affect the likelihood of HSE incidents (as posited in H1 and H2), but would also moderate 

the effect of such incidents on a manufacturer’s risk. This led to the fourth and fifth hypotheses: 

H4: A firm’s level of production complexity positively moderates the relationship between 

HSE incidents and abnormal risk. 

H5: A firm’s level of production coupling positively moderates the relationship between HSE 

incidents and abnormal risk. 

4. Method and Results 

This study focused on Chinese public firms in the industrial sector (Chinese industry 

classification codes B06–D46) because CSR problems prevail in this sector (Jenkins & 

Yakovleva, 2006; Lo et al., 2014, 2018). We designed a three-stage event study to examine the 

aforementioned hypotheses. In the first stage, we regressed HSE incidents against labor 

intensity (for complexity) and reversed inventory days (for coupling) to test H1 and H2 by 

running logistic regressions. In the second stage, we aimed to capture the abnormal changes in 

unsystematic and systematic risk in firms where HSE incidents occur, and created sample–

control pairs based on the propensity score matching results obtained in Stage 1 to test H3a and 

H3b. In the third stage, we regressed abnormal unsystematic and systematic risk against labor 

intensity and reversed inventory days to test H4 and H5. 
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4.1. Stage 1: Logistic regression analysis of HSE incidents 

We investigated the environmental and safety dimensions of HSE and focused on events that 

cause actual damage to the environment or employees. There is a methodological gap in the 

literature on supply chain risk management (Sodhi et al., 2012) because for a long time, data 

on catastrophic incidents were not easy to collect. However, in recent years, the Chinese 

government has enhanced the transparency of government information and developed various 

databases to publicize and record HSE incidents (Xu, 2017). Environmental incident data were 

collected from the IPE (Institute of Public and Environmental Affairs) —a nonprofit 

organization that collects and collates corporate environmental information in China. The IPE’s 

database discloses environmental incident records, including each polluting firm’s name, 

incident date, and facility location. Safety incident data were collected from the SAWS (State 

Administration of Work Safety) database kept by the central and provincial governments in 

China. SAWS is China’s government agency that enforces safety regulations. Its safety incident 

database provides information regarding each incident’s date, the firm involved, and numbers 

of injuries and fatalities. 

4.1.1. Data collection 

The data collection procedure started with a list of public firms in the industrial sector obtained 

from the China Stock Market and Accounting Research database. We then searched for each 

firm’s name in the IPE and SAWS databases to view their HSE incidents. We found 458 

environmental incidents and 198 safety incidents in 318 firms from 2004 to 2013. We collected 

financial information for these 318 firms and control firms (firms without incidents and within 

the same industries). Given that we used 1-year-lagged financial data for independent variables 

to dependent variable (HSE incidents covered from 2004 to 2013), financial data from 2003 to 

2012 were covered. Data from the aforementioned three databases formed a panel dataset with 

10,357 firm–year observations for examination of H1 and H2. 

The dependent variable HSE incident was measured in terms of whether firm i had HSE 

incidents in year t. We defined the term HSE incidents based on the clause of ISO 14001 and 

OHSAS 18001. Specifically, an HSE incident is an adverse work-related event in which 

damage occurs to occupational health and safety, and the environment. These events could lead 

to operational disruptions and productivity loss. We collected environmental incident events 

from the IPE database. One example is an environmental incident in 2010 involving Shenzhen 
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Zhongjin Lingnan Co Ltd. The company discharged wastewater with excessive thallium in 

Shaoguan City, Guangdong Province. The title of this incident is “Zhongjin Lingnan’s river-

polluting factory shutdown.” We collected safety incident events from the SAWS database. 

One example is a BYD incident that occurred in 2011. The incident description is “9/20, 

17:40pm, BYD company in Dayawan, Huizhou City, Guangdong Province, a tower crane 

collapse causes 4 deaths.” Firms with one or more incident in year t were coded as “1” and 

those without were coded as “0.” This binary measure for HSE incidents is consistent with the 

approach in previous studies investigating other forms of corporate malfeasance (Harris & 

Bromiley, 2007; Yiu et al., 2014). A total of 473 observations had at least one incident in each 

year. 

H1 and H2 hypothesize that firms that implement operations with higher levels of production 

complexity and coupling are more likely to have HSE incidents. We followed Swink and Jacobs 

(2012) and Lo et al. (2014) to operationalize operational complexity based on labor intensity 

because labor-intensive processes are inherently more variable and difficult to automate than 

are non-labor-intensive processes (Swink & Jacobs, 2012). Thus, they increase the need for 

management efforts to cope with such complexity. For example, training and skills are required 

to ready workers for operations (Swink & Jacobs, 2012). Labor intensity was calculated based 

on the ratio of number of employees to total assets (in million US$) (Lo et al., 2014). 

We followed Wiengarten et al. (2017) in operationalizing operational coupling by inventory. 

An essential reason for firms to maintain inventory is to decouple operations through buffering 

for demand and lead time uncertainty (Stevenson & Sum, 2014, p. 561). A firm with shorter 

inventory days has a lower inventory level and thus lacks the capacity to decouple operations. 

Thus, we measured operational coupling based on reversed inventory days. The number of 

inventory days in a firm was first calculated by dividing the average inventory by cost of goods 

sold (inventory turnover ratio). We then multiplied the inventory turnover ratio by 365. 

