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ABSTRACT
Participants in conversations may either actively engage in and
enjoy the process, or become disinterested and allow their minds to
wander. Measuring the engagement level of the participants can be
quantified and used for analyzing numerous conversation scenarios
such as business negotiations and remote learning, where the en-
gagement level may indicate the success of negotiations or reflect
the quality of the learning process. This paper presents a novel
approach to engagement estimation using a versatile, resource-
efficient, end-to-end training network. The network leverages body
motion and audio characteristics, addressing challenges in data
quality and model interpretability. Validated using the Noxi data-
base and tested in the MultiMediate’23 competition, our approach
achieved state-of-the-art performance, improving the baselinemodel’s
concordance coefficients correlation from 59% to 70% on the test
set.

KEYWORDS
engagement, machine learning, neural networks

ACM Reference Format:
. 2023. MultiMediate 2023: Engagementment Level Detection using Audio
and Video Features. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In dialogue, participants interact with each other, exchanging opin-
ions and sharing stories. The level of participation and involvement
of each participant in the interaction is referred to as "engagement."
It is also defined as "the value that a participant in an interaction
attributes to the goal of being together with the other participant(s)
and of continuing the interaction" [14]. Estimating the value of
engagement plays a vital role across various domains including
education [18], healthcare [6] and UX optimization [2].

Traditional methods for evaluating engagement have predomi-
nantly relied on questionnaires and human observations, providing
subjective measures of engagement [1, 17]. However, with the rapid
advancement of machine learning (ML) techniques in recent years,
a shift towards more objective and automated measures of engage-
ment has been observed. The direct application of ML techniques to
analyze engagement levels has emerged as a promising approach,
offering the potential for real-time and accurate measurements of
engagement[3, 16]. Although the potential of utilizing ML and deep
learning techniques to conduct engagement evaluation is recog-
nized by researchers, it also presents several key challenges.

Firstly, the quality and quantity of data are crucial for the effec-
tive training of machine learning models. In the context of engage-
ment estimation, this implies the need for multi-modal records of
the target subjects including facial expressions, user interactions
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and other physiological data in a non-intrusive way[7]. Current
open datasets about engagement level focusing mainly on one or
two modalities [5]. For example, DAiSEE dataset provides with fa-
cial expression [9]. Others might use wearable and external sensors
to collect ambient environmental data for predictive model [8]. The
lack of high-quality multi-modal training data, coupled with the
bias induced by intrusive devices, poses significant challenges to
the development of a reliable machine learning model that can be
generally applied across various human interaction scenarios[4].

Moreover, the interpretability of the trained ML models has
hindered researchers to correlate the performance of the model
with the recorded physiological features. While these models can
make accurate predictions, understanding why they made a specific
prediction can be difficult. This lack of interpretability can be a
barrier to trust and acceptance of these models[11].

In order to address the challenges identified, we propose a train-
ing network that is capable of addressing a wide range of situations
and is easy to implement. This network utilizes both body motion
and audio characteristics of individuals involved in an conversation.
The selection of these features was based on the Noxi database
[13], which is a novel database consisting of natural interactions
between novice and expert individuals in multiple languages. These
interactions were conducted through screens and focused on ex-
changing and retrieving information. The database includes records
of both audio and video channels, which were captured using Mi-
crosoft Kinect2 [12]. Additionally, the dataset contains annotations
for each frame indicating the level of engagement, which serves as
the ground-truth labels for the MultiMediate’23 engagement esti-
mation competition [13]. To validate our approach, we participated
in this competition and achieved the state-of-the-art performance.
Our approach resulted in a significant enhancement, increasing
the concordence coefficients correlation of the baseline model from
59% to 70% evaluated on the test set [13].

2 METHODOLOGY
In this section, we will delve into the specifics of our methodology,
showcasing how we proposed to conduct feature engineering based
on the findings made from the Noxi database [13], and provide a
detailed explanation of our model’s design and its implementation
process.

