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Abstract 

The scenario-based seismic assessment approach is illustrated within a large-scale 

pile-supported wharf structure (PSWS). As nonlinear seismic response analysis is 

computationally expensive, a novel and efficient method is developed to improve and update 

the traditional simulation methods (e.g., Monte Carlo simulation (MCS)). Herein, the 

Gaussian Process (GP) surrogate model is proposed to replace the time-consuming FE model 

of PSWS, which makes the quantification of uncertainty in seismic response of a large-scale 

PSWS resulting from structural parameter uncertainty more computationally-efficient. The 

feasibility of the proposed GP surrogate model-based approach in uncertainty quantification 

of seismic response of a large-scale structural system under a given seismic scenario is 

verified and compared by using MCS. 
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1 Introduction 

Pile-supported wharf are structures located on the shore of a harbor or on the bank of a 

river and canal, where ships may dock to load and unload cargo or travelers. A wharf 

structure is essential to a port transportation system and plays an important role in protecting 

capital investments and promoting the regional and national prosperity. Typically, a wharf 

structure includes one or more berths, and may also include pile foundation, deck, and other 

necessary facilities for handling the container. A pile-supported wharf structure (PSWS) is 

susceptible to severe damage during strong earthquakes, as the seismic-induced sand 

liquefaction and lateral deformation of the offshore slope would usually result in excessive 

axial force and bending moment around the pile-deck connection [1, 2]. The seismic damage 

to PSWS has been reported in many recent seismic cases [3-5], such as the 1995 

Hyogoken-Nanbu earthquake [4] and the 2010 Haiti earthquake [5]. To mitigate the 

seismic-induced damage of a PSWS, it is crucial to understand and predict its seismic 

performance during earthquakes.  

However, accurate characterization of seismic performance of a PSWS is not an easy 

task. During the last two decades, tests, including either full-scale or centrifuge test and 

in-field experimental test, have been conducted to study the seismic behavior of PSWS [6-8]. 

Numerical simulation has also drawn considerable attention of engineers to investigate the 

seismic behavior of PSWS owing to its low cost and modeling generality. Some studies have 

been conducted to investigate the seismic performance assessment of PSWS based on 

numerical analysis [9-14]. In general, the representative numerical model of PSWS usually 

consists of a lot of physical and mechanical properties, including compressive strength of 

concrete, soil-pile interface stiffness, shear strength, shear modulus, and friction angle of soil, 

yield strength and elastic modulus of steel among others. 

Most studies considered structural properties to be deterministic. As such, the 



 

 

subsequent nonlinear seismic response analysis is carried out in a deterministic manner. In 

practice, the geometric and material properties (such as, soil, steel, and concrete) are random 

[15, 16, 17]. Thus, the effect of parameter uncertainty on seismic responses of PSWS should 

be taken into account in order to ensure accurate characterization of the seismic behavior. 

The significance of uncertainty quantification of seismic performance has been increasingly 

recognized, and, in response, a large volume of work has been done on this topic. In the 

literature, most studies focus on buildings [17-24] and bridges [25-35], while little has been 

devoted to PSWS [36, 37]. Specifically, Nour et al [36] and Mirfattah and Lai [37] assessed 

the seismic responses of the wharf considering the random soil properties beyond MCS. 

Heidary-Torkamani et al. [38, 39] also studied the probabilistic seismic analysis of wharf 

structure with uncertain parameters, but they focused on sensitivity analysis to find the 

relative importance of uncertain structural parameters to seismic responses. 

Due to its robustness, generality, and ease of use, MCS has wide applications in 

uncertainty quantification. However, it requires a large number of model runs and is 

prohibitively computationally expensive as its convergence rate is very low, requiring a huge 

number of model realizations to achieve well converged estimates. As a result, MCS may 

become impractical for probabilistic seismic analysis of large-scale and complex structural 

systems. Several strategies are possible to improve the computational efficiency of MCS in 

the uncertainty quantification process. One attempt aims to reduce the sample size by 

adopting more efficient sampling techniques, such as Latin hypercube sampling [19-23, 

26-31]. Another alternative is to replace the time-consuming FE model by a surrogate model 

(also termed as response surface model, metamodel, and emulator), which is a simplified and 

even explicit mathematical model used to map the relationship between the uncertain 

structural parameters and the target seismic response [17].  