We included several control variables to minimize concern over alternative explanations and 

improve the explanatory power of the models. First, we controlled for firm performance and 

size by including return on sales (ROS) and total assets because profitable and large 

manufacturers are more resourceful in tackling HSE problems. Second, we controlled for firm 

age because older firms are more likely to have inherited negligent HSE practices, and this 
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could increase the risk of HSE incidents. Third, we included quick ratio1 to control for the 

financial situation of manufacturers, as well as cash and receivable days because firms with 

higher liquidity are less likely to cut corners with respect to health, safety, and the environment. 

Fourth, we controlled for operational resources by employing production capacity 2  and 

working capital per employee. Firms with more operational resources are more capable of 

responding to uncertainty. In addition, we controlled for firm willingness to invest in 

employees by wage expense per employee. Firms with higher willingness to invest in 

employees are less likely to place employees at safety and environmental risk. 

We incorporated several corporate governance factors, including each firm’s top management 

team (TMT) ownership (percentage stock share held by the TMT). Managers with higher 

ownership are less likely to make opportunistic decisions that place their personal wealth at 

risk (Wiseman & Gomez-Mejia, 1998). Further, we included board size (number of directors) 

and percentage of independent directors on the board. A larger board with more independent 

directors may have more power to monitor and restrict opportunistic decisions being made by 

the TMT (Forbes & Milliken, 1999). 

Finally, we included industry dummy variables and firm year to control for invariant factors 

related to time and industry. We performed natural logarithm transformations for total assets, 

cash, production capacity, board size, and TMT ownership to correct for skewness. The statistic 

model is expressed as follows: 

HSE incidentijt = F(labor intensityijt-1, Reversed inventory daysijt-1, ROSijt-1, Total assetsijt-1, 

Firm ageijt-1, Quick ratioijt-1, Cashijt-1, Receivable daysijt-1, Capacityijt-1, Working capitalijt-1, 

Wageijt-1, TMT ownershipijt-1, Board sizeijt-1, Independent directorijt-1, Yeart, Industryj, u) 

where F(.) is the logit function, i represents the ith company in industry j, and t represents the 

year of observation. 

Table 1 presents correlation relationships and descriptive statistics for the variables. The 

maximum variance inflation factor was 3.698; thus, multicollinearity was not severe. Table 2 

presents Model 1—the logistic regression analysis—including all control variables. Our 

omnibus test confirmed that the variables created satisfactory control (χ2 = 649.577, p < .01). 

Model 2 examined H1 and H2 through inclusion of labor intensity and reversed inventory days. 

                                                 
1 Quick ratio was calculated as (current assets − inventory) / current liability. 
2 Production capacity was calculated as the value of property, plant, and equipment scaled by annual sales. 
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The coefficient of labor intensity was significantly positive (0.1250; p < .05, odds 

ratio = 1.132). The marginal effect of labor intensity is presented in Fig. 1. When we held other 

factors constant by shifting labor intensity from 0 to 3 (i.e., one standard deviation above 

average labor intensity), the likelihood of HSE incidents increased by 1.56%. The coefficient 

of reversed inventory days was also significantly positive (0.1679; p < .05, odds 

ratio = 0.00168). The marginal effect of reversed inventory days is presented in Fig. 2. When 

we held other factors constant by decreasing the number of inventory days from 400 (i.e., one 

standard deviation above the average number of inventory days) to 0, the likelihood of HSE 

incidents increased by 2.51%. Given that the average likelihood of HSE incidents was low 

(4.60%), the practical effects of labor intensity and inventory days were substantial. The results 

revealed that the goodness of fit of Model 2 improved (incremental χ2 = 29.318, p < .01) by a 

significant margin. Therefore, H1 and H2 are supported. 

 
Fig. 1: Marginal effects of labor intensity 

 
Fig. 2: Marginal effects of inventory days 
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Table 1: Descriptive statistics and correlations 
 

Mean Std. deviation HSE incidents Labor intensity Reversed 
inventory days 

Production capacity ROS Total assets Firm age 

HSE incidents 0.046 0.209        
Labor intensity 1.317 1.842 .004       
Reversed inventory days 
(’00) 

-1.515 2.874 
.011 .013      

Production capacity (log) -0.911 0.962 .026** -.030** -.078**     
ROS -0.051 3.021 .007 -.110** .107** -.152**    
Total assets (log) 21.504 1.211 .154** -.249** .025* .006 .077**   
Firm age 7.549 5.551 .061** .007 -.023* .060** -.042** .191**  
Quick ratio 1.895 4.436 -.044** -.071** .012 -.136** .027** -.126** -.220** 

Cash (log) 19.495 1.492 .100** -.255** .092** -.274** .165** .763** -.062** 

Receivable days 95.691 507.050 -.018 .020* -.118** .147** -.771** -.079** -.007 

Working capital (‘000) 153.492 5,782.563 .011 -.016 -.005 -.082** .065** .045** -.057** 

Salary (‘000) 21.400 207.293 .008 -.047** -.001 .013 -.001 .074** .063** 

Board size (log) 2.205 0.206 .043** -.016 .015 .094** .036** .268** -.002 

TMT ownership (log) 9.050 6.702 -.034** -.079** .023* -.082** .032** -.010 -.252** 

Independent director % 0.358 0.053 .004 -.035** .006 -.077** -.002 .041** .006 

    
Quick ratio Cash Receivable days Working capital Salary Board size TMT 

ownership 

Cash (log)   .117**       
Receivable days   .001 -.148**      
Working capital (‘000)   .069** .122** .000     
Salary (‘000)   -.009 .063** -.005 .150**    
Board size (log)   -.094** .176** -.038** .001 .000   
TMT ownership (log)   .171** .121** -.004 .009 -.025** -.093**  
Independent director %   .037** .064** -.010 .006 .010 -.333** .057** 

Note. ** and * indicate significance at 0.01 and 0.05 levels; N = 10,357; two-tailed test; Currency in CNY.
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4.2. Stage 2: Propensity score matching event study 

We adopted a long-term event study approach to conduct a quasi-experiment for the 

examination of H3. We defined year 0 as the event year when a firm had an HSE 

incident. Year –1 was the base year when the incident firm was free from the effects of 

the incident. We investigated each firm’s unsystematic and systematic risk change over 

3 consecutive years starting with the base year (i.e., years 0, 1, and 2). 