2.1 Data Observation
We first conduct data visualization using the session recordings
to identify potential features that could be significant for our task.
From each session in the training set, we extract a sequence of 125
consecutive frames (equivalent to 5 seconds) that exhibit the lowest
or highest average engagement value. This allows us to discern any
common features that might indicate useful attributes.

Our findings suggest that participant engagement peaks when
they are trying hard to convey specific information to the listener.
This can occur in situations where an expert is attempting to ex-
plain something to a novice, or when a novice expresses their
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Figure 1: The workflow of feature construction of a single subject, this process will be repeated for both participants involved
in a interaction session, then the four feature vectors belong to the two individuals will be concatanated to form the final
feature vector.

understanding and poses questions. Such states often accompanied
by extensive body gestures and a tone rich in emotion.

We have also noted that instances of minimal engagement typ-
ically correspond to intentionally introduced disruptions. For ex-
ample, the engagement level of the participant is normally low
when the other person involved in the conversation is engaged
in irrelevant tasks such as taking a phone call or adjusting exper-
imental equipment. Participants anticipating these interruptions
generally exhibit subdued body language and maintain silence in
such situations.

Based on above observations, we propose a multi-input model
that leverages features from audio signals to represent speaking
characteristics, and video features to describe the participant’s
body movements. The feature of both modalities would be builded
exploiting the past information to predict the engagement status of
the current moment, and a session-based min-max normalization
is applied to each selected feature. The feature engineering process
will be conducted for each frame and the overall workflow of our
proposed approach is presented in Fig 1

2.2 Audio Feature Engineering
Our goal is to construct the audio feature in a way that it can fully
capture the key audio characteristics of the speech. This includes
looking at important factors like pitch, loudness, and theHarmonics-
to-Noise Ratio (HNR) within a set time window. It’s worth noting
that pitch and loudness can often show the speaker’s emotions [10].
At the same time, HNR is key parameter to indicate the clarity of
a speech. This could be really important for keeping the listener’s
attention during a conversation [15], whichwill significantly impact
the engagement level.

We aim to devise a method for capturing essential audio charac-
teristics of speech, focusing on three key factors: pitch, loudness,
and the Harmonics-to-Noise Ratio (HNR). It is well-documented
that pitch and loudness can significantly influence the perception
of the speaker’s emotions [10], while HNR is a crucial parameter for
speech clarity, contributing to the listener’s attention and engage-
ment during conversation [15]. Each of these factors are normally

Figure 2: The proposed prediction model

represented by a set of related parameters. To simplify this represen-
tation and reduce the dimensionality for further processes, we will
employ Principle Component Analysis (PCA), through which we
can represent each factor by a single value. Hence, each of these fac-
tors within the local time window would be represented by a single
value across the time series. We then propose applying polynomial
regression to these time-series, allowing us to model and capture
complex, potentially non-linear relationships with time. By choos-
ing a higher degree polynomial, we aim to capture more complex
features from these series. The coefficients from these regressions
then form the final feature vector, creating a comprehensive, multi-
dimensional representation of the sound sample within the given
time window.
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2.3 Video Feature Engineering
We utilize the Noxi database’s data collected using Microsoft’s
Kinect2 [13], a device that records ’skeleton points’ or specific
locations on a person’s body that indicate body motion. Kinect2
captures up to 25 unique skeleton points, such as the head, neck,
shoulders, elbows, hands, knees, and feet, offering a comprehensive
view of a person’s posture, movement, and interactions with their
surroundings.

For each skeleton point, we extract the 3D position and calculate
the frame-by-frame variations using Euclidean distances. This en-
ables us to quantify the amount of movement between each frame.
After normalizing these variation values, we represent them using
a six-dimensional vector (refer to Table 1). This vector provides a
comprehensive summary of the per-frame variations, capturing the
range and distribution of movement across time, thus is well-suited
for subsequent predictive modeling.