In this study, a Gaussian Process (GP) surrogate model is developed to assess the 



 

 

probabilistic seismic performance of PSWS and improve the computational efficiency 

considering the uncertainties associated with structural parameters. To the best knowledge of 

the authors, the GP surrogate model has not been incorporated within the probabilistic 

seismic performance of wharf structures. The easy-to-use and fast-to-run GP surrogate model 

is adopted to substitute the computationally demanding model solver of PSWS. Subsequently, 

uncertainty quantification of seismic response is carried out within the framework of GP 

surrogate model, and the computationally expensive nonlinear seismic response analysis can 

be avoided. The most attractive benefit associated with GP surrogate model is that the 

complex high-dimensional integrals related to computations of both the mean and variance of 

seismic responses can be decomposed into simple one-dimensional integrals. Under this 

setting, quantification of the uncertainty in model responses resulting from random input 

parameters can be achieved in an analytical manner. The feasibility of the developed GP 

surrogate model-based method in quantification of uncertainty in seismic response 

propagated from structural parameter uncertainty is demonstrated through a large-scale and 

complex wharf structure.  

2 GP surrogate model-based uncertainty quantification of seismic performance 

2.1 Sobol sequence sampling 

To build a reliable and accurate GP surrogate model for uncertainty quantification of 

seismic performance, a suitable design of experiments (DOE) method is needed. The selected 

DOE method should allow for generating sample points that provide maximum information 

about the behavior of the original physical system. In general, since the physical models tend 

to be highly complex and are not well-understood in advance, the space-filling DOE method, 

which does not require knowledge about the underlying model, may be preferred [40]. In this 

study, Sobol sequence sampling [41], which is a well-known quasi-random low-discrepancy 

sequence, has good coverage of parameter design space. As such, Sobol sequence sampling is 



 

 

utilized to prepare training data for construction of GP surrogate model. 

The Sobol sequence is a quasi-random low-discrepancy sequence, which exclusively 

uses the smallest prime number 2 as the base to form successively finer uniform partitions of 

the unit interval, and then reorder the coordinates in each dimension. Using base 2 not only 

gives high uniformity in high dimensions, but also has computational advantages through 

bit-level. To create the n -th point of Sobol sequence, consider that integer n  is written in 

radix-2 notation as 

3 2 1 2( )n n n n  (1) 

The irreducible primitive polynomial whose coefficients are either 0 or 1 is introduced to 

Sobol points 
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The Sobol sequence is created from the following recurrence formula 

, 1 1, 2 2, 3 3,n i i i ix n v n v n v    (5) 

In practice, the Gray code algorithm is employed to generate Sobol sequence [42]. Using the 

properties of Gray code, the subsequent Sobol points can be created recursively based on the 

preceding ones as follows 
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where the superscript kc  denotes the index of the rightmost zero bit in the binary 

representation of integrate k . A small demonstration of Sobol sequence generation using 

Gray code can be found in [43]. 

2.2 Modeling of seismic performance by GP 

Nonlinear seismic response analysis of PSWS is computationally demanding, so the 

assessment of seismic performance is extremely time-consuming. In this paper, the surrogate 

modeling technique is adopted to solve the issue of high computational cost associated with 

the uncertainty quantification of seismic response. Specifically, a surrogate model is used to 

map the relationship between the structural parameters and the seismic responses; and then 

quantification of the uncertainty in the seismic responses propagated from parameter 

uncertainty is conducted within the framework of the reduced-order surrogate model. The GP 

surrogate model is used herein owe to its nonparametric and probabilistic features that enable 

it to maintain the benefits of the high modeling flexibility, great expressive power, and 

estimation of prediction uncertainty.  

The definition of GP is that any infinite subset of the function outputs is assumed to 

have a joint multivariate Gaussian distribution [44]. GP surrogate model, usually called 

Bayesian emulator that is fully specified by the mean function and covariance function, is 

used to characterize the input-output relationship of PSWS. Accordingly, the seismic 

response of the PSWS can be expressed as 

 ( ) ~ ( ), ( , ')s M Cx x x xN  (7) 

where 1 2{ , , , }dx x x x  is d -dimensional parameter vector; s  is the seismic response of 

PSWS; ( )M   is the mean function; and ( , )C    is the covariance function. The mean 

function is in general set to be zero. On the other hand, the squared exponential covariance 

function is adopted. This is commonly used in engineering literature. The squared 



 

 

exponential covariance function is [44] 
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where 2  is the signal variance and k  is the characteristic length scale. 