HSE incidents can be considered a random treatment for the sample because stock 

market investors have no prior knowledge of an HSE incident before it is revealed. 

Thus, we needed to match each sample (with HSE incidents) with a control (without 

HSE incidents) to form a quasi-control group for control of counterfactual (or 

unobserved) outcomes (Caliendo & Kopeinig, 2008; Heckman et al., 1998). We 

adopted propensity score matching to match sample firms to control firms with similar 

probabilities of HSE incidents (Caliendo & Kopeinig, 2008). This helped us isolate the 

effects of HSE incidents from other firm- or industry-specific factors that affect firm 

risk. 

We calculated the propensity score (i.e., probability) for HSE incidents for the samples 

and controls in every fiscal year, based on the significant predictors presented in Table 

2. We then applied the nearest neighborhood matching method to create sample–control 

pairs. The sample–control pairs needed to meet the following criteria: (1) firms must be 

in the same industry; and (2) the control firm must have the closest probability to the 

sample firm of an HSE incident in the incident year (Levine & Toffel, 2010). We 

eliminated all matches with a probability difference larger than the 0.07 caliper (Levine 

& Toffel, 2010) and further discarded all matches with missing data regarding 

systematic risk during the research period. Finally, for the 473 incident observations in 

Stage 1, we generated 278 matches that met the matching criteria. 

Although one-to-many matching has been used in previous studies (e.g., Lo et al., 2014), 

this matching strategy suffers from the disadvantage that some control firms that are 
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not sufficiently adequate may be included, which leads to an increase in bias (Leite, 

2016). The nearest neighborhood ensures that a matched untreated firm is the control 

firm that is most similar to its corresponding sample firm. To prove the quality of the 

sample–control pairs, paired t tests were carried out for independent variables (from 

Table 2) and results are presented in Table 3. We found that no differences among 

variables were significant (p > .01, two-tailed test), suggesting that no systematic 

differences existed among the samples and controls (Levine & Toffel, 2010). 

Table 2: Logistic regression analysis of HSE incidents 

DV: HSE incident at year t (1 = yes, 0 = no) 

 Model 1 Model 2 

Variable Coef. p Coef. p 

Labor intensity  
 

0.125 0.000 

Reversed inventory days (’00) 
  

0.168 0.001 

Production capacity  0.089 0.235 0.138 0.082 

ROS 0.024 0.808 0.395 0.024 

Total assets 0.365 0.000 0.402 0.000 

Firm age 0.039 0.000 0.043 0.000 

Quick ratio -0.069 0.102 -0.077 0.081 

Cash 0.129 0.084 0.114 0.130 

Receivable days -0.001 0.225 0.000 0.831 

Working capital 0.000 0.347 0.000 0.085 

Salary 0.000 0.616 0.000 0.173 

Board size 0.059 0.827 -0.014 0.958 

TMT ownership -0.012 0.158 -0.012 0.143 

Independent director % 0.116 0.910 0.090 0.931 

Industry Included 
 

Included  

Year Included 
 

Included  

Intercept -32.51 
 

-32.703  

Chi2 649.577 0.000 678.895 0.000 

Incremental chi2   29.318 0.000 

Note. N = 10,357; two-tailed tests; 0.000 indicates <.001. 
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Table 3: Matching quality examination 

Variable p-value from paired t-test 

Labor intensity 0.119 

Reversed inventory days 0.268 

Production capacity 0.194 

ROS 0.821 

Total assets 0.283 

Firm age 0.389 

Quick ratio 0.176 

Cash 0.511 

Receivable days 0.663 

Working capital 0.188 

Salary 0.324 

Board size 0.266 

TMT ownership 0.587 

Independent director % 0.339 

 

H3a and H3b test abnormal unsystematic and systematic risk by comparing risk change 

in the sample (before and after HSE incidents) with that in the controls during the same 

period. The capital assets pricing model (CAPM) was used to calculate the risk values 

for firm i in year t (Singhal & Raturi, 1990).3 Specifically, we used the following model 

to estimate unsystematic and systematic risk, for firm i in year t, the data in recent one 

calendar year to year t was used for the estimation of: 

Rit - Rft = αit + βit(Rmt – Rft) + eit 

where Rft is the risk-free return, 𝑅𝑅𝑖𝑖𝑖𝑖 is the firm stock return, and 𝑅𝑅𝑚𝑚𝑖𝑖 is the market return. 

Market return is the market capitalization weighted return of all listed firms on the 

                                                 
3 The Fama–French (FF) model is an alternative method for this calculation. The CAPM (market) model 
assumes that a firm’s stock price is associated with the market index, while the FF model assumes that 
the firm’s stock price is also associated with small(capitalization)-minus-big (SMB) and high (book-to-
market ratio)-minus-low (HML) portfolios. However, the literature shows that FF factors are good 
proxies for risk factors of portfolios, while only the market factor is appropriate for proxying risk factors 
for individual stocks (Lin et al., 2012). The market portfolio and HML factors are found to have no 
significant effect in the estimation (Hu et al., 2019). Thus, we adopted the market model for estimation 
in our study. 
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Shanghai and Shenzhen stock exchanges. Systematic risk is the square root of the 

difference between the total variance of the stock return and the variance of the residuals, 

while unsystematic risk is the standard deviation of eit. This operationalization is a 

conventional risk measure adopted in the finance (e.g., Bowman, 1979), strategic 

management (Miller & Bromiley, 1990; Miller & Reuer, 1996), information systems 

(Tian & Xu, 2015), and OM (Hendricks & Singhal, 2005; 2014;  Singhal & Raturi, 

1990) literature.. 