Feature Description
min Minimum value of variation
max Maximum value of variation
std Standard error of variation values
mean Average value of variation
qt15 Value at the 15% quantile of variation range
qt75 Value at the 75% quantile of variation range

Table 1: Illustration of the builded feature vector

2.4 Model Design
In our research, we have conducted extensive feature engineering
to prepare our data for the prediction model. This comprehensive
process allows us to primarily utilize fully-connected layers in
the formation of our model. The use of fully-connected layers is
advantageous as it increases the flexibility and robustness of the
model. This design choice also provides a straightforward path
for the model to adapt to changes in input modalities, which is
crucial in a dynamic data environment. The overall structure of the
proposed network is shown in Fig

As illustrated in Figure 1, each modality of input is transformed
into a one-dimensional feature vector. This transformation process
is essential as it standardizes the input data, making it easier for the
model to process. Each of these feature vectors is then individually
processed through a separate block of fully connected layers. This
step results in an embedding vector of the same length for each
inputmodality. This is because we believe that eachmodality carries
unique and valuable information, and we do not want to introduce
any bias by giving more importance to one modality over another.

Once the embedding vectors are generated, they are concate-
nated to create a comprehensive representation of both the speaker
and listener in a given time window. This combined vector encapsu-
lates the information from all modalities, providing a holistic view
of the input data.

Finally, the final feature vector is fed into the prediction block
to generate predictions, which is also composed of fully connected
layers. We utilize Adam as the optimizer and employ the mean-
squared error (mae) as the loss function. Additionally, the learning
rate of the network is set to 1e-6 to mitigate potential overfitting
issues.

We intend to train a pair of distinct networks, each mirroring
the other in structure, to specifically predict the engagement value
of the two participants in an interaction session. For clarity, we
will designate the subject for whom we are currently predicting the
engagement value as the ’target,’ while the other participant will
be referred to as the ’opponent.’

3 EXPERIMENTAL RESULTS
In this section, we will illustrate the methodology we take to con-
duct evaluation, aiming at justifying our choice of design from the
results of the ablation study and further identifying the key impact
factors during fine-tuning our model. We will then present the final
result of our model by participating in the engagement estimation
of the multimediate challenge 2023 utilizing the Noxi dataset [13]
where we achieved the state-of-the-art performance.

The engagement estimation challenge called for per-frame pre-
dictions for both participants in an interaction and employ the
Concordance Correlation Coefficient (CCC) as evaluation metric.
The CCC, considering both variability between and correlation
among measurements, furnished a comprehensive evaluation of
our model’s performance.

3.1 Ablation Study
An ablation study was conducted using the Noxi validation set to
understand the contribution of different parts of our model and
guide the fine-tuning process.

Used Feature Feature Engineering Val CCC
Audio only raw data PR coef 0.623
Audio only variation data PR coef 0.358
Audio only per-frame var data summary 0.423
Audio only raw data summary 0.541

Table 2: Validation performance of different audio feature engineer-
ing, where PR coef is polynomial regression coefficient and Val CCC
is the validation concordance correlation coefficient

3.1.1 Choice of audio feature engineering. In the first part of the
ablation study, we examined the impact of different strategies for
audio feature engineering on the performance of the model. In
particular, we evaluated four different approaches for audio feature
engineering: using raw data Polynomial Regression (PR) coeffi-
cients, variation data PR coefficients, per-frame variation data sum-
mary, and raw data summary. The performance for each approach
was evaluated in terms of the Concordance Correlation Coefficient
(CCC) on the validation set, as shown in Table 2.

The results showed that using raw data PR coefficients provided
the highest validation CCC of 0.623, significantly outperforming
the other approaches. This finding suggests that the raw data PR
coefficients more effectively capture the essential characteristics
of the audio signals than the other methods. This approach was
therefore chosen for audio feature engineering in our model.

3.1.2 Choice of video feature engineering. In the second part of the
ablation study, we evaluated different strategies for video feature
engineering. Again, we tested four different approaches: raw data
PR coefficients, variation data PR coefficients, per-frame variation
data summary, and raw data summary. The performance for each
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approach was evaluated in terms of the CCC on the validation set,
as shown in Table 3.

The results indicated that using the per-frame variation data
summary provided the highest validation CCC of 0.455, outperform-
ing the other methods. This finding suggests that the per-frame
variation data summarymore effectively captures the essential char-
acteristics of the video signals, specifically the movements of the
participants, than the other approaches. Therefore, this approach
was chosen for video feature engineering in our model.