To build the surrogate model ( )s x , a small set of input and output data, called training 

data, generated from nonlinear seismic response analysis of PSWS is needed. The training 

dataset  , X SD  consists of n  pairs of vector parameter sample and scalar output, in 

which 1 2{ , , , }nX x x x  is the parameter index and 1 2{ , , , }ns s s S  is the seismic 

vector response. The task is to predict the seismic response *s  at an untried point *x . 

Employing the postulation of Gaussian prior over model outputs, the following equations 

hold 
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Applying the Bayes’ theorem, the posterior distribution of *s  is 
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Since the terms of Equation (11) have a Gaussian form, the posterior distribution over 

predicted outputs after integration is also Gaussian and can be expressed as 

 
* *

2

*) ,( s ssp   N  (12) 

with the mean and the variance given by 

* *s  C
•  (13) 

*
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where * *,( )C x XC ; ,( )CC X X ; and 
1 C S . 

The covariance function parameters 2

1{ , , , }d   , which are usually called 

hyperparameters in machine learning, uniquely determine the GP surrogate model. In the 

Bayesian context, it is common practice to infer the hyperparameters by maximizing the 



 

 

marginal likelihood of training data. In doing so, estimation of the hyperparameters is 

converted in an optimization problem of minimizing the negative logarithmic marginal 

likelihood (NLML). With a Gaussian likelihood, the NLML ( )L  and its partial derivatives 

are [44] 

11 1
( ) log | | log(2 )

2 2 2

n
  S C S C•L   (15) 

1 1 1( ) 1 1
tr

2 2i i i

     
  

   

C C
C S C C S

•L 

    
(16) 

where | | , tr( ) , and ( ) •  represent the determinant, trace, and transpose operators, 

respectively. 

2.3 Uncertainty quantification of seismic performance 

With respect to the seismic performance of PSWS, the uncertainty in structural 

parameter can be characterized by the probability density function (PDF), and the induced 

uncertainty of seismic responses is characterized in terms of statistics: mean and variance. 

Since ( )s x  follows a Gaussian distribution with mean s  
and variance 2

s  given in 

Equations (13) and (14), the expressions of statistics are 

 ( ) ( )ss p d x x xE  (17) 
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where ( )E  and ( )V  represents the expectation and variance operators, respectively. 

Using the separability of the covariance function, Equations (13) and (14) can be 

rearranged in a separate form [45] 
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training data X . Substitution of Equations (19) and (20) into Equations (17) and (18), yields 
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where , ,ji ij

k k kI I I  are single-dimensional integrals [45]. As indicated, the complicated 

high-dimensional integrals associated with mean and variance are successfully decomposed 

into the simple one-dimensional integrals.  

2.4 Implementation summary 

The GP surrogate model-based methodology is adopted to efficiently compute the 

statistics of seismic responses of PSWS. The methodology for uncertainty quantification of 

seismic response consists of two main procedures: (I) Sobol sequence, a space-fill 

experimental design, is used to create input component of training data. Then nonlinear 

seismic response analysis of PSWS is carried out at each sample point to obtain the 

corresponding seismic responses; and finally, GP surrogate model which characterizes the 

input-output relationship is built based on the training data. (II) Scenario-based assessment of 

seismic responses of PSWS is preformed within GP surrogate model framework; due to the 

use of surrogate model, the high-dimensional integrals associated with statistics (mean and 

variance) of seismic responses of PSWS can be successfully decomposed into 

one-dimensional integrals, which makes the task of uncertainty quantification of seismic 

response computationally efficient. The implementation of the developed probabilistic 

approach for seismic performance assessment of PSWS is detailed in Table 1. 