We adopted the difference-in-difference approach to estimate abnormal risk for 

comparison between the sample and control firms. Specifically, we subtracted the 

change in the unsystematic and systematic risk of the sample firm from the change in 

that of the control firm for each sample–control pair. Specifically, the calculation was: 

Abnormal risk (t to t+j) = [Sample firm risk(t+j) -Sample firm risk(t)] – [Control firm 
risk(t+j) – Control firm risk(t)] 

where t and j are the start and end year for the comparison, respectively. Given that 

abnormal risk may not be normally distributed, we used the nonparametric Wilcoxon 

signed-rank test to examine H3 and used parametric t-test as robustness checks. We 

followed previous studies in presenting the paired t test and signed-rank test results. 

We examined H3a and H3b based on the results in Table 4. We observed an abnormal 

increase in both unsystematic and systematic risk 1 year after HSE incidents. 

Specifically, the median of unsystematic and systematic risk among the sample firms 

increased by 0.004 and 0.027 respectively compared with that of the control firms from 

year 0 to year 1 (p < .10). In addition, the cumulated abnormal unsystematic risk from 

year –1 to year 1 was positive (0.008, p < .05). The significant positive result is also 

reflected in the cumulative abnormal systematic risk from year –1 to year 1 (0.042, p 

< .01). These results provide support for H3a and H3b. We note that the significant 

effects on systematic risk can be captured in a longer period (year 2), while the result 

is inconclusive for unsystematic risk. 
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Table 4: Event analysis of HSE incidents 

Table 4: Event analysis of HSE incidents, N = 278, two-tailed tests. 

  Nonparametric test Parametric test 

Abnormal unsystematic risk 
(H3a) Median WSR-Z p Mean Paired t p 

Year -1 to 0 0.002 0.996 0.319 0.005 1.225 0.222 

Year 0 to 1 0.004 1.738 0.082 0.006 1.766 0.079 

Year 1 to 2 -0.005 -1.483 0.138 -0.004 -1.108 0.269 

Year -1 to 1 0.008 2.469 0.014 0.011 2.657 0.008 

Year -1 to 2 0.002 1.057 0.290 0.007 1.689 0.092 

Abnormal systematic risk (H3b) Median WSR-Z p Mean paired t p 

Year -1 to 0 0.004 0.876 0.381 0.022 1.15 0.251 

Year 0 to 1 0.027 1.763 0.078 0.028 1.764 0.079 

Year 1 to 2 -0.01 -0.67 0.503 -0.008 -0.533 0.594 

Year -1 to 1 0.043 2.69 0.007 0.05 2.681 0.008 

Year -1 to 2 0.024 1.746 0.081 0.041 2.167 0.031 

 

4.3. Stage 3: Cross-sectional analysis of event study 

The risk mitigation approaches have two major objectives: 1) to reduce the likelihood 

of risk event and 2) to reduce the negative consequences when the risk event happens. 

In the examination of H1 and H2, the dependent variables were the likelihood of HSE 

incidents, thus they were addressing the first objective. H4 and H5 postulate moderating 

effects of complexity and coupling on abnormal risk caused by HSE incidents, which 

addressing the second objective. Although variation in complexity and coupling was 

controlled between sample and control firms, variation in these two variables among 

sample firms enabled us to explore whether they could be used to predict variation in 

abnormal risk. We used abnormal unsystematic and systematic risk (Hendricks & 

Singhal, 2005; Singhal & Raturi, 1990) as the dependent variable throughout the 

research period (year –1 to year 2). Use of data regarding the entire research window 

as the dependent variable is consistent with previous long-horizon event studies (e.g., 

Lo et al., 2014; Swink & Jacobs, 2012). The independent variables for examining H4 
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and H5 were labor intensity (indicating complexity) and reversed inventory days 

(indicating coupling) in year –1. In addition, we included all the control variables used 

in Stage 1 alongside an additional control variable, multiple events, to control for the 

number of HSE incidents of a firm in the same year. The model specification for this 

cross-sectional analysis is expressed as follows: 

Abnormal unsystematic/systematic riskij(t-1 to t+2) = F(labor intensityijt-1, Reversed 

inventory daysijt-1, ROSijt-1, Total assetsijt-1, Firm ageijt-1, Quick ratioijt-1, Cashijt-1, 

Receivable daysijt-1, Capacityijt-1, Working capitalijt-1, Wageijt-1, TMT ownershipijt-1, 

Board sizeijt-1, Independent directorijt-1, Yeart, Industryj, u) 

Table 5 presents Model 1 and Model 3 including all control variables for the dependent 

variables of systematic & unsystematic risk respectively. Model 2 and Model 4 

examined H4 and H5 through inclusion of labor intensity and reversed inventory days. 