Used Feature Feature Engineering Val CCC
Video only raw data PR coef 0.184
Video only variation data PR coef 0.413
Video only per-frame var data summary 0.455
Video only raw data summary 0.223

Table 3: Validation performance of different video feature engineer-
ing, where PR coef is polynomial regression coefficient and Val CCC
is the validation concordance correlation coefficient

3.1.3 Impact of multiple modalities. We then examined the impact
of using multiple modalities on the performance of our model.
Three configurations were tested: using audio features only, using
video features only, and using both audio and video features. The
performance for each configuration was evaluated in terms of the
CCC on the validation and test sets, as shown in Table 4.

The results indicated that using both audio and video features
provided the highest validation CCC of 0.732 and test CCC of 0.68.
In comparison, using only audio features yielded a validation CCC
of 0.623, and using only video features resulted in a validation CCC
of 0.548.

These results suggest that incorporating both audio and video
modalities significantly improved the performance of the model.
The combined use of audio and video features provided a more
comprehensive representation of the interaction sessions, captur-
ing both the speech characteristics and body movements of the
participants. This holistic view of the interaction sessions was in-
strumental in improving the model’s ability to predict participant
engagement. Therefore, we chose to incorporate both audio and
video features in our model.

This analysis underscores the importance of utilizing multiple
modalities in engagement estimation tasks, as it allows the model
to capture a broader range of features and patterns in the data,
thereby improving prediction accuracy.

Used Feature Time Windows Size Val CCC Test CCC

Audio 5s 0.623 -
Video 5s 0.548 -

Audio + Video 5s 0.732 0.68
Table 4: Impact ofmultiplemodalities, whereCCC is the concordance
correlation coefficient

3.2 Model Fine-tuning
Several parameters are found to be determinant to the performance
of our model.

3.2.1 Size of Time Window. Increasing the time window size from
5 seconds to 10 seconds resulted in improved system performance.
This enhancement was evident in both the Validation CCC and
Test CCC metrics as shown in Table 5. Utilizing longer time win-
dows allowed for a more comprehensive representation of the data,
capturing relevant information and underlying patterns over ex-
tended periods. The broader temporal range also helped mitigate
the impact of short-term fluctuations and noise, resulting in a more
stable feature set. Additionally, longer time windows facilitated
the identification of long-term dependencies and trends within the
data. Overall, the findings support the effectiveness of longer time
windows in improving system performance.

Used Feature Time Window Size Val CCC Test CCC
Audio + Video 5s 0.732 0.664
Audio + Video 10s 0.741 0.68

Table 5: performance of different length of the time window, where
CCC is the concordance correlation coefficient

3.2.2 Target and opponent feature dimension. To determine the
importance of features in predicting the engagement level of the
target subject, we limited the shape of the final feature vector of the
target subject and the opponent. Our findings presented in Table 6
indicate that the model performs better when relying more on the
opponent’s constructed features. This suggests that the engagement
level of the target subject is significantly influenced by the reactions
and behavior of the conversational partner.

Target FD Opponent FD Val CCC Test CCC
512 512 0.741 0.68
512 216 0.735 0.672
216 512 0.745 0.695

Table 6: FD stands for the dimensions of the feature vector, the best-
practice feature combination and local window size highlighted in
the previous tables are used here, where CCC is the concordance
correlation coefficient

4 CONCLUSION
In this study, we have developed a lightweight machine learning
model that can assess the level of engagement between two individ-
uals in a real-time conversation. Our model incorporates various
techniques for feature engineering, allowing us to accurately cap-
ture the subjects’ body motion patterns and relevant audio features
from a recent time period. Through an ablation study, we have
confirmed the importance of using multiple modes of input and our
chosen feature engineering methodology. Additionally, our model
has achieved state-of-the-art performance in the MultiMediate’23
engagement estimation challenge, further validating the efficacy of
our approach. Moving forward, our research will focus on training
with more advanced neural networks like transformers [19], with
the aim of fully leveraging the valuable multi-modal information
we have identified.
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