3 FE modeling of the wharf structures 

3.1 Description of the wharf structure 

The target structure, as shown in Figure 1, is a typical pile-supported container wharf, 

which is 317 m long and 30.5 m wide. Such wharf structure is located at port of Los Angeles 



 

 

Berth 100. Detailed information of this wharf is found in the references [13, 46]. Along the 

longitudinal direction, there are a total of 52 bays with an identical interval of 6.1 m. Along 

the transverse direction, there exist six rows of pre-stressing concrete piles with an octagonal 

shape and each side is around 0.253 m long. In particular, the distance between the pile row 1 

and 2 is 3.7m, and the remaining pile row distances are 6.7 m. Each pile has a length of 42 m, 

and the pile rows 1 and 2 have 2.2 m long segment above the ground. The concrete deck 

supported on these octagonal-shaped piles has a least thickness of 0.4 m. The depth of the soil 

layers at the landside and waterside are 53.8 m and 33.5 m, respectively. The dike that aims 

to enhance the stability of PSWS has an inclination of 31 degree. The water level is located 

on the top of loose marine sand. The configuration details of the wharf structure are show in 

Figure 2. 

3.2 FE modeling 

Various types of elements are used to model the pile-supported wharf-ground system. 

This constructed FE model has 1393 nodes and 1305 elements, including 1186 soil elements 

and 119 nonlinear beam-column elements. It is worth to mention that the numerical model 

employs a high permeability (i.e., 1 m/s) as the liquefaction is not a main problem 

considering the relatively high friction angle for sand stratum. The resulting FE model of the 

PSWS is shown in Figure 3. The modeling details of the pile-supported wharf-ground system 

are given subsequently. 

3.2.1 Modeling of soil domain 

The whole soil domain is idealized into four units including 9 sub-layers as well as the 

dike structure, where different colors represent different soil layers. The properties of soil 

stratum are displayed in Table 2. The saturated soil is modeled using 2D four-node 

plane-strain bilinear isoparametric elements. Such element is able to characterize the dynamic 

behavior of two-phase solid-fluid fully coupled material [47]. Each node of this element has 



 

 

three degree-of-freedoms (DOFs), where DOFs 1 and 2 are used to represent the solid 

displacement and DOF 3 is used to represent the fluid pressure. The water is modeled by 

applying the hydrostatic pressure on the ground surface at the waterside. Meanwhile, to 

calculate the effective stresses correctly on the soil layer, the average nodal loads caused by 

the water weight above the soil surface is also considered in this FE model [48]. Note that in 

the real situation, the soil stratum has the stress and pore pressure fields but with zero 

displacement field under the soil gravity. The OpenSees computer program is able to ensure 

the zero displacement of model in the gravity phase [49]. To this purpose, two gravity runs 

need to be performed: 1st gravity run with activating the initial state analysis feature to obtain 

non-zero stress, pore pressure, and displacement fields; and 2nd gravity run with deactivating 

this feature to achieve the zero displacement field while maintaining stress and pore pressure 

field. 

3.2.2 Modeling of the wharf structure 

The pile geometry section and the fiber discretization of pile cross section are shown in 

Figure 4(a) and (b), respectively. The nonlinear properties of prestressed reinforced concrete 

pile are approximately modeled based on the fiber section with Kent-Scott-Park concrete 

model [50] and Giuffre-Menegotto-Pinto steel model [51]. The properties of concrete and 

steel in fiber section are listed in Table 3. Figure 4(c) illustrates the moment-curvature 

response of prestressed concrete pile with different axial forces.  

The wharf deck is modeled using elastic beam element. In order to capture the 

skin-friction mechanism in the interface of soil and pile, the yield shear force of this 

mechanism is defined. The schematic soil-pile interface connection is presented in Figure 5. 

Two additional nodes between soil and pile nodes are added to connect the elastic beam and 

zero-length element (Figure 5(b)), which enforce the same DOF between the connected two 

nodes. This connection is created by the equal DOF constraint, zero-length element, and 



 

 

elastic beam. Herein, the zero-length element provides the yield shear force, perpendicular to 

the axial force to simulate the slip at the soil-pile interface. The yield shear force of soil-pile 

interface comes from two parts: one part related to cohesion and the other part related to 

friction. The cohesion component is defined as [13] 

cohesionF l h c    (17) 

where l is the pile perimeter; h is the distance of center to center for the adjacent pile element; 

-and c is the soil cohesion. The friction component is expressed as [13] 

friction tan
1

vF l h


 


    


 (18) 

where v  is the vertical stress;   is the Possion’s ratio; and   is the friction angle. Noted 

that v  should be the vertical effective stress for saturated case. According to the 

summation of yield shear force and number of zero-length element along the pile perimeter, 

the yield shear force of every element can be computed. 