In Model 2, the coefficient of labor intensity was significantly positive in both Model 

2 and 4 (Model 2: 0.0390, p < .05; Model 4: 0.0120, p < .01). If we held other factors 

constant by shifting labor intensity from 0 to the mean (1.316), the abnormal systematic 

risk increased by 0.051 while unsystematic risk increased by 0.016. The coefficient of 

reversed inventory days was significantly positive (0.020, p < .10) in Model 2 while 

nonsignificant in Model 4. If we held other factors constant by increasing the number 

of inventory days from 0 to the average (209.27), abnormal systematic risk increased 

by 0.042. The goodness of fit of Model 2 (incremental χ2 = 5.127, p < .10) and Model 

4 (incremental χ2 = 5.980, p < .05) improved significantly. Thus, H4 is supported and 

H5 is partially supported. The result for H5 suggests that the inventory slack is more 

valuable for responding to disruption caused by exogenous shocks such as supply glitch 

and production shutdown. At the same time, additional inventory may increase the firm-

specific risk in terms of firm opaque, inventory depreciation and dead stock (Stevenson 

and Sum, 2014). 
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Table 5: Cross-sectional analysis of abnormal systematic risk 

 

DV: Abnormal systematic risk (year 
-1 to year 2) 

DV: Abnormal unsystematic risk 
(year -1 to year 2) 

  Model 1 Model 2 Model 3 Model 4 

  Coef. p Coef. p Coef. p Coef. p 

Labor intensity (H4)     0.039 0.038     0.012 0.006 

Reversed inventory days (H5)     0.020 0.066     0.002 0.434 

Production capacity  0.024 0.420 0.014 0.628 0.011 0.122 0.010 0.169 

ROS 0.394 0.015 0.475 0.004 0.071 0.150 0.087 0.076 

Total assets 0.024 0.611 0.026 0.584 0.005 0.616 0.007 0.498 

Firm age 0.004 0.374 0.005 0.265 0.000 0.940 0.000 0.709 

Quick ratio -0.007 0.861 -0.011 0.790 0.013 0.165 0.013 0.171 

Cash 0.000 0.295 0.000 0.641 -0.007 0.467 -0.007 0.503 

Receivable days 0.000 0.654 0.00 0.608 0.000 0.058 0.000 0.112 

Working capital 0.000 0.075 0.000 0.034 0.000 0.729 0.000 0.704 

Salary -0.021 0.624 -0.018 0.671 0.000 0.042 0.000 0.010 

Board size -0.145 0.175 -0.146 0.171 -0.025 0.289 -0.025 0.294 

TMT ownership 0.004 0.287 0.004 0.232 0.000 0.599 0.001 0.482 

Independent director % -0.308 0.354 -0.181 0.579 -0.028 0.738 -0.014 0.861 

Multiple incidents -0.016 0.740 -0.030 0.499 -0.003 0.756 -0.006 0.438 

Industry     Included       Included   

Year     Included       Included   

Chi2 57.624 0.000 62.752 0.000 49.417 0.301 55.397 0.188 

Incremental chi2     5.127 0.077     5.980 0.050 

Note. N = 278; 0.000 indicates <.001. 

4.3.1. Robustness check 

4.3.1.1. Alternative time lag for independent variables 

We used 1-year-lagged independent variables to examine H1 and H2. However, the 

complex nature and coupling nature were relatively stable in each firm’s operations, 

and thus may have long-lasting effects on firms’ HSE performance. To address this 

concern, we used the independent variables at t – 2 to conduct an analysis; the results 

are presented in Table A.1. The coefficients of labor intensity (0.1675) and reversed 

inventory days (0.0014) were significantly positive (p < .01), consistent with the results 

in Table 2. 
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4.3.1.2. HSE incidents as rare events 

Given that HSE incidents are rare, some may argue that our dependent variable contains 

a high proportion of “0,” which may have caused bias in the testing of H1 and H2. 

However, Cramer et al. (1999) reported that parameter estimation is robust in samples 

involving large percentages of “0” observations. In addition, Bayus (2013) argued that 

gaining statistical support is more difficult with a higher number of “0” observations. 

This suggests that the high number of firms without HSE incidents rendered the 

hypothesis testing more conservative. To address concerns over the large percentage of 

“0” or no-incident observations, we used a rare-event logistic regression model to re-

estimate the regression model in Table A.2. The coefficients of labor intensity (0.1262) 

and reversed inventory days (0.0012) were significantly positive (p < .01), consistent 

with the results in Table 2. 

4.3.1.3. Separating health and safety, and environmental incidents 

Our primary model integrated health and safety, and environmental incidents into one 

variable (HSE incident). In a robustness analysis for H1 and H2, we divided the 

dependent variable into environmental incident, and safety incident, respectively, and 

reran the analysis. The analysis results (Table A.3) show that both complexity (labor 

intensity) and coupling (low inventory level) contributed to the increased likelihood of 

environmental incidents (p < .01). However, we found that only complexity had an 

impact on safety incident (p < .10) while the impact of coupling was not significant 

(p > .10). This result provides additional support for H1. It also provides a boundary 

condition for our H2 by indicating that Chinese firms generally were not using 

inventory slack to cope with safety incidents. 

4.3.1.4. Endogeneity 

In our primary models, we developed a panel dataset with the collected data for analysis. 

Panel data analysis has the advantage of being able to mitigate certain endogeneity risk 

(Ketokivi & McIntosh, 2017). First, a time lag exists between the independent and 
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dependent variables to confirm a causality relationship (i.e., eliminating the possibility 

of reversed causality). Second, we controlled for year and industry for un-modeled 

time-invariant effects, such as regulation and seasonal factors related to industry and 

law enforcement variation in different years. However, time variation present in un-

modeled variables may present endogeneity concerns during the evaluation of results. 