3.2.3 Boundary and loading conditions 

To ensure free-field conditions, lateral boundary is applied by employing the larger soil 

column to simulate the effect of free field boundary (Figure 6). Other boundary conditions 

imposed on the model are: (I) the nodes at the bottom of the model are fixed in all directions 

before shaking, and the lateral displacement in the shaking direction is left free until the base 

excitations are inputted into the model; (II) the nodal pore pressure is specified on the ground 

surface at the waterside according to the water height, that is, the ground surface boundaries 

at the waterside and landside are pervious; and (III) both lateral boundaries are impervious, 

so the pore pressure DOFs of the nodes at both lateral boundaries are also impervious. 

Both linear and nonlinear analyses are performed for the wharf-ground system. In a 

linear analysis, a gravity application analysis (self-weight modeling) is performed before 

seismic excitation. After that, the initial state analysis is carried out to maintain the soil stress 

states and make the soil displacement zero through the OpenSees 



 

 

InitialStateAnalysisWrapper [49]. The resulting soil stress states serve as initial conditions for 

the subsequent dynamic analysis. In the whole analysis, 5 runs are conducted in sequence in 

order to achieve convergence and simulate the actual loading situation. For the 1st run, the 

gravity is applied and nodal force and pore pressure loads on the ground surface at the 

waterside are applied; for the 2nd run, all elements keep the same properties as those in the 

1st run and the initial state analysis is employed to ensure that the soil has non-zero stress and 

strain with zero displacement; for the 3rd run, the pile and soil-pile link element (i.e., 

zero-length element) are added to keep the same properties as those in the 2nd run; for the 4th 

run, only the soil properties are changed from elastic to plastic, and the remaining properties 

keep the same properties as those in the 3rd run; finally, for the 5th run, all materials keep the 

same properties as those in the 4th run and dynamic excitation is applied. This acceleration is 

generated from the 1994 Northridge earthquake ground surface Rinaldi Receiving Station 

record (Component S48W) and is scaled down to the amplitude of 0.22 g considering the 

effect of depth and soil property, as shown in Figure 7. 

4 Scenario-based seismic assessment of PSWS 

4.1 Seismic performance indicators and parameter characteristics 

For the PSWS under consideration, the seismic responses associated with different 

structural components (namely, wharf deck, slope, and pile) are investigated. Particularly, the 

seismic responses under investigation are the maximum displacement of the concrete deck 

(
max,deckD ), the maximum displacement on the middle of the slope (

max,dikeD ), and the 

maximum axial force (
max,topF ) and bending moment (

max,topM ) on the top of pile row 1. These 

four seismic responses are selected for the subsequent seismic analysis. 

The random variables within the computational process are shown in Table 4. To have a 

visualization of the variability in seismic responses induced by the parameter uncertainty, the 



 

 

time-history seismic responses corresponding to 300 parameter samples, which are generated 

based on Sobol sequence [39], are shown in Figures 8. More specifically, Figure 8(a) shows 

that the deck displacement at the end of shaking is about 38 cm and the displacement is 

accumulated mainly during the 2.5-6 s time interval due to the large acceleration pulse. 

Figure 8(b) indicates that the slope displacement shows a similar development pattern as the 

deck displacement, but its magnitude is smaller. As shown in Figure 8(c), the observed 

non-zero axial force at the beginning of shaking is due to self-gravity of deck; and the 

maximum axial force on pile top occurs at about 2.5 s, which corresponds to the peak 

acceleration (Figure 7). Figure 8(d) displays that the bending moment is almost zero at the 

begin of shaking, which means that the bending moment is mainly caused by seismic 

excitation. It is important to note that the nonzero axial force at end of shaking is due to the 

self-gravity of deck and the residual displacement caused by the large acceleration pulse, 

while the bending moment is nonzero owing to the residual displacement only. Overall, 

Figure 8 reveals to some extent that the parameter uncertainty will lead to the variation of 

seismic responses and the response variability becomes larger with the increase in the 

parameter uncertainty level. Probabilistic assessment of structural seismic responses using the 

developed GP surrogate model-based approach is discussed subsequently. 

4.2 Investigation of computational efficiency and accuracy 

The feasibility of the GP surrogate model-based approach in assessment of seismic 

responses is demonstrated using brute-force MCS. All tasks, including nonlinear seismic 

response analysis and surrogate modeling, are performed on a ThinkStation P700 desktop 

with Dual Intel Core i7-7700K processor and 16 GB memory. Combined with the parallel 

machine, the Single Parallel OpenSees Interpreter (called OpenSeesSP), which is widely 

applied to perform analysis of very large models, is utilized herein for increasing the 

computational efficiency. 



 

 

Following the implementation procedures for the GP surrogate model-based method 

detailed in Table 1, the statistics of seismic responses of PSWS can be evaluated. On the 

other hand, MCS, which is widely used as the reference of other probabilistic approaches 

because of its generality, stability, and easy implementation, is also adopted to compute the 

statistics. A large sample size of 60,000 is used in order to ensure the convergence of sample 

statistics. The statistics of seismic responses of PSWS obtained by the GP surrogate 

model-based method and MCS are summarized in Table 5, where the associated 

computational costs are also provided. As shown in Table 5, the GP surrogate model-derived 

statistics are in close agreement with the MCS-derived ones. In particular, the largest relative 

errors of mean and standard deviation are 0.0407% and 3.2767%, respectively. The slight 

discrepancy between the GP surrogate model- and MCS-derived results demonstrates that the 

present GP surrogate model-based approach is effective and reliable for probabilistic 

assessment of seismic performance by considering the uncertainties associated with structural 

parameters. In addition to the accuracy of the present method, its computational efficiency is 

also of concern. As seen in the last row of Table 5, the total computational expense of 

generating training data and GP surrogate modeling is 586.4 min (around 9.7 hours). 

Specifically, the computational cost associated with GP surrogate modeling alone is only 11.4 

min, and the remaining 575 min are accounted for by performing the nonlinear seismic 

response analysis for creating training data. In contrast, the brute-force MCS takes 115,000 

min. In terms of the computational time, the GP surrogate model-based method exhibits 

overwhelming superiority over the brute-force MCS. Accordingly, it can be concluded that 

the proposed method is effective and computationally efficient for uncertainty quantification 

of seismic response. 

4.3 Probabilistic assessment of seismic responses considering uncertainties of structural 

parameters 



 

 

To explore how the parameter uncertainty level, measured by coefficient of variation 

(COV), influences the uncertainty of the seismic responses, a total of six COV scenarios are 

considered, that is, 5%, 10%, 15%, 20%, 25%, and 30%. The results are shown in Figure 9, 

which is an error bar plot with mean (  ) plus/minus one standard deviation ( ). To further 

see how the variability of seismic responses is affected by parameter uncertainty size, the 

relationship between the COVs of seismic responses and the COVs of structural parameters is 

depicted, as shown in Figure 10. From the results of probabilistic seismic response 

assessment shown in Figures 9 and 10, several observations can be made. 

As shown in Figure 9, the expected values of seismic responses of PSWS remain stable 

with the increase in COVs of structural parameters. This reveals that each of these 4 seismic 

responses has relatively a steady level over the different ranges of parameter values. It should 

be noted that this phenomenon may not be observed when the definition of parameter 

uncertainty is different. The standard deviations rise with the increase in COVs of structural 

parameters, which means that although the wider range of parameter variation does not cause 

the obvious variation to the response means, it leads to the upsurge in the standard deviation 

of responses (that is, larger response variability). As shown in Figure 10, an increase in COVs 

of structural parameters leads to an increase in COVs of all seismic responses. 

5 Conclusions 

This paper focuses on scenario-based seismic performance of PSWS considering 

parameter uncertainty. In this study, a fast-to-run GP surrogate model, which is a 

nonparametric and probabilistic model formulated from a Bayesian setting, is adopted to 

replace the computationally demanding FE model. The subsequent uncertainty quantification 

of seismic response is conducted exclusively within the framework of GP surrogate model. 

Specifically, this model is used to compute two order statistics (i.e., mean and variance) of 

seismic responses of PSWS. The limitation of high computational cost involved in 



 

 

uncertainty quantification of seismic response of PSWS is overcome by the proposed 

surrogate modeling approach.  