Such concerns could result from the possibility that unobserved factors affect 

independent and dependent variables simultaneously, leading to an alternative 

explanation(s) for our results. For example, a manager’s risk propensity and adoption 

of advanced technology may affect their firm’s operational complexity, coupling, and 

safety performance. 

In light of the aforementioned discussion about employing approaches from previous 

studies using panel data to control for external factors, we used a generalized method 

of moments (GMM) analysis in our robustness check (e.g., Lam et al., 2016; 

Wiengarten et al., 2017) to further reduce the risk of endogeneity in our models. The 

GMM uses lagged values for endogenous factors as instrumental variables to reduce 

bias caused by endogeneity (Roodman, 2009). 

We used the lagged values of labor intensity and reversed inventory days in our GMM 

models. Table A.4 presents the GMM analysis results alongside the results from Hansen 

(Hansen, 1982) and Arellano–Bond (Arellano & Bond, 1991) tests. The Hansen and 

Arellano–Bond tests indicated that the lagged variables were acceptable instruments for 

addressing endogeneity concerns in the GMM models. Thus, we concluded that the 

instruments were exogenous and did not correlate with the disturbance terms, and the 

GMM model mitigated the risk of endogeneity arising from un-modeled random 

variables. The coefficients of labor intensity (0.0037) and reversed inventory days 

(0.000014) were significantly positive (p < .01 and p < .05, respectively), which 

provides additional support for H1 and H2. 
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4.3.1.5. Robustness check for firm risk 

The propensity score approach ensured that the sample–control paired firms were 

comparable. However, the abnormal increases in risk shown in Table 4 may have been 

caused by the continuing trend in risk change prior to HSE incidents. Following 

previous event studies (e.g., Lo et al., 2014), we further tested for abnormal change in 

the pre-event period (i.e., year –2 to year –1). The analysis did not capture a significant 

change in this period (p > .10); thus, the results in Table 4 were not caused by systematic 

bias. In addition, confounding events that occurred in the same years as HSE incidents 

may have influenced the effect on firm risk. Thus, we searched each sample firm’s 

announcements to identify whether the firms had announced acquisitions or sales of 

assets or equity, or any corporate changes, including those involving major shareholders, 

senior management teams, members of boards of directors, auditing firms, corporate 

names, registration, or location. We eliminated 75 HSE incidents associated with these 

confounding events and reran the analysis. The analysis results are presented in Table 

A.5. Abnormal unsystematic and systematic risk change was positive and significant at 

the 0.1 level in the periods of year 0 to year 1 and year –1 to year 1. These findings 

suggest that the influence of confounding events was not strong and does not falsify 

H3a and H3b. 

4.3.1.6. Alternative measure of coupling 

We used reversed inventory days to measure operational coupling in the main analysis 

(Wiengarten et al., 2017). However, the assumption of inventory decoupling operations 

is that a firm should hold inventory that matches demand (Lo et al., 2014). Firms with 

large quantities of the wrong inventory require additional effort (e.g., more frequent 

setup, maintenance, and reproduction) to increase operational coupling (Fan & Zhou, 

2018). Therefore, we replaced the independent variable of reversed inventory days in 

Tables 2 and 5 with inventory volatility to examine whether H2 and H5 had been 

falsified by the alternative measure. Inventory volatility was measured as the standard 

deviation of a firm’s inventory by quarter, scaled by its mean quarterly inventory value 
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in the year in question (Fan & Zhou, 2018; Lo et al., 2014). We transformed this variable 

to a natural logarithm to correct for skewness. The robustness check results are 

presented in Table A.6. Model 1 examined H2 and Model 2 examined H5. The 

coefficients of inventory volatility in both models were significantly positive (p < .05 

and p < .10, respectively). The results from this analysis provide additional support for 

H2 and H5. 

5. Conclusion and Discussion 

This study was the first to resolve the empirical puzzle of how operational 

characteristics affect the likelihood, and moderate the effect, of HSE incidents in 

relation to risk in the world’s most significant supply base: the Chinese manufacturing 

sector. Our quasi-experiment found that HSE incidents increase both unsystematic and 

systematic risk for Chinese manufacturers. In addition, regression analyses found that 

reducing labor intensity and increasing inventory slack of manufacturers can (1) reduce 

their likelihood of having HSE incidents and (2) mitigate the negative impacts of HSE 

incidents. Our findings have crucial implications for researchers by advancing 

knowledge of sustainable operations, supply chain risk, and NAT. This findings also 

have implications for supply chain managers aiming to reduce supply chain risk, 

particularly with respect to manufacturing stage and HSE issues. We discussed these 

implications in this section. 

5.1. Theoretical contributions 

The current study is the first to address the empirical puzzle of HSE incidents in relation 

to a manufacturer’s risk; we find an essential link between sustainable OM and risk 

management. Related studies on HSE incidents have focused on short-term abnormal 

stock return (e.g., Klassen & McLaughlin, 1996; Lo et al., 2018) or long-term 

productivity, sales performance, and profitability (Lo et al., 2014). The findings of the 

present study regarding manufacturers’ risk provide a valuable supplement to these 

studies. In addition to firms’ abnormal returns and profitability, firm unsystematic and 
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systematic risk are a key dimension in institutional investors’ investment portfolios. 

Thus, the increased risk revealed here offers a fresh and vital angle to understand the 

consequence of HSE incidents. It is worth noting that we took the first step to 

investigate equity risk, although risk is a multi-dimensional construct that involves both 

internal and external uncertainties encountered by firms. Further research might expand 

the research scope to other aspects of risk such as market risk (Wiengarten et al., 2017) 

and policy risk (Darby et al., 2020). 

This study also contributes to the supply chain risk management literature. Tang (2006) 

identified aspects of supply chain risk including supply, demand, product, and 

information management. Traditional supplier selection and governance criteria related 

to cost, quality, delivery, and flexibility, while scholars call for taking sustainability into 

account (Luthra et al., 2017). This study responds to this call by demonstrating that 

HSE incidents occurring during the manufacturing stage can increase instability (risk) 

in the supply base. We confirm that sourcing from socially responsible manufacturers 

reduces risk in the supply base caused by HSE incidents. Further research on supply 

chain risk should devote greater attention to the risk associated with HSE incidents. 

Our findings also echo the proposition that “socially responsible suppliers are less risky” 

(McGuire et al., 1988) because such firms are usually more transparent and honest in 

their operations. The proposition was tested in a corporate bond market context, but 

those researchers found no significant evidence that more socially responsible firms 

than socially irresponsible firms risk premiums (Menz, 2010). In contrast, our findings 

support this proposition with significant results in a stock market context, possibly 

because institutional investors (unlike bond market investors) are more sensitive to 

HSE incidents, and transaction frequencies in the stock market are usually considerably 

higher than those in the bond market. Future research may investigate whether 

improving operational transparency to reduce supply chain risk would be worthwhile. 

Our findings corroborate HRT’s prediction regarding the likelihood of HSE incidents. 

Previous studies of NAT (e.g., Lo et al., 2014) have shown that coupling and complexity 
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moderate the effects of OHSAS 18001 on financial and safety performance. The present 

research extends understanding of the applicability of these two factors in the context 

of environmental incidents. In addition, the research extends understanding of coupling 

and complexity in that these factors moderate both firm performance (i.e., financial and 

operational) and firm systematic risk. This is the first empirical study to verify the 

relationships between coupling and complexity, and firm risk.  

In the OM studies about NAT, Lo et al., (2014) investigated whether complexity and 

coupling could affect the effectiveness of OHSAS 18001 adoption. Fan & Zhou (2018) 

investigate whether complexity and coupling could moderate the relation between 

supply-demand mismatch and safety violations. Wiengarten et al., (2017) study how 

coupling affects the likelihood of safety violations. Our study is differentiated in the 

following ways. First, these studies majorly investigate safety violations not accidents. 

Violation is an undesirable circumstance that could lead to accidents. If the corrected 

action can be done timely, the violations can be prevented from mushrooming to 

accidents. However, our research study accidents that have made actual harm to the 

labour or environment. Accidents are generally more serious. The characteristics of 

serious and minor incidents are inherently different (Norris et al., 2000). Serious ones 

cause more harm to workers, operations and communities by disrupting production and 

undermining productivity (Wright et al., 2002). Second, Lo et al., (2014) and Fan & 

Zhou (2018) investigate the indirect effects of coupling and complexity. Despite 

Wiengarten et al., (2017) focused on the direct effect, complexity is not considered in 

their research model. Thus, this study is differentiated by providing a more 

comprehensive view by investigating both direct (H1 & H2) and indirect effects (H4 & 

H5) of both complexity and coupling. We added these discussions in the theoretical 

contribution section to demonstrate our research uniqueness. 

Further, this study confirms that these two factors affect firms’ HSE performance in 

developing countries (China in this case), as well as developed countries such as the 

US (e.g., Fan & Zhou, 2018; Lo et al., 2014; Wiengarten et al., 2017; Wolf, 2001). 
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5.2. Management implications 

The findings of this study expand understanding of the antecedents of HSE incidents in 

emerging markets—from financial slack and profit margin to production characteristics. 

Understanding of these relationships has management implications for factory 

operations managers, sourcing agents, and consumer brands that care about the 

sustainability of supply chains. 

Regarding factory managers, because of growing pressure from international brands to 

ensure that supplier products are produced ethically and not only follow the host 

country’s regulations, but also fulfill the home country’s consumer expectations, the 

challenge of meeting sustainability expectations will likely only become increasingly 

difficult. For example, Foxconn—the supplier that produces iPhones for Apple—faced 

a problem regarding the use of sweatshops (Clarke & Boersma, 2017; Kates, 2015), 

with many workers committing suicide because of extremely high job pressure. As a 

result of rising labor costs in China, Foxconn must manage workers in a highly efficient 

manner to maintain its profit margin. Workers often lack adequate mental and physical 

care under tight production schedules, which increases the likelihood of HSE incidents. 

The labor problem becomes increasingly challenging as labor costs in China and other 

emerging markets continue to rise. In response to this problem, Foxconn converted their 

production process, mainly in its new factory in the US, from labor-intensive to fully 

automated Therefore, factory managers should identify processes that could automate 

and reduce the production complexity that requires a large number of labor workers for 

routine production tasks. 

Another example of automation improving sustainability is provided by Esquel Group, 

a well-known vertical-integrated shirt manufacturer that produces over 100 million 

shirts annually. Esquel Group recently developed a fully automated yarn production 

facility in Xinjiang, China. With only 45 workers, they can manage fully automated 

spinning plants with 30,000 spindles that transform cotton fibers into high-quality yarn 

for premium shirt production. Esquel Group’s customers are world-renowned brands 
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such as Ralph Lauren and Brooks Brothers. Running a factory in such a manner can 

prevent serious workplace safety and pollution problems while minimizing production 

complexity through automation. Industry leaders have already seen the merits of 

automation and robotics technologies, which improve both production efficiency and 

overall sustainability. The results of this study support observations that, regardless of 

the nature of products (i.e., high tech or low tech), sourcing from more suppliers with 

high levels of automation helps reduce both the lead time and the likelihood of HSE 

incidents occurring in supply chains. 