This approach is employed for uncertainty quantification of the interested seismic 

responses of PSWS with the defined uncertain structural parameters. On the other hand, the 

brute-force MCS is used as the reference solution for verification purpose. The excellent 

agreement between the GP surrogated model- and MCS-derived seismic response statistics 

verifies the high accuracy of the present approach. In particular, the largest relative errors of 

mean and standard deviation are 0.0407% and 3.2767%, respectively. In terms of the 

computational cost, the GP surrogate model-based approach maintains overwhelming 

superiority over the brute-force MCS. To be specific, the former takes 9.7 hours in total and 

the computational time associated with GP surrogate modeling alone is only 11.4 min, 

whereas the latter takes around 115,000 min. Therefore, the proposed GP surrogate 

model-based methodology holds high computational accuracy and efficiency in uncertainty 

quantification of seismic response of a large-scale PSWS. The results obtained by the GP 

surrogate modeling approach enable modelers to gain insight into the effects of uncertain 

structural parameters on the seismic performance of PSWS.  
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Table 1. Scenario based seismic assessment of PSWS.  

Procedure1 Formulation of GP surrogate model of PSWS 

1 
Adopt Sobol sequence sampling scheme to generate n -set inputs X from 
structural parameters’ probability distributions. 

2 
Conduct nonlinear seismic response analysis of PSWS at each set ix  of X  to 
obtain the corresponding seismic response is  

3 
Organize training dataset  , X SD , where 1 2{ , , , }nX x x x  and 

1 2{ , , , }ns s s S . 

4 

Estimate the hyperparameters of GP surrogate model by solving the optimization 
problem defined below 
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5 

Characterize the relationship between seismic response of PSWS and structural 

parameters through GP surrogate model ( )s x , which follows a normal distribution 

such that  
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End procedure1 

Procedure2 Probabilistic assessment of structural seismic responses 

1 

Expand the expressions of mean and variances as 
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Evaluate the seismic response statistics based on the following formulae 
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3 Assess seismic response variability of PSWS via the obtained statistic information. 

End procedure2 



 

Table 2. Physical properties of soil under wharf structure [13, 43]. 

Soil unit 
 

Elevation (m) Soil description 
Density, ρ 

(kg/m3) 

Friction 

angle, φ (º) 

Shear modulus, 

G (MPa) 

Bulk modulus, 

B (MPa) 

Cohesion, 

c (kPa) 

I  52.0~54.2 Sandy fill (above ground water table) 1920 
    

II 

A  45.0~52.0 Loose marine sand 1920 32 100 469 0 

B  36.0~45.5 Dense marine sand 2000 36 151 703 0 

C  35.5~39.0 Medium dense marine sand 2000 34 127 591 0 

III 

A  29.5~37.0 Soft to stiff lagoonal clay 1760 0 26 122 80 

B1  25.0~29.5 Stiff lagoonal clay 1840 0 43 200 108 

B2  17.0~25.0 Stiff lagoonal clay 1840 0 84 391 135 

IV 
A  19.0~22.0 Dense lakewood-San Pedro sand 2000 36 186 868 0 

B  0~19.0 Very dense lakewood-San Pedro sand 2080 38 279 1300 0 

- Dike  32.0~52.0 Quarry run 2240 45 141 1363 20 

 



Table 3. Properties of concrete and prestressing steel used in fiber section [13, 43, 49]. 

Parameter Description Unit Value 
'

cf  Concrete compressive strength MPa -74.9 (-49.0) 

c  Strain at concrete compressive strength - -0.005 (-0.002) 

cuf  Concrete crushing strength MPa -63.0 (0) 

cu  Strain at concrete crushing strength - -0.018 (-0.004) 

yf  Steel yield strength,  MPa 1490 

E  Steel elastic modulus MPa 2.04×105 

Init  Prestressing MPa 1062 

b Steel strain-hardening ratio - 0 

Note: the value outside parentheses represents the properties of confined concrete, 

while those inside parentheses characterize the properties of unconfined concrete. 
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Table 4. Uncertain parameters considered in PSWS. 