In addition to automation solving the production complexity issue, factory managers 

should be aware of production coupling, where the inventory level cannot be too low. 

Although the global trend is to aim for zero inventory to avoid waste, in the first quarter 

of 2018, H&M burned US$ 4.3 billion worth of unsold clothes (Paton, 2018), which 

constituted a huge waste of natural resources and resulted from unsuitable forecasting 

and sourcing decisions (Farmbrough, 2018). Zara, another fashion giant, manages 

production in a responsive manner to reduce the inventory for each style. Resolving 

production coupling problems does not mean producing more safety stocks—which 

could eventually turn into waste that could impact the environment—but rather 

acquiring the required inventory through effective communication with customers and 

more precise prediction of market needs and tastes. 

For sourcing agents and consumer brands, their strategy of sourcing from sustainable 

suppliers should also cover suppliers’ HSE records and production characteristics in 

relation to their likelihood of HSE disruption. Brands should source from suppliers that 

are more automated or have at least taken steps toward automation, as this measure 

would likely significantly lower the future likelihood of HSE incidents. In addition, 

brands should examine the average inventory level and inventory volatility of their 

suppliers over the preceding 3 years as these are a clear indication of how well customer 

demand is managed and how changing demand in a season can be responded to. 

Selecting suppliers with higher levels of production automation and more effective 
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coupling management could significantly minimize future impacts caused by HSE 

issues. 

5.3. Limitations  

The findings of this study are subject to the following limitations. First, the 

measurement of the dimension of complexity could be improved. Second, time slack 

between production processes may also be a good indicator of coupling. However, we 

could not find such data in a readily available form. Future research might consider 

other dimensions of complexity and coupling. This study focused on HSE-related 

events; CSR-related events may also include product safety, social accountability, and 

equality. Future research can build on this research and investigate other CSR-related 

events. Last, a firm’s CSR level may impact how stakeholders perceive HSE 

misconduct; for example, shareholders may not be surprised when a non-reputable firm 

engages in misconduct. Future research may include CSR level as a covariate in 

empirical models. 
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Appendices 

Table A.1: Logistic regression analysis of HSE incidents 

DV: HSE incident in year t (1 = yes, 0 = no) 

  Model 1 

Variable Coef. p 

Labor intensity (at t − 2) 0.1675 .001 

Reversed inventory days (at t − 2) 0.0014 .003 

Chi2 420.02 .000 

Note. N = 8,478; two-tailed tests; 0.000 indicates <.001; all control variables included but not shown. 

Table A.2: Rare-event logistic regression analysis of HSE incidents 

DV: HSE incident in year t (1 = yes, 0 = no) 

  Model 1 

Variable Coef. p 

Labor intensity 0.1262 .000 

Reversed inventory days 0.0012 .004 

Note. N = 10,357; two-tailed tests; 0.000 indicates <.001; all control variables included but not 
shown. 

Table A.3: Logistic regression analysis of environmental incidents and safety 

incidents 

 

DV: environmental incident in year t 
(1 = yes, 0 = no) 

DV: Safety incident in year t 
(1 = yes, 0 = no) 

  Model 1 Model 2 

Variable Coef. p Coef. p 

Labor intensity 0.153 0.000 0.033 .068 

Reversed 
inventory days 0.002 0.000 0.000 .739 

Note. N = 10,357; two-tailed tests; 0.000 indicates <.001; all control variables included but not 
shown. 
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Table A.4: GMM analysis of HSE incidents 

DV: HSE incident in year t (1 = yes, 0 = no) 

  Model 1 

Variables Coef. p 

Labor intensity 0.0037 .002 

Reversed inventory days 0.0000014 .016 

Chi2 63.65 .000 

AR1  .000 

AR2  .774 

Hansen test  .306 

Note. N = 10,357; two-tailed tests; 0.000 indicates <.001; all control variables included but not 
shown. 

Table A.5: Event analysis of HSE incidents (confounding event eliminated) 

  Nonparametric test Parametric test 

Abnormal unsystematic risk (H3a) N Median WSR-
Z p Mean Paired t p 

Year -1 to 0 203 0.002 -0.575 0.566 0.004 0.813 .418 

Year 0 to 1 203 0.009 1.765 0.078 0.008 1.711 .089 

Year 1 to 2 203 -0.007 -1.346 0.178 -0.004 -0.979 .329 

Year -1 to 1 203 0.013 2.430 0.015 0.012 2.385 .018 

Year -1 to 2 203 0.005 0.948 0.343 0.007 1.431 .154 

Abnormal systematic risk (H3b) N Median WSR-
Z p Mean Paired t p 

Year -1 to 0 203 -0.003 -0.235 0.814 0.01 0.463 .644 

Year 0 to 1 203 0.032 1.845 0.065 0.036 1.864 .064 

Year 1 to 2 203 -0.013 -0.438 0.661 -0.005 -0.269 .788 

Year -1 to 1 203 0.051 2.362 0.018 0.046 2.200 .029 

Year -1 to 2 203 0.029 1.640 0.100 0.041 1.883 .061 

Table A.6: Measuring operational coupling as inventory volatility 
 

Model 1 
DV: HSE incident in year t (1 = yes, 

0 = no) 
N = 10,053 

Model 2 
DV: Abnormal systematic risk 

(year -1 to year 2) 
N = 278 

 Coef. p Coef. p 

Labor intensity 0.125 0.000 0.038 .060 

Inventory volatility 0.121 0.041 0.041 .094 

Chi2 437.21   41.5889   

Note. 0.000 indicates <.001. 
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