No Parameter Distribution 
Mean 

(MPa) 
COV (%) Source 

1 
Shear modulus of loose 

marine sand (IIA) 
Lognormal 100 

5,10,…,30 

Enright and 

Frangopol [25],  

Nour et al. [36], 

Andrade and Borja 

[53], Kayser and 

Gajan [54] 

2 
Shear modulus of dense 

marine sand (IIB) 
Lognormal 151 

3 

Shear modulus of 

Medium dense marine 

sand (IIC) 

Lognormal 127 

4 
Shear modulus of soft to 

stiff lagoonal clay (IIIA) 
Lognormal 26 

5 
Shear modulus of stiff 

lagoonal clay (IIIB1) 
Lognormal 43 

6 
Shear modulus of stiff 

lagoonal clay (IIIB2) 
Lognormal 84 

7 

Shear modulus of dense 

lakewood-San Pedro 

sand (IVA) 

Lognormal 186 

8 

Shear modulus of very 

dense lakewood-San 

Pedro sand (IVB) 

Lognormal 279 

9 
Shear modulus of quarry 

run (Dike) 
Lognormal 141 

10 
Compressive strength of 

confined concrete 
Lognormal -74.9 

5,10,…,30 

Enright and 

Frangopol [25], 

Crespo-Minguillón 

et al. [55], 

Biondini et al. [56] 

11 
Compressive strength of 

unconfined concrete 
Lognormal -49.0 

12 
Crushing strength of 

confined concrete 
Lognormal -63.0 

13 
Yield strength of 

prestressing steel 
Lognormal 1490 

5,10,…,30 
Eldin and Kim 

[57] 
14 

Elastic modulus of 

prestressing steel 
Normal 2.04×105 

15 Prestressing of steel Lognormal 1062 5,10,…,30 

Crespo-Minguillón 

et al. [55], 

Biondini et al. [56] 

Note: COV (coefficient of variation) is the ratio of the standard deviation to the mean. 
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Table 5. Comparison of computational accuracy and efficiency. 

 

GP surrogate model 
 

MCS  Relative error (%) 

    
 

         

Dmax,deck (cm) 44.4780 0.2691 
 

44.4660 0.2768  0.0270 2.7688 

Dmax,dike 

(cm) 
29.0675 0.2399 

 
29.0794 0.2429  0.0407 1.2467 

Fmax,top 

(kN) 
-944.5185 4.9393  -944.3811 4.7826  0.0145 3.2767 

Mmax,top (kN-m) 1193.7162 1.2913 
 

1193.6700 1.2750  0.0039 1.2774 

Time (min) 586.4  115000  - 

 

 

 

Figure 1. Three-dimensional view of pile-supported wharf structure. 

 

 



-29- 

 

654321

6.7m 6.7m 6.7m 6.7m

1
1.67

6
.7

m
6

.7
m

6
.7

m
6

.7
m

6

5

4

3

2

1

52 Bays @ 6.1m = 317.2m 

Longitudinal direction

T
ra

n
sv

er
se

 d
ir

ec
ti

o
n

Landside

Waterside

3
.7

m
3.7m

Landside Waterside

(a)

(b)

Selected 

computation 

domain

1.0m

4
4

.0
m

 

Figure 2. Configuration of wharf structure: (a) plan, and (b) elevation. 
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Figure 3. Pile-supported wharf structure: (a) model configuration, and (b) finite element 

mesh. 
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Figure 4. Configuration and moment-curvature response of pile: (a) pile geometry section, (b) 

fiber discretization of pile cross section, and (c) moment-curvature response under different 

axial forces  
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Figure 5. Soil-pile interaction modeling: (a) pile and surrounding soil, and (b) connection of 

soil-pile interface. 
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Figure 6. Lateral free-field boundary conditions and base excitation by velocity. 

   

Figure 7. Base input acceleration and velocity time histories. 
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Figure 8. Seismic responses of wharf structure with different COVs of structural parameters: 

(a) deck displacement, (b) displacement on the middle of slope, (c) axial force on the top of 

pile row 1, and (d) bending moment on the top of pile row 1. 
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Figure 9. Statistics distribution of seismic responses of wharf structure under different 

parameter COVs: (a) deck displacement, (b) displacement on the middle of slope, (c) axial 

force on the top of pile row 1, and (d) bending moment on the top of pile row 1. 
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Figure 10. COV of seismic responses versus COV of structural parameters: (a) deck 

displacement, (b) displacement on the middle of slope, (c) axial force on the top of pile row 1, 

and (d) bending moment on the top of pile row 1. 
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